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ABSTRACT
We describe the GENI Experiment Engine, a Distributed-
Platform-as-a-Service facility designed to be implemented
on a distributed testbed or infrastructure. The GEE is in-
tended to provide rapid and convenient access to a dis-
tributed infrastructure for simple, easy-to-configure exper-
iments and applications. Specifically, the design goal of the
GEE is to permit experimenters and application writers to:
(a) allocate a GEE slicelet; (b) deploy a simple experiment
or application; (c) run the experiment; (d) collect the results;
and (e) tear down the experiment, starting from scratch,
within five minutes. The GEE consists of a set of cooper-
ating services over the GENI infrastructure, which together
with rapidly-allocated slicelets and a rapidly-allocated net-
work offers a complete, ready to use, sliceable platform
over the GENI Infrastructure. The GEE is designed to use
off-the-shelf components and infrastructure; unlike previous
PaaS offerings, it can be nested nicely inside a GENI slice,
or any other IaaS infrastructure. Further, the GEE’s south-
bound interface is extremely small and lightweight, making
it portable to other underlying infrastructures.

1. INTRODUCTION AND MOTIVATION
Over the course of the past few years, we have partici-

pated in the development of a number of demonstrations
of the Global Environment for Network Innovateion
(GENI) infrastructure [7] , including a distributed geo-
graphic information system, a distributed Map/Reduce
system over the wide area, and a distributed media
transcoding system. Many of these were built on our
earlier TransCloud system [5]. The first and most com-
mon question we got after each demo was: “Can I use
the infrastructure you built on top of GENI?”This ques-
tion was understandable: GENI is a distributed, highly-
configurable Infrastructure-as-a-Service (IaaS) Cloud
with deeply-programmable networking, designed to per-
mit any experimenter to construct his own Internet on
the GENI substrate. This platform offers great power

and flexibility to its users, experimenters, and applica-
tion developers, but at a price: allocating and configur-
ing a GENI slice is a far more cumbersome task than
the relatively lightweight mechanisms that characterize
PlanetLab and other Cloud infrastructures that offer
less freedom to users than GENI does. All we needed
was a way to deploy VMs across the wide area, and
on GENI we found deployment and maintenance of our
demonstrations to be a significant challenge. Further,
all our demonstrations had the same essential compo-
nents: a network of virtual machines (or, more pre-
cisely, some platform isolated from others in a multi-
tenant environment); some form of wide-area messag-
ing system; a conceptually- (and, generally, physically-
) distributed store; an orchestration system, typically a
bunch of Python or Perl scripts which invoked ssh com-
mands on the various nodes. We were building on top
of what was essentially PlanetLab [25] plus a few rela-
tively standardized services. It would be convenient if a
permanent infrastructure were available that had those
services.

The flexibility of the underlying GENI infrastructure
permits users to allocate expensive resources which are
in short supply, primarily physical machines and heavy-
weight virtual machines. Since expensive resources can-
not be allocated for long periods of time, lease times for
GENI slices are short, requiring frequent slice renewal.
Given the range of experiments and applications target-
ted by GENI, this is a requirement for the underlying
infrastructure: one can’t design an infrastucture antic-
ipating long-duration use of lightweight resources and
easily accomodate short-term requests for expensive re-
sources. It is very hard to turn part of an aparment
building into a mansion. However, many GENI exper-
iments and applications don’t require these expensive
resources. For these users, the full flexibility and free-
dom GENI offers little benefit, and the machinery this
freedom requires imposes nontrivial burdens.
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An IaaS platform which offers heavyweight resources
can unintentionally encourage their use. People will fol-
low the path of least resistance when creating and de-
ploying their experiment or application, especially in a
free infrastructure such as GENI. If it’s easier to deploy
an experiment using only bare-metal machines, many
will, even if the experiment could be done much more
efficiently using virtual machines or containers. How-
ever, lightweight, efficient resource usage requires pre-
planning. To return to our previous analogy, one can’t
rent an apartment unless there are apartment buildings.
The use of VMs or containers require an infrastructure
that supports these as a central feature, with a ready
supply always available.

All of these considerations point to the need for a
lightweight, easy-to-use infrastructure for potentially
long-duration use of inexpensive resources, given use
cases for long-running experiments and applications.
Experience with PlanetLab suggests that there are
many such applications, including:

• Content Distribution Networks

• Distributed hash tables

• Wide-Area stores

• Network observation platforms

• Distributed DNS

• Distributed messaging services

• Multicast overlays

• Wide-area programming environments

IaaS platforms inherently support overlay platforms
as a service, and this is exploited both in the academic
and commercial sectors. The overlay platforms are al-
ways specializations of the underlying infrastructure:
one can limit the capabilities and flexibility in an over-
lay, for ease of use and to encourage the use of specific
types of resources; it’s difficult to enhance capabilities
not present in the underlying platform. Further, GENI
was specifically designed to permit the construction of
overlay Clouds built within GENI itself; after all, Cloud
research is a major driving use case for GENI.

This made our strategy obvious: construct an easy-
to-use Cloud within GENI that offered long-duration
slices of virtual machines or containers, distributed
throughout the GENI infrastructure. PlanetLab is that:
a Cloud that offered long-duration slices of distributed
containers, with a large user base, a decade of 24/7 op-
eration, and a toolchain that could be easily adapted to
a PlanetLab-within-GENI architecture.

That was our first motivation, and it was rapidly sup-
plemented by a second: PlanetLab has aged. When it
was developed in 2003, there was no such thing as a

“Cloud”. Planetlab and Emulab [37] were pioneers in
this area, and, as is often the case with pioneering soft-
ware artifacts, would be built differently given modern
technologies. PlanetLab relied on a custom configu-
ration and management using VServer, which tied its
users to a specific Fedora Core image. This also makes
it difficult to layer PlanetLab on top of other Cloud
platforms, since it must be compatible with the node
management system of the underlying infrastructure.
Its database and portal are both built on decade-old
technologies.

These considerations led us to our second major goal:
to build an updated, lightweight, embeddable Planet-
Lab that leveraged modern tools for custom image man-
agement and be easily deployed over multiple underly-
ing Cloud infrastructures. The development of mod-
ern Cloud management, deployment, and configuration
technologies such as Fabric [16], Ansible [3], Chef [12]
and Puppet [26], meant that most of the deployment
and configuration effort involved in maintaining Planet-
Lab could now be done by publicly-available tools with
a widespread user base and significant external support.

Similarly, host and container management tools such
as Docker [14] subsume many of the functions of the
PlanetLab node manager as well as providing many
value-added functions for users of the platform. One
specific example is an efficient, network-accessible image
management and deployment system, DockerHub [15],
which permits users to easily store, version, and deploy
customized images for their experiment using a novel
combination of image management and GitHub [17].

PlanetLab was designed as a standalone infrastruc-
ture. Our update, the GENI Experiment Engine
(the GEE), has been designed to be embedded in the
GENI infrastructure in its first incarnation. Given the
plethora of Cloud systems now available in every field,
we could assume the existence of an underlying Cloud
infrastructure for any deployment of the GEE. In this
circumstance, many of the features of PlanetLab Cen-
tral were not only redundant, but undesirable from
both a system and user perspective. For example, the
MyPLC database stores authentication information for
users, whereas an embedded platform can and should
use the underlying platform for user authentication. For
example, the Google App Engine uses Google’s under-
lying infrastructure for user authentication.

These considerations brought the design goals of the
GENI Experiment Engine into sharp focus. We wanted
an infrastructure which accomplished the goals of Plan-
etLab – to offer distributed systems experimenters con-
tainers spread over the wide area, in a lightweight,
easily-allocated manner, with a number of new features:

• The infrastructure should be embedded in an un-
derlying Infrastructure-as-a-Service offering

2



• The containers at a site should be deployed in a
lightweight manner within a virtual machine

• It should be easy for experimenters to create, ver-
sion, manage, and deploy their own node images

• There should be support for modern configuration
management and orchestration tools

• The interface to the underlying infrastructure
should be small and standards-based, to permit
ports to other infrastructures

• Value-added services such as wide-area stores and
pluggable HTTP servers should, where possible,
be deployed in slices which are easily accessible to
other slices. Where not, support should be given
for rapid deployment via orchestration tools.

• Simple, understandable networking.

• An experimenter should be able to create a slice,
use it to run “Hello, World” across the GEE infras-
tructure, and tear it down, within five minutes

The remainder of this paper is organized as follows.
In Section 2, we describe the process of using GEE:
how to allocate, use, and tear down a GEE “slicelet”.
In Section 3, we describe the architecture and services
of the GEE. In Section 4, we describe related work in
the testbed and cloud arenas. In Section 5, we describe
the current status of the GEE and its future.

2. RUNNING A GEE EXPERIMENT
The easiest way to get a feel for an architecture like

GEE is to consider its usage. To use the GEE, a user
logs in to the GEE portal using her GENI credentials.
The GEE portal stores no user information or creden-
tials; instead, OpenID[27] is used to call back to the
GENI portal, and the user’s email is the userid for the
purposes of the GEE. The user is then directed to a
dashboard, where, with the click of a button, she can
allocate a GEE Slicelet. When this process is completed
(within a few seconds), a download link to a zip file ap-
pears on her dashboard. The user can then download
the file to his computer. The zip file contains five files:

1. The slicelet’s private key

2. An ssh-config file which contains configu-
ration directives to log into slivers on the
slicelet. A typical use would be $ssh -i

./id_rsa -F ./ssh-config slice295.pcvm4-

1.utahddc.geniracks.net, which logs in to
slicelet 295’s sliver on pcvm4-1 on the InstaGENI
rack in the Utah downtown data center.

3. A Fabric[16] file, with ssh configuration, host,
and key variables pre-populated, that the exper-
imenter can use to deploy software, configure the
slivers, or run experiments on the slicelet. Of
course, the Fabric file references the generated ssh-
configuration file, and so the same symbolic names
are used in place of IP address and port number

4. An Ansible hosts file, for those users who use An-
sible for slice configuration and deployment.

5. A README file.

Of the five items, only the first two are required to
access the slice. The remaining three are convenience
items to get “Hello, World” up and running.

Once the user has downloaded and unpacked the slice
file, she is immediately able to ssh into slivers in the
usual fashion, and configure them in the usual way. A
user will also be able to use any ssh tool of her choos-
ing to populate or control her slice. However, use of
the enclosed Fabric file makes upload and execution as
easy and quick (roughly, as easy as uploading a Python
program to the Google App Engine).

Fabric is one solution to single pane-of-glass control
of a slicelet. It is simply a Python wrapper around ssh
commands, which automates the execution of both re-
mote and local commands. We have pre-loaded the Fab-
ric file with a number of commands to both introduce
the user to Fabric and to give them out-of-the-box func-
tionality on the site. For example, typing: “fab nmap”
runs a script on each host that reports the reachable IP
addresses on the private network.

A second solution, with somewhat different seman-
tics, is Ansible. Ansible uses YAML [38] as a declara-
tive description of the node configuration. Rather than
issuing ssh commands to the nodes to install and config-
ure software, the user writes a YAML description of the
final state of the node, and Ansible issues the necessary
commands (a mix of prebuilt and user-specified com-
mands) to build and configure the node. Both Ansible
and Fabric are supported by, and used by, the GEE.

The user can tear down her experiment by using the
“free slicelet” button on her dashboard.

No configuration of the slivers in the slicelet is re-
quired: the user simply runs her experiment. Indeed, if
the software the experiment requires is pre-installed on
a basic Ubuntu 14.04 LTS distribution, the user need
not install any software at all.

3. ARCHITECTURE AND IMPLEMENTA-
TION OF THE GEE: THE FAD ARCHI-
TECTURE

The GEE is a set of multiple services, which offer
various features to users. The bedrock is a Compute
Service, which allocates GEE “slicelets” and configures
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Figure 1: The Architecture of the GEE Com-
pute Service

them. The remaining services, which will grow over
time, are either deployed in their own slicelets or of-
fered as deployment options within a slicelet. The for-
mer is preferred; the latter is chosen when offering as a
separate slicelet is infeasible due to protection or other
considerations. An example of a service which is de-
ployed via slicelet configuration is the Message Service,
described below: it is offered as a deployment option
because the simple, efficient message service we chose
to support is single-tenant, and deploying in a separate
slice introduced complexity without adding functional-
ity. Slicelets already are partitioned from other GEE
tenant slicelets; there was no reason to add an extra
layer of security merely for the architectural convenience
of using a separate slicelet.

3.1 The GEE Compute Service (FAD Archi-
tecture)

The overall architecture of the GEE Compute Service
is shown in Figure 1. We use Docker as the container
manager service on the slice. Docker is essentially an
overlay on a linux container solution, either using lib-

virt and LXC [13], or using the built-in libcontainer

library. Despite its relative youth – the first release was
in March of 2013 – it has become an extremely pop-
ular virtualization solution, with over 16,000 deployed
images on DockerHub. Its primary use is to provide
isolation for multiple processes running within a virtual
machine, and this has been responsible for most of its
uptake. Docker’s web page advertises that“‘Dockerized’
apps are completely portable and can run anywhere”
but currently support is limited to Linux. A Docker-
ized application is independent of the underlying OS.
Each Docker “virtualized application” carries only its
libraries, without an underlying guest OS. This gives
significant size savings. The Ubuntu 14.04 Docker con-
tainer is about 255 MB, compared to at least 1 GB of

disk space for an Ubuntu VM.
Though Docker has been primarily used in the en-

terprise IT space to scale individual applications seam-
lessly within a VM, the functions of the Docker Engine
are quite similar to those of the Node Manager of Plan-
etLab – to instantiate and deploy containers and pop-
ulate them with images. It was easily adapted to man-
aging a PlanetLab-style multi-tenant container node.

The Docker Engine comes in two parts: an on-
node Docker daemon, which creates, manages, and de-
stroys the containers, and populates them with images;
and a client that issues Docker commands to the dae-
mons. Our base installation for a node image is a
GEE-customized version of an Ubuntu-based Docker
image, available on DockerHub at gee-project/phusion-
baseimage. We use Ansible playbooks as the interface
to Docker to create and delete containers and build the
slicelet zip file from templates.

The value of Ansible and Docker was easy to see: the
Ansible slice-creation YAML [38] file was only 57 lines
of markup , and the script which invoked Ansible and
created the slice tarball was only 18 lines of bash.

This remarkable economy is also due to our ability
to configure slivers post-instantiation through the use
of Fabric and/or Ansible commands and scripts. To in-
stall the GEE Message Service we wrote a Fabric com-
mand which installed the appropriate server package,
started it, and installed the Python client libraries on
the hosts. This combination of three tools – Docker
for sliver management and image manipulation, Ansi-
ble for sliver creation and post-creation customization,
and Fabric for post-creation customization and experi-
ment control – led us to name this the Fabric, Ansible,
Docker (FAD) architecture for embedded distributed in-
frastructures.

A second simplification is due to the embedded nature
of the GEE. Since the GEE is embedded, its containers
run in VMs allocated by the underlying infrastructure.
Connectivity to the VMs is maintained by the underly-
ing infrastructure, relieving the GEE from maintaining
and repairing this connectivity; instead, we can rely on
the underlying GENI tools. InstaGENI PlanetLab was
always envisioned as a subservice running over Proto-
GENI [29] on the InstaGENI racks [4], and a convenient
way for GENI users to run VM-based experiments. The
GEE now replaces InstaGENI PlanetLab in this system,
with four major enhancements:

1. Update of the standard VM to a modern image

2. VM enhancements with pre-installed services

3. Optional pre-allocation of GEE slicelets

4. Use-once credentials for access to GEE slicelets

3.1.1 The GEE Portal
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The interface for a user to create and manage slicelets
is through the GEE Portal, at http://www.gee-

project.org. The Portal itself runs in two Docker con-
tainers inside a VM on the Stanford VICCI cluster [34,
24]. We use Docker both for its convenience as an ex-
ecution environment and to gain hands-on experience
with features such as inter-container networking, which
we will employ for services deployed in slicelets

The first container has a Mongo [21] database, which
is used to register users, slices, and slice manipula-
tion requests. No credential information for the user
is stored; the only records are the user name, email,
and the slice, if any, which he has created.

In addition to its usual tasks, the database is designed
to be an intermediate representation for stateful pro-
cesses, primarily slice creation and deletion. When a
user makes a slice request (other than renewal, which
is handled entirely by the database itself), the portal
issues a request into the database which a daemon pro-
cess subsequently services; the slice status is kept in a
database field. This architecture was chosen to permit
the portal to respond instantly to a user request, with-
out waiting for back-end processes to complete.

The second VM contains the webserver and associ-
ated scripts. Database requests are made through the
networking architecture of Docker, and the connections
are made at boot time for the two containers.

Use of Docker within a VM has had a number of
benefits, in addition to familiarizing us with the slivers’
execution environment. The first is that we are able to
use the portal VM itself as a test system. We actually
maintain two sets of Docker containers, one for test and
one for production, and use other Docker-based hosts
on the VICCI cluster as a test production system. This
has meant that any enhancements to or tests of the por-
tal can be run in a nearly-perfect in situ environment,
leading to rapid debug and reliability cycles.

3.1.2 Authentication and User Access
Authentication and user access were questions that

we considered carefully. We wanted to offer the GEE to
any user with GENI access, without maintaining a sep-
arate database of authentication information. This was
chosen for reasons of user convenience, maintainability,
and user security. Users, once they have registered with
GENI, should not need to add themselves to a separate
database. Further, delegating authentication promotes
maintainability, and not keeping user authentication in-
formation afforded attackers one fewer place to obtain
ssh keys and passwords.

To authenticate users we used an OpenID callback to
the GENI portal, obtaining the minimum information
needed to create and maintain user slices – the user’s
email address, which was the only indexing information
used in the GEE portal database.

3.1.3 Optional Pre-Allocation
The “five-minute rule” has dominated our design con-

sideration. Delay in use of PlanetLab slices after allo-
cation was due to sliver configuration and key propaga-
tion. This is a much more rapid process in the FAD-
based GEE, but it is still nonzero; further, a number
of scenarios (such as, for example, use in tutorials) en-
vision the creation of multiple slicelets more or less si-
multaneously. We serialize slice creation requests, to
avoid excessive network traffic to the GEE nodes, us-
ing a daemon on the GEE portal to continuously ser-
vice incoming requests. Since slice creation is serialized
and creation of each slice takes on the order of tens of
seconds, we optionally maintain a bank of pre-created
slices as a buffer against heavy node creation time.

3.1.4 Use-once Keys
Note that even though we’re providing the use-once

slice private key as a convenience, for bootstrap and for
immediate usability, the user will be able to install keys
of her choosing on the slice once she has access to it.
One can even remove the use-once key if desired, though
this is not recommended. Some actions void warranties.

We used a use-once, or “burner” key for two reasons:
speed and security. Speed is obvious: we have pre-
propagated the key. Security is nearly as obvious: if
a user’s slicelet is compromised, or the use-once key is
discovered, all that is compromised is the user’s slicelet.
The GEE portal retains no credential from the user, and
so cannot compromise any user credentials. Similarly,
compromise of a user’s ssh key won’t result in an at-
tacker gaining access to a GEE slicelet.

Use-once keys are the infrastructure equivalent of ho-
tel room cardkeys; they are allocated when the slicelet
is instantiated, used only to access the slicelet, and are
destroyed when the slicelet is de-allocated. As a result,
they come with fewer security concerns than do stan-
dard keys, just as a hotel is completely unconcerned
with travelers departing with cardkeys in their pockets.

3.2 The GEE Message Service
The GEE Message Service is used to route job con-

trol messages within a slicelet; this is a common feature
of many Cloud systems, and a number of systems are
available. The Message Service is a server which can
be loaded into the slicelet, and a client library; a user
activates the server on whichever nodes in the slicelet
she prefers through a Fabric command. We searched for
a message service that is well-documented, simple, con-
figures automatically, has a rich set of client libraries,
and can be enabled with a service start command.

We chose Beanstalk [6]. Beanstalk has libraries in
a variety of languages, notably including Python. It
installs as a service on Ubuntu, with a configurable port.
It has a simple put/get interface and supports a wide
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variety of use models, including pub/sub.
As with many Message Service systems, Beanstalk is

configured for a single-tenant environment. Its primary
use case (like Docker) is to coordinate multiple tasks
within a data center. Its use mode is not that a multi-
tenant provider offers messaging-as-a-service, such as
IronMQ, but rather that each job or service instantiate
its own messaging server accessable only from its own
nodes: security is assumed at the slicelet, not the ser-
vice, level. This dictated our deployment choice: rather
than instantiating a GEE- or GENI-wide messaging ser-
vice, we chose to offer the experimenter a Fabric com-
mand to turn the service on in the appropriate slivers,
and choose the appropriate server site.

3.3 The GEE Network
The GEE Network is a private layer-2 network span-

ning the infrastructure on which the GENI Experiment
Engine is deployed. Each GEE Sliver has a single inter-
face on this network, with a 10. address.

GEE Slicelet networks are not completely isolated.
One of the major use cases for slices in PlanetLab was
slices providing services for other slices: e.g., PsEPR [8]
provided monitoring information and Stork [9] loaded
images for other slices efficiently. The PlanetLab
mantra for services was “put it in a slice”, which led
to a micro-kernel architecture for a distributed system:
if it didn’t absolutely need to be in the PlanetLab con-
troller, it was in a services slice. This greatly simplified
the design of PlanetLab, permitted experimentation in
utilities and services, and contributed to the lifespan
and maintainability of the PlanetLab infrastructure.

For these reasons, the GENI Experiment Engine is
adopting the same design philosophy. The GENI Stor-
age Service will be deployed in a slicelet, as is the GENI
Reverse Proxy Service. Our original intent was to offer
the messaging service in a slicelet, but the requirement
for a secure multi-tenant service restricted our choices
and added unnecessary complexity to what was other-
wise a simple, foolproof mechanism: hence our choice
to add a service to the slicelet rather than offer a multi-
tenant service in its own slicelet.

One difference between PlanetLab and GENI is that
GENI has a private network that is used for intra-slice
communication. The private network is attractive for
two reasons: conservation of port space on routable IPs
and security. Public-facing services are under contin-
ual attack from botnets, something privately-deployed
services need not protect against. The GEE private net-
work is a virtual intranet for GEE slicelets, and we can
use it for GEE-specific services.

Fortunately, since Docker was designed to permit
multiple cooperating applications to communicate while
enjoying near-VM-level isolation, the Docker network-
ing interface readily admits inter-slice communication

without foreknowledge of local IP addresses. In fact, we
use the Docker mechanism in the GEE portal, to per-
mit the GEE portal to communicate with the database
server without use of hard IP addresses.

When a container is instantiated, it is optionally
given a name. This name can be bound to a local name
in other Docker containers when they are instantiated,
and these containers now have a virtual interface to the
named container, which is referenced by name. So, for
example, we have bound our database container with
the name mongodb in our portal container, and the GEE
portal binds to the database server at hostname mon-

godb, port 12071. This name is only valid within that
container, and is bound on node creation.

We will use the same mechanism for slice-hosted ser-
vices. On each node, these slices will be given the appro-
priate symbolic name, and future slices will be created
with that name bound on each node.

Implementation of the GEE Network evolves as GENI
itself evolves. Our demonstration network used a tem-
porary circuit from Ion, which is unsuitable for produc-
tion use. Our first production network used a GENI-
wide VLAN. In June 2014, we built a version of the GEE
integrated with the Virtual Topology Service. GEE-on-
VTS is the long-term architecture for the GEE network.

3.4 Controlling GEE Experiments From The
Desktop

Scalability of control for a distributed application is
critical. Slice management and configuration was the
focus of a large number of early PlanetLab efforts [2, 1,
9, 36, 10]. Despite a number of early efforts for unified
desktop orchestration, most early experimenters used
a combination of Perl, ssh, and python scripts for ex-
periment orchestration and control. The emergence of
Cloud platforms and the need for scalable orchestra-
tion, configuration and management of very large-scale
systems has given rise to a number of open-source and
commercial tools for these purposes. We have chosen to
support two, Fabric and Ansible.

Both Fabric and Ansible employ Python wrappers
over ssh. As with most configuration management and
orchestration software, both distinguish between con-
trollers and nodes. A controller executes configuration
commands to configure the nodes. Both are agentless:
they require no agent on the nodes themselves. Fabric
requires only OpenSSH on the nodes; Ansible requires
both OpenSSH and Python 2.4 or later.

Fabric is a set of Python libraries which wrap sftp for
file transfer and OpenSSH for command execution. As
this implies, it offers an imperative semantics for node
orchestration and configuration management. Ansible
also offers a declarative semantics for known tasks in its
Playbook abstraction. Whereas a Fabric command to
install a webserver would be given by the installation
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instructions:

def i n s t a l l ( ) :
run ( ’ sudo apt−get update ’ )
run ( ’ sudo apt−get i n s t a l l −y apache2 ’ )
run ( ’ sudo apache2ct l s t a r t ’ )

The Ansible declaration would be:

ta sk s :
− name : i n s t a l l apache

apt : name=apache2 s t a t e=present \
update cache=yes

− name : make sure apache i s running
s e r v i c e : name=httpd s t a t e=s t a r t e d

Both Ansible and Fabric have reasonable roles to
play in coordinating wide-area experiments and dis-
tributed applications. Ansible requires installation of
Python-based software on the desktop; in contrast, Fab-
ric requires only the installation of a Python library
through pip or easy_install. Our solution was to
support both, through the definition of skeleton files
which incorporated slice information and rudimentary
commands, making it easy for experimenters to extend.

The inclusion of Ansible and Fabric in our workflow
turned out to have substantial benefits for Slicelet de-
ployment and configuration, and significant simplifica-
tion of both the core of the GENI Experiment Engine
and deployed slices. Rather than pre-installing a great
deal of software on the experiment nodes, we could
simply incorporate the relevant Ansible or Fabric com-
mands in the files we downloaded to the user.

3.5 Planned, β-Level Services
There are two services that we have tested in prelim-

inary form, and intend to roll out for our users in the
next few months as supported services: the GEE Stor-
age Service and one or more Reverse Proxy Services

3.5.1 GEE Storage Service
The GEE Storage Service will be offered by a Python

library that can be loaded into the user’s slicelet, which
presents a filesystem API to the end user. The li-
brary itself then makes REpresentational State Transfer
(REST) calls to a network of storage proxies inside and
outside the GEE system to store and retrieve data. In
fact, a storage slicelet is not a requirement: it pres-
ence offers a low-latency high-bandwidth cache to the
experimenter, and due to resource limitations we will
not guarantee its presence on every node.

Requirements.
The GENI Experiment Engine File System (GEE FS)

is designed to be an easy-to-use file system provided on
all GEE slices. We need the file system to be accessible
both inside and outside experiments to allow experi-
menters to access stored data from inside and outside

GENI experiments. The GEE FS provides an accessi-
ble, persistent, environment for all GENI experiments.
Since we want to make the GEE FS as easy-to-use as
possible we have the following design goals:

• Unix-like semantics

• Convenient, reliable, distributed storage

• Accessible from any GENI experiment

• Runs on any reasonable host backend

• Exposed API

The GEE FS is built using OpenStack Swift [31]
nodes as a backend for Syndicate [22], a wide-area file
system being developed at Princeton University and
ON.LAB. Syndicate handles metadata in the file sys-
tem as well as access control, versioning, and replica-
tion, while providing a Unix like interface. Syndicate
allows us to use multiple backend services distributed
around the GENI network. The remainder of the sec-
tion looks at each component of the file system in more
detail.

Metadata Server.
The most integral component of the file system is the

Metadata Server (MS), which handles all file system
metadata requests. For this we need a reliable service
that can handle concurrent connections and is easily ac-
cessible. We use the Syndicate MS [22], which is imple-
mented as a Google App Engine application and stores
its data in BigTable. Google App Engine offers efficient
scaling and BigTable offers efficient key-value lookups.
Users and Groups are handled by the MS regulating
user access, locally through the file system client.

Storage Service.
Syndicate has client processes and storage processes.

The storage service is a Python process that runs on re-
mote nodes and act as a translator between Syndicate,
and the storage service being used. Syndicate writes
blocks of data to a storage service, and replicates the
data for data durability. A Swift backend is accessed
via HTTP and provides a Python API which allows
easy integration with Syndicate. Storage services can
be added and removed from Syndicate on the fly as the
MS handles the actual layout of data (and its replicas)
which gives us the flexibility to grow our storage capac-
ity to meet the demands of GENI users. Additionally
other storage providers (S3, DropBox, even the local file
system) can be integrated into the file system.

3.5.2 The GEE Reverse Proxy Service
Intra-slicelet traffic on the The GENI Experiment

Engine will primarily be through a network private
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to the slice, which is isolated from the public Inter-
net. Routable IPs are notoriously scarce on PlanetLab
nodes, and GENI member institutions have been un-
willing or unable to devote large banks of routable IP
addresses to GENI slices. A GENI rack is capable of
running well over 100 slivers, and we believe that 256 is
achievable on the InstaGENI racks. We would need a
/24 per site to accommodate these slivers, and at many
sites we’re lucky to get a /27. Clearly, we cannot count
on being able to give a routable IP to each sliver.

Though GENI’s private network suffices for intra-
slicelet traffic, a number of PlanetLab slices and ser-
vices offered distributed public services. The most no-
table of these were the Content Distribution Networks
(CoDeeN and Coral) [35], End-System Multicast [11],
and the Distributed Hash Tables [28]. Clearly, for such
services to use the GEE, some method must be found
to enable public-facing services at each site.

We don’t have enough IP addresses to offer each
public-facing service its own routable IP, and it isn’t
really feasible to assign each its own port: an HTTP
service that isn’t on port 80 faces multiple logistical
problems, from firewalls to configuration of client-side
software. The reader might imagine that we are less
than enchanted when we hear CIOs argue that there is
no use case or demand for IPv6, and there are plenty
of v4 addresses; and then in the next breath to refuse
to part with a /24 from their campus’ /8. Nonetheless,
the fact that the problem is an artifact of conflicting
University IT policies make it no less a problem: if our
experimenters are to offer public-facing services on GEE
nodes, we must find a way to give them all access to the
same port on the same v4 address. The solution we hit
upon was to multiplex the HTTP ports and isolate at
the URL level, enabled by the GEE Reverse Proxy.

The GEE Reverse Proxy Service operates a re-
verse proxy in a sliver on each GEE site. HTTP
PUT, GET, and POST requests of the form
http://<hostname>/<sliceletname>/<request> are
caught by the reverse proxy and sent to the http server
in the slicelet’s sliver over the GEE private network; the
returned value is sent back to the requester.

3.5.3 Lively on GEE
The Lively Web [32] is a particularly attractive can-

didate for a reverse proxy or, more generally, for a
multi-tenant distributed systems programming environ-
ment. A descendant of the Smalltalk [18], Self [33],
and Squeak [19] programming languages and environ-
ments, Lively is a media wiki which abstracts HTML
and CSS into a single graphical abstraction called a
“morph”. This permits client-side web programming ex-
clusively in Javascript, without a requirement to frame
the client-side code within a styled markup object. Fur-
ther, the programming environment is simply a Lively

web page, with the unified layout and code design which
is the hallmark of morphic-based programming environ-
ments. Unified client-side and server-side programming
is accomplished through a pluggable node.js server, pro-
grammable directly in the web page-based programming
environment. The pluggable server comes with a vari-
ety of builtin language environments, including Ruby,
R, and Python, as well as an embedded SQLite server.

4. RELATED WORK
The GENI Experiment Engine is a Platform-as-a-

Service (PaaS) operated on top of an Infrastructure-
as-a-Service (IaaS) base. In this, it is not unique. The
Google App Engine is a very heavily-used PaaS offering
on Google’s infrastructure. Further, there are deploy-
able PaaS offerings. OpenShift from RedHat is an offer-
ing which orchestrates application deployment on the
public cloud and offers PaaS on the enterprise cloud.
There are many other examples: after all, to a first ap-
proximation offering PaaS on an IaaS offering is simply
populating component VM’s with the appropriate pro-
gramming environments and platforms and providing
orchestration services, notably automated scalability.

Commercial PaaS offerings focus on scalability and
automatically scaling applications. In the GENI con-
text, this is not a consideration: we do not have arbi-
trary resources on any single rack to scale the applica-
tion; for GENI applications, location matters far more
than scalability. Our primary concern is communication
across the wide area and network design, concerns that
are not relevant for data-center orienter PaaS systems.

AptLab [30] is similar in spirit to the GEE: it is a
set of pre-configured “profiles” (essentially, pre-defined
slices) on InstaGENI, and is designed to get users up
and running fast on InstaGENI.

5. STATUS AND FUTURE WORK
The GEE is being brought up and deployed in stages,

as the various services mature. The GEE Portal is up
and running, and the GEE Compute Service is func-
tional. We demonstrated the GEE Compute Service
and the Fabric-based single-pane-of-glass experiment
control at GEC 19 [20]. The GEE Compute Service is
now in production at 20 sites across the United States.

The GEE Storage Service is nearly as mature. The
integration between the Swift proxies and the Syndicate
metadata service is complete, and has been tested on
GENI and Emulab. We will be ready to do a beta
deployment as soon as the resources (primarily, VMs
on GENIRacks) are obtained on a long-term basis. The
GEE Proxy Service and the GEE Message Service have
both been tested on VICCI slices, and we will soon test
in GEE Slicelets.

The GEE is functional and stable because it is built
on well-tested infrastructure services and components.
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The base for our compute service is Docker; for mes-
saging , we used Beanstalk; and for single-pane-of-glass
control, we used Fabric and Ansible.

GEE lives light on the land. Our interface to the
underlying infrastructure is a few shell scripts; to ID
providers an OpenID callback. Our remaining services
are instantiated inside VMs. We are able to bring up the
GEE on any distributed infrastructure providing VMs
that have public IP addresses and support Docker.

A particularly attractive possibility for the future is
to permit users to build and run their own images, us-
ing DockerHub to store and deploy them. We intend to
explore doing this this year, with students from the Uni-
versity of Victoria. There are two issues: the means by
which the user chooses the image or images at Slicelet-
creation time, and ensuring that the images have the
tools in place for remote access control.

For both these problems, we intend to use a variant
of the Emulab/AptLab method of image creation. The
user starts with an existing stock base image, then uses
this as a basis for building the image he wants. Once
this is complete, he uses a web page on the GEE portal
to snapshot the image. The snapshot tool invokes the
standard Docker mechansims to create, commit, and
push an image, using the user-specified name in the gee-
project repository on DockerHub. These stock images
will then be added to a pulldown menu in the slice-
creation page on the GEE portal.

We have beta-tested the GEE Compute Service in
the CS 462 class at the University of Victoria in Spring
2015. The GEE was used as the basis of three labs in
the course, and as the foundation of a number of student
term projects.

We have recently built a wide-area monitoring sys-
tem on the GEE,inspired by PlanetSeer [39], PsEPR [8]
and CoMon [23]. A monit daemon runs on each node,
reporting status to a Lively website. The results can
be viewed (at this writing) at http://www.lively-

web.org/users/rick/gee-monitor.html
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