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Abstract

Background: The history of African indigenous cattle and their adaptation to environmental and human selection
pressure is at the root of their remarkable diversity. Characterization of this diversity is an essential step towards
understanding the genomic basis of productivity and adaptation to survival under African farming systems.

Results: We analyze patterns of African cattle genetic variation by sequencing 48 genomes from five indigenous
populations and comparing them to the genomes of 53 commercial taurine breeds. We find the highest genetic
diversity among African zebu and sanga cattle. Our search for genomic regions under selection reveals signatures
of selection for environmental adaptive traits. In particular, we identify signatures of selection including genes and/
or pathways controlling anemia and feeding behavior in the trypanotolerant N’Dama, coat color and horn
development in Ankole, and heat tolerance and tick resistance across African cattle especially in zebu breeds.

Conclusions: Our findings unravel at the genome-wide level, the unique adaptive diversity of African cattle while
emphasizing the opportunities for sustainable improvement of livestock productivity on the continent.
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Background

Cattle are central to the African economy and society.

The so-called “African Cattle Complex” refers to their role

as walking larder, as a source of traction and manure, as

well as to their societal importance, including during mar-

riage, birth, death, and/or initiation ceremonies, and their

representation of power, prestige, and status [1–3].

The earliest cattle of Africa were of taurine Bos taurus

type. Subsequent waves of migrations of humped zebu

B. indicus animals then reshaped the genomic landscape

of African cattle [4–6]. Today, the African continent is

uniquely rich in cattle diversity with around 150 African

cattle breeds or populations recognized [7, 8]. These are

grouped according to their phenotypes into taurine,

zebu, and the ancient stabilized taurine × zebu cross-

breed known as sanga [6]. Importantly, it is now well

established that African cattle carry a taurine maternal

ancestry originating from the Near East taurine domesti-

cation center(s), while the possible genetic contribution

of the now extinct African auroch B. primigenius

opisthonomous remains unclear [9, 10]. The pattern of

introgression of the zebu genome across the South, East,

and the North-Western part of sub-Saharan Africa has

been well-documented using autosomal and Y-specific

microsatellite loci [4–6].

African cattle inhabit more than five distinct agro-

ecological zones [11]. Overall, zebu cattle are common

in the arid and semi-arid northern Sahelo-Sudanian zone

as well as on the eastern part of the continent including

the highlands; whereas taurine cattle today form the

majority of the herds in the sub-humid and humid re-

gions of West Africa, which are heavily infested with the

vector of African trypanosomes, the tsetse fly [11]. Sanga

cattle are predominantly found in the western region of
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central Africa around the Great Lakes region and on the

southern part of the continent [11] (Fig. 1a). African

cattle populations have been subjected to strong envir-

onmental pressures including hot, dry, or humid tropical

climate conditions and heavy and diverse disease

challenges. Accordingly, they are expected to display

unique adaptive traits. This is exemplified by the trypano-

tolerance traits of the N’Dama and other West African

taurine breeds inhabiting the tsetse-infested areas [12].

African cattle have also been shaped by human selection

for traits such as coat color and horn size [8]. Although,

their productivity is much lower than that typically

achieved by commercial breeds under the intensive produc-

tion systems [11], indigenous cattle are often the only option

available for millions of farmers in the African agro-pastoral

systems, where exotic improved breeds under-perform in

the traditional management systems [13].

With an extended geographic distribution across agro-

ecological zones and production systems, African cattle

populations represent a unique genetic resource for the

understanding of the role of natural and artificial selection

in the shaping of the functional diversity of a ruminant

species. Moreover, unraveling their genome diversity may

provide new insights into the genetic mechanisms under-

lying their adaptation to various agro-ecosystems [14].

In this publication, we report for the first time the

genome characterization of five indigenous African

cattle breeds which are representatives of the cattle di-

versity of the continent: N’Dama, which belong a group

of West African taurine with tolerances to multiple in-

fectious diseases; Ankole, which represents African

sanga the intermediate crossbreed between zebu and

taurine cattle populations, with large and distinctive

horns and coat color selected by human; Boran and

Kenana, two East African zebu, with beef and dairy char-

acteristics, respectively; Ogaden, an East African zebu

living in a hot and dry environment.

The comparative genome-wide analysis with three

European and one Asian commercial cattle breed across

African cattle types allows us to identify the unique genome

response of African cattle breed to tropical challenges.

Results and discussion

Sequencing, assembly, and identification of single

nucleotide polymorphisms

Individual genomes of 48 indigenous African (Boran,

Ogaden, Kenana, Ankole, and N’Dama) cattle were gener-

ated to ~11 X coverage each and were jointly genotyped

with publicly available genomes of commercial cattle breeds

(Angus, Jersey, Holstein, and Hanwoo) (Fig. 1a, Additional

file 1: Note S1, Table S1). These breeds comprise Bos indicus

(Boran, Ogaden, and Kenana), African Bos taurus (N’Dama),

European-Asian Bos taurus, and sanga (Ankole, cross be-

tween taurine and zebu) [8]. In total, 6.50 billion reads or

~644 Gbp of sequences were generated. Using Bowtie 2

[15], reads were aligned to the taurine reference genome se-

quence UMD 3.1 with an average alignment rate of 98.84%

that covered 98.56% of the reference genome (Additional file

1: Table S2). Concordant with previous analysis of zebu Nel-

lore [16], overall alignment rate of the African B. indicus

samples to the reference genome UMD 3.1 was found com-

parable to the one obtained for the African taurine samples

(Additional file 1: Table S2). After filtering the potential PCR

duplicates and correcting for misalignments due to the pres-

ence of INDELs, we detected single nucleotide polymor-

phisms (SNPs) using GATK 3.1 [17]. Several filtering steps

to minimize the number of false-positive calls were applied

before using candidate SNPs in further analyses. In particu-

lar, SNPs were removed based on the following criteria:

phred-scaled quality score, mapping quality, quality depth

and phred scaled P value (see “Methods”). A total of ~37

million SNPs were finally retained and breed-specific SNPs

were identified using SnpSift [18] (Fig. 1b, Additional file 1:

Table S3). The genomic DNA from 45 African samples were

Fig. 1 a Geographic locations of African cattle populations. b Nucleotide genome diversity. Number of single nucleotide polymorphisms (SNPs) identified in
each breed (left y-axis) with respect to the reference genome (UMD 3.1). Lower bars represent the number of breed-specific SNPs (right y-axis)
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additionally genotyped using the BovineSNP50 Geno-

typing BeadChip (Illumina, Inc.) to evaluate the accur-

acy of the SNP calling from the resequencing data. We

observed ~95% overall genotype concordance, between

the BovineSNP50 Genotyping BeadChip SNPs and the

re-sequencing results across the samples, providing

confidence on the accuracy of SNP calling (Additional

file 1: Table S4).

African genome diversity and relationships

Single nucleotide polymorphisms

Figure 1b illustrates the number of SNPs present in each

breed, including breed-specific ones, with numbers pro-

vided at Additional file 1: Table S5. Looking at different

cattle lineages, the largest number of SNPs is found in

the zebu cattle (Boran, Kenana, Ogaden), where the

great majority of the SNPs are homozygous across the

three breeds representing candidate African zebu lineage

specific variants. Most (65.13%) of the SNPs were

present in intergenic regions. The remaining SNPs were

located upstream (3.90%) and downstream (3.96%) of

open reading frame, in introns (26.0%), and untranslated

regions (UTRs, 0.240%). Exons contained 0.69% of the

total SNPs with 115,439 missense and 1336 nonsense

mutations (Additional file 1: Table S5).

Nucleotide diversity measures the degree of poly-

morphism within a population and it is defined as the

average number of nucleotide differences per site be-

tween any two DNA sequences chosen randomly from

the sample population [19]. On a genome-wide window

scale of 10 Mb, the commercial European breeds show

reduced levels of nucleotide diversity compared to all in-

digenous African breeds (Fig. 2d). Here, the reduced

level of nucleotide diversity at the whole-genome level is

expected and is likely the result of intensive artificial

selection over generations and/or genetic drift followed

by a demographic history characterized by a low effect-

ive population size. Interestingly, N’Dama also show

relatively low genetic diversity, perhaps a legacy of an

initial low effective population size and/or of population

bottleneck following disease challenges [20]. Nucleotide

diversity is the highest across the African zebu (Boran,

Ogaden, Kenana) and the Ankole sanga. These are

admixed taurine × zebu breeds with a relatively large

effective population size. The relatively high nucleotide

diversity in the commercial Hanwoo may reflect weaker,

targeted, and shorter selection history compared to other

commercial breeds [21].

Population structure and relationships

We performed principal component analysis (PCA) of

the autosomal SNPs genotype data (Fig. 2a) using

EIGENSTRAT [22]. The analysis ignores breed member-

ship but nevertheless reveals clear breed structures as

samples from the same breed cluster together. The first

two PCs, explaining 16.0% and 3.4% of the total vari-

ation, respectively, separate African from non-African

breeds with the Ankole cattle at an intermediate

position. PCA based on African, commercial, and tau-

rine samples separately (Additional file 1: Figure S1)

show no evidence of admixture between breeds or the

presence of outlier animals within breeds.

To further understand the degree of admixture in the

populations, we used STRUCTURE [23, 24] on a

randomly sampled subset of SNPs (~20,000 SNPs). We

increased K from 1 to 9, where K is the assumed number

of ancestral populations (Fig. 2b and Additional file 1:

Figure S2). The analysis suggested K = 2 as the most

likely number of genetically distinct groups within our

samples (Fig. 2b), reflecting the divergence of taurine

and zebu cattle in the cattle population. At K = 3, Ankole

showed clear evidence of genetic heterogeneity with

shared genome ancestry with African (N’Dama), Asian

zebu, and commercial (Holstein, Jersey, Angus, Hanwoo)

taurine genetic background. Increasing values of K indi-

cated higher levels of breed homogeneity in the com-

mercial population compared to African zebu breeds. In

addition, a neighbor-joining tree (Fig. 2c) separates each

breed in its own separate clade. European breeds cluster

together, then with the Hanwoo and the N’Dama. Simi-

larly, all the African zebu breeds cluster together and

Ankole animals are found at an intermediate position

between zebu and N’Dama.

Demographic history and migration events

Variation of effective population size through time [25]

is shown in Fig. 3a and Additional file 1: Figure S3.

N’Dama seemed to have suffered a stronger population

decline compared to the other African populations. This

observation is compatible with an initial population

bottleneck following the arrival and adaptation of the

ancestral population in the tropical sub-humid and

humid Western African environment. These West

African cattle populations have been subjected in recent

times to new environmental pressures imposing strong

adaptive constraints (e.g. new pathogens including para-

sites) [26, 27]. In addition, the estimates of Ogaden and

Kenana show a slight increase in population size around

1000 years ago corresponding to the time of the first

wave of zebu arrival through the Horn of the continent

[8]. All share a common population decline starting ap-

proximately 10,000 BP, a likely consequence of Neolithic

domestication events [25, 28].

We then reconstructed the maximum likelihood tree

(Fig. 3b) and residual matrix (Additional file 1: Figure S4)

of the nine breeds using Treemix [29] to address popula-

tion history relationships and to identify pairs of popula-

tions that are related to each other independent of that
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captured by this tree. Adding sequentially migration

events to the tree, we found that one inferred

migration edge produces a tree with the smallest re-

siduals and thus best fits the data (Additional file 1:

Figure S4). We observed a statistically significant mi-

gration edge (P < 2.2E-308) with the estimated weight

of 11.4%; this edge provides evidence for the gene

flow from European B. taurus (represented here by

Jersey, Holstein, and Angus) into Ankole. In recent

years, Ankole cattle have been increasingly crossbred

with taurine breed including Holstein cattle which

were first introduced to Uganda 50 years ago [30].

Fig. 2 Population structure and relationships of African in comparison to commercial cattle. a Principal component (PC) analysis, PC 1 against PC 2.
b Proportion of ancestry for each individual assuming different number of ancestral population (K = 2, 3, and 4). Colors in each vertical line represent
the likelihood proportion of an animal genome assigned to a source population. c Neighbor-joining tree of the relationships between the nine cattle
breeds (101 animals). The scale bar represents the identity-by-state (IBS) score between pairs of animals. d Genome-wide distribution of nucleotide diversity in
50-kb non-overlapping window
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The adaptation of African cattle to environmental stresses

and human selection

We compared the genomes of African cattle breeds to

identify within each breed signatures of positive selection

following environmental and human selection pressures.

In contrast to SNP chip data, where diversity is overesti-

mated in taurine lineages and underestimates in indicine

lineages [31], whole-genome sequencing can overcome

this limit of ascertainment bias to properly enable popula-

tion analyses of both populations and to identify targets of

selections in African B. indicus as well. In particular, we

examined extreme haplotype homozygosity and allele fre-

quency differentiation over extended linked regions using

cross-population extended haplotype homozygosity (XP-

EHH) [32] and the cross-population composite likelihood

ratio (XP-CLR) [33]. Considering the close genetic dis-

tance among African B. indicus (Additional file 1: Table

S6), N’Dama and Ankole cattle breeds were separately

compared against all other African breeds for the identifi-

cation of African breed-specific signatures. XP-EHH

maintains power with small sample size (as low as ten

samples) [34]. In addition, when estimates of genetic dis-

tance (FST) between pairs of populations are greater than

or close to 0.05, as in our analyses (Additional file 1: Table

S6), fewer than 20 individuals per population should be

sufficient for population differentiation analysis [35]. To

enable comparisons of genomic regions across popula-

tions, we divided the genome into non-overlapping

segments of 50 Kb [36]. Outlier regions (the top 0.5% XP-

EHH or XP-CLR statistics) were considered to be breed-

specific candidate regions for further analysis (haplotypes

and polymorphisms). The distributions of raw XP-EHH

and XP-CLR values of each comparison and SNP density

in each non-overlapping 50-kb window are provided in

Additional file 1: Figures S5–S7.

The adaptation of N'Dama to trypanosome challenge

We first investigated how tolerance to trypanosome

challenge may have impacted the genome of African

cattle. African trypanosomes are extracellular protozoan

parasite that cause severe diseases in human (sleeping

sickness) and domestic animals (nagana); approximately

60 million people and 50 million cattle are living at risk

of trypanosome infection [37, 38]. Among a few “trypa-

notolerant” indigenous African cattle breeds, the West

African N’Dama is the best characterized, while the

“newcomer” B. indicus are generally highly susceptible

to trypanosomosis [39]. We therefore compared the

N’Dama genome against all other African cattle breeds.

Outlier windows from XP-EHH and XP-CLR analysis

include 124 and 106 genes, respectively, 28 of which

were common to both analyses (Table 1, Additional files

2 and 3). This relatively modest overlap likely resulted

from difference in power between the tests designed to

detect regions affected by complete (XP-EHH) or in-

complete selective sweeps (XP-CLR).

Fig. 3 African cattle effective population size and history. a Estimated effective population size of each African cattle breed and the combined commercial
(Hanwoo+ Jersey +Holstein +Angus). b Pattern of population splits and mixture between the nine cattle breeds. The drift parameter is proportional to Ne

generations, where Ne is the effective population size. Scale bar shows ten times the average standard error of the estimated entries in the sample covariance
matrix. The migration edge from the European taurine lineage into the Ankole is colored according to the percent ancestry received from the donor population
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Among these, we found HCRTR1 (XP-CLR = 597.3)

encoding hypocretin receptor A (Fig. 4), which belongs

to the class I subfamily within the superfamily of G-

coupled receptors and is coupled to Ca2+ mobilization.

Hypocretins are produced by a small group of neurons

in the lateral hypothalamic and perifornical areas and

they are involved in the control of mammalian feeding

behavior [40]. Compared to other African cattle,

N’Dama show almost pure haplotype homozygosity at

the HCRTR1 region and we also detect seven non-

synonymous variants in the gene (Fig. 4b) (Additional

file 1: Table S7). Numerous studies indicate that poly-

morphism within hypocretin genes are associated with

alterations in feeding and drinking behaviors [41, 42]. In

particular, orexin-A, endogenous ligands for G protein

coupled receptor, stimulated food consumption, and

orexin messenger RNA is upregulated by fasting [43].

These independent studies indicate that the hypocretins

have a major role in the regulation of feeding. It may ex-

plain the superior ability of N’Dama to maintain body

weight and resist listlessness and emaciation following

trypanosome infection [44, 45].

N’Dama cattle achieve trypanotolerance with at least two

additional characteristics: the ability to resist anemia and to

control parasite proliferation [46–48]. Anemia is the most

prominent and consistent clinical sign of Trypanosoma

infection and it is the main indicator for treatment [49]. We

found five genes within genome regions putatively positively

selected (outlier windows) that are associated with anemia

(SLC40A1, STOM, SBDS, EPB42, and RPS26). The iron

exporter SLC40A1 (XP-EHH= 3.32, XP-CLR = 831.1) is

essential for iron homeostasis and it is therefore related

to iron-deficiency anemia [50]. This gene shows a local re-

duction in nucleotide diversity and extended haplotype pat-

tern (Fig. 4c). Notably, we found a fixed SLC40A1 haplotype

in N’Dama, with frequency of 24% and 58% in other African

cattle and commercial breeds, respectively, strongly support-

ing selection at the gene (Fig. 4d, e). Stomatin (STOM, XP-

CLR= 525.0) is a gene named after a rare human hemolytic

anemia [51], and it encodes a 31-kDa integral membrane

protein. Mutations in SBDS (XP-EHH=2.91) EPB42 (XP-

CLR= 511.1) genes are responsible for hypochromic anemia

[52] and hereditary hemolytic anemia [53], respectively,

while mutations at RPS26 (XP-CLR = 562.8) gene have been

identified in Diamond-Blackfan anemia patients [54–56].

We further screened these candidate genes for non-

synonymous mutations representing putative functional

variants. Notably, missense SNPs changed amino acids

in the STOM (p.Met48Val) and EPB42 (p.Arg503His)

proteins. Both of these allele variants are completely

fixed in N’Dama cattle in contrast to all the other breeds

(Fig. 4f and g).

Table 1 Summary of major candidate regions identified from XP-EHH and XP-CLR in each breed comparison (see Additional files 2
and 3 for summary values of all candidate genes)

Gene CHRa Max XP-EHHb XP-EHH P valuec XP-CLR Association Candidate SNP position Selected breed

HCRTR1 2 - - 597.3 Circadian rhythm,
feeding behavior

N’Dama

STOM 8 - - 525.0 Anemia 112665146
(p.Met48Val)

N’Dama

SLC40A1 2 3.32 0.0002 831.1 Anemia - N’Dama

SBDS 25 2.91 0.0024 - Anemia - N’Dama

EPB42 10 - - 511.1 Anemia 38523031
(p.Arg503His)

N’Dama

RPS26 6 - - 562.8 Anemia - N’Dama

KIT 6 1.80 0.0050 - Coat color - Ankole

MITF 22 1.90 0.0032 - Coat color - Ankole

PDGFRA 6 2.56 0.0001 319.3 Coat color - Ankole

FGF18 20 - - 182.3 Horn development - Ankole

MC1R 18 - - 295.0 Coat color Ankole

SOD1 1 - - 333.31 Thermoregulation 3116044
(p.Ile95Phe)

B. indicus

- - 186.33 African

PRLH 3 1.49 0.0014 - Thermoregulation 117646610
(p.Arg76His)

B. indicus

1.17 0.0039 - African

BOLA 23 1.19 0.003 110.13 Tick resistance - African

Dash (–) indicates non-significant results
aChromosome
bMaximum (positive) XP-EHH score of all SNPs within a window
cRank-based empirical P value of genomic region
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Genes positively selected in N’Dama were significantly

(P < 0.05) over-represented in “I-kappaB kinase/NF-kap-

paB cascade” (GO:0007249, Additional file 4). The tran-

scription factor nuclear factor-kappaB (NF-kB) is central

to the innate and acquired immune response to micro-

bial pathogens, coordinating cellular responses to the

presence of infection. In fact, based on the molecular

evidence that Trypanosoma cruzi activates NF-kB in a

number of cells, NF-kB was suggested as a determinant

of the intracellular survival and tissue tropism of T.

cruzi, which causes human sleeping sickness [57]. These

studies may suggest that genes involved in NF-kB cas-

cade have experienced positive selection in N’Dama to

alter in functions to effectively regulate the infection of

cattle trypanosome. We also found a significant signal at

interleukin 1 receptor-like 2 (IL1RL2) in agreement with

the observation that the initial response of the host

immune system to trypanosomes infection includes acti-

vation of macrophages secreting pro-inflammatory mol-

ecules such as IL-1 [58, 59]. In particular, it has been

previously reported that T. brucei infections result in in-

crease of IL-1 secretion [60].

The impact of human selection on Ankole genome

In the Ankole versus all other African cattle comparisons,

we identified 187 genes within the outlier genome win-

dows (Table 1, Additional files 2 and 3). The putatively se-

lected genomic regions include candidate loci that have

a c e

b

f g

d

Fig. 4 Signatures of selective sweep at the N’Dama HCRTR1, SLC40A1, EPB42, and STOM gene regions. Nucleotide diversity plots of the HCRTR1 (a)
and SLC40A1 (c) genomic regions. Haplotype diversity at the HCRTR1 (b) and SLC40A1 (d) gene regions (gray area). The major allele at each SNP
position in N’Dama is colored in red, the minor one in white. The star (*) denotes non-synonymous N’Dama SNP identified at the HCRTR1 gene
region. e Frequency of N’Dama fixed haplotype (SLC40A1 region) in others breeds with comparison with major observed haplotype(s) (frequency >
0.15 shown). Nucleotide with green background represents distinct polymorphism compared to the major SNP allele present in N’Dama. f, g Structure
of the EPB42 and STOM gene with exons indicated by vertical bars. Non-synonymous SNPs represent p.Arg503His and p.Met48Val and are highlighted
in yellow. Different color represents different alleles, and frequency of each haplotype is indicated on the right side of the figure
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biological functions related to coat color: melanocortin 1

receptor (MC1R) (XP-CLR = 295.0) and KIT (XP-EHH =

1.80), both of which are supported by haplotype sharing

analysis showing high level of haplotype homozygosity

within the breed (Additional file 1: Figure S8). Ankole cat-

tle are characterized by their massive white horns and pre-

dominantly red coat color [61]. The results are in

agreement with previous reports that mutations in MC1R

generate red (or chestnut) coat colors in various species

including cattle, horses, mice, and dogs [62, 63]. The

product of KIT is likely involved in the white spotting of

the coat, not only in cattle but also in other domesticated

mammals [64]. Our findings are consistent with the obser-

vation that while the coat color of Ankole is predomin-

antly red, it is also sometimes white-spotted [61].

Interestingly, Holstein, also known for their black-and-

white markings, share the same haplotype (Additional file

1: Figure S8) in the KIT gene region as the one observed

in Ankole, indicating a common origin of the haplotype in

the African and European taurine lineages and/or recent

crossbreeding of Ankole with Holstein cattle. We also

found MITF (XP-EHH= 1.90) and PDGFRA (XP-EHH =

2.56, XP-CLR = 319.3) genes within the outlier regions;

these were previously also associated with white spotting

in various dairy cattle breeds and other species [65–67]

(Table 1, Additional files 2 and 3).

We also found putative candidate selected regions that

might have shaped the massive horn in Ankole. We initially

evaluated a previously reported candidate variant respon-

sible for the presence of horns in Holstein [68]. All Ankole

samples showed the genotype G/G at BTA1:1390292G >A

indicating that Ankole followed the genotype of horned

Holstein cattle [68]. Over-representation analysis of gene

ontology (GO) terms (Additional file 4) shows that Ankole

has increased GO categories involved in fibroblast growth

factor (FGF) signaling pathway (MAP3K5, PPP2R2C,

FGF18, and FRS3, P00021) and skeletal system develop-

ment ACVRL1, CASR, TLX3, ACVR1B, and RUNX3,

GO:0001501). Neither term was enriched from positively

selected genes in any other African cattle, indicating they

may therefore be linked to the extreme horn development

observed in the breed. Horn is an outgrowth of the frontal

bone covered by a tough shell of modified epithelium, de-

rived from dermal and subcutaneous connective tissue [69,

70]. FGF signaling pathway includes FGF18 (XP-CLR =

182.3), which is responsible for differentiating osteoblasts

during calvarial bone development [71] and is associated

with chondrocyte proliferation [72] in mouse. These genes

together might underlie the distinctive morphology of

Ankole horn versus other cattle.

The adaptation of African cattle to tick challenges

African cattle breeds have evolved to adapt to the harsh

environmental conditions prevailing across sub-Saharan

Africa such as tropical livestock diseases, high solar radi-

ation and temperature, drought, and poor nutritional

condition [73, 74]. These environmental conditions

prevail across sub-Saharan Africa and a signal of positive

selection may be expected to be common across African

breeds. To investigate this, all African breeds were com-

bined and compared to the commercial breeds for the

identification of common and unique African genome

specific signature of selection. In this comparison, XP-

CLR and XP-EHH analyses reveal outlying windows (top

0.5%) with 252 genes (Additional files 2 and 3). Among

these, we found the region including the bovine lympho-

cyte antigen (BOLA, XP-EHH = 1.19, XP-CLR = 110.1)

gene. Examining the region in details we identified six

BOLA haplotype blocks where major African cattle hap-

lotypes correspond to contrasting or the minor haplo-

types in commercial cattle (Additional file 1: Figure S9).

Alleles of BOLA-DRB3 showed association with resist-

ance to tick (Boophilus microplus) infestation in cattle

[75]. The bovine lymphocyte antigen complex has been

studied extensively for the past 30 years because of its

importance in host immunity [76]. Most studies have

focused on other BOLA family members and their rele-

vance to parasitic diseases and thus elucidating the

function of this BOLA gene in African cattle may un-

ravel the mechanisms behind the interaction between

BOLA complex and the innate immunity against several

important tropical parasitic diseases such as East Coast

Fever [77].

Heat tolerance in African cattle

To identify genomic regions responsible for thermoregula-

tion in African cattle, we selected a priori candidate genes

by using 13 previously identified heat tolerance quantitative

trait loci (QTL) regions [78] and 18 heat shock proteins.

None of these regions were supported by our common met-

rics of XP-EHH and XP-CLR. We then analyzed the pattern

of haplotype homozygosity in African cattle compared to

the European and Asian taurine (commercial breeds

developed in temperate areas). Consistent with our previous

results, we found haplotype sharing to be much more exten-

sive in the commercial breeds when random genomic re-

gions were examined (Additional file 1: Figure S10).

However, looking at the candidate regions in African breeds

in comparison to the commercial ones, remarkable long-

range haplotypes are shared across African cattle within one

of the heat tolerance QTLs (BTA22, 10.03–11.0 Mb) (Fig. 5a)

and in one of heat shock proteins, heat shock 70 kDa pro-

tein 4 (HSPA4) (Additional file 1: Figure S11), indicative of

selective sweeps for heat tolerance in this region. Cellular

tolerance to heat stress is mediated by a family of heat shock

proteins. Heat shock protein 70 is notable for promoting cell

protection against heat damage and preventing protein de-

naturation [79, 80]. The degree of haplotype sharing at these
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two regions was noted to be more extensive in B. indicus

African cattle than in the N’Dama, which is consistent with

a previous report that zebu breeds are better able to regulate

body temperature in response to heat stress [81]. The heat

tolerance QTL region identified here is further supported by

multiple signatures of positive selection within B. indicus

populations showing elevated linkage-disequilibrium and

high population divergence (Fst) compared to the taurine

breeds (Fig. 5a).

We also found a strong signal for positive selection at

the superoxide dismutase 1 (SOD1, XP-CLR = 333.3) gene

(Additional file 3) in both African versus commercial

breeds and B. indicus versus commercial breeds compari-

sons. Okado-Matsumoto and Fridovich [82] have shown

that binding of heat shock proteins to mutant forms of

protein abundant in motor neurons, such as SOD1, makes

heat shock proteins unavailable for their antiapoptotic

functions. Considering that B. indicus cattle are better

adapted to higher ambient temperature, and the selection

signal was stronger in B. indicus, further comparisons

were made between B. indicus and commercial breeds

only. Functional annotation of variants located in this

gene identified a missense mutation (p.Ile95Phe) in exon 3

of SOD1 only in B. indicus population. This non-

synonymous mutation, in contrast to the pattern observed

in commercial breeds, has nearly reached fixation (95%) in

the zebu populations (Fig. 5b). These results suggest that

variations in SOD1 gene may play an important role in

heat tolerance traits observed African cattle.

A recent study has expanded the scope of classical

prolactin biology [83]. It shows that the prolactin signal-

ing pathway is involved not only in lactation but also has

an impact on hair morphology and thermoregulation

phenotypes in the predominantly taurine Senepol cattle.

This is most likely mediated by two reciprocal mutations

in the prolactin (PRL) and its receptor (PRLR) genes

[83]. Analyzing all African cattle together in comparison

to commercial breeds, a significant selection signal,

stronger if only B. indicus are examined (Table 1), was

found in the prolactin releasing hormone (PRLH, XP-

EHH = 1.49) gene region which stimulates prolactin re-

lease and regulates the expression of prolactin. We then

observed that one non-synonymous SNP in exon 2,

which encodes a p.Arg76His substitution, is highly

a b

Fig. 5 A selective sweep associated with heat tolerance in African cattle. a Fixation index (Fst) and linkage disequilibrium values for Bos indicus
samples in 20-kb sliding windows with 5-kb steps (top) and the degree of haplotype sharing around heat tolerance QTL (10.71–10.90 Mb region
on chromosome 22). Fst is calculated between B. indicus and commercial samples. The major allele in each B. taurus and B. indicus populations is indicated in
red. b Structure of the SOD1 gene with exons indicated by vertical bars. A non-synonymous SNP represents p.Ile95Phe and is highlighted in yellow. Haplotype
frequencies are indicated by numbers next to each haplotype. In each haplotype, green and beige bars represent alleles 1 and 2, respectively
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conserved in the B. indicus cattle population (73%) and

absent in the commercial taurine (Additional file 1:

Figure S12). These results together suggest that the PRLH

mutation may confer a selective advantage in regulating

prolactin expression which might be linked to the thermo-

tolerance in African cattle, especially in B. indicus.

Our GO analysis (Additional file 4) revealed the most sig-

nificant enrichment of Wnt signaling (P00057) as well as

pathways involved in regulating skin blood flow: endothelin

signaling pathway (P00019) and histamine H1 receptor me-

diated signaling pathway (P04385). Thermoregulatory con-

trol of skin blood flow is vital to the maintenance of normal

body temperatures during challenges to thermal homeosta-

sis [84] and, specifically, the rise in skin blood flow during

body heating contains an H1 histamine receptor component

[85]. These pathways might be rapidly evolving in African

cattle, which might explain their completely different degree

of thermotolerance at the cellular and physiological levels

compared to temperate cattle breeds.

Conclusion

In this study, we have generated for the first time a cata-

log of genetic variants found in selected sub-Saharan Af-

rican cattle. While the studied breeds represent only a

small subset of the 150 recognized on the African con-

tinent [86], they illustrate the extraordinary diversity

present within and across African cattle breeds. We were

able to highlight and map at the genome level some

unique African adaptations, which may represent

responses to climatic challenges (e.g. heat), disease

resistance (e.g. trypanosomosis challenge), and artificial

selection (e.g. coat color, horn development), including

new genes or gene pathways putatively involved in these

adaptations. These results can therefore inform targeted

genomic in vitro, and in vivo studies to further test hy-

potheses arising from our work, and to identify under-

lying genomic mechanisms. On a practical note, these

results provide new genomic evidence and options for

designing and implementing genetic intervention strat-

egies for improved cattle productivity and resilience in

sub-Saharan Africa. Already, some of our results may

provide new avenues for the improvements of livestock

productivity and resilience to environmental challenges

within breeds and through crossbreeding (e.g. marker-

assisted selection to increase haplotypes frequencies).

Perhaps most importantly, this study shows the value of

comparative genome studies in cattle breeds selected for

diverse environments and it argues for the value of a

comprehensive continent-wide characterization of the

genome landscape of African cattle. The African contin-

ent is now witnessing major transformations of its agri-

cultural systems and rapid loss of indigenous livestock.

Unfortunately, the opportunity to explore this treasure

trove of diversity may not last for very much longer.

Methods
Samples and DNA re-sequencing data

Whole-blood samples (10 ml) were collected from ten

Ankole, ten Boran, nine Kenana, ten N’Dama, and nine

Ogaden cattle. We generated pair-end reads using Illumina

HiSeq2000. DNA was isolated from whole blood using a G-

DEXTMIIb Genomic DNA Extraction Kit (iNtRoN Biotech-

nology, Seoul, Republic of Korea) according to the manufac-

turer’s protocol. We randomly sheared 3 μg of genomic

DNA using the Covaris System to generate inserts of

~300 bp. The fragments of sheared DNA were end-

repaired, A-tailed, adaptor ligated, and amplified using a

TruSeq DNA Sample Prep. Kit (Illumina, San Diego, CA,

USA). Paired-end sequencing was conducted using the Illu-

mina HiSeq2000 platform with TruSeq SBS Kit v3-HS

(Illumina). Finally, sequence data were generated using the

Illumina HiSeq system.

Incorporating our previously published data of 53 com-

mercial breed samples (Additional file 1: Table S1), we

performed a per-base sequence quality check using the

fastQC software (http://www.bioinformatics.bbsrc.ac.uk/

projects/fastqc/). The pair-end sequence reads were then

mapped against the reference bovine genome (UMD 3.1)

using Bowtie2 [15]. We used default parameters (except

the “–no-mixed” option) to suppress unpaired alignments

for paired reads. The overall alignment rate of reads to the

reference sequence was 98.84% with an average read

depth of 10.8×. On average across the whole samples, the

reads covered 98.56% of the reference UMD3.1 genome

(Additional file 1: Table S2).

We used open-source software packages for down-

stream processing and variant calling. Using the

“REMOVE_DUPLICATES = true” option in “MarkDupli-

cates” command-line tool of Picard (http://broadinstitu-

te.github.io/picard), potential PCR duplicates were

filtered. We then used SAMtools [87] to create index

files for reference and bam files. Genome analysis toolkit

3.1 (GATK) [88] was used to perform local realignment

of reads to correct misalignments due to the presence of

indels (“RealignerTargetCreator” and “IndelRealigner” ar-

guments). The “UnifiedGenotyper” and “SelectVariants”

arguments of GATK were used for calling candidate

SNPs. To filter variants and avoid possible false posi-

tives, argument “VariantFiltration” of the same software

was adopted with the following options: (1) SNPs with a

phred-scaled quality score < 30 were filtered; (2) SNPs

with MQ0 (mapping quality zero; total count across all

samples of mapping quality zero reads) > 4 and quality

depth (unfiltered depth of non-reference samples; low

scores are indicative of false positives and artifacts) < 5

were filtered; and (3) SNPs with FS (phred-scaled

P value using Fisher’s exact test) > 200 were filtered since

FS represents variation on either the forward or the re-

verse strand, which are indicative of false-positive calls.
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We additionally genotyped 45 cattle samples (of which

blood samples were available) using BovineSNP50 Geno-

typing BeadChip (Illumina, Inc.). After filtering out SNPs

based on GeneCall score < 0.7, common loci of SNP chip

and DNA resequencing data were extracted and exam-

ined to assess concordance (Additional file 1: Table S4).

We used BEAGLE [89] to infer the haplotype phase and

impute missing alleles for the entire set of cattle popula-

tions simultaneously. A summary of the total number of

SNPs identified is provided in Additional file 1: Table S3.

Sequences are available from GenBank with the Bioproject

accession number PRJNA312138.

Identification of breed-specific enriched SNPs using SnpSift

We performed enrichment analysis to identify breed-

specific SNPs using SnpSift [18]. In SnpSift, several stat-

istical tests are implemented such as Fisher’s exact test

and Cochran–Armitage trends test for analyzing geno-

type count data composed with two factors. Generally,

one of the factors is fixed as the genetic model, which

can be dominant, recessive, or co-dominant. The other

is breed information, which was employed in this study

for identifying breed-specific enriched SNPs. We had

nine different cattle breeds that were used for breed-

specific versus the others. From these two factors, we

have constructed 2 × 2 (dominant or recessive coding/

breed-specific group information) or 2 × 3 (co-dominant

coding/breed-specific group information) contingency

tables. As a result, three different contingency tables are

generated for each breed and SNPs. We performed Fish-

er’s exact test and Cochran–Armitage trend test for the

2 × 2 and 2 × 3 contingency tables, respectively. A total

of 37,460,739 SNPs were employed in the test; this in-

duces multiple testing problems. To correct the multiple

testing errors, we used Bonferroni correction, which is

the most conservative method. After discovering signifi-

cant breed-specific enriched SNPs, we annotated each

SNP using snpEff. We focused on the non-synonymous

SNPs (MISSENSE and NONSENSE) for this annotation.

Statistics to explore selective sweep regions in African cattle

To uncover genetic variants involved in local adaptation of

each breed group, we performed comparisons between pop-

ulations: (1) N’Dama versus all other African, (2) Ankole

versus all other African; (3) all African versus all commer-

cial; and (4) all B. indicus versus all commercial. The XP-

EHH method was first used to detect selective sweeps

using the software xpehh [32] (http://hgdp.uchicago.edu/

Software/). This statistic detects haplotypes in one of the

populations that have increased in frequency to the point of

complete fixation [32, 34]. An XP-EHH raw score distribu-

tion plot is provided in Additional file 1: Figure S5. We then

split the genome into non-overlapping segments of 50 kb to

use the maximum (positive) XP-EHH score of all SNPs

within a window as a summary statistic for each window.

To consider the variation in SNP density, we binned gen-

omic windows according to their numbers of SNPs in incre-

ments of 500 SNPs (combining all windows ≥ 1000 SNPs

into one bin). A histogram of SNP density in each window

is provided in Additional file 1: Figure S6. Within each bin,

for each window i, the fraction of windows with a value of

the statistic greater than that in i is defined as the empirical

P value, following the method previously reported [34, 90].

The regions with P values less than 0.005 (0.5%) were con-

sidered significant signals in the breed group of interest.

This approach is suitable, especially with the unreliable

demographic model and parameters, as is the case for cattle

[34]. However, loci detected as being under selection using

this approach may under-represent selection on standing

variation [91].

We additionally performed the XP-CLR [33] to search

for regions in the genome where the change in allele fre-

quency at the locus occurred too quickly, which is assessed

by the size of the affected region. XP-CLR scores were cal-

culated using scripts available at (http://genetics.med.

harvard.edu/reich/Reich_Lab/Software.html). We used the

following options: non-overlapping sliding windows of

50 kb, maximum number of SNPs within each window as

600, and correlation level of 0.95 from which the SNPs

contribution to the XP-CLR result was down-weighted.

The regions with the XP-CLR values in the top 0.5%

of the empirical distribution were designated as puta-

tive selective sweeps.

“Significant” genomic regions identified from XP-EHH

and XP-CLR tests were annotated to the closest genes

(UMD 3.1). Genes that overlap the significant window

regions were defined as candidate genes. PANTHER

(version 11.0) [92] was used to determine if there was

any significant over-representation of genes with particu-

lar functional categories (GO-slim Biological Process

and PANTHER pathways), that is, functional enrichment,

among positive selected genes in each African breed. P

value of 0.05 (no correction for multiple testing) was used

as the criterion for statistical significance. Heat tolerance

trait QTL from the animal QTL database (Animal QTLdb,

http://www.animalgenome.org/cgi-bin/QTLdb/index)

were defined by a trait class of “Heat tolerance” [93].

Population differentiation and structure

For PCA, we used genome-wide complex trait analysis

(GCTA) [94] to estimate the eigenvectors, which is

asymptotically equivalent to those from the PCA imple-

mented in EIGENSTRAT [22], incorporating genotype

data from all samples. For admixture analysis, we re-

stricted the genotype data to a random subset of ~ 20,000

of total SNPs using PLINK (–thin option) [95] to run the

“admixture” model in STRUCTURE version 2.3 [23]. We

chose 20,000 iterations after a burn-in of 50,000 iterations
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and the analysis was repeated ten times for each K value.

The output of STRUCTURE was then analyzed in

STRUCTURE HARVESTER [96], which implements the

Evanno method to infer the most likely number of clus-

tered populations. We used VCFtools 4.0 [97] to estimate

nucleotide diversity (in windows of 10 Mb) and the Fst di-

vergence statistic with the VCFtools implementation of

Fst and weighted Fst estimators as described in Weir and

Cockerham [98] for each pair of populations. Linkage

disequilibrium between pairs of markers were assessed

using PLINK [95]. The r2 value was calculated between all

pairs of SNPs with inter-SNP distances of less than 20 kb

(r2 and ld-window parameters). Moving averages (sliding

windows) of the pairwise LD coefficients were then car-

ried out in 20-kb windows with 5-kb steps). We used Hap-

loview software [95] to evaluate the haplotype structure

and estimate haplotype frequencies.

Phylogenetic reconstruction and inference of

demographic history

A neighbor-joining tree was constructed with FigTree

v1.4.0 on the basis of the IBS distance matrix data of all

samples calculated by PLINK [95]. We also inferred a

population-level phylogeny using the maximum likeli-

hood (ML) approach implemented in TreeMix [29]. The

window size of 1000 was used to account for linkage

disequilibrium (-k) and “-global” to generate the ML

tree. Migration events (-m) were sequentially added to

the tree. The recent demographic history was inferred

by the trend in effective population size (Ne) change

using PopSizeABC [25] with default parameters set for

cattle population (mutation rate and recombination of

1e-8, MAF > 20%, size of each segment = 2,000,000) and

simulated 50,000 datasets. The 90% credible intervals as-

sociated with the estimated population size histories for

each breed are shown in Additional file 1: Figure S3.
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