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Abstract

Background: Aeromonas salmonicida subsp. salmonicida is a Gram-negative bacterium that is the

causative agent of furunculosis, a bacterial septicaemia of salmonid fish. While other species of

Aeromonas are opportunistic pathogens or are found in commensal or symbiotic relationships with

animal hosts, A. salmonicida subsp. salmonicida causes disease in healthy fish. The genome sequence

of A. salmonicida was determined to provide a better understanding of the virulence factors used

by this pathogen to infect fish.

Results: The nucleotide sequences of the A. salmonicida subsp. salmonicida A449 chromosome and

two large plasmids are characterized. The chromosome is 4,702,402 bp and encodes 4388 genes,

while the two large plasmids are 166,749 and 155,098 bp with 178 and 164 genes, respectively.

Notable features are a large inversion in the chromosome and, in one of the large plasmids, the

presence of a Tn21 composite transposon containing mercury resistance genes and an In2 integron

encoding genes for resistance to streptomycin/spectinomycin, quaternary ammonia compounds,

sulphonamides and chloramphenicol. A large number of genes encoding potential virulence factors

were identified; however, many appear to be pseudogenes since they contain insertion sequences,

frameshifts or in-frame stop codons. A total of 170 pseudogenes and 88 insertion sequences (of

ten different types) are found in the A. salmonicida genome. Comparison with the A. hydrophila

ATCC 7966T genome reveals multiple large inversions in the chromosome as well as an

approximately 9% difference in gene content indicating instances of single gene or operon loss or

gain.
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A limited number of the pseudogenes found in A. salmonicida A449 were investigated in other

Aeromonas strains and species. While nearly all the pseudogenes tested are present in A. salmonicida

subsp. salmonicida strains, only about 25% were found in other A. salmonicida subspecies and none

were detected in other Aeromonas species.

Conclusion: Relative to the A. hydrophila ATCC 7966T genome, the A. salmonicida subsp.

salmonicida genome has acquired multiple mobile genetic elements, undergone substantial

rearrangement and developed a significant number of pseudogenes. These changes appear to be a

consequence of adaptation to a specific host, salmonid fish, and provide insights into the

mechanisms used by the bacterium for infection and avoidance of host defence systems.

Background
The genus Aeromonas comprises a collection of Gram-neg-
ative bacteria that are widespread in aquatic environments
and that have been implicated as causative agents of a
number of human and animal diseases. A. hydrophila, A.
veronii biovar sobria, A. caviae, A. jandaei, A. veronii biovar
veronii, A. schubertii and A. trota have been associated with
various human infections including gastroenteritis,
wound infections and septicaemia [1]. Aeromonas salmon-
icida, a non-motile aeromonad, is the aetiological agent of
a bacterial septicaemia in fish, called furunculosis [2-4].
Furunculosis is an important disease in wild and cultured
stocks of salmonid and other fish species and can have sig-
nificant negative economic impacts on aquaculture oper-
ations. Motile Aeromonas species have also been
implicated as the causative agents of various fish septi-
cemias [5]. A. hydrophila is also associated with red leg dis-
ease in amphibians and infections in turtles [6] and birds
[7].

In addition to their role as disease agents, Aeromonas spe-
cies can be found in non-pathogenic association with a
variety of animals [8-10]. Most Aeromonas species are
opportunistic pathogens, entering through wounds or
affecting only stressed or otherwise immunocompro-
mised hosts [1]. A. salmonicida subsp. salmonicida, how-
ever, is a specific pathogen of salmonid fish and is capable
of causing disease in healthy fish at very low levels of
infection (LD50 < 10 cfu by intraperitoneal injection [11]).
Although Bergey's Manual of Systematic Bacteriology [12]
recognizes five subspecies of A. salmonicida: salmonicida,
achromogenes, masoucida, smithia, and pectinolytica, many
laboratories currently classify A. salmonicida subsp. salmo-
nicida as "typical" and any isolate deviating phenotypi-
cally as "atypical". Hosts for atypical strains include a wide
variety of non-salmonid fish, as well as salmonids [4]. On
the basis of DNA relatedness, A. salmonicida also includes
a group of mesophilic, motile strains isolated from
humans [12]. Morphological and biochemical differences
such as pigment production, colony size and growth rate,
haemolysis, and sucrose fermentation [4,13-15] are used
to distinguish typical and atypical isolates. A. salmonicida
subsp. salmonicida (i.e. typical) isolates grow well on

blood agar with large colonies, produce a brown diffusi-
ble pigment, are haemolytic and do not ferment sucrose
[12]. Historically, typical strains are thought to be
extremely homogenous [16,17], and therefore any devia-
tion in any of these characteristics has been considered
enough evidence to classify a strain as "atypical" [13].
Phylogenetic analyses based on gene sequences [18,19] or
biochemical analyses based on carbohydrates [20] appear
to be better able to sort out the complex taxonomy and
classification of A. salmonicida subspecies and related spe-
cies.

A. salmonicida subsp. salmonicida appears to be an example
of the evolution of pathogen specificity for a particular
host from within a group of mainly opportunistic patho-
gens or commensal bacteria. It thus provides opportuni-
ties to identify genes involved in host invasion and
virulence and to investigate the evolution of host specifi-
city. In this communication, the genome, including both
the chromosome and large plasmids, of an isolate of A.
salmonicida subsp. salmonicida is characterized. The three
small plasmids of this strain have been described previ-
ously [21]. Genes associated with virulence are identified
and comparisons with the genome of A. hydrophila ATCC
7966T [22] provide insights into the changes in the
genome that may be associated with adaptation to fish
hosts. The genome sequence is an essential tool for the
understanding of the infection process of A. salmonicida.

Results and discussion
Genome features

The genome of A. salmonicida subsp. salmonicida A449
(hereon A449) consists of a single circular chromosome,
two large plasmids and three small plasmids. The
4,702,402 bp chromosome has a G+C content of 58.5%
and contains 4388 genes, with 4086 encoding proteins
(Table 1). Generally, the chromosome matches the restric-
tion map previously constructed for this strain [23],
although there are differences in the placement of some
genes. The chromosome has a number of major structural
features. The origin of replication (oriC), as inferred from
the presence of multiple DnaA binding sites and GC skew,
occurs at 4666400 – 4666750, which is approximately
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35,700 bp from dnaA (Fig. 1). Replication terminates near
2134850 as judged by GC skew and the presence of a dif-
like sequence, which has been recently implicated as the
DNA replication terminus [24]. GC skew also detected the
presence of a large inversion (3963279 – 4158772) that
appears to have occurred between two identical insertion
sequences. PCR analysis confirmed that this inversion was
not due to misassembly of the sequence (not shown). In
addition, two prophages have been detected by similarity
to phage genes (Fig. 1, red arrows), but these regions of
the chromosome do not show any obvious alteration in
G+C content.

Twenty-eight ribosomal RNA genes are encoded on the
chromosome, arranged in nine operons, with one operon
containing an extra copy of the 5S rRNA gene (Table 1;
Fig. 1, light blue arrows). The nine operons are arranged
around the origin of replication so as to be transcribed in
the same direction as replication proceeds. Small varia-
tions (1 – 3 bp) in sequence occur between the copies of
the rRNA genes, with only the "extra" 5S rRNA gene
(rrfG1) having 6 bp that vary when compared to the other
copies. A total of 110 tRNA genes are encoded on the
A449 chromosome, most of which are present in at least
two copies, and some of which occur in clusters of multi-
ple tandem copies, similar to the A. hydrophila genome
[22]. There are single genes for tryptophan (trnW) and
selenocysteine tRNAs as well as a suppressor tRNA that
translates TAG codons as tryptophan. This suppressor
tRNA differs from the trnW sequence at only two bases,
one of which is in the anticodon. Twenty-one protein cod-
ing genes appear to use the suppressor tRNA to allow the
translation of the encoded protein. Analysis of the
genome to identify small non-coding RNA features that
regulate gene expression by binding to RNA or proteins
[25] revealed the presence of nine small RNAs. In addi-
tion, 11 riboswitches, which regulate translation through
the detection of small molecules [26], were detected near
the 5' ends of genes they presumably regulate.

Two striking aspects of the A449 genome are the presence
of large numbers of insertion sequences (IS) (n = 88) and
pseudogenes (n = 170) on the chromosome and two large
plasmids. Ten different types of IS are found in multiple
copies in the A449 genome (Table 2) with ISAs7 present
in 37 complete copies. One IS previously identified in
Aeromonas species (ISAs4) [27] is not present in the A449
genome. In addition to the 88 complete IS elements, 14
partial IS sequences are present. This observation along
with the finding that some IS are located within other IS,
suggests that these dynamic elements have undergone
recent transposition. Insertion sequences have also con-
tributed to the apparent formation of pseudogenes, with
more than 20 genes being interrupted by IS elements.
Most pseudogenes, however, are created by small (1–37
bp) deletions or sequence duplications, although several
genes have larger deletions. Additional pseudogenes
appear to have arisen through mutations that introduce
in-frame stop codons (TAA or TGA, but not TAG, due to
the suppressor tRNA). These observations are in marked
contrast to the A. hydrophila genome [22], which has no IS
elements and only seven pseudogenes.

Both large plasmids contain genes involved in replication,
plasmid partition and conjugative transfer. Plasmid 4
(pAsa4) carries an origin of replication that can be propa-
gated in E. coli, since this plasmid was isolated by transfor-
mation of E. coli with a plasmid DNA extract from A449.
This plasmid also contains a Tn21 composite transposon
(bases 78182 – 101330) [28] that carries genes for resist-
ance to mercury as well as an In2 integron encoding resist-
ance to streptomycin/spectinomycin, quaternary
ammonia compounds, sulphonamides and chloram-
phenicol (Fig. 2, brown bar). The Tn21 sequence has a
considerably higher G+C content (61.43%) than the
remainder of the plasmid (52.18%), as well as noticeable
differences in stacking energy and position preference, as
expected for a transposon.

Table 1: A. salmonicida genome characteristics

chromosome pAsa1 pAsa2 pAsa3 pAsa4 pAsa5

length (bp) 4702402 5424 5247 5616 166749 155098

# genes 4388 9 9 10 178 164

# CDS 4086 8 7 9 173 154

# pseudogenes 155 5 10

# rRNA 28

# tRNA 110

# sRNA 9

# misc. RNA 1 2 1

# riboswitches 11

# IS elements 71 7 10

# Tn21/In2 1

# prophage 2
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A. salmonicida subsp. salmonicida A449 chromosomeFigure 1
A. salmonicida subsp. salmonicida A449 chromosome. A genome atlas representation of the A. salmonicida chromosome. 
Indicated outside the circular chromosome are the origin of replication (ORI), replication termination site (TERM), a large 
inversion in the genome (INVERSION), nine rRNA operons (light blue arrows), two prophages (red arrows) and the surface 
layer protein operons (brown arrow). Moving inward are circles representing annotations (blue: + strand CDS, red: – strand 
CDS, light blue: rRNA, green: tRNA), percent AT (blue: 20% to red: 80%), GC skew (pink: -0.10 to blue: 0.10), intrinsic curva-
ture (yellow: 0.11 to blue: 0.21), stacking energy (green: -9.21 to red: -7.78) and position preference (green: 0.13 to pink: 0.16).

ORI

TERM

INVERSION 

A. salmonicida subsp. 

salmonicida A449
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Virulence genes

Secretion systems

The most notable aspect of the other large plasmid, pAsa5,
is the presence of genes for a type III secretion system
(T3SS) (Fig. 2, orange bar; Table 3) that has been shown
to be required for virulence in A. salmonicida [29,30]. The
36 genes encoding the T3SS needle apparatus and regula-
tory proteins are organized identically to those described
previously for the partial sequence of A. salmonicida [31]
and the complete T3SS sequences of A. hydrophila: AH-3

[32], AH-1 [33]and SSU [34]. As well, three presumptive
effector proteins (AopH, AopO, Ati2) and their associated
chaperones (SycH, SycO, Ati1) are located on pAsa5
(Table 3). Two of the effector proteins AopH and AopO
(ASA_P5G009 and ASA_P5G098) show significant simi-
larity to Yersinia YopH and YopO, and thus are expected
to encode a protein tyrosine phosphatase and a protein
serine/threonine kinase, respectively [30]. A third effector,
Ati2 (ASA_P5G045), was identified by the presence of its
chaperone (Ati1 (ASA_P5G046)) [35] and its similarity to

Table 2: A. salmonicida Insertion Elements

Name Length (bp) # copies IS family Reference

ISAs1 1223 2 ISAs1 [73]

ISAs2 1084 5 IS30 [73]

ISAs3 1326 4 (+2 partial) IS256 Genbank NC_004338

ISAs4 1062 0 IS5 [27]

ISAs5 1233 12 IS3 [45]

ISAs6 1240 7 (+5 partial) IS3 this work

ISAs7 1165 37 (+3 partial) IS630 this work

ISAs8 754 3 IS1 this work

ISAs9 1624 4 IS3 this work

ISAs10 1229 2 (+1 partial) IS30 this work

ISAs11 2614 12 (+3 partial) IS21 this work

A. salmonicida subsp. salmonicida A449 large plasmidsFigure 2
A. salmonicida subsp. salmonicida A449 large plasmids. Genome atlas representations of the two A. salmonicida large 
plasmids. Green arrows outside the pAsa4 circle indicate tetracycline resistance genes and the brown bar indicates the posi-
tion of the Tn21 containing the In2 integron. The orange bar on the pAsa5 circle indicates the position of the type III secretion 
apparatus operons. The interior circles are as described in Figure 1.

pAsa4
166,749 bp

pAsa5
155,0908 bp

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_004338
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Table 3: Potential Virulence Genes of Aeromonas salmonicida A449

Virulence 
function

ASA Locus A. hydrophila ATCC 7966T 

orthologue1

Description Reference or Comments2

Secretion 0514–0515 3785–3786 T2SS (ExeAB) [55]

3774–3785 0568–0579 T2SS (ExeC-N) [56]

P5G048 – 083 NP3 T3SS structural & regulatory proteins [31]

P5G008 & 009 NP AopH effector & chaperone [30]

P5G097 & 098 NP AopO effector & chaperone [30]

4266 & 4267 NP AexT effector & chaperone [36]

P5G045 & 046 NP Ati2 putative effector & chaperone [35]

P5G084 & 085 NP putative T3SS effector & chaperone frameshift

0010 & 0011 NP putative T3SS effector & chaperone in frame TAA, frameshift

2455 – 2470 1847 – 1832 T6SS operon 2455 & 2458 disrupted

P4G080 – 082 1118 – 1119
1826 – 1827
1847 – 1848

T6SS 082 interrupted by Tn21 [39]

Adhesion 1422 – 1459 NP surface layer & assoc. secretion 
system

[40,44]

0346 – 0386 NP Lateral flagella 0365, 0376 [45] disrupted

1336 – 1360 1364 – 1388 Polar flagella

1484 – 1499 2847 – 2832 Polar flagella 1499 frameshift

1505 – 1507 2826 – 2824 Polar flagella 1505 frameshift

2656 – 2662 1698 – 1703 Polar flagella 2656 frameshift

3725 – 3730 0519 – 0524 Type I pilus

0411 – 0414 3868 – 3671 Tap type IV pilus 0412 frameshift [93]

2903 – 2915 1462 – 1450 Flp type IV pilus 2906, 2908 & 2913 disrupted [47]

3938 – 3947 0383 – 0399 Msh type IV pilus multiple gene deletion [47]

Toxins 3906 0438 aerolysin [48]

2854 1512 hemolysin

0826 3491 RTX toxin

2128 NP cytolytic δ-endotoxin

2003 NP zona occludens toxin frameshift

2015 NP zona occludens toxin IS insertion

Secreted enzymes 2540 2687 serine protease Ahe2 [51]

3321 0978 zinc metalloprotease TagA [52]

3440 0851 elastase AhpB

1723 NP metalloprotease

3723 0517 collagenase

1660 2713 AsaP1 protease frameshift [53]

0509 3791 glycerophospholipid cholesterol 
acyltransferase

[51]

4288 0104 phospholipase A1 [54]

0635 0635 phospholipase C [54]

1199 3126 extracellular nuclease

2206 2180 extracellular nuclease NucH

1286 1304 amylase Amy1

3455 0837 amylase AmyA

0873 3440 chitinase CdxA

2142 2363 chitinase Chi2

3320 0979 chitinase ChiB

0628 0628 pullulanase PulA

Antibiotic resistance P4G087 – 105 NP Tn21/In2

P4G004 – 005 NP tetracycline resist.

1191 3135 β-lactamase: ampC [57]

4346 4258 β- lactamase: ampS [57]

3612 0740 β- lactamase: cphA [57]

Iron acquisition 1838 – 1851 2479 – 2473
1964 – 1970

amonabactin synthesis & uptake [59,60]

4368 – 4380 NP anguibactin synthesis & uptake [59,62]

4363 – 4367 4275 – 4279 hydroxymate siderophore receptor

3328 0972 putative heme receptor [59]

3332 – 3336 0968 – 0964 heme uptake [63]
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hypothetical proteins in the T3SS operons of Photorhabdus
luminescens and Vibrio parahaemolyticus. On the basis of
conserved domain structure, this effector appears to have
inositol polyphosphate phosphatase activity. A fourth,
well-characterized effector, AexT (ASA_4266) [36,37], is
encoded on the chromosome. Two pseudogenes also
appear to encode T3SS effectors: ASA_0010 is located on
the chromosome and is disrupted by an in-frame TAA
stop codon; ASA_P5G084 is located on pAsa5 and is dis-
rupted by a 20 bp duplication that results in a frameshift.
Genes encoding presumptive T3SS chaperones are adja-
cent to both pseudogenes. The A449 genome does not
include the AopP effector found in several A. salmonicida
subsp. salmonicida strains including JF2267and ATCC
33658T [38].

Genes for a type VI secretion system (T6SS), which is also
involved in the transfer of bacterial proteins into host
cells, are encoded on the A449 chromosome (ASA_2455
– ASA_2470) (Table 3). These 16 proteins show high sim-
ilarity to T6SS proteins from A. hydrophila, P. aeruginosa
and other Gram-negative bacteria. Three additional genes
usually associated with this operon are encoded on pAsa4
(ASA_P4G080 – ASA_P4G082). However, a key T6SS
gene is interrupted in A449: the gene encoding IcmF
(ASA_2458) contains a 5 bp deletion and is fused to the
upstream coding sequence in the operon. In addition, two
proteins transported by the T6SS are disrupted: a partial
VgrG homolog is fused to a transposon subunit
(ASA_2455), although a complete vgrG gene is encoded
on pAsa4 (ASA_P4G080), and Hcp, which is encoded on
pAsa4 (ASA_P4G082), is interrupted by an insertion
sequence into which the Tn21 element has inserted. These
gene disruptions are in contrast to A. hydrophila where the
T6SS genes are uninterrupted and a functional T6SS has
been demonstrated [39]. Since deletion of the A.
hydrophila icmF homolog (vasK) blocks T6SS secretion
[39], the A449 T6SS is unlikely to be functional. The pres-
ence of defects in two T3SS effectors and the T6SS suggests
that A449 could be considerably more virulent, since
functional versions of these genes would provide addi-
tional means to manipulate the response of the host.

A notable aspect of the T3SS and T6SS is the location of
genes for these systems on both the chromosome and the

large plasmids. For the T3SS, most of the genes are
encoded on pAsa5, although one functional effector gene,
aexT, and a putative effector pseudogene (ASA_0010), as
well as their T3SS chaperone protein genes (ASA_4267,
ASA_0011), are encoded on the chromosome. In A.
hydrophila ATCC 7966T, T3SS genes are absent, while
other A. hydrophila strains carry T3SS operons on the chro-
mosome [32-34]. The ancestral state of the T3SS in the
genus Aeromonas is thus unclear, making it difficult to sur-
mise how it ended up in two locations in A449. The T6SS
situation is somewhat reversed, with the majority of genes
located on the chromosome, but with three genes located
on pAsa4. Since A. hydrophila has a complete, intact T6SS
on the chromosome, one might infer that these genes
were transferred to pAsa4 following the acquisition of that
plasmid, but prior to the capture of the Tn21 element.

Adhesins

Genes for several types of adhesins (e.g., surface layer,
flagella, pili), which are important in host cell attachment
and entry, are present in the A449 genome (Table 3). The
abundant surface layer protein VapA (ASA_1438) [40],
which has been implicated as an important virulence fac-
tor in several studies [41-43], is located downstream from
an operon for a VapA-specific type II secretion system
(ASA_1427 – ASA_1437). The identification of these
genes as a VapA secretion system is based the observation
that disruption of spsE (ASA_1427) blocks VapA secretion
[44] and that many of the genes in this operon show some
similarity to genes of the general secretion pathway (exeA-
N). In the same region of the genome are multiple carbo-
hydrate synthesis and modification genes (ASA_1422 –
ASA_1426, ASA_1441 – ASA_1459) that appear to be
involved in the synthesis of lipopolysaccharide, which
anchors the surface layer to the cell. The genes involved in
VapA synthesis and secretion have an unusually low G+C
content that can be seen in Fig. 1 at approximately base
1500000 (Fig. 1, brown arrow).

Complete sets of genes for two types of flagella, lateral and
polar, are also encoded in the A449 genome. The genes for
lateral flagella are found in a single cluster (ASA_0346 –
ASA_0386) but include two disrupted genes: lafA, encod-
ing the lateral flagellin, which has been shown previously
to be interrupted by an insertion sequence [45], and lfgD,

Quorum sensing 3762 0556 N-acyl homoserine lactone synthase [65]

3763 0557 Quorum sensing regulon activator [65]

0697 0700 AI-2 synthase

2781 1576 Quorum sensing phosphorelay 
protein

3295 1004 Quorum sensing response regulator

1indicates AHA_ number
2Disrupted genes are indicated
3NP – not present in A. hydrophila genome

Table 3: Potential Virulence Genes of Aeromonas salmonicida A449 (Continued)
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encoding the lateral flagellar hook-capping protein,
which has a 1 bp deletion. The genes for the polar flagella
are dispersed around the genome in multiple operons
(ASA_1336 – ASA_1360, ASA_1484 – ASA_1499,
ASA_1505 – ASA_1507, ASA_2656 – ASA_2662), but also
include interrupted genes: flgL (ASA_1499), encoding a
flagellar hook-associated protein, has a 5 bp duplication;
flrA (ASA_1505), encoding a transcriptional activator,
contains a 13 bp deletion; and, maf1 (ASA_2656), encod-
ing a motility accessory factor [46] has a 1 bp deletion.
The disruption of genes involved in the production of
both types of flagella suggests that neither structure can be
synthesized, which is consistent with the characterization
of A. salmonicida as non-motile.

An additional class of adhesins, the pili, is well-repre-
sented in the A449 genome with genes for four different
pili (three type IV, one type I) distributed throughout the
genome. The type I pilus operon (ASA_3725 – ASA_3730)
appears to be complete and intact. However, for each of
three types of type IV pili [47], there are frameshifted
genes encoding proteins involved in pilin assembly (tap,
flp) or a multiple gene deletion (msh) (Table 3). Neverthe-
less, a mutant deleted for tapA showed reduced virulence
when delivered by immersion, but not by intraperitoneal
injection, suggesting a role for the Tap pilus in host inva-
sion [47].

Toxins

Another class of putative virulence factors are pore-form-
ing toxins that create channels in host membranes result-
ing in cell lysis (Table 3). Aerolysin, one of the earliest
virulence factors to be discovered among Aeromonas spp.
[48], is represented by two genes in the A449 genome:
ASA_3906, which encodes the classical aerolysin [48], and
ASA_2854, which encodes a conserved hemolysin found
in other Aeromonas species, Vibrio species and Listonella
anguillarum. A large (9588 bp) gene, asx (ASA_0826),
encodes an RTX (repeats in toxin) protein, homologs of
which are important virulence determinants in a range of
Gram-negative bacteria [49]. The A449 genome also
encodes a cytolytic delta-endotoxin (ASA_2128) that is
61% similar to the Bacillus thuringiensis insecticidal toxin
CryET29 (Genbank accession AAK50455), which may be
an indication of interaction with invertebrates. Two addi-
tional genes (ASA_2003 and ASA_2015) encode proteins
that are 53 and 44% similar to the zonula occludens toxin
(Zot) of Colwellia psychrerythraea (Genbank accession
YP_267119). Zot was first described in Vibrio cholerae as a
toxin that transiently loosens intracellular tight junctions
in the intestinal mucosa [50]. In V. cholerae, Zot is associ-
ated with cholera toxin A and B and is also encoded on the
CTXΦ plasmid [50]. In A449, however, both genes are
interrupted, either by an IS (ASA_2015) or by a single bp

insertion (ASA_2003), suggesting that functional proteins
can not be synthesized from them.

Secreted enzymes

An additional class of potential virulence factors in A. sal-
monicida are extracellular enzymes, some of which have
been previously investigated (Table 3). Among secreted
proteases are a serine protease previously tested for its
contribution to virulence (ASA_2540) [51], a zinc metal-
loprotease (TagA, ASA_3321) implicated in complement
inhibition [52], another secreted metalloprotease
(ASA_1723) and a microbial collagenase (ASA_3723). A
gene encoding an extracellular endopeptidase (AsaP1,
ASA_1660) contributing to virulence in atypical A. salmo-
nicida strains [53] is present, but interrupted by a single bp
insertion. The phospholipases encoded by satA (glycero-
phospholipid cholesterol acyltransferase, ASA_0509), pla
(phospholipase A1, ASA_4288) and plc (phospholipase
C, ASA_0635) have been investigated for their role in vir-
ulence in A. salmonicida [51] and A. hydrophila [54]. Extra-
cellular nucleases (ASA_1199, ASA_2206), amylases
(ASA_1286, ASA_3455), pullulanase (ASA_0628) and
chitinases (ASA_0873, ASA_2142, ASA_3320) may also
contribute to A449 virulence. All of these enzymes have a
predicted Sec-dependent signal sequence and are expected
to be secreted via the type II secretion system (exeA-N,
ASA_0514–0515, ASA_3777–3785) [55,56].

Antibiotic resistance

In addition to the antibiotic resistance genes encoded in
the Tn21 element, pAsa4 also carries genes for tetracycline
resistance: tetA(E) (ASA_P4G005) encodes a class E tetra-
cycline efflux pump that is presumably regulated by the
adjacent class E tetracycline repressor protein (tetR(E),
ASA_P4G005). Three β-lactamase genes, ampC
(ASA_1191), ampS (ASA_4346) and cphA (ASA_3612),
previously described in A. sobria (as cepS, ampS and imiS,
respectively) [57] are carried on the A449 chromosome
(Table 3). The presence of more than 25 genes for multid-
rug resistance and major facilitator efflux family proteins
indicates that A449 carries an array of genes to counteract
antimicrobials.

Iron acquisition

Iron acquisition is an important virulence factor for many
bacterial pathogens and for A. salmonicida, it may also be
a key process for survival in aquatic environments. Mes-
ophilic Aeromonas species have been found to produce
two types of catecholate siderophores, amonabactin and
enterobactin [58]. When A449 is grown under low iron
conditions, either in vivo or in the presence of 2,2'-dipyri-
dyl, three outer membrane proteins are induced that
appear to be ferric siderophore or heme receptors [59]. On
the A449 chromosome, both of the ferric siderophore
receptors are located adjacent to clusters of genes encod-

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAK50455
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=YP_267119
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ing ABC-type ferric transporter subunits as well as non-
ribosomal peptide synthetase modules, suggesting com-
plete systems for siderophore synthesis and uptake. The
gene for the FstC receptor is located within a cluster
(ASA_1838 – ASA_1851) that includes the amonabactin
synthesis gene [60], indicating that these genes are likely
involved in the synthesis and uptake of amonabactin. The
gene for the FstB receptor is encoded in a gene cluster
(ASA_4368 – ASA_4380) that is similar to the Listonella
anguillarum anguibactin and the Acinetobacter baumannii
acinetobactin synthesis genes [61], suggesting that A449
has the ability to synthesize and recapture an anguibactin-
like siderophore. Some of the genes in this cluster have
been recently characterized in A. salmonicida and shown to
be required for siderophore synthesis [62]. Adjacent to
this gene cluster are five genes (ASA_4363 – ASA_4367)
encoding a hydroxamate-type ferric siderophore receptor
and an ABC transporter system, indicating that A449 may
also use a hydroxamate siderophore for iron acquisition.
The gene for a presumptive heme receptor, hupA
(ASA_3328), that is induced by low iron conditions [59],
is located near hutZXBCD (ASA_3332 – ASA_ 3336),
which encode proteins involved in heme uptake and uti-
lization [63]. Genes for several additional Ton-B depend-
ent outer membrane receptors that may be involved in
heme or hemoprotein transport are also present in the
A449 genome, but require further characterization to
establish their function.

Quorum sensing

Another bacterial process implicated in virulence is quo-
rum sensing [64]. The A449 chromosome contains the
luxI and luxR homologs, asaI (ASA_3762) and asaR
(ASA_3763), which encode proteins for the synthesis of
the acylhomoserine lactone quorum sensing molecule
and the transcriptional regulator that responds to it,
respectively [65]. In addition, genes for a second quorum
sensing pathway that uses autoinducer-2 [66] are present:
luxS (ASA_0697) encodes the autoinducer-2 synthase,
luxU (ASA_2781) is a putative phosphorelay protein
involved in transduction of the signal and luxO
(ASA_3295) is a transcriptional response regulator (Table
3). Other unidentified genes in the A449 genome may
also participate in these systems since in Vibrio spp. recep-
tor proteins and multiple small RNAs are involved in the
complete signal transduction pathway [67].

Comparison to the A. hydrophila genome

The genome sequence of A. hydrophila ATCC 7966T [22]
provides an excellent basis for comparative sequence anal-
ysis leading to enhanced understanding of genome evolu-
tion within the genus Aeromonas. A comparative analysis
of the two chromosomes using Mummer [68] is shown in
Fig. 3. Due to an inversion around the origin of replica-
tion, the A449 sequence primarily aligns with the A.
hydrophila sequence on the reverse strand (blue line in Fig.

3). As expected for two chromosomes of nearly the same
size, there are no large gap regions indicative of significant
insertions or deletions. Nearly all regions of sequence
similarity fall along one of the diagonals, indicating gen-
erally similar gene and sequence order. Approximately 15
large sequence inversions (red lines in Fig. 3) around the
origin of replication have occurred in the A449 chromo-
some relative to the A. hydrophila chromosome, account-
ing for the regions of forward strand alignment. The large
inversion already noted in the A449 chromosome, which
appears to be an evolutionarily recent change since it is
bounded by transposons and is absent in A. hydrophila,
stands out as a red line along the blue (reverse strand)
diagonal at 500,000 bp in the A. hydrophila sequence.

On a global scale, the A449 and A. hydrophila chromo-
somes appear generally similar and encode similar num-
bers of proteins (4086 in A449, 4128 in A. hydrophila).
However, there are multiple instances of single gene or
operon loss and gain between the two genomes, leading
to a 9% difference in gene content. There are 477 coding
sequences (CDS) present in the A. salmonicida chromo-
some that are not found on the A. hydrophila chromo-
some. Many of these are transposon (101 CDS) or phage
related (69 CDS) and 122 represent CDS unique to A. sal-
monicida. However, there are also 97 conserved hypothet-
ical CDS found in other bacterial species and 88 known
CDS that are present in the A. salmonicida genome, but not
in that of A. hydrophila. Conversely, the A. hydrophila
genome contains 278 CDS not present in A. salmonicida
(72 unique CDS, 67 conserved hypothetical CDS and 139
known CDS). Clearly, significant changes in gene content
have occurred following the separation of these two spe-
cies.

Pseudogenes

An additional obvious difference between the A. salmoni-
cida and A. hydrophila genomes is the number of pseudo-
genes present. The A. hydrophila genome [22] has only 7
pseudogenes: 2 in tRNA genes, 2 protein CDS with in-
frame stop codons and 3 frameshifted protein CDS. Only
one of these CDS (AHA_2264) is present in A. salmonicida
(ASA_2042) and both genes contain the same frameshift.
To investigate the frequency and occurrence of frameshifts
in the genus Aeromonas, we attempted to amplify and
sequence 16 A. salmonicida pseudogenes (Additional file
1) having a variety of lesions from five A. salmonicida
strains (two strains of subspecies salmonicida, one each of
subspecies masoucida, achromogenes and smithia) and from
one strain each of five other Aeromonas species (hydrophila,
veronii, caviae, sobria and bestiarum) (Table 4). In addition,
these sequences were amplified from A449 cDNA to deter-
mine whether transcriptional frameshifting corrected any
of them. All the cDNA sequences were identical to the
genomic sequence (Table 4 and Additional file 1). While
most of the genes could be amplified from the A. salmon-
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icida strains and subspecies, the amplification of genes
from the other Aeromonas species was considerably less
successful (Table 4 and Additional file 1), presumably due
to sequence changes at the primer sites. However, it is
clear (Table 4) that in the single species of A. salmonicida
subsp. masoucida, achromogenes and smithia that were
tested, only 3 or 4 of the pseudogenes are present and that
none of the amplified sequences from the other Aerom-
onas species showed disruptions. While this analysis tests
less than 10% of the A449 pseudogenes and although the
data are incomplete for many of the non-A. salmonicida
species, these pseudogenes appear to be limited to A. sal-
monicida with the majority present only in A. salmonicida
subsp. salmonicida.

Genomic evidence for pathogen speciation

Analyses of the genomes of bacterial pathogens provide
evidence that three key processes, the acquisition of

mobile genetic elements, genome rearrangements and
gene loss in the process of adapting to a specific host,
result in substantial changes in the genomes of pathogens
(see [69] for a recent review). Since its separation from the
last common ancestor with A. hydrophila, A449 appears to
have acquired multiple plasmids, two prophages, a variety
of IS elements and a number of individual genes and
operons, presumably through horizontal gene transfer.
While mechanisms for the acquisition of prophage, plas-
mids and insertion sequences are understood, mecha-
nisms for the gain of individual genes, such as the B.
thuringiensis toxin, or operons, such as VapA and its secre-
tion system, are less obvious. The acquisition of foreign
DNA appears to be an ongoing process in A. salmonicida
based on the diversity of plasmids identified in various
strains [70-72]. IS transposition also continues to be
active in A449 since mutants can be generated by IS trans-
position ([73], JMB unpublished results), usually by

Comparison of A. salmonicida and A. hydrophila chromosomesFigure 3
Comparison of A. salmonicida and A. hydrophila chromosomes. Mummer comparison of the A. salmonicida and A. 
hydrophila chromosomes. Red lines/dots indicate forward sequence matches. Blue lines/dots indicate reverse matches.
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growth under stressful conditions such as elevated tem-
perature (30°C).

Substantial genetic rearrangements have occurred in the
A449 genome, relative to the A. hydrophila genome. Many
of these rearrangements have been assisted by the pres-
ence of IS elements, such as the apparent transfer of T6SS
genes to pAsa4 and the large inversion. Most of the other
inversions, relative to A. hydrophila, do not appear to be
associated with IS elements, indicating that other mecha-
nisms are also generating genetic rearrangements. While
these large scale rearrangements do not obviously affect
gene sequences, reorientation of large regions relative to
the origin of replication may impact the regulation of
gene expression.

The third trait of recently evolved pathogen genomes,
gene loss or decay, has also occurred frequently in the
A449 genome. The number of A449 pseudogenes, 170, is
comparable to that seen in Yersinia pestis (~150) [74], but
less than other recently evolved human pathogens such as
Salmonella enterica serovar Typhi CT18 (>200) [75] or
Mycobacterium leprae (>1100) [76]. Several of the A449
pseudogenes prevent the expression of cell surface struc-
tures such as flagella and pili. Loss of flagellar motility is
common among recently emerged pathogens [69], per-
haps as a means to evade the host innate immune system.
Loss of genes for type IV pili is also associated with path-
ogen speciation [77] and may also help pathogens avoid
innate immune responses [78]. Significant accumulations
of pseudogenes are also found among genes for transcrip-
tional regulators (17 pseudogenes), genes encoding car-
bohydrate synthesis and modification enzymes (12
pseudogenes) and genes for basic metabolic enzymes
(e.g., sulfite reductase, α and β galactosidase, acetolactate
synthase, etc.) (10 pseudogenes). Compared to A.
hydrophila ATCC 7966T, the "jack of all trades" [22], the
accumulation of pseudogenes in A449 has considerably

reduced its capacity to produce some organelles (e.g., pili
or flagella) and to synthesize some enzymes and their
products.

The A449 genome thus carries all the hallmarks of an
organism that has undergone adaptation to a specific
host. Clearly, substantial horizontal gene transfer,
genome rearrangements and gene decay have occurred in
A449 relative to A. hydrophila ATCC 7966T. The small sur-
vey of pseudogenes in other members of the genus Aerom-
onas suggests that pseudogene accumulation coincided
with the speciation of A. salmonicida but increased sub-
stantially during the evolution of the subspecies salmonic-
ida. Further analysis of Aeromonas sequences and genomes
should provide insights into the process and timing of the
evolution of host specialization as well as a better under-
standing of the genes and proteins involved in virulence.

Conclusion
The genome of A. salmonicida subsp. salmonicida A449
consists of a circular chromosome and five plasmids that
encode more than 4700 genes. A large number of genes
encoding potential virulence factors have been identified,
although a number of them have been disrupted to
become pseudogenes. The acquisition of plasmids, inser-
tion sequences and pseudogenes, along with large
genome rearrangements is indicative of a genome that has
decayed to adapt to the environment of a specific host.

Methods
Bacterial Strains

Aeromonas salmonicida subsp. salmonicida A449 was origi-
nally isolated from a brown trout in the Eure river, France
by Christian Michel in 1975 [79]. Other Aeromonas strains
were obtained from the American Type Culture Collection
(ATCC): A. salmonicida subsp. salmonicida ATCC 33658T,
A. salmonicida subsp. salmonicida ATCC 51413 (non-pig-
mented), A. salmonicida subsp. masoucida ATCC 27013T,

Table 4: Summary of disrupted genes in Aeromonas species

Species # genes amplified1 # disrupted genes % disrupted

A449 162 16 100

A449 cDNA 16 16 100

A. salmonicida subsp. salmonicida ATCC 33658T 15 15 100

A. salmonicida subsp. salmonicida ATCC 51413 (non-pigmented) 16 16 100

A. salmonicida subsp. masoucida ATCC 27013T 13 3 23

A. salmonicida subsp. achromogenes ATCC 33659T 14 3 21

A. salmonicida subsp. smithia ATCC 49393T 15 4 27

A. bestarium ATCC 51108T 7 0 0

A. veronii bv. sobria ATCC 9071 4 0 0

A. sobria ATCC 43979T 2 0 0

A. caviae ATCC 15468T 2 0 0

A. hydrophila ATCC 7966T 132 0 0

1 The genes tested are described Additional file 1. Primers used for amplification are described in Additional file 2.
2Sequences used were from the complete genomes.
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A. salmonicida subsp. achromogenes ATCC 33659T, A. sal-
monicida subsp. smithia ATCC 49393T, A. bestarium ATCC
51108T, A. veronii bv. sobria ATCC 9071, A. sobria ATCC
43979T, A. caviae ATCC 15468T and A. hydrophila ATCC
7966T.

Genome Sequencing

A mixed strategy was employed for sequencing the
genome of A449. A shotgun library was generated by clon-
ing hydro-sheared and end-repaired 1–2 kb genomic
inserts into the plasmid vector pUC19. Clones from this
library were sequenced [80] from both direction on Li-Cor
4200 and MegaBace 1000 instruments. As well, a BAC
library was constructed by partial digestion of genomic
DNA with EcoRI and cloning in pBACe3.6 [81]. Twelve
clones from this library were sequenced completely. All
reads were assembled in gap4 [82] to produce ~2100 con-
tigs with approximately 6× coverage. Contigs were joined
using a read-pair approach as well as a two-step PCR-
based approach involving two primers at the contig ends
and a random primer. For contig closure, a fosmid library
was made in the EpiFOS vector (Epicentre Biotechnolo-
gies) and clones were end-sequenced to locate their posi-
tion in the assembly. Sequence from these clones was
used for confirming assembly as well as to fill the remain-
ing gaps. Finally, the sequence was completely disam-
biguated and polished by sequencing genomic PCR
products generated with flanking primer pairs. Presump-
tive plasmid contigs were identified by similarity to com-
mon plasmid encoded genes, removed from the main
assembly and joined by PCR experiments using primers at
the contig ends. pAsa4 was cloned into E. coli DH5α by
transformation with a plasmid DNA preparation from
A449 and selection on chloramphenicol. This clone was
used to identify pAsa4 contigs and to join and polish the
sequence. The A449 chromosome and plasmid 4 and 5
sequences have been deposited in Genbank (NC_009348,
NC_009439, NC_009350).

Annotation

Initial analysis of the genome sequences was done using a
script written in Perl and relying heavily on the BioPerl
modules [83]. The script initially searched for rRNA and
transposon sequences using Blastn [84] followed by a
tRNA search using tRNAscan-SE [85]. sRNA sequences
were also identified with rfam_scan.pl which uses Blast
and INFERNAL [86] searches of the Rfam database [87].
Open reading frames were identified with Glimmer2 [88]
and searched for similarity using Blastp and for conserved
domains with CDD [89]. Sequences between open read-
ing frames with Blastp or CDD hits were extracted and fur-
ther searched with Blastx and Blastn. All search results
were assembled in an EMBL feature table file for editing in
Artemis [90]. Final annotation was done by hand in
Artemis. Chromosome and large plasmid representations

were produced using the Genome Atlas website [91].
Comparisons between the A. salmonicida and A. hydrophila
chromosomes used the Mummer package [68].

Frameshift Analysis

To investigate the presence of frameshifts in other Aerom-
onas species and subspecies, primers flanking frameshift
sites (Additional file 2) were designed with Primer 3 [92].
Aeromonas species and subspecies were grown in tryptic
soy broth and DNA was extracted for use as the template
in standard PCR reactions. PCR products were gel purified
and sequenced directly. Unsuccessful amplifications were
attempted at least two more times using a lower annealing
temperature. RNA extraction and cDNA synthesis were as
described previously [35]. Sequences were deposited in
Genbank under accession numbers FJ178190–FJ178298.
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