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Abstract

Background: The human gastrointestinal tract contains a complex community of microbes, fulfilling important health-
promoting functions. However, this vast complexity of species hampers the assignment of responsible organisms to these
functions. Recently, Akkermansia muciniphila, a new species from the deeply branched phylum Verrucomicrobia, was
isolated from the human intestinal tract based on its capacity to efficiently use mucus as a carbon and nitrogen source. This
anaerobic resident is associated with the protective mucus lining of the intestines.

Methodology/Principal Findings: In order to uncover the functional potential of A. muciniphila, its genome was sequenced
and annotated. It was found to contain numerous candidate mucinase-encoding genes, but lacking genes encoding
canonical mucus-binding domains. Numerous phage-associated sequences found throughout the genome indicate that
viruses have played an important part in the evolution of this species. Furthermore, we mined 37 GI tract metagenomes for
the presence, and genetic diversity of Akkermansia sequences. Out of 37, eleven contained 16S ribosomal RNA gene
sequences that are .95% identical to that of A. muciniphila. In addition, these libraries were found to contain large amounts
of Akkermansia DNA based on average nucleotide identity scores, which indicated in one subject co-colonization by
different Akkermansia phylotypes. An additional 12 libraries also contained Akkermansia sequences, making a total of
,16 Mbp of new Akkermansia pangenomic DNA. The relative abundance of Akkermansia DNA varied between ,0.01% to
nearly 4% of the assembled metagenomic reads. Finally, by testing a large collection of full length 16S sequences, we find at
least eight different representative species in the genus Akkermansia.

Conclusions/Significance: These large repositories allow us to further mine for genetic heterogeneity and species diversity
in the genus Akkermansia, providing novel insight towards the functionality of this abundant inhabitant of the human
intestinal tract.

Citation: van Passel MWJ, Kant R, Zoetendal EG, Plugge CM, Derrien M, et al. (2011) The Genome of Akkermansia muciniphila, a Dedicated Intestinal Mucin
Degrader, and Its Use in Exploring Intestinal Metagenomes. PLoS ONE 6(3): e16876. doi:10.1371/journal.pone.0016876

Editor: Najib El-Sayed, The University of Maryland, United States of America

Received August 23, 2010; Accepted January 3, 2011; Published March 3, 2011

Copyright: � 2011 van Passel et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: MWJvP and WMdV are funded by the Netherlands Organization for Scientific Research (NWO) via a VENI and SPINOZA grant. RK was supported by the
Center of Excellence in Microbial Food Safety Research (MiFoSa), Academy of Finland. The work conducted by the U.S. Department of Energy Joint Genome
Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: mark.vanpassel@wur.nl

. These authors contributed equally to this work.

Introduction

Humans host a vast variety of microorganisms associated with

the various body surfaces, such as on their skin [1] as well as in

their gastrointestinal (GI) tract [2,3]. However, only a minor

fraction has been shown amenable to cultivation [4]. One way of

probing the diversity of commensals and mutualists in the GI tract

microbiota is through metagenomics. This culture-independent

approach can capture for example the default proxies for species

richness, the 16S ribosomal RNA (rRNA) sequences [5].

Subsequent analyses allow the quantification of the differences in

colonization diversity between individuals, as well as their

overlapping core microbiota [6,7]. Alternatively, attempts have

been made to sequence all microbial DNA of different individuals

[8], now providing extensive gene catalogues of the human GI

tract microbiome [9].

Due to its high phylogenetic and functional diversity, the GI

tract microbial ecosystem represents a virtual organ that performs

an array of health-promoting functions, from metabolizing

otherwise inaccessible foods, the storage of fat, to the production

of important vitamins [10,11,12,13]. However, determining which

species is responsible for what function can be an arduous task,
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since relatively little of the microbial diversity has been

functionally characterized. This frustrates our understanding of

the relationships with and between the residents of the microbiota.

Recently, Akkermansia muciniphila, a novel representative of the

deeply rooted phylum Verrucomicrobia, was isolated from the human

GI tract [14]. A. muciniphila was isolated using mucin, a complex

glycosylated protein, which is used as a sole carbon and nitrogen

source. Mucin is the major component of the protective coating of

the human intestinal epithelium, where bacteria live in close

proximity to human cells [15,16]. The Gram-negative anaerobe A.

muciniphila is known to colonize a substantial part of the human

population, starting at early childhood [17], and by adulthood

reaching densities up to 3% (,16109) of the total bacterial count

in feces [18]. Recently, A. muciniphila has been found to be

inversely related to the severity of appendicitis [19], as well as

being present in lower numbers in patients with inflammatory

bowel disease [20], providing first glimpses of its association with

human health issues.

Except for the significant colonization of A. muciniphila, little is

known about this frequent and abundant resident of the GI tract.

Thus far, only a few genomes of Verrucomicrobiae are available,

hampering insight into the evolutionary history of this phylum. In

order to uncover the functional capacity of A. muciniphila, we

sequenced the complete genome of this species. Its full genetic

repertoire is key in understanding the role of this abundant

colonizer. Furthermore, by probing available GI tract metage-

nomic libraries with the full genome we shed light on the

abundance and diversity of Akkermansia.

Results

General characteristics of the genome
The complete genome of A. muciniphila ATCC BAA-835 is

composed of one circular chromosome of 2,664,102 bp with an

average G+C content of 55.8%. The genome has a total of 2,176

predicted protein-coding sequences, with an overall coding

capacity of 88.8%. Of the predicted protein-coding genes, 1,408

(65%) could be assigned a putative function, whereas 768 (35%)

encode hypothetical proteins, with 38 (1.7%) of all protein-coding

genes classified as pseudogenes.

Comparision to the six other available full and draft genome

sequences of representatives of the Verrucomicrobia phylum showed

that A. muciniphila shares 28.8%, 24.5%, 19.8% 17.9%, 16.0%, and

14.6%, coding sequences (CDS) with Verrucomicrobium spinosum

DSM 4136, Chthoniobacter flavus Ellin428, Pedosphaera parvula

Ellin514, Opitutus terrae PB90-1, Methylacidiphilum infernorum V4 and

Opitutaceae bacterium TAV2, respectively. Overall, the available

verrucomicrobial genomes show large variations in their GC

content and genome size. A brief summary of the main

characteristics of these seven genomes is provided in Table 1.

Further analysis of the COG distribution of verrucomicrobial

genomes shows overall a similar trend in the relative abundance of

genes in the main COG categories for the genomes of A. muciniphila

and Methylacidiphilum infernorum V4, including a more than average

occurrence of genes in classes ‘‘Coenzyme metabolism’’ (H),

‘‘Nucleotide transport and metabolism’’ (F) and ‘‘Translation,

ribosomal structure and biogenesis’’ (J), whereas relative abun-

dance of genes is lower in categories ‘‘Transcription’’(K) and

‘‘Signal transduction mechanisms’’(T) in comparison to other

verrucomicrobial genomes (Table S1). Furthermore, a subsequent

comparison of the COG distribution of all A. muciniphila genes as

well as 1337 A. muciniphila specific genes absent in the other six

verrucomicrobial genomes revealed that those related to ‘‘Carbo-

hydrate transport and metabolism’’ (G) and ‘‘Cell envelope

biogenesis, outer membrane’’ (M) categories were enriched in

the fraction of A. muciniphila specific genes. In contrast categories

‘‘Translation, ribosomal structure and biogenesis’’ (J) and

‘‘Nucleotide transport and metabolism’’ (F) were underrepresented

in A. muciniphila specific genes.

In line with the above, further inspection of the annotated

genome showed that A. muciniphila is predicted to synthesize all 20

canonical amino acids, as well as important co-factors and

vitamins (data not shown), indicating that development of defined

synthetic media for future post-genomic studies should be feasible.

Furthermore, genome analysis suggested the ability to metabolize

a variety of carbohydrates previously not found to be metabolized,

such as galactose, cellobiose, melobiose and fructose [14], and will

be addressed by ongoing efforts towards the generation and

experimental validation of a genome-based metabolic models.

A large proportion (26%, 567 proteins) of the predicted A.

muciniphila proteome contains a signal peptide cleavage site as

predicted by signalP [21]. This seems to be a general trend for the

Verrucomicrobia (Table S2). From this putative secretome, 61

proteins (11%) are annotated as glycosyl hydrolases, proteases,

sulfatases and sialidases (35, 13, 11 and 2, respectively), and

therefore strong candidates to be involved in the degradation of

mucin. A substantial fraction of all proteins that are predicted to

Table 1. Characteristics of verrucomicrobial genome sequences.

Genome
Total size
(bp) GC %

Coding
Capacity (%)

Genes
assigned
to COG

Predicted
ORFs

Genes encoding
signal peptides

Number of
CRISPR loci

Number of
phage-
associated
sequences

Akkermansia muciniphila
ATCC BAA-835

2664102 55.8 88.8 1489 2176 567 (26.1%) 2 9

Verrucomicrobium
spinosum DSM 4136

8220857 60.3 86.0 3433 6509 1788 (27.5%) 3 14

Methylacidiphilum
infernorum V4

2287145 45.5 91.2 1449 2472 330 (13.4%) 4 0

Opitutus terrae PB90-1 5957605 65.3 89.0 3102 4632 1428 (30.8%) 0 6

Pedosphaera parvula Ellin514 7474933 52.6 89.0 3508 6402 1857 (29.0%) 0 4

Opitutaceae bacterium TAV2 4954527 60.5 84.3 2313 4036 1032 (25.6%) 1 21

Chthoniobacter flavus Ellin428 7848700 61.1 88.4 3658 6716 2007 (29.9%) 0 7

doi:10.1371/journal.pone.0016876.t001

Metagenome Mining with the A. muciniphile Genome
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be secreted, are hypothetical proteins (242; 43%), a number of

which may also be involved in mucin degradation and processing.

Remarkably, no canonical mucus-binding domains are encountered

in the proteome of A. muciniphila, and therefore no candidates

involved in the adherence to the mucus layer of the host via these

domains [22]. However, a recent study identified a novel module

termed BACON (Bacteroidetes-associated carbohydrate-binding

Often N-terminal) [23], which is also found in two A. muciniphila

candidate mucinases (encoded by Amuc_0953, a sulfatase, and

Amuc_2164, a glycosyl hydrolase), and is thought to be involved in

mucin binding. But in contrast to most BACON-motif containing

proteins, the two Akkermansia proteins have the motif on the C-

terminus. Finally, a novel C-terminal targeting signal (TIGR02595)

was recently identified in proteins from a variety of mainly Gram-

negative species, the PEP-CTERM sequence consisting of a near

invariant C-terminal Pro-Glu-Pro motif [24]. As was predicted, this

motif could be found in 21 A. muciniphila proteins, encoded by genes

scattered across the genome, and the corresponding exosortase

EpsH (encoded by Amuc_1470), together forming a protein sorting

system associated with exopolysaccharide expression.

Clustered regularly interspaced palindromic repeats (CRISPR)

loci represent heritable and adaptive primitive immune systems in

bacteria and archaea against invading agents such as bacteriophag-

es or plasmids [25]. Two CRISPR loci are detected in the A.

muciniphila genome, one in close proximity to a predicted mobile

element (an integrase, encoded by Amuc_2006). These CRISPR

loci 1 and 2 comprise direct repeats of 36 and 33 bp, and are

interspersed 11 and 3 times with spacers, at coordinates 2438206–

2438965 bp and 2507588–2507825 bp, respectively. Whereas the

36 bp repeat could not be classified, the 33 bp repeat is similar to

repeat cluster 3 [26]. Homologues of CRISPR associated sequences

cas1, cas2 and csn1 could be identified in close proximity to CRISPR

locus 1 (Amuc_2008, Amuc_2009 and Amuc_2010). The predicted

CRISPR locus 2, however, lacks proximal homologues to known

CRISPR associated sequences. Due to the differences in repeat

sequence and size it is unclear whether both repeat loci can be

processed by the cas system located near CRISPR locus 1. In

addition to these CRISPR loci, the presence of 9 predicted phage-

related sequences (Amuc_0323, Amuc_0551, Amuc_1116,

Amuc_1335, Amuc_1348, Amuc_1355, Amuc_1367, Amuc_1711

and Amuc_2017) suggests that A. muciniphila experienced frequent

infection by bacteriophages.

Recently, the human microbiota were found to be a natural

reservoir for antibiotic resistance genes [27]. As a frequent and

abundant human resident, we queried the A. muciniphila genome for

possible antibiotic resistance associated genes. We found potential

beta-lactamase genes in the genome (Amuc_0106 and Amuc_0183),

belonging to beta-lactamases classes C and A, respectively, as well as

a gene coding for a 5-nitroimidazole antibiotic resistance protein

(Amuc_1953). Furthermore, the A. muciniphila genome contains a

gene that codes for a putative secreted antibiotic biosynthesis

monooxygenase (Amuc_1805, PFAM PF03992).

Long mononucleotide repeats in A. muciniphila are overrepre-

sented at the gene termini (Table S3 and Figure S1), as found

previously for archaea, bacteria and eukaryotes [28,29]. These

repeats are known to be involved in prokaryotic transcriptional or

translational phase variation [30]. Long homopolymeric tracts of

.8 bp are found in 17 genes in A. muciniphila, amongst which 2

genes involved in the capsular polysaccharide biosynthesis; a

capsular exopolysaccharide biosynthesis gene with a (G)8 repeat,

and a gene that codes for an acyltransferase with a (C)10 repeat

(Amuc_1413 and Amuc_2098, respectively).

Images of A. muciniphila have shown that the cells are frequently

covered with flagella-like structures [14]. However, no obvious

candidate genes have been discerned in the genome that could

encode the putative proteinaceous building blocks of these

filaments. Recently, studies into Lactobacillus rhamnosus have shown

that this bacterium contains pili that are indispensible for

interactions with human mucus [31]. In A. muciniphila, these

structures are therefore interesting targets for proteomic investi-

gation, since the availability of the genome sequence enables

straightforward determination of the amino acid composition of

extracellular proteins.

Mining for Akkermansia DNA in metagenomic libraries of
human GI tracts

Previous studies have shown that A. muciniphila is a common and

abundant colonizer of the human GI tract, detectable in

approximately 75% of the human population [17]. Therefore,

we have queried 37 metagenomic libraries from an international

effort in the cataloguing of human GI tract microbiomes (M.

Arumugam et al. under revision) for the presence of A. muciniphila 16S

rRNA gene sequences. Eleven (30%) of the 37 libraries contained

sequences .95% identical to the A. muciniphila 16S rRNA gene

query (Table 2, Table S4). In most cases, the nucleotide identity

was .99% (ambiguous nucleotides excluded), except in one case

(Italian male, 87 years old, subject B), where a complete 16S

rRNA gene locus was identified with only 98% identity to that of

A. muciniphila.

Subsequently, we queried each of the metagenomic libraries

with the entire genomic complement in order to discern all

Akkermansia carriers in this dataset. The combined set of bacterial

and archaeal genome sequences at NCBI (1026 genomes, obtained

22-01-2010) failed to show any non-Akkermansia hit with a

nucleotide identity score .90% for over 200 bp when queried

with the A. muciniphila genome (rRNA sequences excluded, data

not shown). Therefore, applying these values as a conservative cut-

off, we identified putative Akkermansia DNA in a further 12

metagenomic databases (Table 2, all predicted Akkermansia contigs

are listed in Table S5), which brings the total of Akkermansia

containing libraries up to 23 (62%). The 11 libraries that

contained Akkermansia 16S rRNA gene sequences were found to

contain on average over 1.3 Mbp of Akkermansia DNA, compared

to an average of 133 kbp of Akkermansia DNA in the 12 libraries

lacking the ribosomal proxy. The amount of Akkermansia DNA per

database varied from a single contig of 575 bp (Japanese female, 4

months old, subject In-M), to well over 2.5 Mbp in 1102 contigs

(Danish healthy male, 54 years old, subject MH13). The largest

relative amount of Akkermansia DNA, 3.9% of the total assembled

DNA, was found in a 61-year-old French healthy male (Subject

NO3). In total 13,589 contigs, comprising 15.9 Mbp of novel

Akkermansia sequences, were identified in over 1.98 Gbp of

assembled metagenomic data.

The average nucleotide identity (ANI) has been proposed to

advance the definition of species boundaries in prokaryotes [32].

For each metagenomic database that contains over ten predicted

Akkermansia sequences (i.e., stretches of .200 bp with .90%

ANI), we analyzed the distribution of ANI scores for all contigs

that we predict to be derived from Akkermansia (Figure 1). This

shows that for most of the metagenomic libraries (20 out of 23

metagenomes), these contigs have an ANI of around 98% as

compared to the A. muciniphila genome, and the subjects could be

considered to be A. muciniphila carriers. However, metagenomic

datasets from three individuals (A, B and MH6) display a

distinctly different distribution of nucleotide identity values, with

a much lower ANI (84–88%, though MH6 has several peaks,

Figure 1). This indicates that these subjects are likely to be

colonized by uncultured and unknown representatives of the

Metagenome Mining with the A. muciniphile Genome
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Akkermansia genus. Moreover, in databases A and B, (parts of)

both BACON domain containing protein-coding genes are

encountered, suggestive of a mucolytic potential in these different

Akkermansia species.

All 14 databases that are devoid of Akkermansia-like 16S rRNA

gene sequences and of sequences .200 bp that were .90%

identical to Akkermansia DNA, contained contigs with nucleotide

identity scores between 75 and 90% and an average ANI of 80%.

Table 2. General characteristics of the 37 metagenomes used in this study (metagenomes that contain predicted Akkermansia
sequences are indicated in bold).

# Sample Counts Total size

Amount of
Akkermansia
DNA (.200 bp,
.90% identity)

Number
of contigs

Relative
abundance (%)

HitChip relative
abundance (%)**

Number of 16S
rRNA hits (%
identity)*

1 A 57133 49201030 211602 275 0.43

2 B 59564 53016574 155799 107 0.29 1 (98.14)

3 C 73824 61489938 310164 428 0.5

4 CD1 65088 63576076 0 0.017

5 CD2 85009 70601731 17168 25 0.02 0.015

6 D 38297 36284293 0

7 E 77082 63135227 1384051 1410 2.19 1 (99.58%)

8 F1-S 31096 35575967 22174 24 0.06

9 F1-T 37749 39020190 0

10 F1-U 17588 22815676 0

11 F2-V 37793 41313262 35594 39 0.09

12 F2-W 31171 36156855 6826 9 0.02

13 F2-X 31685 34467680 309012 327 0.9

14 F2-Y 36803 41718743 54428 58 0.13

15 G 75435 62138255 195493 267 0.31 1 (99.59%)

16 In-A 21092 24491884 0

17 In-B 6791 10687920 0

18 In-D 38642 39888261 0

19 In-E 15971 19473697 0

20 In-M 17802 23882918 575 1 0

21 In-R 34389 38225044 0

22 MH12 110201 93505669 1881572 1560 2.01 0.055 1 (99.93%)

23 MH13 99166 83354756 2538185 1102 3.05 0.127 1 (99.87%)

24 MH30 113540 96152661 0 0.032

25 MH6 105516 86753488 10407 16 0.01 0.017

26 NO1 81876 67366915 524000 678 0.78 1 (100%)

27 NO3 73590 57125037 2253202 1398 3.94 1 (99.87%)

28 NO4 70331 57189273 1577353 1565 2.76 2 (100%, 99.81%)

29 NO8 87546 67187941 620695 793 0.92

30 OB1 78155 59651934 0

31 OB2 83931 66168175 0

32 OB6 71160 57081404 585486 796 1.03 4 (100%, 100%,
100%, 98.33%)

33 OB8 77225 57168299 942798 1201 1.65 2 (99.84%,
98.75%)

34 Subject7 41831 46136049 0

35 Subject8 37448 46003405 0

36 UC4 98656 79886227 747 1 0 0.017

37 UC6 115558 94544463 2294676 1409 2.43 0.017 1 (99.80%)

Total 15,932,007 13,489

For the full table, see Table S6.
*) See also Table S4.
**) For the HITChip analyses, only the eight samples part of the MetaHIT project were tested.
doi:10.1371/journal.pone.0016876.t002

Metagenome Mining with the A. muciniphile Genome
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These sequences could belong to other species from the genus

Akkermansia, though this is tentative.

In order to corroborate the possibility for co-colonization of

individual microbiomes by different species of Akkermansia, we

queried 9773 nearly full-length 16S rRNA sequences from a

microbiome study in lean and obese twins [6], showing that out of

30 sampled individuals, 15 contain sequences with over 95%

identity with the A. muciniphila 16S rRNA sequence (Table S7).

One individual (TS148) harbours only 16S rRNA sequences with

,98% identity, indicative of colonization by an unknown species

from the Akkermansia genus, whereas four individuals (TS1, TS6,

TS51 and TS150) harbour both A. muciniphila and other

Akkermansia spp. 16S rRNA sequences, suggesting simultaneous

colonization of these hosts by different species from this genus.

Using these sequences we find a total of eight different species

(each represented by at least two individual sequence traces) in the

genus Akkermansia using an identity threshold of 98%, suggesting a

large still unexplored intrageneric diversity, of which representa-

tives also colonize human microbiomes.

Discussion

We sequenced the genome of the human gut colonizer

Akkermansia muciniphila, a representative of the phylum Verrucomi-

crobia. A. muciniphila has been isolated in basal medium using mucin

as a sole carbon and nitrogen source [14], showing that this species

is able to degrade the major component of the mucosal lining of

the GI tract. Analyses of the distribution of this species have shown

Figure 1. Average nucleotide identity (ANI) distributions for the 11 metagenomic libraries in which we found Akkermansia-like 16S
rRNA sequences (1A) and for the 12 metagenomic libraries in which we did not find Akkermansia-like 16S rRNA sequences (1B), but
which did show numerous hits with the A. muciniphila genome with nucleotide identity scores above 90%. Please note the distinctive
distribution of ANI values of libraries B, A and MH6. Relative abundance scores (z-axis) are calculated for the total number of contigs per metagenome
that show nucleotide identity scores .75%.
doi:10.1371/journal.pone.0016876.g001

Metagenome Mining with the A. muciniphile Genome
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it to be a frequent and abundant colonizer of GI tracts in a range

of animal hosts [33]. A further exploration into the functional roles

of A. muciniphila in the GI tract, however, would be greatly

facilitated by the availability of its genetic repertoire.

In genomic terms, A. muciniphila is an average member of the

Verrucomicrobia, both in respect to the number of protein coding

genes and the GC percentage of the genome, which fall between

the values of the sequenced genomes of other members of this

phylum. Verrucomicrobial genomes seem to contain a relatively

large number of genes encoding a signal peptide when compared

to other phyla, and correspondingly, in A. muciniphila approxi-

mately a quarter of the proteins encoded in the genome contain a

signal peptide, and are therefore potentially secreted. Several of

these proteins are predicted to be involved in the different steps of

mucin degradation, whereas the large number of genes encoding

signal-peptide bearing hypothetical proteins suggests that there

may be a large undiscovered capacity of A. muciniphila to break

down extracellular polymeric substrates, including mucin. Future

studies, including proteomic analyses and functional screening of

genomic libraries, can be expected to shed light on the involved

enzymes, since recent analysis have confirmed the mucolytic

activity of Akkermansia [34].

As found for other, mainly human-associated, organisms such as

Neisseria spp., Haemophilus spp., Campylobacter spp. and Helicobacter

spp., phase variation via mononucleotide repeat slippage may be

employed by A. muciniphila. Notably, two genes involved in capsule

synthesis contain very long repeats of guanines, which are known

to be more severely underrepresented in the coding parts of

genome sequences [35]. Capsules are known antigens encoded by

numerous human pathogens [36], but another role of capsules is

protection against desiccation [37]. This may be involved in the

transmission of Akkermansia via the fecal-oral route.

The presence of two dinstinct CRISPR loci [38], as well as

numerous presumably phage-derived sequences in the genome,

suggests that viral infections have played an important part in the

evolutionary history, and perhaps speciation, of A. muciniphila. Little

was known about the variety of the Akkermansia strains and species that

colonize a single microbiome, but the current analyses suggest that at

least eight different species of the Akkermansia genus colonize the GI

tracts of humans, and even simultaneous colonization by different

species seems to take place. Whether this means that distinct niches

exist for different specialist mucin-degraders in the GI tract, or

whether humans are infected continuously by different Akkermansia

species, resulting in discontinuous (co-)colonization, is unknown.

In three libraries, we encountered divergent Akkermansia

sequences, based on low ANI values compared to the sequenced

A. muciniphila genome. It is not possible with the current datasets to

confirm whether these three species are identical to each other,

since for two of these databases the Akkermansia 16S rRNA gene

sequences are lacking in the metagenome. It is, however, tempting

to speculate that these other Akkermansia species can also thrive on

mucin as a carbon source, based on the presence of the BACON

domain containing protein-coding genes, and therefore occupy a

similar, if not the same, niche as A. muciniphila.

We approached the investigation of metagenomic libraries with a

given complete genome as a query sequence. This increases, as

expected, the detection of closely related strains and species in large

metagenomes, and aids in the quantification of bacterial abun-

dance. Many metagenomic repositories contain assembled DNA

sequencing reads, which may skew the interpretation of the actual

abundance of the organism of interest as opposed to the total

number of raw sequence reads. However, hybridization signal

strength in phylogenetic microarray analyses identified the same

metagenome library with the largest amount of Akkermansia DNA.

Further investigations into the congruence between different

abundance estimates may help to validate their applicability.

Together, we present the genome sequence of Akkermansia

muciniphila, as well as a number of its features that may be

important in its ecology and evolution tuned to its niche, the

human GI tract. These data enable a further characterization into

the functional role of this abundant human-associated commensal.

Materials and Methods

DNA isolation
A glycerol stock of the Akkermansia muciniphila type strain (ATCC

BAA-835) was inoculated in 500 ml anoxic basal medium containing

pork gastric mucin as carbon and energy source and subsequently

incubated at 37uC overnight as described previously [14]. Cells were

harvested by centrifugation and used for high molecular weight DNA

isolation using the standard Bacterial genomic DNA isolation using

CTAB method recommended by the DOE Joint Genome Institute

(JGI, Walnut Creek, CA) with minor modifications. In short, cells

were resuspended in 14.8 ml modified TE (10 mM tris; 20 mM

EDTA, pH 8.0). The modified TE has shown to prevent DNA

degradation (data not shown). Subsequently, cells were lyzed using

lysozyme and proteinase K, and DNA was extracted and purified

using CTAB and phenol:chloroform:isoamylalcohol extractions.

After precipitation in 2-propanol and washing in 70% ethanol, the

DNA was resuspended in 400 ml TE containing 40 mg RNase A.

Following quality and quantity check using agarose gel electropho-

resis in the presence of ethidium bromide, and spectrophotometric

measurement using a NanoDrop ND-1000 spectrophotometer

(NanoDropH Technologies, Wilmington, DE, USA), respectively,

the DNA was precipitated in 2-propanol and shipped to the JGI for

whole genome shotgun sequencing.

Genome sequencing and assembly
The genome of Akkermansia muciniphila was sequenced at the JGI

using a combination of 3 kb, 8 kb and 40 kb (fosmid) DNA

libraries. In addition to Sanger sequencing, 454 pyrosequencing

was performed to a depth of 206 coverage. All general aspects of

library construction and sequencing performed at the JGI can be

found at http://www.jgi.doe.gov/. Draft assemblies were based on

51,010 total reads and resulted in approximately 15.56 coverage

of the genome. The Phred/Phrap/Consed software package

(www.phrap.com) was used for sequence assembly and quality

assessment [39,40,41]. Gaps between contigs were closed by

custom primer walks on gap spanning clones or PCR products. A

total of 567 additional reactions were necessary to close gaps and

to raise the quality of the finished sequence. The completed

genome sequence of A. muciniphila contains 50,774 reads, achieving

an average of 17.7-fold sequence coverage per base with an error

rate less than 1 in 100,000.

Gene calling
The gene modeling program Prodigal (http://prodigal.ornl.gov/)

was run on the finished genome, using default settings that permit

overlapping genes and using ATG, GTG, and TTG as potential starts.

The resulting protein translations were compared to Genbank’s non-

redundant database (NR), the Swiss-Prot/TrEMBL, PRIAM, Pfam,

TIGRFam, Interpro, KEGG, and COGs databases using BLASTP or

HMMER. From these results, product assignments were made. Initial

criteria for automated functional assignment set priority based on

PRIAM, TIGRFam, Pfam, Intepro profiles, pairwise BLAST vs Swiss-

Prot/TrEMBL, KEGG, and COG groups. Manual corrections to

automated functional assignments were completed on an individual

gene-by-gene basis as needed. The annotation was imported into The
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Joint Genome Institute Integrated Microbial Genomes (IMG; http://

img.jgi.doe.gov/cgi-bin/pub/main.cgi) [42]. Singleton identification

was carried out as described by Blom et al. [43]. Genes from other

available verrucomicrobial genomes were assigned to COGs using

RPS-BLAST (Reverse Position Specific BLAST) and NCBI’s

Conserved Domain Database (CDD). Top hits were taken with an

E-value cut-off of 1022. The A. muciniphila genome sequence is available

at NCBI under accession number NC_010655.

Metagenome mining
The GI tract metagenomes originate from previous studies, all

based on Sanger sequencing, and have been re-processed with the

SMASH pipeline [44]. General characteristics of these metagenomes

are given in Table 2 and Table S6. These 37 metagenomes were

queried with the A. muciniphila 16S rRNA gene sequence or with its

entire genome sequence using BLAST [45], with hits required to be

over 200 bp in length and with over 90% nucleotide identity (rRNA

regions were filtered out in the whole genome BLAST analyses).

Nearly full-length 16S rRNA sequences from a twin micro-

biome study [6] were included (FJ362604–FJ372382; 9773 were

extracted from NCBI) for co-colonization analyses and species

determination. Different species were assigned using a 98%

sequence identity cut-off threshold, and each species group

requires at least two representatives.

Supporting Information

Figure S1 Positional bias of homopolymeric repeats
within all protein coding genes from Akkermansia
muciniphila. All genes were divided proportionally into five

quintiles (with at its 59 end Quintile 1, next Quintile 2, Quintile 3

and Quintile 4, and Quintile 5 as the 39 end). With increasing

repeat length (from .4 than .7 nucleotides), the repeats are

progressively more abundant in the first quintile. Percentages are

depicted as deviations relative to the expected value of 20% per

gene quintile for a non-biased intragenic distribution of repeats.

(TIFF)

Table S1 COG assignments for the seven verrucomi-
crobial genomes (for full names, see Table 2).
(DOCX)

Table S2 SignalP predictions for a range of bacterial
phyla and species (based on JGI predictions and
curations). In bold, the phylum-averages are depicted.

(DOCX)

Table S3 List of Akkermansia muciniphila protein
coding genes that include mononucleotide repeats of
9 bp or longer. The relative gene position (between 0 and 1) is

calculated based on the start (relative gene position 0) and end

(relative gene position of 1) of each gene.

(DOCX)

Table S4 The presence of 16S ribosomal sequences
(.95% identical to that of Akkermansia muciniphila) in
the metagenomic databases.

(DOCX)

Table S5 Lists of predicted Akkermansia contigs for the
37 metagenomic databases.

(XLSX)

Table S6 General characteristics of the 37 metagen-
omes used in this study (metagenomes that contain
predicted Akkermansia sequences are indicated in
green).

(DOCX)

Table S7 Overview of Akkermansia-like sequences
(.95% identity and ,98% identity compared to the
sequenced A. muciniphila 16S sequence) in 9773 nearly
full-length 16S rRNA sequences from a microbiome
study in twins [6].

(DOCX)
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