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N
autilus is the only surviving externally shelled cephalopod 
among hundreds of extinct cephalopod genera since the 
Palaeozoic; it is deemed unique for its persistent ancestral 

features despite a long evolutionary history1. Palaeobiological evi-
dence shows that the nautilus lineage has preserved plesiomorphic 
phenotypes such as a chambered shell and primary lens-less eye 
(pinhole eye)2. A phenotypic peculiarity of the adult nautilus shell is 
that it consists of over 30 chambers: the soft body is accommodated 
and protected in the outermost chamber, whereas the remaining 
chambers act as a constant volume hydrostatic apparatus to main-
tain buoyancy. Moreover, the elegant architecture of the nautilus 
chambered shell takes the form of a logarithmic spiral conforming 
to the golden ratio and is composed of sturdy arrays of aragonite 
crystals, leading to its high degree of hydrostatic stability3. Nautilus 
possesses a unique and simple pinhole eye without lens or cornea, 
which provides an excellent prototypical model for illuminating the 
evolution of the eye. Additionally, nautilus is adept in spatial learning 
and temporally separated biphasic memory even though its brain is 
disproportionately simple among extant cephalopods4,5. As a sister 
group to nautilus, coleoid cephalopods (such as the octopus, squid 
and cuttlefish) are perhaps the most intelligent and extraordinarily 
complex invertebrates with striking morphological and behavioural 
innovations including sophisticated camera eye, external shell inter-
nalization, unusual learning and problem-solving abilities6–8. Thus, 
investigating the nautilus genome could furnish valuable insights 
into the evolutionary drivers of cephalopod innovations.

Recently, genomic sequencing efforts in coleoids revealed that 
specific gene family expansions and genome rearrangements may 
drive the evolution of morphological novelties in these organ-
isms9–12. Moreover, transcriptomic analyses have pointed out that 
RNA editing could allow high plasticity of transcripts, which is asso-
ciated with thermal adaptation and neural functions13,14. However, 
genomic sequence availability is still limited in coleoid species9–12 
and a non-coleoid cephalopod genome is urgently needed. In this 
study, we sequenced the complete genome of Nautilus pompilius 
in the hope of providing a critical reference for the evolution of 
cephalopods.

N. pompilius is the most widespread species among nauti-
luses and has distributions in the Indo-Pacific region15. However, 
its population has recently declined dramatically due to a mix of 
unfavourable circumstances, including commercial exploitation of 
ornamental shells, a lack of legal protection and very slow sexual 
maturation16. Therefore, genome studies of N. pompilius would not 
only shed light on the origin and evolution of cephalopod genomic 
novelties but also incentivize research on their biology and inform 
sustainable conservation. Our analyses reveal that the nautilus 
genome is the smallest when compared to published genomes of 
coleoid cephalopods; it contains the least number of encoding genes 
and hitherto the lowest evolutionary rate in the group. Comparative 
genomics analysis revealed that co-evolution of gene losses and 
gene family contraction are associated with pinhole eye formation 
in nautilus, suggesting plausible degeneration from a more complex 
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organ. The unique and new protein-encoding genes in shell forma-
tion contribute to the production of aragonite crystals, a major com-
ponent of the nautilus shell. Moreover, lineage-specific expansion of 
gene families implicates the active operation of distinct evolution-
ary strategies of innate immune defence in different cephalopods.

results
Genomic architecture of N. pompilius. The N. pompilius genome 
was sequenced with 112.5 coverage of PacBio sequencing reads 
and 81.8 coverage of Illumina sequencing reads. After de novo 
assembly via a hybrid approach, these reads were assembled into 
a 730.58-megabase (Mb) genome with a contig N50 of 1.1 Mb 
(Supplementary Table 1), which is approximately equal to the esti-
mated genome size of 753.09 Mb by k-mer analysis (Supplementary 
Fig. 1). Integrity of the assembly is demonstrated by 96.83–97.01% 
of sequencing reads mapping (Supplementary Table 2) and 91.31% 
of Benchmarking Universal Single-Copy Orthologs (BUSCO) 
completeness (Supplementary Table 3). The N. pompilius genome 
is the smallest among the cephalopods sequenced so far, account-
ing for only 13.8–41.2% of recently available coleoid genomes 
(Supplementary Fig. 2)9–12. One of the main and ubiquitous 
genomic components, repetitive elements including transposable 
elements (TEs), are the driving force in shaping genomic architec-
ture and evolution17–19. Comparative analysis further revealed that 
the make-up of TEs in N. pompilius is strikingly different to coleoid 
lineages (Fig. 1a and Supplementary Table 4). In the N. pompilius 
genome, TEs make up about 30.95% of the genome where class II 
DNA transposons predominate (15.55%) whereas class I retrotrans-
posons (long interspersed nuclear element (LINE), long terminal 
repeat (LTR) and short interspersed nuclear element (SINE)) con-
stitute a minor portion of the genome (6.48%). Retrotransposons 
were a prominent presence in coleoid cephalopods9–12. Furthermore, 
Kimura distance-based copy divergence analysis indicates that the 
ancient DNA transposon burst event appeared once; no recent TEs 
expanded in the N. pompilius genome (Fig. 1b and Supplementary 
Fig. 3). In contrast, retrotransposon (LINE and LTR) bursts were 
observed in coleoid cephalopods (Extended Data Fig. 1 and Table 
5), corroborating the critical role of retrotransposons in driving 
coleoid genome evolution19. Therefore, higher proportions of DNA 
elements and absence of characteristics of retrotransposon expan-
sions make the nautilus genome surprisingly more similar to other 
molluscan genomes, such as that of Lottia gigantea, which is sug-
gestive of slow evolutionary rates in the non-coding regions in nau-
tilus lineages. Moreover, we also examined the evolutionary rates 
of the coding region in cephalopods based on Tajima’s relative rate 
test, which revealed slow evolutionary rates in the coding regions 
of N. pompilius (Supplementary Table 6). Consistently, based on 
the branch lengths of the neutral tree (Supplementary Fig. 4) and 
actual distances to the out-group (Supplementary Table 7), smaller 
pairwise distances from N. pompilius to L. gigantea (4.969 fourfold 
degenerate (4D) substitutions per site) relative to other coleoid 
cephalopods to L. gigantea (5.132–5.211 4D substitutions per site) 
were observed. N. pompilius apparently experienced fewer intron 
gains or losses than other coleoid cephalopods after its divergence 
from the cephalopod ancestor (Supplementary Fig. 4), lending sup-
port to its slow-evolving features.

Another cardinal feature of the N. pompilius genome is that it 
encodes relatively fewer genes than the genome of other cephalo-
pods. Whole-genome annotation articulates 17,710 protein-coding 
genes through integrating multiple methods (Supplementary Fig. 
5, Extended Data Fig. 2 and Tables 8 and 9), which is supported 
by 93.46% BUSCO completeness (Supplementary Table 10). 
However, this is equivalent to 52.6–60.5% of the gene numbers in 
octopuses and squids9–12. Consistently, Computational Analysis of 
(gene) Family Evolution (CAFE) analysis reveals a huge contrac-
tion of orthologous gene families in the N. pompilius genome by the  

observation of 204 contracted and 9 expanded gene families  
(Fig. 1c and Supplementary Table 11). Our results also support 
extensive gene duplications or expansions occurring during cole-
oid evolution and divergence. Notably, massive expansions of 
zinc-finger transcription factors and protocadherins, which have 
previously been noted in the octopus genome with functional impli-
cations for neurogenesis and adaptive innovations in the nervous 
system9,19, were not overrepresented in the N. pompilius genome 
(Extended Data Fig. 3). Most strikingly, 18 centromere protein B 
(CENPB) domain-containing genes were identified and the lineages 
were specifically expanded in the N. pompilius genome (Extended 
Data Fig. 3). Accumulating evidence has shown that CENPB plays 
crucial roles in host genome integrity and replication fidelity 
through the repression of retrotransposons and centromere forma-
tion in yeast or humans20,21. Therefore, CENPB expansion may serve 
as a possible host genome surveillance machinery for maintaining 
integrity of the ancient genome.

Phylogenetic analysis and population size estimation. To explore 
the timing and mode of cephalopod evolution, phylogenetic rela-
tionships were constructed for 423 single-copy orthologues from 
16 animal genomes with OrthoMCL (Fig. 1c). Our phylogenetic 
results confirm that nautilus is a sister group to coleoids22 and their 
divergence is estimated at around the Silurian–Devonian boundary 
(422.6 million years ago (Ma)), which is congruent with unequivocal 
evidence for haemocyanin molecular clock inference (415 Ma) and 
extensive Nautilus fossil records dating back to the early Devonian23,24. 
It was previously hypothesized that diversity of modern coleoid ceph-
alopods emerged during a period of Mesozoic marine revolution25. 
Our results support this assumption in the light of findings on coleoid 
divergence at the early Triassic (236 Ma), the period after Permian–
Triassic extinction25. Moreover, our phylogenetic inference further 
revealed that divergence and speciation of ancient molluscs initiated 
in the Ediacaran period, during which progressive diversification and 
biological novelty emerged in the early metazoans26.

To better appreciate the dynamic changes in ancestral popula-
tion sizes of N. pompilius and other cephalopods, we assessed the 
dynamic effective population size (Ne) by employing the pairwise 
sequential Markovian coalescent (PSMC) method (Fig. 1d). From 
a perspective of demographic history, profound effects on shaping 
the N. pompilius population are discernible in two crucial environ-
mental evolution events during the last few million years. In par-
ticular, N. pompilius populations expanded in a stepwise manner 
at the turn of the Miocene (22.6 Ma). Nevertheless, their ascent 
came to a halt at the early phase of the Mid-Pleistocene Transition, 
which is consistent with fundamental climate changes, such as 
prolongation of glacial cycles prevailing during the period27. Most 
strikingly, a precipitous fall in N. pompilius populations occurred 
at 0.38 Ma, which is close to the onset of the Mid-Brunhes Event 
(MBE) around 0.4 Ma28. The MBE is considered a critical period 
marked by intensified amplitudes of glacial cycles, wherein varia-
tions in ice core temperature and atmospheric CO2 concentra-
tions abruptly increased29,30. Thus, decimation of the N. pompilius 
population suggests an intrinsic susceptibility to extreme envi-
ronmental fluctuations. However, we observed that MBE is also a 
turning point for population expansion of some coleoid species like 
Euprymna scolopes and Octopus vulgaris, reflecting the subtle effects 
of MBE on shaping the demographic composition of cephalopods. 
Additionally, the effective population size of several bony fishes 
with a sympatric distribution with nautilus also expanded during 
the MBE31,32, strongly suggesting that ecological competition was 
likely a pivotal driver of demographic changes in N. pompilius.

Homeobox gene cluster analysis. Given that homeobox (Hox) 
genes arose as key transcription factors essential to body pat-
terning and tissue segmentation during metazoan evolution33,34, 
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it is of great interest to explore the genetic basis for body plan 
evolution in cephalopods by comparing the organization of Hox 
clusters in multiple lineages. Previous studies have suggested 
that Lophotrochozoa (molluscan) ancestors preserved intact Hox 
clusters35,36. In this study, our results show that the N. pompilius 
genome contains a complete set of molluscan Hox genes (Fig. 2).  
Moreover, messenger RNA abundance analysis of Hox mem-
bers reveals a tissue-specific expression patterns in N. pompilius 
(Supplementary Fig. 6). One prominent innovation in coleoids is 
the loss of an external shell, which has been internalized as a buoy-
ancy compensation apparatus37. Consequently, such innovations 
enabled coleoids to free themselves from a ponderous external 
shell and drove their remarkable diversification4. Correspondingly, 
Hox2 in E. scolopes and Hox2–Hox4 in Octopus bimaculoides are 
missing (Fig. 2). In parallel, the California sea hare Aplysia califor-
nica, one of the gastropod species without an external shell, also lost 
Hox2, Hox4 and Antp independently (Fig. 2), suggesting that the 
disruption of Hox cluster integrity may be linked to the evolution-
ary loss of an external shell in molluscan lineages. Consistent with 
this view, changes in spatio-temporal collinearity and dorsoventral  

decoupling of Hox gene expression contributed notably to evolu-
tionary diversity in molluscan lineages35,38.

Evolution of the pinhole eye. The pinhole eye is one of the most 
peculiar and remarkable feature of nautilus, where an adjustable 
pupil instead of lens creates a relatively dim image on the retina. 
Vertical sections of the N. pompilius pinhole eye reveal that its 
retina contains a single layer of rhabdomeric photoreceptor cells 
(Extended Data Fig. 4), which is a visual sensor universally distrib-
uted in invertebrates including coleoid cephalopods39,40. Compared 
to the sophisticated camera eyes in coleoids, the relative structural 
simplicity of the pinhole eye highlights an excellent model for 
reconstructing ancient evolutionary scenarios narrating the genesis 
of the eye and/or lens formation. It has been postulated that changes 
in the ‘core regulatory complex’ of transcription factors are essential 
for driving the evolution of functionally specific cells or organs41,42. 
Our genomic searches for the core regulatory transcription factors 
governing lens formation reveal that nearly all these core regula-
tors including PAX6, SIX3/6 and SOX2 are present in the nautilus 
genome (Fig. 3a). Previously, palaeontological studies reported that 
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OrthoMCL with a Markov cluster algorithm. Divergence time was estimated with the approximate likelihood calculation method in conjunction with a 
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effective population size (Ne) was estimated by using the PSMC method. The synonymous mutation rate per base per year in N. pompilius was inferred 
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million years are labelled with blue arrows.
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fossil eyes with lenses emerged during the early Cambrian, thus 
supporting the ancient origin of the lens43. Exceptionally, our com-
parative results indicate a lineage-specific loss of the Nrl/Maf (large 
Maf) gene in the N. pompilius genome (Fig. 3a and Supplementary 
Table 12). Phylogenetic analysis shows that molluscan Nrl/Mafa–
Mafc belong to the large Maf superfamily and their orthologues 
diverge into four clades (Mafa, Mafb, c-Maf and Nrl) in vertebrates 
(Fig. 3b and Supplementary Figs. 7 and 8). Experimental evidence 
further supports the notion that members of the large Maf family 
are lens-specific in expression and play a central role in lens induc-
tion and differentiation in vertebrates44,45. Moreover, recruitment of 
Nrl or c-Maf can augment PAX6-induced crystallins, which are the 
most abundant lens structural proteins required for light refraction 
and transparency46. As expected, ten crystallin-like genes are identi-
fied in the N. pompilius genome and are conspicuously contracted 
compared to other lens-equipped molluscs (Fig. 3a). In particular, 
the phylogenetic tree further reveals that lineage-specific expansion 
of S-crystallin is found in coleoids and none of the S-crystallin genes 
is encoded in the N. pompilius genome (Fig. 3c and Supplementary 
Figs. 9–11), in agreement with their roles as major constitutive lens 
proteins in cephalopods47. Furthermore, investigation of transcrip-
tional regulatory sites on crystallin proximal upstream sequences 
reveals that enrichment of NRL/MAF binding motif is distributed 
more abundantly in coleoids than in N. pompilius (Supplementary 
Fig. 12), underscoring the fact that independent gene losses in nau-
tilus and expansion of crystallins in coleoids may be instrumental 
in driving eye evolution in cephalopods. However, a previous tran-
scriptomic study reported lineage-specific loss of SIX3/6 expression 
in the N. pompilius48embryo, raising the possibility that alternation 
in core regulatory transcription factor expression may lead to evo-
lutionary divergence of the eye.

As a nocturnal predator, nautilus has evolved the characteris-
tic behaviour of vertical depth migration into shallower waters at 
night49,50. Understandably, light sensing and spatial vision are funda-
mental prerequisites for achieving this task. Phylogenetic evidence 

shows that the N. pompilius genome encodes one photoreceptive 
r-opsin gene and one retinochrome gene, representing the minimal 
opsin gene number among known metazoans (Fig. 3a and Extended 
Data Fig. 5). Moreover, expression pattern analysis reveals that 
r-opsin and its associated signalling cascades are predominantly 
expressed in the eye (Fig. 4), suggesting that the principal role of 
r-opsin lies in mediating rhabdomeric phototransduction in N. 
pompilius51,52. With a fair degree of certainty, monotonic r-opsin 
does not support colour discrimination in N. pompilius, suggesting 
colour blindness in nautilus as described in most cephalopods53.

In contrast, perception of light intensity is much more critical 
for vertically migrating marine animals due to the dramatic decline 
of luminance in deep-sea waters54. Opsin sensitivity to light largely 
depends on the chromophore of 11-cis retinal, isomerization of 
which typically results in conformational changes and activation of 
opsin signalling transduction55. Thus, efficient regeneration of 11-cis 
retinal is necessary to maintain visual function56. In cephalopods, the 
retinochrome is a major and lineage-specific isomerase in the visual 
cycle57, confirmed by the identification of a retinochrome-encoded 
gene in the N. pompilius genome (Extended Data Fig. 5). Moreover, 
in vertebrates, retinal pigment epithelium-specific protein 65 kDa 
(RPE65) is a key isomerase in driving the visual retinoid cycle 
through converting all-trans retinyl ester to 11-cis retinol58,59. 
Intriguingly, an expansion of the RPE65 gene family, which encodes 
a total of ten genes, was found and identified in the N. pompilius 
genome (Supplementary Fig. 13). In silico molecular simulation 
revealed that nautilus RPE65 shares a conserved iron ion-binding 
site, an active site cavity and a hydrophobic tunnel for substrate 
entry with human RPE65, thus suggesting potential catalytic activity 
(Supplementary Fig. 14 and Extended Data Fig. 6). Unlike restricted 
expression of RPE65 in pigment epithelium in vertebrates, broad 
expression of RPE65 across tissues including the eye was observed 
in N. pompilius in this study (Supplementary Figs. 15 and 16), which 
may be explained by the fact that the molluscan (including in nau-
tilus) retina lacks an anatomical architecture similar to the pigment  
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epithelium. From a perspective of evolutionary adaptation, the 
appearance of the pinhole eye is one adaptive breakthrough essen-
tial to the nautilus lifestyle of vertical depth migrations, allowing 
the organism to acquire spatial vision and rapidly cope with hydro-
static pressure within the eye through opening the pupil to seawater. 
Overall, multiple genomic innovations including gene losses, inde-
pendent contraction and expansion of specific gene families and 
presence of associated regulatory networks seem to work in unison 
to drive the evolution of the pinhole eye in nautilus.

Pearl shell formation. As the only extant cephalopod with an exo-
skeleton, nautilus possesses an intricate shell of spiralling chambers 

that not only acts as a protective physical shield against preda-
tion or environmental adversities but also plays an indispensable 
role in buoyancy maintenance. Thus, the unique shell architecture 
of nautilus results from adaptive evolution for vertical migration. 
Generally, molluscan shell formation is one of fundamental biomin-
eralization processes where shell matrix proteins (SMPs) guide the 
growth of calcium carbonate polymorphs (calcite and/or aragonite) 
and organization of crystal into intricate shell formation60. Clearly, 
understanding the ultrastructural architecture and SMP biocom-
position of the N. pompilius shell is important for uncovering the 
ancient mechanisms underlying shell formation and its evolution. 
Previous studies have assumed that the composition of aragonite 
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crystals underpins superior strength and toughness for resisting 
high hydrostatic pressures in N. pompilius3,61. Our scanning electron 
microscopy (SEM) images of the N. pompilius inner layers confirm 
this and reveal pure aggregates of hexagonal aragonites that stack 
up along the direction of growth (Fig. 5a). Thus, our results lend 
support to the hypothesis that aragonite may be ancient crystalline 
calcium carbonate before calcite became the staple building blocks 
for the construction of the molluscan shell62. To further investi-
gate the molecular basis of nautilus shell formation, a total of 78 
SMPs were identified from acid-soluble (ASM) or acid-insoluble 
(AIM) matrix fractions derived from 2 technical replicates (Fig. 
5b and Supplementary Table 13). Expression patterns showed that 
most of these SMPs (72.2%) were expressed especially highly in the 
mantle (Extended Data Fig. 7), thereby confirming a central role of 
the mantle in shell formation as suggested previously in molluscan 
species63,64.

To characterize the conserved molluscan biomineralization 
‘toolkit’, we performed comparative shell proteomic analysis, which 
showed that 21 of N. pompilius SMPs shared similarity with coun-
terparts in other molluscs including bivalves and gastropods (Fig. 
5c). Further domain analysis revealed several conserved domains 
across molluscs, which contained the Sushi/SCR/CCP, laminin, 
chitin-binding and carbonic anhydrase domains (Extended Data 
Fig. 8). This evidence points to the possibility that these domains 
occur as an ancient ‘core biomineralization toolkit’ and are con-
served across multiple molluscan lineages with an external shell65,66. 
OrthoFinder analysis showed that 52 of 78 SMPs afforded new or 
N. pompilius-specific shell proteins (Fig. 5d), leading us to specu-
late that most of the unique SMPs evolved independently and con-
tribute to a high degree of diversity in shell architecture in molluscs.  

This is also supported by evidence for low similarity of the key SMP, 
Nautilin-63, even within the same Nautilus genus (Supplementary  
Fig. 17)67. Strikingly enough, we found that the top 10 mantle-enriched 
SMPs in N. pompilius do not match any known Pfam domains but 
contain new repetitive poly (Gly or Gly-Ala) motifs through de novo 
predictions (Fig. 5e). Therefore, the preponderance of these SMPs 
may be associated with the uniqueness and new features of the nau-
tilus shell structure, further bolstering our previous assumption. 
Interestingly, several repetitive low-complexity domains (RLCDs) 
involved in aggregation or binding have been extensively identified 
in shell structure proteins in multiple nacre-producing bivalve and 
gastropod lineages68,69, strongly suggesting that parallel evolution of 
RLCDs could be a unifying principle for molluscan biomineralizaiton, 
especially for nacre formation.

Immune system. To appreciate the biology of N. pompilius, under-
standing the molecular mechanisms of their immune defence is 
especially revealing to delineate the ancient evolutionary features 
of innate immunity in cephalopod ancestors. Whole-genome anno-
tation reveals that nautilus has highly complex yet comprehensive 
innate immune components. In particular, Toll-like receptor (TLR) 
signalling and tumour necrosis factor receptor (TNFR) signal-
ling, as the central regulators that mediate key immune responses 
including apoptosis, inflammation and immune defences70,71, 
are found in nautilus (Fig. 6a), suggesting an ancient origin and 
co-option of innate defence ‘toolkit’ genes in cephalopod ancestors. 
Moreover, several genes including IL17R, H-lectin and IL1, were 
specifically identified in the nautilus genome (Fig. 6b), which sup-
ports the assumption that nautilus has preserved a more complete 
repertoire of immune molecules than other cephalopods. Since  
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massive duplication or expansion of key immune genes is a funda-
mental approach to boosting host defence72, we analysed the gene 
number of immune defence-related genes and compared distinct 
lineage-specific gene family expansions in nautilus and coleoids 
(Fig. 6b). Quite strikingly, the nautilus genome encodes a total of 81 
C-type lectin genes, which is significantly expanded with regard to 
the 12–33 genes found in coleoids (Fig. 6b). Phylogenetic analysis 
further revealed that several lineage-specific lectin genes are inde-
pendently duplicated in N. pompilius (Fig. 6c). In animals, lectins 
are versatile immune molecules indispensable for discrimination, 
neutralization, agglutination and destruction of pathogens via 
specific binding of unique carbohydrate moieties on the surface 
of bacteria73. Hence, we reason that massive expansion of lectins 

may have resulted in the creation of remarkable inherent diversity 
that is conducive to containing different pathogens emerging from 
dynamic environments. IFN-inducible GTPases (IIGPs), another 
important class of innate effectors demonstrated to play critical roles 
in vesicle trafficking and antimicrobial inflammasome assembly74,75,  
are also specifically expanded in the nautilus genome (Fig. 6b  
and Supplementary Fig. 18). Thus, an integrated, highly complex 
and complete innate immune system coupled to linage-specific 
gene expansions in nautilus contribute to the establishment of 
sophisticated host responses against a diverse spectrum of invading 
pathogens during the organism’s evolutionary history. However, we 
also observed that interleukin-17 (IL-17) is specifically expanded in 
the octopod lineage (Fig. 6b and Supplementary Fig. 19), suggesting 
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that distinct defence mechanisms have evolved in different cepha-
lopod linages.

Discussion
Genomic evidence reveals that nautilus has undergone lineage- 
specific innovations in both body plan and behaviour since the 
Cambrian and retained these extraordinary features after a long 
evolutionary history. In particular, vertical depth migration in 
Nautilus and other chambered cephalopods is one of several criti-
cal and common strategies needed to avoid predators and budget 
energy; these may have helped the survival of these species ever 
since. The emergence of the pinhole eye is a great innovation for 
switching from directional to spatial vision and rapidly change 
hydrostatic pressure, making vertical depth migration possible. 
Our findings highlight that co-evolutionary loss of core regulatory 
transcription factors may have driven the evolution of the pinhole 
eye. Moreover, our proteomic and transcriptomic data suggest 
that an ancient ‘core biomineralization toolkit’ and new RLCDs 
co-ordinately directed the construction of the chamber shell, which 
has evolved into the buoyancy apparatus needed to adapt to a  

critical life mode. Taken together, the draft genome of N. pompilius 
together with multi-omics provide a valuable insight into not only 
the adaptive innovations of the ancestor of cephalopods but also the 
dynamic evolution of coleoids.

Methods
Sample collection and research ethics. A sample of N. pompilius was originally 
obtained via a biological resources reconnaissance survey in October 2016, during 
which a single adolescent individual of N. pompilius with a body size of 12 cm was 
collected near the Nansha Islands of the South China Sea (7° 62′ 7514′′ N, 112° 26′ 
4571′′ E). The adolescent nautilus was then maintained in a dark tank at 16–19 °C 
while being transported. The organism was subsequently donated by the Chinese 
Ocean Conservation Association for research use in this study in accordance 
with local research guidelines and regulations on animal experimentation. All 
experimental protocols were reviewed and approved by the research ethics 
committee for animal experiments at the South China Sea Institute of Oceanology, 
Chinese Academy of Sciences. Nautilus muscle was used to extract DNA with 
a DNeasy Blood & Tissue Kit (QIAGEN). Multiple tissue samples including 
the mantle, eye, tentacle, funnel, gill, beak, muscle and liver were used for RNA 
extraction with the TRIzol reagent (Thermo Fisher Scientific); the quantity and 
quality of DNA were checked by agarose gel electrophoresis using a Qubit 2.0 
fluorometer (Thermo Fisher Scientific), respectively.
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Illumina sequencing and genome size estimation. The 270-base pair (bp) 
paired-end libraries were constructed using Illumina’s paired-end kits according 
to the manufacturer’s instructions. The libraries were sequenced on an Illumina 
HiSeq 2500 platform. For the raw reads, sequencing adaptors were removed. 
Contaminated reads containing chloroplast, mitochondrial, bacterial or viral 
sequences were screened via alignment to the National Center for Biotechnology 
Information (NCBI) NR database using the Burrows–Wheeler Aligner (BWA) 
v.0.7.13 (ref. 76) with default parameters. FastUniq v.1.1 (ref. 77) was used to 
remove duplicated read pairs. Low-quality reads were filtered out on the basis 
of the following conditions: (1) reads with ≥10% unidentified nucleotides; (2) 
reads with >10 nucleotides aligned to an adaptor, allowing ≤10% mismatches; 
and (3) reads with >50% bases having Phred quality <5. About 59.78 gigabases 
(81.83×) corrected Illumina reads were selected to perform genome size 
estimation. N. pompilius genome size was estimated using the formula: genome 
size = k-mer_number/peak_depth.

PacBio sequencing. Genomic DNA was sheared by means of a g-TUBE 
device (Covaris) with 20-kilobase (kb) settings. Sheared DNA was purified 
and concentrated with AMPure XP Beads (Agencourt) for further use 
in single-molecule real-time (SMRT) bell preparation according to the 
manufacturer’s protocol (Pacific Biosciences). The 20-kb template preparation 
was done by BluePippin size selection (Sage Science). Size-selected and 
isolated SMRT bell fractions were purified with AMPure XP Beads. Finally, 
these purified SMRT bells were used for primer and polymerase (P6) binding 
according to the manufacturer’s binding calculator (Pacific Biosciences). 
Single-molecule sequencing was done on a PacBio RS II platform with C4 
chemistry. Only PacBio subreads equal to or longer than 500 bp were used to 
perform N. pompilius genome assembly.

Genome assembly. Canu, LoRDEC and wtdbg. We used the error correction 
module of Canu v.1.5 (ref. 78) to select for longer subreads with the 
settings genomeSize = 753,000,000 and corOutCoverage = 109, detect raw 
subreads overlapping through a highly sensitive overlapped MHAP v.2.12 
(corMhapSensitivity = normal) and complete error correction by the falcon_sense 
method (correctedErrorRate = 0.025). Then, the output subreads of Canu were 
further corrected using LoRDEC v.0.6 (ref. 79) with the parameters -k 19 -s 3 by 
using Illumina paired-end reads. Based on these two rounds of error-corrected 
subreads, we generated a draft assembly with wtdbg v.1.1.006 (https://github.com/
ruanjue/wtdbg) with the parameters -t 64 -H -k 21 -S 1.02 -e 3.

Sparse, DBG2LOC and Canu. Trimmed Illumina 270-bp paired-end reads were 
assembled as contigs using the Sparse software (https://github.com/yechengxi/
SparseAssembler)80 with default parameters. The DBG2LOC (https://github.com/
yechengxi/DBG2OLC) software with the parameters KmerCovTh 2 MinOverlap 
55 AdaptiveTh 0.008 k 17 RemoveChimera 1 was used to assemble the genome and 
combine the paired-end read assembled contigs. PacBio subreads were corrected 
using Canu v.1.5 as described above. The split_and_run_sparc.sh shell, created 
with the Sparc module and blasr software v.1.3.1 (ref. 81), was used to output the 
consensus assembly.

Quickmerge. The output assembly of Sparse, DBG2LOC and Canu, as a query 
input, was aligned against the assembly of Canu, LoRDEC and wtdbg with 
MUMmer v.4.0.0 (https://github.com/mummer4/mummer) with the nucmer 
parameters -b 500 -c 100 -l 200 -t 12 and the delta-filter parameters -I 90 -r -q and 
then merged using quickmerge82 with the parameters -hco 5.0 -c 1.5 -l 100000 -ml 
5000. Finally, iterative polishing by Pilon v.1.22 (ref. 83) was achieved by aligning 
adaptor-trimmed paired-end Illumina reads to the draft assembly with the 
parameters --mindepth 10--changes--threads 4--fix bases.

Evaluation of genome assembly. To evaluate genome quality, we first mapped 
Illumina reads onto the N. pompilius assembly with the BWA. Next, genome 
completeness was verified by mapping 248 highly conserved eukaryotic genes and 
908 metazoan benchmarking universal single-copy orthologues to the genome by 
using BUSCO v.3.0.2b (ref. 84).

Genome annotation. TE analysis was performed by building a repeat library  
with the prediction programs LTR_FINDER v.1.05 (ref. 85), MITE-Hunter v.1.0.0 
(ref. 86), RepeatScout v.1.0.6 (ref. 87) and PILER-DF v.1.0 (ref. 88). The database was 
classified using PASTEClassifier v.1.0 (ref. 18) and combined with the Repbase 
database v.19.06 (ref. 89). TE sequences in the N. pompilius genome were identified 
and classified using RepeatMasker v.2.3 (ref. 90). TE divergence analysis was 
made by using a detailed annotation table from the output of RepeatMasker v.2.3 
(ref. 90). By using the percentage of discrepancy between matching regions and 
consensus sequences in the database, we analysed the number of TEs with a certain 
divergence rate and built a repeat landscape using an R script that was modified 
from https://github.com/ValentinaBoP/TransposableElements.

Protein-coding genes were predicted based on EVM v.1.1.1 (ref. 91) by 
integrating homologue, RNA sequencing (RNA-seq) and de novo gene prediction 
methods. Homologue prediction was performed based on homologous peptides 
from Crassostrea gigas, Crassostrea virginica, L. gigantea and Danio rerio with 

GeMoMa v.1.3.1 (ref. 92). RNA-seq-based gene prediction was performed by 
mapping clean RNA-seq reads to the genome using Hisat v.2.0.4 and assembled by 
StringTie v.1.2.3. Multiple methods including PASA v.2.0.2, TransDecoder v.2.0 and 
GeneMarkS-T v.5.1 were applied to predict coding regions. GENSCAN v.20030218 
(ref. 93), AUGUSTUS v.2.4 (ref. 94), GlimmerHMM v.3.0.4 (ref. 91), GeneID v.1.4 
(ref. 95) and SNAP v.2006–07–28 (ref. 96) were used for de novo gene prediction 
with default parameters. UniGenes were assembled by Trinity v.Trinityrnaseq_
r20131110 (ref. 97) and were then inputted to PASA v.2.0.2 (ref. 98) to predict genes. 
Training models used in AUGUSTUS, Glimmer HMM and SNAP were obtained 
from the prediction results of PASA v.2.0.2 and GeMoMa v.1.3.1. Gene models 
from these different approaches were combined by EVM v.1.1.1.

The predicted genes were annotated by blasting their sequences against a 
number of nucleotide and protein sequence databases, including COG Release 
201703 (ref. 99), KEGG Release 20170310 (ref. 100), NCBI NR Release 2016_7_19 
and SWISS-PROT Release 2015_01 (ref. 101) with an E-value cut-off of 1 × 10−5. 
Moreover, these predicted genes were annotated against the Pfam database of the 
HMMER v.3.1b2 software (http://www.hmmer.org) and the InterPro database of 
InterProScan v.5.34-73.0 (https://github.com/ebi-pf-team/interproscan). Gene 
Ontology for each gene was assigned by Blast2GO v.2.5 (ref. 102) based on NCBI 
databases.

Phylogenetic analysis, gene expansion and contraction. Protein sequences of 
Branchiostoma floridae (GCF_000003815.1), L. gigantea (GCF_000327385.1), 
A. californica (GCF_000002075.1), Tribolium castaneum (GCF_000002335.3), 
C. gigas (GCF_000297895.1), Helobdella robusta (GCF_000326865.1), Capitella 
teleta (GCA_000328365.1), Chlamys farreri (CfBase), Nematostella vectensis 
(GCF_000209225.1), E. scolopes (GCA_004765925.1), O. bimaculoides 
(GCF_001194135.1), Octopus minor (GigaDB), O. vulgaris (CephRes-gdatabase), 
Drosophila melanogaster (FlyBase), Homo sapiens (hg38) and N. pompilius 
comprising 388,531 protein sequences were clustered into 40,231 orthologue groups 
using OrthoMCL v.3.1 (ref. 103) based on an all-versus-all BLASTP strategy with 
an E-value of 1 × 10−5 and a Markov chain clustering default inflation parameter 
of 1.5. To construct phylogenetic relationships, 423 single-copy orthologues were 
extracted from all 16 species and multiple alignment analysis was performed with 
MUSCLE v.3.8.31 (ref. 104). All alignments were combined into one supergene and 
a phylogenetic tree was analysed with RAxML v.8.2.12 (ref. 105) with 1,000 rapid 
bootstrap analyses, followed by searching for a best-scoring maximum likelihood tree 
in 1 single run. Finally, divergence time was estimated using MCMCTree from the 
PAML package v.4.7a (ref. 106) in combination with a molecular clock model. Several 
reference-calibrated time points referring to the TimeTree database (http://timetree.
org/) (Supplementary Table 14). Homologue clusters with >100 gene copies in 1 or 
more species were separated from the OrthoMCL results. Expansion and contraction 
of the reserved homologue clusters were determined by CAFE v.4.2 (ref. 107)  
calculations with the parameters lambda -s and P < 0.01 on the basis of changes in 
gene family size with regard to phylogeny and species divergence time.

Evolutionary rate test. To compare the relative evolutionary rates of  
N. pompilius with other cephalopods, 1,223 one-to-one orthologues between 
5 cephalopods species were identified with the InParanoid v.4.1 software 
(http://inparanoid.sbc.su.se) from 5 cephalopod species and L. gigantea. Then, 
these 1,223 orthologous proteins were aligned with MUSCLE v.3.8.31 and 
concatenated into a super alignment. Among them, L. gigantea was assigned 
as an out-group. Tajima’s relative rate test analysis was conducted using MEGA 
v.7.0.18 (ref. 108).

To compare the neutral nucleotide mutation rate for N. pompilius relative to 
other cephalopods, alignment of the 4D sites of 1,223 one-to-one orthologues 
from 5 cephalopods and 1 out-group (L. gigantea) was performed. The results 
were used in the topology obtained from our phylogenetic analysis as an input 
for RAxML v.8.2.12 (ref. 105) optimization of branch lengths in 4D alignment. 
Pairwise distances to L. gigantea were calculated from the neutral tree by using the 
cophenetic function implemented in the R package ape v.3.2.

Exon and intron evolution in cephalopod species. The 1,223 orthologous proteins 
of 5 cephalopod species were aligned using MUSCLE v.3.8.31. The position of introns 
longer than 50 nucleotides and characteristic of U2 or U12 splicing boundaries were 
mapped out using a customized Perl script. In addition, 3,071 discordant intron 
positions were identified based on previous methods109, the distributions of which 
were determined based on their phylogenetic relationship. Intron gains and losses 
were inferred by phylogenetic distributions using parsimony.

Population size estimation. The demographic history of N. pompilius was 
analysed with the PSMC v.0.6.5 software110. The synonymous mutation rate per 
base per year was inferred based on the formula T = ks/(2λ). The generation 
time was assumed to be 15 years in N. pompilius and 3 months to 1 year in other 
cephalopods (Supplementary Table 15).

Hox gene analysis. The structure of Hox genes in the N. pompilius genome was 
analysed with GeMoMa v.1.4.2 (ref. 111) using default parameters and based 
on available Hox gene models. Predictions were made by applying a GeMoMa 
annotation filter with default parameters, with the exception of the evidence 
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percentage filter (e = 0.1). These were then manually verified to achieve a single 
high-confidence transcript prediction per locus. The exact annotations of each Hox 
gene were completed using phylogenetic relationships.

Analysis of eye development genes. Key transcription factors and genes 
for eye development in the human genome were used as queries to identify 
their orthologues in other lineages. For lineage-specific gene families, such as 
S-crystallin, queries were set as homologues in the genome of O. bimaculoides. 
First, homologous searches in the gene set were performed using BLASTP with 
an E-value of 1 × 10−5. Then, the identified candidates were aligned back to 
the human gene set; only orthologues with the best BLASTP hit matches were 
defined as orthologues in each species. Additionally, TBLASTN was used to avoid 
any omissions in genome annotation. The accession numbers of these protein 
sequences are listed in Supplementary Table 12.

Transcriptomic analysis. Total RNA was isolated from different tissues of N. 
pompilius and treated with RNase-free DNase I (Promega Corporation), according 
to the manufacturer’s protocol. The quality and integrity of RNA were checked 
using an Agilent 2100 Bioanalyzer. Illumina RNA-seq libraries were prepared 
and sequenced on a HiSeq 2500 system with a PE150 strategy, according to the 
manufacturer’s instructions (Illumina). After trimming based on quality scores 
using Btrim v.0.2.0, clean reads were aligned to the N. pompilius genome with 
TopHat v.2.1.1 (ref. 112). Gene abundance in different tissues was calculated using 
Cufflinks v.2.1.1 (ref. 113).

SEM. To characterize crystal structures, precleaned N. pompilius shells were 
fractured and carefully collected with a dissecting knife. Pieces of fractured 
ligaments were dried with liquid nitrogen at a critical point followed by platinum 
coating using a sputter coater. Then, the shell surface was examined by SEM 
(S-3400N; Hitachi) with an accelerating voltage of 30 kV in high vacuum mode.

Isolation of shell proteomics. SMPs were extracted from N. pompilius shells 
according to a protocol described previously with minor modifications114. First, 
shells were processed using abrasive paper to remove organic contaminants on 
the surface and washed with Milli-Q three times. Then, shells were immersed 
in 5% NaClO for 24 h under 4 °C with gentle shaking, washed three times with 
Milli-Q and air-dried at room temperature. Shells were ground into a powder 
and sieved by means of a nylon mesh (200 μm). Afterwards, the shell powder 
was bleached using 10% NaClO for 5 h. The mixture was then centrifuged at 
3,000 r.p.m. for 10 min at 4 °C to remove the supernatant, washed twice and 
freeze-dried. The precleaned shell powder was titrated using 10% acetic acid 
at 4 °C with gentle shaking until all calcified constituents were completely 
dissolved. The powder solution was centrifuged again at 1,000 r.p.m. for 10 min 
at 4 °C to yield supernatant (an ASM) and precipitate (an AIM) fractions. The 
AIM fraction was further washed twice in Milli-Q, lyophilized and reconstituted 
with 8 M of urea (with 2% SDS). Both AIM and ASM were concentrated using 
an Amicon Ultra 3 K centrifugal filter, purified with methanol/chloroform and 
further reconstituted in 8 M of urea.

Since the concentrations of AIM and ASM proteins were quite low, we adopted 
an in-solution digestion method. Briefly, proteins were reduced by dithiothreitol 
with a final concentration of 10 mM at 56 °C for 1 h. The exposed sulphhydryl 
groups were then alkylated by 55 mM of iodoacetamide for 30 min at room 
temperature. After being diluted eightfold with 50 mM of triethylammonium 
bicarbonate, the sample solutions were digested for 16 h at 37 °C using 
sequencing-grade trypsin (Promega Corporation), desalted via Sep-Pak C18 
cartridges (Waters Corporation) and dried off in a vacuum concentrator. The dried 
samples were then reconstituted in 0.1% formic acid for analysis by a LTQ Orbitrap 
Elite system coupled to an EASY-nLC (Thermo Fisher Scientific), as described 
elsewhere115. The .mgf files converted from raw liquid chromatography–tandem 
mass spectrometry data files using Proteome Discovery 1.3.0.339 (Thermo Fisher 
Scientific) were searched against Mascot v.2.3.2 (Matrix Sciences). The database 
included both target and decoy sequences of the N. pompilius protein database. 
Proteins detected in two replicates were kept for further analysis.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The nautilus genome project has been deposited with the NCBI under the 
BioProject number PRJNA614552. The whole-genome sequencing data were 
deposited with the sequence read archive (SRA) database under accession 
nos. SRR11485669–SRR11485706. The RNA-seq data from various tissue 
transcriptomes have also been deposited with the SRA database under accession 
nos. SRR11485678–SRR11485687. Gene annotation data have been deposited in 
the Genome Warehouse database of the Genome Sequence Archive (GSA) under 
accession no. GWHBECW00000000.
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Extended Data Fig. 1 | Distribution of the divergence rate of each type of repetitive. Historical transposable element (TE) divergence was compared in 

the Octopus bimaculoides, Octopus minor, Octopus vulgaris, Euprymna scolopes, Lottia gigantean, and Nautilus pompilius, which were calculated by the Kimura 

distance-based copy divergence analysis.
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Extended Data Fig. 2 | comparison of gene repertoires in metazoans genomes. ‘One-copy’ indicates single-copy genes. ‘Multi-copy’ indicates 

orthologous genes present in multiple copies in all taxa. ‘Other gene’ refers to other orthologues that are present in at least one genome. Both ‘Unigene’ 

and ‘Uncluster’ indicate genes that have not found orthologue in each genome, where ‘Unigene’ contains at least two paralogues. ‘Uncluster’ only contains 

a single copy.
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Extended Data Fig. 3 | Heatmap on specifically expanded gene families in the N. pompilius genome. A number of expanded gene families were found, 

based on domain analysis in the N. pompilius genome. In particular, 18 of the centromere protein B (CENP-B) domain (PF04218.12) containing genes were 

identified in the N. pompilius genome, which makes N. pompilius the species with the most CENP-B containing genes in metazoans by far. Also, lineage 

specific expansion of zinc-finger domains and Cadherin are also observed in the coleoids.
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Extended Data Fig. 4 | Histological analysis of the pinhole eye in N. pompilus. Histological features of the pinhole eye was examined in tissue sections 

after hematoxylin and eosin (HE) staining. Full view (panel a) and partial enlargement (panels b and c) show the photoreceptor and ganglion cells in a 

single optical layer.
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Extended Data Fig. 5 | Phylogenetic tree of the opsin gene family. Phylogenetic tree was constructed by MrBayes method as described above. The 

melatonin receptor clade was set as an outgroup. Based on the topological structure, the ancestor of opsin divided into different clades: r-opsin (Annelid 

r-opsin, Mollusc r-opsin, melanopsin, and canonical r-opsin)/C-opsin/Go-opsin (Xenopsin, Nerropsin, Go opsin, and Retinochrome) clade. One r-opsin 

(EVMG007539) and one retinochrome (EVMG008353) were identified in the N. pompilus genome and marked in red.
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Extended Data Fig. 6 | Modeling and docking of rPe65 and all-trans retinyl ester in N. pompilius and H. sapiens. Structure model of H. sapiens RPE65 (a) 

and N. pompilius RPE65 (b) with all-trans retinyl ester, which located near the active site defined by the iron ion. The ion cofactor is found near the top face 

of the propeller axis and is conserved in H. sapiens and N. pompilius, which is directly coordinated by four His residues (His180, His241, His313, His527 in  

H. sapiens; His169, His229, His301, His507 in N. pompilius), with average bond length of 2.16 Å in H. sapiens, and 2.34 Å in N. pompilius. Ferrous iron is required for 

its catalytic activity, binding to the hydroxyl oxygen to catalyze the isomerization reaction. The docking site details were displayed, revealing that a shorter 

average bond length (2.95 Å) between atRE and ion cofactor in N. pompilius (Fig f), than that (4.4 Å) in H. sapiens (Fig c), suggesting the catalytic potential 

of N. pompilius RPE65. The hydropholic tunnel of N. pompilius RPE65, leads from the protein surface to active site, the mouth of which is surrounded by 

three groups of residues (185–190, 222–224, and 249–259, Fig g), highly conserved with that in H. sapiens RPE65 (196–202, 234–236, and 261–271, Fig d).  

On the other hand, the N. pompilius RPE65 also shows a distinguishable character: the iron cofactor, ordinated by four His residues, three second shell 

Glu residues and a Val residue, displays a more loose structure (Fig h) than that in H. sapiens RPE65 (Fig e), which shows no obvious interference to its 

catalytic activity.
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Extended Data Fig. 7 | Specific expression of SMPs in the mantle of N. pompilius. Heatmap shows the normalized expression profiles of shell proteins 

in different tissues, indicating that majority of SMPs are expressed specifically and in high abundance in the mantle. Nautilus specific shell protein genes 

were also marked with green color in the colored bar on the right.
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Extended Data Fig. 8 | conserved molluscan biomineralization “toolkit” among five molluscan species. The conserved domains of shell matrix proteins 

contain Sushi/SCR/CCP domain, laminin domain, chitin binding domain and carbonic anhydrase domain. Domain architecture was predicted and 

constructed by the software SMART.
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