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Cucumber is an economically important crop as well as a 
model system for sex determination studies and plant vascular 
biology. Here we report the draft genome sequence of Cucumis 

sativus var. sativus L., assembled using a novel combination of 
traditional Sanger and next-generation Illumina GA sequencing 
technologies to obtain 72.2-fold genome coverage. The absence 
of recent whole-genome duplication, along with the presence 
of few tandem duplications, explains the small number of 
genes in the cucumber. Our study establishes that five of the 
cucumber’s seven chromosomes arose from fusions of ten 
ancestral chromosomes after divergence from Cucumis melo. 
The sequenced cucumber genome affords insight into traits 
such as its sex expression, disease resistance, biosynthesis of 
cucurbitacin and ‘fresh green’ odor. We also identify 686 gene 
clusters related to phloem function. The cucumber genome 
provides a valuable resource for developing elite cultivars  
and for studying the evolution and function of the plant 
vascular system.

The botanical family Cucurbitaceae, commonly known as cucur-
bits and gourds, includes several economically important cultivated 
plants, such as cucumber (C. sativus L.), melon (C. melo L.), water-
melon (Citrullus lanatus (Thunb.) Matsum. & Nakai) and squash and 
pumpkin (Cucurbita spp.). Agricultural production of cucurbits uses 
9 million hectares of land and yields 184 million tons of vegetables, 
fruits and seeds annually (http://faostat.fao.org). The cucurbit fam-
ily also displays a rich diversity of sex expression, and the cucumber 
has served as a primary model system for sex determination studies1. 
The cucurbits are also model plants for the study of vascular biology, 
as both xylem and phloem sap can be readily collected for studies of 
long-distance signaling events2,3.

Despite the agricultural and biological importance of cucurbits, 
knowledge of their genetics and genome is currently very limited. We 
have therefore sequenced and assembled the genome of the domestic 
cucumber, C. sativus var. sativus L.

All previous plant genome sequences have been derived using 
traditional Sanger technology4–9. The recent development of  
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next-generation sequencing technologies has 
significantly improved sequencing throughput at 
a markedly reduced cost10. However, an intrinsic 
characteristic of next-generation technologies is 
their short read length (~50 bp), which prevents 
their direct application for de novo assembly of 
large genomes. When using these new technolo-
gies, assembly is typically carried out by mapping 
these short reads onto a known reference genome11,12. For the cucumber  
genome, we carried out a novel combination de novo sequencing strat-
egy, taking advantage of the long read and clone length of Sanger 
technology and, for the first time, the high sequencing depth and low 
unit cost of Illumina GA technology.

RESULTS
Sequencing and assembly
We selected the ‘Chinese long’ inbred line 9930, which is commonly 
used in modern cucumber breeding13, for our genome sequencing 
project. We generated a total of 26.5 billion high-quality base pairs, 
or 72.2-fold genome coverage, of which the Sanger reads provided 
3.9-fold coverage and the Illumina GA reads provided 68.3-fold  
coverage (Supplementary Table 1). The GA reads ranged in length 
from 42 to 53 bp.

We compared the assemblies obtained by Sanger reads only, 
Illumina GA reads only and Sanger plus Illumina reads. The ‘hybrid’ 
approach achieved markedly longer N50 (the size above which half of 
the total length of the sequence set can be found) in both contigs and 
scaffolds, so we used this assembly for further analyses (Table 1 and 
Supplementary Table 2). The total length of the assembled genome 
was 243.5 Mb, about 30% smaller than the genome size estimated 
by flow cytometry of isolated nuclei stained with propidium iodide 
(367 Mb)14 and by K-mer depth distribution of sequenced reads  
(350 Mb; Supplementary Fig. 1). Several types of satellite sequences 
were present in the data set, comprising 23.2% of all Sanger reads and 
76.2% of unassembled reads (Supplementary Table 3). FISH analysis 
indicated that these are primarily located in the centromeric and telo-
meric regions15. The cucumber genome also contains a large number 
of rRNA sequences, and about 3.3% of the Sanger reads matched 45S 
rRNA. These results indicated that the majority of the remaining 30% 
of unassembled regions of the genome are likely to be heterochro-
matic satellite or rRNA sequences.

The high coverage of the cucumber genome by this assembly was 
also confirmed using the available EST, fosmid and BAC sequences. 
The assembly contains 96.8% of the 63,312 cucumber unigenes 
assembled from ~350,000 Roche 454–sequenced ESTs, 99.3% of the 
6,952 NCBI-deposited ESTs of cucumber, 91.2% of the 50,441 NCBI-
deposited ESTs of melon and 98.7% of the six finished fosmid and 
BAC sequences (Supplementary Table 4).

A genetic map was developed using 77 recombinant inbred lines 
from the intersubspecific cross between Gy14 (a North American 
processing market–type cucumber cultivar) and PI183967 (an acces-
sion of C. sativus var. hardwickii originating from India). The map 
spans 581 cM and contains 1,885 markers, including 995 micro-
satellite markers16 and 890 Diversity Arrays Technology markers 
(marker sequences can be accessed at http://cucumber.genomics.org.
cn). Using this map, we were able to anchor 72.8% of the assembled 
sequences onto the seven chromosomes. Among the 1,885 mark-
ers, 1,763 (93.5%) were uniquely aligned and used for construct-
ing the pseudochromosomes. The majority (98.7%) of the markers 
were collinear with the sequence assembly (Fig. 1a). Comparison of  
the genetic and physical distances between markers revealed  

recombination suppression of two 10-Mb regions at either end of 
chromosome 4, a 20-Mb region on chromosome 5 and an 8-Mb region 
on chromosome 7. Using high-resolution FISH, we confirmed previ-
ously identified segmental inversion16 within the suppression region 
on chromosome 5 between Gy14 and PI183967 (Fig. 1b), which pro-
vides an explanation for recombination suppression in these regions. 
These regions of recombination suppression are additionally useful 
for studying cucumber evolution during domestication.

After excluding 16 markers whose genetic positions were ambigu-
ous, we examined the six remaining regions that had conflicts between 
the genetic map and our assembly. Upon inspection, we found that 
clone mate-pair information supported our assembly in all of these 
regions (Supplementary Fig. 2). We also identified no misassem-
bly within the regions covered by the six finished fosmid or BAC 
sequences (Supplementary Fig. 3). The conflicts may be a result of 
chromosomal rearrangement that occurred between the sequenced 
genotype 9930 and the genotypes used to create the mapping popu-
lation; alternatively, these markers may have been placed incorrectly 
on the genetic map. Sequencing depth distribution showed that 
we obtained more than 10× coverage on more than 97.5% of the  
assembly (Supplementary Fig. 4).

Repetitive sequences and transposons
The cucumber genome contains a large number of transposable ele-
ments, but only a few have previously been identified. We therefore 
constructed repeat libraries using multiple de novo methods and then 
derived a combined repeat library that contained 1,566 sequences 
(Supplementary Table 5), of which 469 (29.9%) were manually clas-
sified (Supplementary Table 6). We then used this library for repeat 
annotation of the cucumber genome. We identified a total of 54.4 Mb,  
which represents ~24% of the genome, as repeats. Among them, 
51.5% could be classified based on known repeats. The long termi-
nal repeat (LTR) retrotransposons (gypsy and copia) made up the 
majority of the transposable element classes and comprised 10.4% 
of the genome (Supplementary Table 7). The repeats divergence rate 
(percentage of substitutions in the matching region compared with 
consensus repeats in constructed libraries) distribution showed a peak 
at 20%. A fraction of LTR retrotransposons, long interspersed nuclear 
elements and DNA transposons (composing 2.3%, 0.4% and 0.2% 
of the genome, respectively) are of relatively recent origin, having a 
sequence divergence rate of less than 5% (Supplementary Fig. 5).

Gene annotation
We used three gene-prediction methods (cDNA-EST, homology based 
and ab initio) to identify protein-coding genes and then built a consen-
sus gene set by merging all of the results (Supplementary Fig. 6). We 
predicted 26,682 genes, with a mean coding sequence size of 1,046 bp  
and an average of 4.39 exons per gene (Supplementary Table 8). 
Under an 80% sequence overlap threshold, we found that 26.7% of 
the genes were supported by models from all three gene prediction 
methods, 25% had both ab initio prediction and homology-based 
evidence, and 7.4% had ab initio prediction and cDNA-EST expres-
sion evidence; the remaining genes were primarily derived from pure 

Table 1 Cucumber genome assembly statistics

Assembly

Contig N50a 

(kb)

Contig total 

(Mb)

Scaffold N50 

(kb)

Scaffold total 

(Mb)

% sequence anchored on 

chromosome

Sanger   2.6 204 19 238 —

Illumina GA 12.5 190 172 200 —

Sanger + Illumina GA 19.8 226.5 1,140 243.5 72.8%
aN50 refers to the size above which half of the total length of the sequence set can be found.
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ab initio prediction, but the majority of these 
were supported by multiple gene finders  
(Supplementary Table 9). About 81% of 
the genes have homologs in the TrEMBL 
protein database, and 66% can be classified 
by InterPro. In sum, 82% of the genes have 
either known homologs or can be function-
ally classified (Supplementary Table 10). In 
addition to protein-coding genes, we iden-
tified 292 rRNA fragments and 699 tRNA, 
238 small nucleolar RNA, 192 small nuclear 
RNA and 171 miRNA genes in the cucumber 
genome (Supplementary Table 11).

On the basis of pairwise protein sequence 
similarities, we carried out a gene family 
clustering analysis on all genes in sequenced 
plants, using rice as an outgroup. The cucum-
ber genes consist of 15,669 families. Of these, 4,362 are cucum-
ber unique families, among which 3,784 are single-gene families 
(Supplementary Table 12). The EST confirmation rate of these unique 
single-copy genes was much lower than the average of all predicted 
genes (33.4% vs. 72.3%, respectively). This category may therefore 
contain a number of false-positive predictions. In papaya, there are 
4,622 unique families, but the actual number of genes is estimated to 
be 24,746, which is lower than the 28,629 predicted genes7. Thus, the 
actual number in cucumber should be lower than 26,682 and similar 
to that in papaya. The smaller average gene family size in cucumber 
(1.71) and papaya (1.77) supports this conclusion (Fig. 2a).

The cucumber genome contains the smallest number of tandem 
gene duplications (479) among all the plants we compared, whereas 
grapevine has the largest number (5,382; Fig. 2a). This may contribute 
in part to the small number of genes in cucumber.

Absence of recent whole-genome duplication
Whole-genome duplication (WGD) is common in angiosperm plants 
and produces a tremendous source of raw material for gene genesis. 
Previous research has revealed a paleohexaploidy (γ) event in the 
common ancestor of Arabidopsis thaliana and grapevine after the 
divergence of monocotyledons and dicotyledons6. Subsequently, two 
WGDs (α and β) occurred in Arabidopsis17 and one (p) in poplar8,  
whereas no recent WGD occurred in grapevine and papaya. Evidence 
indicates that rice underwent an ancient WGD18. We carried out a 
collinear gene-order analysis on the cucumber genome and observed 
no recent WGD and only a few segmental duplication events 
(Supplementary Fig. 7). We also used the distance-transversion rate 
at fourfold degenerate sites (4DTv method) to analyze paralogous 
gene pairs between syntenic blocks in Arabidopsis and cucumber, 
respectively. Two peaks (~0.06 and ~0.25) in Arabidopsis support the 

two recent WGDs (Fig. 2b). In cucumber, the analysis showed ancient 
duplication events (peak at ~0.60) but did not reveal recent WGD. 
This lack of recurrent WGD in the small cucumber genome provides 
an important complement to the grapevine and papaya genomes to 
study ancestral forms and arrangements of plant genes.

Synteny with flowering plant genomes
Given the similar gene arrangements between cucumber and other 
plant genomes, we defined syntenic blocks that contained 5,473, 
6,525, 9,842, 8,439 and 3,992 cucumber genes collinear to Arabidopsis, 
papaya, poplar, grapevine and rice, respectively (Supplementary 

Table 13 and Supplementary Figs. 8–12). The numbers of collinear 
genes were consistent with the phylogenetic distances of the other 
plants to cucumber. Within the syntenic blocks, we observed the 
highest density of collinear genes between cucumber and grapevine 
(90.5 genes per Mb), followed by papaya (76.1; the low contiguity 
of genome assembly may have, in part, decreased this value), poplar 
(68.8), rice (55.6) and Arabidopsis (43.5; Supplementary Table 13). 
This indicates that Arabidopsis has the most reshuffled or rearranged 
genome, whereas the genomes of grapevine and papaya are more 
conserved, probably because they have not undergone WGD since 
the ancestral paleohexaploidy.

Substantial fusion events involved in chromosomal evolution
Melon and cucumber belong to the same genus, although cucum-
ber has seven chromosomes and melon has 12. Watermelon, their 
common distant relative, has 11 chromosomes. To investigate cucur-
bit chromosomal evolution, we compared the melon19 and water-
melon genetic maps to the cucumber genome (Fig. 3a). In total, 
348 (66.7%) of the 522 melon markers and 136 (58.6%) of the 232 
watermelon markers were aligned on the cucumber chromosomes 

0

20

40

60

80

100

120

0

20

40

60

80

100

120

0

20

40

60

80

100

120

0

20

40

60

80

100

120

0

20

40

60

80

100

120

0

20

40

60

80

100

120

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

0 5 10 15 20 25 30 35 400 5 10 15 20 25 30 35 400 5 10 15 20 25 30 35 40

0 5 10 15 20 25 30 35 40

LG1 LG2 LG3

LG4 LG5 LG6

LG7 Physical distance (Mb)

Physical distance (Mb)

G
e
n
e
ti
c
 d

is
ta

n
c
e
 (

c
M

)

Centromeric regions estimated by FISH 

Gy14 Pl183967

12-7
12-2

a

b

Figure 1 Integrated genetic and physical map of 

cucumber. (a) Genetic versus physical distance 

map of the seven cucumber chromosomes. 

The genetic map was constructed using a 

recombinant inbred line mapping population 

from the intersubspecific cross between Gy14 

(domestic cucumber) and PI183967 (wild 

cucumber). (b) Segmental inversion between 

Gy14 and PI183967 on cucumber chromosome 5  

detected by high-resolution FISH (12-2  

and 12-7 denote individual fosmid clones).  

A low-resolution FISH analysis was also recently 

reported16. Scale bars represent 1 µm.
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(Supplementary Table 14). The comparison 
revealed that there has been no substantial 
rearrangement of cucumber chromosome 7, 
which corresponds to melon chromosome 1 
and watermelon group 7.

Using watermelon as an outgroup, we 
found that cucumber chromosomes 1, 2, 3, 5 
and 6 were collinear to melon chromosomes 
2 and 12, 3 and 5, 4 and 6, 9 and 10, and 8 
and 11, respectively, indicating that after spe-
ciation these cucumber chromosomes each 
resulted from a fusion of two ancestral chro-
mosomes. We also found that cucumber chro-
mosome 6 and melon chromosome 3 have a 
syntenic segment, indicating that interchro-
mosome rearrangement occurred in one of 
the two genomes after speciation. Cucumber 
chromosome 4 largely corresponds to melon chromosome 7, although 
a segment of melon chromosome 8 is syntenic with cucumber chro-
mosome 4 (crossing the centromere). These data indicate that the 
rearrangement is most likely to have occurred before the divergence 
of cucumber and melon. In addition to chromosome fusion and inter-
chromosome rearrangements, the comparison revealed the occur-
rence of several intrachromosome rearrangements (Fig. 3a).

Cucumber-melon microsynteny
To estimate the sequence divergence rate, we compared the four 
sequenced melon BACs to the cucumber genome (Fig. 3b and 
Supplementary Fig. 13). There are 56 genes on the melon BACs, 52 
of which are collinear with the cucumber genome. The mean sequence 
similarity over coding regions is 95%. Although the gene region simi-
larity is very high, the repeat content between the two genomes is 
quite different. New transposable elements were frequently inserted 
in the intergenic regions of both genomes. Hence, only 54% of the 

BAC sequences could be aligned onto the cucumber genome, with an 
average of 88% sequence identity. Nonetheless, the highly conserved 
gene content and order between the two species make the cucumber 
genome useful for genetic analysis of melon.

Using the annotated genes in the four melon BACs, we obtained 
and manually curated eight orthologous families among rice, cucum-
ber, melon, Arabidopsis and papaya. Extrapolating from the age of 
divergence between Arabidopsis and papaya (54–90 million years ago), 
we estimated that cucumber and melon diverged about 4–7 million 
years ago, which is consistent with a previous estimate of 9 ± 3 million  
years ago20.

Pathogen resistance genes
Only 61 nucleotide-binding site (NBS)-containing resistance (NBS-R)  
genes have been identified in cucumber, similar to papaya (55)7 
but only a fraction of what is found in Arabidopsis (200), poplar 
(398) and rice (600)8. Distribution of NBS genes on chromosomes  
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is nonrandom, with only five genes located on chromosomes 1, 6 and 7  
and 20 genes located on chromosome 2 (Supplementary Fig. 14).  
Three-quarters of the NBS genes are located within 11 clusters, indi-
cating that they evolved through tandem duplications, similar to other 
known plant genomes.

The lipoxygenase (LOX) pathway has an important role in devel-
opmentally and environmentally regulated processes in plants21 and 
generates short-chain aldehydes and alcohols that are involved in plant  
defense and pest resistance22. The LOX gene family has been notably 
expanded in the cucumber genome (23 LOX genes in cucumber, 6 in 
Arabidopsis, 15 in papaya, 21 in poplar, 18 in grapevine and 15 in rice). 
Fourteen of the LOX genes are specific to the cucumber lineage. The 
majority of cucumber LOX genes (19 of 23) are distributed in three 
clusters, the largest of which contains 11 members that are arranged 
in tandem (Fig. 4). The other sequenced plant genomes show no obvi-
ous LOX clustering, with the exception of grapevine, which has one 
cluster harboring six copies.

Given that the cucumber has only 61 NBS-R genes, the expanded 
lipoxygenase pathway might be a complementary mechanism to cope 
with biotic stress. In support of this hypothesis, Arabidopsis has more 
NBS-R genes and fewer LOX genes than does papaya. The volatile 
(E,Z)-2,6-nonadienal (NDE) gives cucumber its ‘fresh green’ flavor23 
and confers resistance to some bacteria and fungi24. Lipoxygenase and 
one type of hydroperoxide lyase, 9-HPL, synthesize NDE from lino-
lenic acid precursors. Genes encoding enzymes with 9-HPL activity 
are rarely found in other plants25. However, cucumber contains two 
tandem HPL genes, one of which has been experimentally confirmed 
as encoding an enzyme with 9-HPL activity25. The expansion of the 
LOX gene family and the duplicated HPL genes may be related to the 
high level of NDE synthesis in cucumber.

Eukaryotic translation initiation factors, particularly the eIF4E and 
eIF4G families, confer recessive resistance to plant RNA virus infec-
tions. An EIF4E gene in melon was found to mediate recessive resist-
ance against melon necrotic spot virus26. In the cucumber genome, 
three EIF4E and three EIF4G genes have been identified, providing 
candidates for known recessive resistance genes against RNA viruses 

such as zucchini yellow mosaic virus and watermelon mosaic virus27. 
In some wild melon genotypes, enhanced expression of two glyoxylate 
aminotransferase genes (At1 and At2) controls the resistance to downy 
mildew, a devastating foliar disease of cucurbits28. We identified two 
At homologs in cucumber that could be candidate genes for downy 
mildew resistance.

Novel biosynthetic pathways
Cucurbitacins are bitter cucurbit triterpenoid compounds that are 
toxic to most organisms but can attract specialized insects29,30. The 
presence of cucurbitacin in the cucumber is controlled by a men-
delian gene, Bi30. Oxidosqualene cyclase catalyzes the formation of 
the triterpene carbon framework in plants31. An OSC gene, CPQ, 
in squash (Cucurbita pepo L.) is the first committed enzyme in the 
cucurbitacin biosynthesis pathway32. In cucumber, we identified 
four OSC genes; the CPQ ortholog Csa008595 resides in a genetic 
interval that defines the Bi gene (Supplementary Fig. 15). Notably, 
Csa008595 forms a cluster that contains an acyltransferase-encoding  
gene (Csa008594) and two cytochrome P450–encoding genes 
(Csa008596 and Csa008597). Three of these (Csa008594, Csa008595 
and Csa008597) are coexpressed strongly in cucumber leaf tissue 
(Supplementary Fig. 16) in a pattern similar to that of the operon-
like gene cluster involved in thalianol biosynthesis in Arabidopsis33. 
This gene cluster may therefore catalyze the stepwise formation of 
cucurbitacin in cucumber.

Cucumber is a model system for studying sex expression in plants1. 
Ethylene stimulates femaleness and is considered the sex hormone 
of cucumber34. We identified 137 cucumber genes that are related 
to the biosynthetic and signaling pathways of ethylene35,36, but  
we found no gene family expansion in these pathways compared  
with other sequenced plant genomes (Supplementary Table 15). 
Thus, the origin of monoecy in cucumber might involve other  
evolutionary mechanisms.

The melon gene Cm-ACS7 (ref. 37) and its cucumber ortholog 
Cs-ACS2 (ref. 38) encode 1-aminocyclopropane-1-carboxylate syn-
thase (ACS), a key regulatory enzyme in the ethylene biosynthetic 
pathway. Both genes are crucial to the inhibition of male organs and 
development of the female flower. In situ mRNA hybridization experi-
ments revealed that both Cm-ACS7 and Cs-ACS2 transcripts accumu-
late only in the pistil and ovule, whereas their Arabidopsis ortholog, 
AT4G26200 (Supplementary Fig. 17), is expressed only in the roots39. 
We also identified two ethylene-responsive elements (AWTTCAAA) 
and one flower meristem identity gene LEAFY-responsive element 
(CCAATGT) within the Cs-ACS2 and Cm-ACS7 promoter sequences, 
but these were absent from the promoter of AT4G26200. These find-
ings indicate that the evolution of unisexual flowers in cucurbits may 
have involved the acquisition of new cis elements of the ACS genes.

To better understand the mechanism of sex determination in 
cucumber, we sequenced 359,105 EST sequences from near-isogenic 
unisexual and bisexual flower buds using the 454 pyrosequencing 
technology. Our analysis revealed that six auxin-related genes (auxin 
can regulate sex expression by stimulating ethylene production40) and 
three short-chain dehydrogenase or reductase genes (homologs to 
the sex determination gene ts2 in maize41) are more highly expressed 
in unisexual flowers (Supplementary Table 16). This analysis pro-
vides an important resource for further study of sex determination 
in cucumber.

Novel developmental programs
The tendril is a specific climbing tool of vines, such as Vitaceae and all 
Cucurbitaceae. Darwin considered tendrils a key innovation in plant  

Type I

Type II

9,525 9,625-Kb
Chr. 4

2,190 2,250 kb

Chr. 2

0

20 kb

Scaffold 337

C. sativus
A. thaliana
C. papaya
P. trichocarpa
V. vinifera
O. sativa

Figure 4 Lineage-specific expansion of the LOX gene family in the five 

sequenced dicot genomes and rice genome. The LOX family is divided 

into two groups, type I and type II. The two tandem duplicated gene 

clusters are ordered and shown on chromosomes 2 and 4, as well as one 

unmapped scaffold of the cucumber genome.
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evolution42. In cucumber and grapevine, gibberellic acid regulates  
tendril formation43,44. In most plants, the transition of GA12- 
aldehyde to GA12 is catalyzed by cytochrome P450 monooxygenase. 
In cucurbits, it is also catalyzed by specific GA-7-oxidase genes, which 
are absent from Arabidopsis45. Cucumber has two GA-7-oxidase genes 
(Supplementary Table 17). GA-20-oxidase controls key steps leading 
to bioactive GA1 and GA4, and our data show that the cucumber has 
three lineage-specific clades (three copies; Supplementary Fig. 18). 
These specific genes might be associated with the role of gibberellic 
acid in the regulation of tendril formation. Tendril coiling involves 
rapid cell wall modification46, and expansins are cell wall–loosening  
proteins in plants47. We found that, in cucumber, the expansin sub-
family EXLA has undergone marked expansion through tandem 
duplication (eight genes in cucumber, compared with one to three 
genes in other genomes; Supplementary Fig. 19); this event may have 
contributed to the development of tendril coiling in cucumber.

Use in plant vascular biology studies
The evolution of the plant vascular system, comprising xylem and 
phloem tissues, had a pivotal role in the emergence of land plants. 
The sieve tube system of phloem, the equivalent of the animal arte-
rial system, delivers nutrients and signaling molecules to developing 
organs2. A BLASTP analysis of 1,209 protein fragments from pumpkin 
phloem48 identified 800 phloem proteins in the cucumber genome 
(Supplementary Table 18). Using these cucumber proteins, we con-
ducted orthologous gene family (cluster) analysis (Supplementary 

Table 19) with their homologs in other vascular plants as well as the 
nonvascular moss Physcomitrella patens49. In total, we constructed 
686 clusters (Table 2). About two-thirds (49 of 75) of the Arabidopsis 
and half (57 of 120) of the rice phloem proteins identified in previous 
studies50,51 were included in this data set, indicating the effectiveness 
of these analyses and the value of this resource for vascular biology 
studies in plants.

The vascular and nonvascular plants shared 596 clusters; between 
monocots and eudicots, there are 648 clusters in common. Phloem pro-
tein II (PP2; cluster 2432) are present in angiosperms but absent from the 
moss genome. PP2-like genes are also present in gymnosperm52, indi-
cating their association with the advent of vascular plants. In cucurbits, 
these genes can increase the size-exclusion limit of plasmodesmata and 
facilitate cell-to-cell traffic of macromolecules52 and thus are likely to 
have an essential role in vascular function. The sieve element occlusion 
proteins (gene cluster 4754), present in all eudicots but absent from 
mosses and monocots, represent a novel mechanism that evolved for 
sealing the sieve tube system after wounding53.

The average number of genes in each cluster ranges from 2.9 to 5.1 in 
the vascular plants, compared to 1.7 in moss (Table 2). The increase of 
gene numbers per cluster may be associated with the evolution of the plant 
vascular system. The 16-kDa PP16 cluster (cluster 2599) has an average 
of 3.7 genes in the vascular plants compared to 2 in moss. The CmPP16 
gene in pumpkin is involved in transport of mRNA into the phloem3. The 
increase of the number of PP16 genes in vascular plants indicates these new 
members may be involved in long-distance trafficking of mRNA.

To better understand xylem formation, we compared gene families 
related to lignin and cellulose biosynthesis between woody and her-
baceous plants. The perennial woody plants, poplar and grapevine, 
have a large number of lignin biosynthesis–related genes (48 and 49, 
respectively), whereas the semiwoody plant papaya has an interme-
diate number (39). In contrast, the herbaceous plants Arabidopsis 
and cucumber have smaller numbers (28 and 26, respectively; 
Supplementary Table 20). Among these gene families, the number 
of genes in the cadmium-sensitive CAD family was consistent with 

this trend. In poplar and grapevine, homologs for AT4G37980 and 
AT4G37990 in Arabidopsis, which have low cadmium-sensitive enzy-
matic activity in vitro and may have only a minor role in lignin forma-
tion in this species54, were expanded markedly. In papaya, there is an 
expansion of homologs for AT1G37970, which lack detectable cad-
mium-sensitive catalytic activities in vitro but are expressed predomi-
nantly in lignin-forming tissues54 (Supplementary Fig. 20). Thus, the 
expansion of CAD genes may be associated with wood formation. It 
is also notable that grapevine has the largest PAL gene family, with 15 
members, and that poplar and papaya have the largest number of HCT 
genes, with 7 members. Of the cellulose biosynthesis–related genes, 
poplar has more CESA and COB genes (18 of each) than do any of 
the other sequenced dicots (Supplementary Table 20).

DISCUSSION
The sequence of the cucumber genome provides an invaluable new 
resource for biological research and breeding of cucurbits. The high 
collinearity between cucumber and melon genomes enables cucumber 
to serve as a model system in the Cucurbitaceae family for compara-
tive genomics studies in plants. The cucumber genome and related 
transcriptome analysis can provide insights into the mechanisms 
underlying sex determination, an important biological process that 
has been well characterized in cucumber at the phenotypic level. 
The genome can also advance our knowledge of the evolution and  
function of the plant vascular system.

We have also shown that, in combination with traditional Sanger 
sequencing, next-generation DNA sequencing technologies can be 
used effectively for de novo sequencing of plant genomes, making 
it possible to carry out rapid and low-cost sequencing for other  
important plant species.

METHODS
Methods and any associated references are available in the online version 
of the paper at http://www.nature.com/naturegenetics/.

Accession codes. The cucumber genome sequence has been deposited 
in GenBank with accession code ACHR00000000 (the version described 
here is the first version, with accession code ACHR01000000).

Note: Supplementary information is available on the Nature Genetics website.
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ONLINE METHODS
Removal of contamination for Sanger reads. Sanger reads were aligned against 
mitochondrion (assembled by us based on the gene sequences of mitochon-

dria of rice and Arabidopsis), chloroplast (GenBank accession code AJ970307) 

and satellite (GenBank X03768, X03769, X03770, X69163, AY424361 and 
AY424362) sequences. Reads with identity >95% were filtered.

De novo assembly of Solexa data. The De Bruijn graph method was used to 

represent all possible sequences assembled by Solexa reads, with a K-mer as a 

node and the (K − 1) base overlap between two K-mers as an edge. Some tips 
and low-coverage K-mers in the graph were removed to reduce sequencing 

errors and eliminate branches. The De Bruijn graph was then converted to a 
contiging graph by turning a series of linearly connected K-mers into a pre-

contig node. Dijkstra’s algorithm was implemented to detect bubbles, which 

were then straightforwardly merged into a single path if sequences of the 
branches were sufficiently similar. By this approach, the repeat regions could 

be assembled into consensus sequences.
Contigs were next connected by paired reads to form a scaffolding graph. 

Edges in this graph were connections between contigs, and the edge length 
was estimated from the insert size of the paired reads. The paired-end infor-

mation was used step by step, from insert sizes around 200 bp and 500 bp to 
2 kb. At each step, two procedures were applied: the repeat-masking method 

masked the complicated connections around repeat contigs, and the subgraph 

linearization turned the interleaving contigs into linear structure. This process 
yielded the final set of Solexa contigs and scaffolds.

Combination of Sanger reads and Solexa scaffolds. RePS2 (ref. 55) software 
was used to assemble the Solexa scaffolds and Sanger reads. We counted the 

depth of each 17-mer in the 3.9× plasmid and fosmid ends to create the 17-mer  
database, which contained all the depth information of the 17-mers. This 

database was then used to check all the contigs to identify repeated ones. A 

contig was defined as a repeat if over 80% of the 17-mers it contained were 
with higher depth than the threshold. After removing the repeat contigs, the 

scaffolds were divided into fake paired reads with read length of 600 bp and 
insert size of 1,700 bp. All segments over 200 bp were put into the second 

data set, which was then assembled as a unique region. In the same way as the 

construction of Solexa scaffolds, the plasmid, fosmid and BAC ends were used, 
step by step, to construct a ‘superscaffold’.

Misassembly checking and gap filling. In the final stage, we used the repeat 
sequences to fill the gaps in the scaffolds using the following steps. First, we 

mapped all of the reads that contained paired-end information (Solexa and 
plasmid reads, as well as fosmid and BAC ends) to the scaffolds, and we used 

the unique contigs to establish the paired-end relationship between the con-
tigs. Second, we identified repeat contigs with paired ends that uniquely con-

nected two other scaffolded contigs. If the length of the repeat contig and the 

estimated size of the gap were similar, the gap was filled by this repeat. Any 
remaining repeat contigs that were not used for gap filling were added into 

the final set of scaffolds.

Chromosome anchoring along the cucumber genetic map. The marker 

sequences in the cucumber genetic map were aligned against the scaffold 

sequences using BLASTN at an E-value cutoff of 1 × 10−20. Hits with cover-
age >30% and identity >90% were considered mapped markers. Based on 

the mapped markers, the scaffold sequences were anchored on the cucumber 
chromosomes. During this process, the scaffolds with mapped markers that 

showed inconsistent genetic positions were manually checked by paired-end 

relationships; the incorrect scaffold was then split.

FISH analysis. The FISH protocol was described in a previous study16. To 
better visualize the segmental inversion, we chose chromosome spreads where 

chromosome 5 appeared in a straight form. Instead of showing all chromo-

somes16, only chromosome 5 is shown in Figure 1b of this study. In addition, 
the image was taken in a higher resolution. Scale bars represent 1 µm, as 

compared to 3 µm previously16. Red and green signals were detected with 

anti-digoxigenin antibody coupled to rhodamine (Roche) and by anti-avidin 
antibody conjugated with FITC (Vector Laboratories), respectively.

Identification of repetitive elements in the cucumber genome. Four de novo 

software packages, ReAS56, PILER-DF57, RepeatScout58 and LTR_Finder59, 
were used to search for repeat sequences within the cucumber genome. All 

repeat sequences with lengths >100 bp and gap ‘N’ <5% constituted the raw 

transposable element library.
The repeat elements belonging to rRNA and satellite sequences were first 

filtered using BLASTN (E value ≤ 1 × 10−10, identity ≥ 80%, coverage ≥ 50% 
and minimal matching length ≥ 100 bp). All-versus-all BLASTN (E value ≤ 1 

× 10−10) searches were then conducted iteratively, and the shorter sequences 
were filtered when two repeats aligned with identity ≥ 80%, coverage ≥ 80% 

and minimal matching length ≥ 100 bp; this yielded a nonredundant transpos-
able element library. The nonredundant repeats were then searched against 

the Swiss-Prot protein database to filter the protein-coding genes by BLASTX 

(E value ≤ 1 × 10−4, identity ≥ 30%, coverage ≥ 30% and minimal matching 
length ≥ 30 amino acids). After manual curation, a de novo transposable ele-

ment library for cucumber was obtained.
Transposable elements in the cucumber genome assembly were identified 

both at the DNA and protein level. RepeatMasker was applied for DNA-level 
identification using a custom library (a combination of Repbase, plant repeat 

database and our cucumber de novo transposable element library). At the 

protein level, RepeatProteinMask was used to conduct WU-BLASTX searches 
against the transposable element protein database. Overlapping transposable 

elements belonging to the same type of repeats were integrated together, 
whereas those with low scores were removed if they overlapped >80% and 

belonged to different types.

Gene prediction. Our strategy for gene prediction was to conduct de novo pre-

dictions on the repeat-masked genome and then integrate them with spliced 
alignments of proteins and transcripts to genome sequences using GLEAN60. 

Cucumber genome sequences were masked by identified repeat sequences 

with length >500 bp, except for miniature inverted-repeat transposable ele-
ments, which are usually found near genes or inside introns. The EST and 

full-length cDNA sequences of cucumber were processed by PASA61 to train 
gene prediction software BGF62, GlimmerHMM63 and SNAP64. Augustus65 

and Genscan66 software used gene model parameters trained for Arabidopsis. 

We aligned the protein sequences of five sequenced plants (Arabidopsis, papaya, 
poplar, grapevine and rice) onto the cucumber genome using TBLASTN, at 

an E-value cutoff of 1 × 10−5, and the homologous genome sequences were 

aligned against the matching proteins using GeneWise67 for accurate spliced 
alignments. The cDNA and EST sequences of cucumber and melon were 

aligned against the cucumber genome using BLAT (identity ≥ 0.95, cover-
age ≥ 0.90) to generate spliced alignments. We also aligned TIGR unigenes68 

from Cucurbitales, Fabales and Fagales to the cucumber genome by ATT_gap2 

(ref. 69). All of these resources were combined by GLEAN60 to produce the 
consensus gene sets.

Identification of noncoding RNA genes in the cucumber genome. The tRNA 

genes were identified by tRNAscan-SE70 with default parameters. The C/D-box 

small nucleolar RNAs were identified by Snoscan71 using yeast rRNA and yeast 
methylation sites. Other noncoding RNAs, including miRNA, small nuclear 

RNA and H/ACA-box small nucleolar RNA, were identified using INFERNAL 

software by searching against the Rfam72 database with default parameters.

Construction of gene families. We adapted the Treefam73 method to construct 
gene families for the genes in cucumber, Arabidopsis, papaya, poplar, grapevine 

and rice (outgroup).

Construction of syntenic blocks.  We identified syntenic blocks between two 

species (A and B) by an automatic clustering algorithm on a dot plot graph, 
which included five steps. First, markers (gene pairs) were generated between 

A and B. All protein sequences of A were aligned to all proteins of B using 

BLASTP (E value < 1 × 10−10 and identity > 20%). The fragmental alignments 
were conjoined for each gene pair. Those gene pairs with aligned regions cov-

ering <50% were filtered. The remaining gene pairs were plotted on the dot 

graph as markers (points). Second, the Euclidean distance was calculated for 
each pair. Distances were calculated based on the gene order in each chromo-

some rather than the genomic position. Third, hierarchical clustering was 
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determined for all of the points. If the distance between two points was less 

than the distance cutoff, a link was assigned. The distance cutoff was adapted 

in accordance with the selected species. Fourth, the quality was estimated for 
each cluster by calculating the point number (N), average point distance (D) 

and correlation coefficient (R). A score (S) was calculated to show the overall 

quality, defined as S = N × sqrt(2)/D × R. Finally, problematic clusters were 
filtered. Clusters with N < 8 or |R| < 0.5 were filtered out. The clusters caused 

by tandem duplication were further filtered by determining the slope (L) of 
the regression line within a range of 0.1 < |L| < 10. This algorithm can also be 

used to study intraspecies synteny.

4DTv calculation. After the identification of syntenic blocks, the pairwise 

protein alignments for each gene pair were first constructed with MUSCLE74. 
The nucleotide alignment was then created according to the protein alignment. 

4DTv was then calculated on concatenated nucleotide alignments with HKY 
substitution models75.

Comparative analysis between cucumber and melon. Cucumber genome 
sequences were aligned with melon BAC sequences using NUCmer, a program 

in the MUMmer package76. The delta-filter program was then run with the −1 
option to remove complex alignments. Orthologous gene pairs were identified 

by the reciprocal best method.
The Bayesian relaxed molecular clock approach was used to estimate diver-

gence time using the program MULTIDIVTIME, which was implemented 

using the Thornian Time Traveler (T3) package. The calibration time (fossil 
record time) interval (54–90 million years ago) of Capparales was obtained 

from previous results77,78.

URLs. Arabidopsis thaliana (TIGR Release 5.0), ftp://ftp.tigr.org/pub/data/a_

thaliana/ath1; Carica papaya (assembly v1.0, EVidence Modeler genes), http://

www.life.uiuc.edu/ming; Populus trichocarpa (assembly release v1.0, annota-
tion v1.1), http://genome.jgi-psf.org/Poptr1_1/Poptr1_1.download.ftp.html; 

Vitis vinifera (published assembly, annotation v1), http://www.genoscope.
cns.fr/externe/GenomeBrowser/Vitis/; Oryza sativa (assembly International 

Rice Genome Sequencing Project build 3), http://rgp.dna.affrc.go.jp/IRGSP/
download.html; Oryza sativa (GLEAN genes annotated by Beijing Genomics 

Institute), ftp.genomics.org.cn/pub/ricedb/rice_update_data/GLEAN_genes/

IRGSP_japonica/; Physcomitrella patens (assembly release v1.0, annotation 
v1.1), http://genome.jgi-psf.org/Phypa1_1/Phypa1_1.home.html; Sorghum 

bicolor (assembly release v1.0, annotation v1.4), http://www.phytozome.

net/sorghum; UniGene sequences of Cucurbitales, Fabales and Fagales, http://
plantta.jcvi.org/; cucumber marker sequences, http://cucumber.genomics.org.

cn; UniProt (Swiss-Prot/TrEMBL) release 14.1, http://www.uniprot.org/down 
loads; InterPro v18.0, http://www.ebi.ac.uk/interpro/; KEGG release 47, ftp://

ftp.genome.jp/pub/kegg/pathway/; Repbase release 13.07, http://www.girinst.

org/repbase/index.html; Plant Repeat Databases (TIGR), http://plantrepeats.

plantbiology.msu.edu/index.html; Rfam release 9.0, http://rfam.sanger.ac.uk/; 
Thornian Time Traveler (T3) package, http://abacus.gene.ucl.ac.uk/software.

html; RepeatMasker, http://www.repeatmasker.org.
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