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Abstract

Background: The yellow potato cyst nematode, Globodera rostochiensis, is a devastating plant pathogen of global
economic importance. This biotrophic parasite secretes effectors from pharyngeal glands, some of which were
acquired by horizontal gene transfer, to manipulate host processes and promote parasitism. G. rostochiensis is
classified into pathotypes with different plant resistance-breaking phenotypes.

Results: We generate a high quality genome assembly for G. rostochiensis pathotype Ro1, identify putative effectors
and horizontal gene transfer events, map gene expression through the life cycle focusing on key parasitic transitions
and sequence the genomes of eight populations including four additional pathotypes to identify variation. Horizontal
gene transfer contributes 3.5 % of the predicted genes, of which approximately 8.5 % are deployed as effectors. Over
one-third of all effector genes are clustered in 21 putative ‘effector islands’ in the genome. We identify a dorsal
gland promoter element motif (termed DOG Box) present upstream in representatives from 26 out of 28 dorsal
gland effector families, and predict a putative effector superset associated with this motif. We validate gland cell
expression in two novel genes by in situ hybridisation and catalogue dorsal gland promoter element-containing
effectors from available cyst nematode genomes. Comparison of effector diversity between pathotypes highlights
correlation with plant resistance-breaking.

Conclusions: These G. rostochiensis genome resources will facilitate major advances in understanding nematode
plant-parasitism. Dorsal gland promoter element-containing effectors are at the front line of the evolutionary
arms race between plant and parasite and the ability to predict gland cell expression a priori promises rapid
advances in understanding their roles and mechanisms of action.
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Background
All major crops are thought to be infected by at least

one species of plant-parasitic nematode, which causes

damage valued at over $80 billion each year [1]. The

majority of these economic losses are attributable to

the sedentary endoparasitic nematodes of the genus

Meloidogyne (root-knot nematodes) and the genera

Heterodera and Globodera (cyst nematodes). These sed-

entary endoparasites have complex biotrophic interac-

tions with their hosts that include induction of specific

feeding sites and long residence times within or on

their host(s).

Potato cyst nematodes (PCN) are economically im-

portant pathogens of potato, with two major species:

the white PCN Globodera pallida and the yellow PCN

G. rostochiensis. These nematodes originate in South

America [2, 3] and have subsequently been introduced

into all major potato-growing regions of the world.

Europe has acted as a secondary distribution hub for

PCN; worldwide populations outside South America re-

flect subsequent introductions from Europe [4, 5].

Once established in a field, PCN are effectively impos-

sible to eradicate in the short term and because they

persist as long-lived cysts in soils, growing potatoes

may not be economically viable for up to two decades.

As a result, the US Department of Agriculture (USDA)

has classified the yellow PCN as potentially more dan-

gerous than any insect or disease affecting the potato

industry (Aphis USDA 12/09/2015). Substantial effort is

thus invested into keeping land free of PCN; both spe-

cies are present on USDA and European Plant Protec-

tion Organisation quarantine organism lists.

PCN have been classified to pathotype based on their

relative virulence on host plants harbouring different

resistance loci. Most of the G. rostochiensis in UK

potato-growing regions is of pathotype Ro1 and can be

controlled by a single major resistance locus (H1). UK

G. rostochiensis populations have therefore been sug-

gested to originate from a genetically restricted intro-

duction into Europe [6, 7]. Other pre-existing G.

rostochiensis pathotypes (Ro 2, 3 and 5, but not 4) are

able to overcome H1 resistance [8] and these patho-

types may be selected in response to widespread

deployment of H1 plants. The corresponding nematode

avirulence gene(s) has not been identified. Understand-

ing the bases of virulence and resistance is of critical

importance for agriculture.

G. rostochiensis has a complex life cycle that includes

a highly resistant survival stage. Cysts, formed from the

body wall of the adult female, encase hundreds of eggs

that can lie dormant in the soil for over 20 years.

Second stage juveniles (J2) within the eggs hatch in

response to root diffusates from suitable host plants

growing nearby. The J2 nematodes locate the root and

migrate destructively through root tissues until they

reach the inner cortex layers. Here the nematodes

probe the cells, until a cell that does not respond

adversely is detected [9]. This initial syncytial cell is

transformed into a large, multinucleate syncytium in re-

sponse to proteins, peptides and hormones secreted by

the nematode. Cell wall openings are formed between

the initial syncytial cell and its neighbours, followed by

fusion of the protoplasts. Syncytial cells become highly

metabolically active and have enriched cytoplasm, en-

larged nuclei and a greatly reduced central vacuole.

Additional layers of cells are subsequently incorporated

into the syncytium, which may eventually be composed

of up to 300 cells [9]. A prolonged biotrophic inter-

action is then maintained for a period of several weeks,

while the nematode intermittently withdraws host cyto-

plasm to derive all food required for development to

the adult stage. Each nematode can only induce a single

feeding site that must therefore be maintained and pro-

tected from host defences.

The complex interactions of PCN with their hosts,

like those of other plant parasites and pathogens, are

mediated by effectors: secreted proteins that manipu-

late the host to the benefit of the pathogen. Most PCN

effectors are produced in two sets of gland cells, dorsal

and subventral [10], although some apoplastic effectors

can be produced in the gland cells surrounding the

main anterior sensory organs, the amphids [11]. Effectors

play important roles in all aspects of the parasite-host

interaction: invasion and migration [12], suppression of

host defences [13] and induction of the feeding site [14,

15]. The effector repertoire of plant-parasitic nematodes,

including PCN, has been augmented by multiple Hori-

zontal Gene Transfer (HGT) events, primarily of bac-

terial origin [16]. HGT events are suspected to have

played an important role in the emergence of plant

parasitism in nematodes, enabling degradation of the

plant cell wall, nutrient processing and manipulation of

plant defences [17]. Due to their importance in the life

cycle of plant-parasitic nematodes, a great deal of effort

has been put into various approaches for effector

identification, including genomic and transcriptomic

analyses [10], transcriptomic analyses of purified gland

cells [18] and proteomic analyses [19]. For some effec-

tors, the likely biological functions, including host

proteins targeted, have been identified [14, 20, 21].

Here, we report a high quality draft genome of a Ro1

isolate of G. rostochiensis, in combination with repli-

cated transcriptome data from four key life stages, and

genome sequence from eight populations across four

pathotypes. We conducted whole genome comparisons

between G. rostochiensis and related species [22–25] to

explore the genomic and transcriptomic bases of patho-

genicity. We discovered an unusually high frequency of
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well-supported non-canonical splice sites in G. rosto-

chiensis, and found that this phenomenon was also

present in related parasitic nematode species. Using an

HGT analysis pipeline, we identified hundreds of genes

in the G. rostochiensis genome that may have been ac-

quired by gene transfers from non-metazoan origin,

some of which likely play important roles in plant para-

sitism. We identified effectors in G. rostochiensis and

found that they frequently grouped together into ‘effector

islands’. To explore the genetic bases of virulence, we

compared genetic variation in effectors and other genes

between pathotypes and found that effectors, in general,

contained more non-synonymous mutations. Using the

identified G. rostochiensis effectors as a training set, we

identified a putative ‘DOrsal Gland promoter element’,

or DOG box, which was also associated with effectors

in related species. We were able to use the DOG box to

predict novel effectors, confirmed by in situ hybridisa-

tion, in G. rostochiensis, and to identify all putative

DOG effectors from available cyst nematode genomes.

Results and discussion
The genome sequence of Globodera rostochiensis Ro1

The genome of the potato cyst nematode, G. rosto-

chiensis, pathotype Ro1 from the James Hutton Insti-

tute collection, was sequenced to 435.6-fold coverage

and assembled into a high quality draft assembly

(nGr.v1.0) of 95.9 Mb (Table 1), consistent with experi-

mental estimates of Globodera genome size [26]. The

assembly shows a smaller size and total gene number,

yet higher completeness than the G. pallida genome

[22] (Table 1). Further, the low level of duplication of

core, conserved genes (Table 1), and indeed of all genes

(Additional file 1: Figure S1), suggest that the G. rosto-

chiensis genome assembly is a more accurate represen-

tation of a Globodera genome, probably reflective of

the low genetic variation present in the UK G. rosto-

chiensis used for sequencing [11].

Collaborative manual gene refinement reveals a uniquely

high frequency of non-canonical splice sites in Globodera

To produce a high quality set of gene predictions, an

initial phase of automated annotation was followed by

manual refinement of approximately one-eighth of all

gene models in the collaborative genome annotation

editor WebApollo (Additional file 2: Supplementary in-

formation file 1). During the manual annotation phase,

we noted that correction of many exon-intron boundar-

ies to be consistent with mapped RNA-sequencing

(RNA-seq) data (Fig. 1a) was only possible using non-

canonical 5′ donor splice sites (GC rather than GT).

The frequency of GC-bearing introns in the manual

annotation set was two orders of magnitude higher

than in the initial automated predictions. However,

genome-wide re-prediction, using manually curated

genes as a training set and allowing for the prediction

of non-canonical GC/AG introns, increased the fre-

quency of GC/AG introns to that of the manually

annotated set (Additional file 3: Table S1) and markedly

improved upon automated predictions (see Additional

file 2: Supplementary information file 1).

The frequency of GC/AG introns in G. rostochiensis

was 3.46 %, the highest reported for any nematode. In

addition to the GT or GC dinucleotide, 5′ donor sites

are characterised by a nine-base consensus sequence,

CAGG[T|C]AAGT (where the initial CAG is in the

preceding exon [27]). Although variations in the 5′

donor site sequence were found, G. rostochiensis GC/

AG introns conformed equally well, if not better, to this

consensus as did GT/AG introns (Fig. 1a and b). We

derived a revised 5′ donor consensus for the predicted

introns for both GC and GT 5′ sites and found both in-

tron classes to use AAGG[T|C]AAGT (where the first

AAG is in the preceding exon). We identified a similarly

high frequency of GC/AG introns in G. pallida (3.53 %),

and Rotylenchulus reniformis (2.36 %) (PRJNA214681,

Showmaker et al., unpublished), a sedentary endoparasite

of multiple crop plants that is in a sister group to

Globodera in the Tylenchoidea (Additional file 4:

Figure S2). While GC/AG introns were apparently

Table 1 Genome statistics

G. pallida G. rostochiensis

Assembly version nGp.v1.0 nGr.v1.0

Assembly size (Mb) 124.6 95.9

Scaffolds (n) 6873 4377

Scaffold N50 (bp) 121,687 88,495

Longest scaffold (bp) 600,076 688,384

Contig N50 (bp) 11,611 11,371

Longest contig (bp) 93,564 111,501

Span of N’s in assembly (bp) 21,024,229 4,445,051

GC (%) 36.7 38.1

CEGMA (Complete/Partial %) 74.19/80.65 93.55/95.56

Average CEG gene number
(Complete/Partial)

1.23/1.29 1.15/1.24

Gene density (per Mb) 132.2 149.9

Genes (n) 16,466 14,378

Proteins (n) 16,417 14,309

Proteins w/Start and Stop
codon (n)

14,580 (88.81 %) 13,083 (91.43 %)

Non-canonical splice sites (%) 3.56 % (n = 4059) 3.46 % (n = 3835)

PfamA domains (cutoff 1e-5) (n) 8853 8397

Best BLAST hit to nematode
proteins (1e-10) (n)

8886 8603
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absent from the Meloidogyne species gene predictions,

we suspect this may be due to restrictive settings

during their annotation, as they are present in most

species (Additional file 4: Figure S2). The elevated

proportion of non-canonical GC/AG introns appear to

be restricted to the Heteroderidae.

In species pairs with a low GC/AG intron frequency,

such as Caenorhabditis elegans and the closely related

C. briggsae, there is no obvious conservation of non-

canonical splice site usage in their orthologous genes

[28]. However, for genes in G. rostochiensis with at least

one GC/AG intron, ~72 % of the corresponding one-to-

one orthologues in G. pallida also contained at least one

GC/AG intron (n = 2148), compared to an average of

10.8 % for identically sized subsets of non-GC/AG in-

tron containing G. rostochiensis genes (1000 iterations,

stdev = 0.8 %). Within those genes, orthologous introns

also tended to have conserved non-canonical splice sites.

For 30 % of the G. rostochiensis GC/AG introns in one-

to-one orthologues, the corresponding G. pallida intron

also used GC/AG. GC/AG introns had a biased distribu-

tion within genes in both species, tending to be less

common in introns in the 5′ portion of genes compared

to introns in the 3′ portion (Fig. 1c).

Life stage specific transcriptome

From the G. pallida genome project [22], it was clear

that the key parasitic transitions to be captured in terms

of all cyst nematode gene expression, and in particular

for effectors, is from outside the plant (J2) compared to

inside the plant (sedentary females). We used nematodes

at 14 days post infection (dpi) as this provides an ideal

intermediate for the sedentary stages: variation in gene

expression at 14 dpi accounts for most of the variation

in gene expression at 7 dpi (84 %), and at 21 dpi (60 %,

Additional file 5: Figure S3). G. rostochiensis pathotype

Ro1 gene expression was therefore analysed at four key

stages across the life cycle: dormant cysts; hydrated eggs;

hatched infective J2; and feeding parasitic females. Using

a false discovery rate (FDR) of <0.001 and a minimum

fold-change of 4, 6720 genes (47 %) were found to be

differentially expressed. Differentially expressed genes

were grouped into expression clusters; those that

uniquely describe each life stage, two life stages or three

life stages were identified (Fig. 2; expanded in Additional

file 6: Figure S4; Additional file 7: File S1 contains the

data matrix of normalised expression values). Some ex-

pression clusters showed a stepwise increase or decrease

in expression corresponding to transitions through the

life cycle. As much as 94 % of all differentially expressed

genes, and thus ~44 % of all genes, are manually

grouped into 25 biologically relevant expression super-

clusters (Additional file 6: Figure S4).

G. rostochiensis predicted proteins were clustered with

those from the cyst nematode G. pallida [20], the root-

knot nematodes M. hapla [24] and M. incognita [23],

the pine wilt nematode Bursaphelenchus xylophilus [29]

and C. elegans (Fig. 3a; for relationships between these

Fig. 1 Non-canonical splicing in Globodera. a Correction of many exon-intron boundaries to be consistent with RNA-seq mapping required
the use of a non-canonical 5′ donor site. Comparison of the consensus sequence for both canonical (GT/AG) and non-canonical (GC/AG) splice
sites reveals similar local base composition, with the exception of the GT or GC itself. b The 5′ donor sites of both GC/AG and GT/AG introns

conform to the consensus CAGG[T|C]AAGT. c GC/AG introns are less common at the beginning of gene models in both G. rostochiensis (black)
and G. pallida (grey)
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species see Additional file 4: Figure S2). Among the

16,821 OrthoMCL clusters, 2821 contained representa-

tives from all nematodes tested, 220 clusters contained

only proteins from plant parasites, 372 clusters con-

tained only proteins of Globodera spp. and Meloidogyne

spp. and 1986 clusters were composed solely of proteins

from the cyst nematodes G. rostochiensis and G. pallida.

Focusing on these four categories of orthologous clus-

ters (all nematodes, all plant parasites, Meloidogyne plus

Globodera and Globodera) we correlated the orthologue

definition and transcriptional clustering data to explore

possible functional roles of genes unique to subsets of

the taxa analysed. Only 34 % of genes in clusters with

members from all five nematodes, or clusters lacking

only C. elegans, were differentially expressed, compared

to 47 % differentially expressed overall (Fig. 3b), congru-

ent with the assumption that these families are likely to

include loci with roles in core physiology. Interestingly

however, genes specifically upregulated in eggs contain a

higher relative abundance of genes in orthologous

clusters common to all plant parasites yet absent in C.

elegans, compared to other orthologous gene categories

(Fig. 3c).

Only 43 % of genes in orthologous clusters private to

Meloidogyne and Globodera were differentially expressed.

In contrast, of the genes in orthologous clusters only

present in the two Globodera species, 60 % were differen-

tially regulated, suggesting that these genes play a dynamic

role in parasite development. Furthermore, over two-fifths

of genes (42 %) that are differentially regulated in the in-

fective juvenile stage of G. rostochiensis are those that are

unique to the Globodera. Expression super-clusters 13

and 24, which describe those genes specifically upregu-

lated or downregulated in the infective juvenile stage, re-

spectively, contain a higher relative abundance of genes in

orthologous clusters unique to Globodera species com-

pared to other orthologous gene categories (Fig. 3c).

G. rostochiensis proteins in clusters private to Meloi-

dogyne and Globodera were enriched for GO terms

associated with gene silencing by miRNA (p <0.001,

FDR 0.05), including nine proteins with highest similar-

ity to worm-specific argonautes (WAGOs) in C. ele-

gans. WAGOs are central to the RNAi pathway, being

responsible for binding of small RNAs and mediation

interactions with other proteins, and show an excep-

tional diversity within the phylum Nematoda. It has

been suggested that the expansion of WAGOs within

Nematoda is associated with extreme functional plasti-

city [30]. Enrichment of WAGOs in the Meloidogyne

and Globodera lineage, in combination with phylogen-

etically distinct clades of WAGOs in the Heteroderidae

(Additional file 8: Figure S5), may indicate functional

Fig. 2 Example of differential gene expression clusters in the context of nematode biology. The transcriptome of G. rostochiensis was sequenced

in duplicate for four key stages across the life cycle: dormant cysts; hydrated eggs; hatched infective juveniles (J2); and feeding 14 days post
infection (dpi) females. A subset of the 6720 genes differentially expressed (FDR <0.001, min fold 4) are grouped into expression clusters which

describe the genes specifically upregulated at various life stages. Clusters which uniquely describe each life stage (1st order), describe two life
stages (2nd order) or describe three of the four life stages (3rd order) are identified. Further, some expression clusters show a stepwise increase
(or decrease) in expression as the nematode transitions through its life cycle (trans). For all expression clusters, mean centred log fold-change of

expression is plotted for each of two biological replicates for each life stage in the following order: Cyst, egg, J2, 14 dpi female. All genes in each
cluster are drawn with grey bars, the average of which is shown in blue
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diversification following expansion. With the exception

of GROS_g08854, all G. rostochiensis WAGOs that are

differentially regulated are present in differential

expression super-clusters 19, 20 and 21. All but one of

these differentially expressed WAGOs are in Clades 1/

2/4/5 and 10/11. Expression super-clusters 19, 20 and

21 are characterised by significant upregulation at 14

dpi, suggesting a dynamic role for WAGO clade 1/2/4/

5 and 10/11 as G. rostochiensis transitions through

parasitism.

Genes acquired by horizontal transfer have substantially

contributed to the genome of G. rostochiensis

Horizontal gene transfer (HGT) events have played an

important role in the emergence of plant-parasitism in

nematodes [17]. Numerous plant cell wall degrading

enzymes, originally acquired from bacteria, are present

in a wide range of tylenchomorph plant-parasitic nema-

tode species, while diplogasterid nematodes have ac-

quired functionally analogous genes from fungi [17].

Using a systematic genome-wide approach, putative

HGT events were identified based on the ratio of their

sequence similarity to metazoan and non-metazoan

sequences (Alien Index (AI), (Alienness [31–33])).

Proteins with an AI >0 and more than 70 % identity to a

non-metazoan sequence were considered putative con-

taminants (n = 18) and not included in these analyses.

We identified 519G. rostochiensis proteins that may

have originated through HGT events (AI >0), including

all previously published cases of HGT into cyst nema-

todes present in the predicted proteins (Table 2). Of the

519 genes putatively acquired by HGT, 87 % have some

evidence of transcription at the four life stages sampled

(cumulative FPKM > 1, c.f. 95 % of all proteins), 91 %

have at least one intron (c.f. 95 % of all proteins) and

92 % are on scaffolds containing other genes not pre-

dicted to be acquired by HGT (c.f. 95 % of random set

(n = 519), 1000 iterations). We found strong support (AI

>30) for 91 proteins (Additional file 9: Table S2). In

77 % of these cases (70/91), the most similar sequences

identified were of bacterial origin, while in ~11 % (10/

91), the most similar sequences were of fungal origin,

consistent with previous reports of HGT in plant-

parasitic nematodes. The remaining proteins with an AI

>30 had closest similarity to proteins from protists (n =

7), plant (n = 3) and a virus (n = 1). No phylogenetically
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Table 2 Genes acquired via HGT in other cyst and root-knot nematodes also found in the genome of G. rostochiensis

Process Gene family Function Pfam domains Highest
AI

Reference G.
rostochiensis
genes

Cell wall
degradation

GH5_2 Cellulases Cellulose degradation PF00150
Cellulase
(glycosyl hydrolase family 5)

198.94 [12] GROS_g01454

GROS_g04677

GROS_g05961

GROS_g05962

GROS_g07338

GROS_g07446

GROS_g07949

GROS_g10505

GROS_g11008

GROS_g11200

GROS_g11949

Expansin-like proteins Softening of non-covalent
bonds

PF03330
Rare lipoprotein A (RlpA)-like
double-psi beta-barrel

29.93 [90] GROS_g03476

GROS_g09961

GROS_g10585

GROS_g11726

GROS_g11727

GROS_g12817

GROS_g12966

GH53 candidate Arabinogalactan
endo-1,4-beta-galactosidase

Pectinose/arabinogalactan
degradation

PF07745
Glycosyl hydrolase family 53

349.30 [91] GROS_g08150

PL3 Pecate lyase Pectin degradation PF03211
Pectate lyase

137.06 [92, 93] GROS_g04366

GROS_g05398

GROS_g07968

Plant defense
manipulation

GH18 chitinase Chitin degradation PF00704
Glycosyl hydrolase family 18

2.30 [94] GROS_g11136

Chorismate mutase Conversion of Chorismate
into SA

PF01817
Chorismate mutase type II

42.36 [95] GROS_g02441

GROS_g08190

Candidate Isochorismatase Conversion of Chorismate
into SA

PF00857
Isochorismatase family

66.08 [96] GROS_g01640

Detoxification Candidate Cyanate lyase PF02560
Cyanate lyase C-terminal
domain

11.51 [17, 24] GROS_g09531

Nutrient
processing

GH32 invertase Degradation of sucrose in
glucose and fructose

PF00251
Glycosyl hydrolases family
32 N-terminal domain

241.26 [22, 23] GROS_g05724

GROS_g06434

GROS_g08674

GROS_g09735

GROS_g09969

GROS_g10583

GROS_g11374

GROS_g11397

GROS_g11793

GROS_g13274

GROS_g14232
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confirmed HGT of protist, plant or virus origin has been

identified to date in plant-parasitic nematodes. Given

that some of these candidates are among genes with

evidence of expression, they deserve further investigation.

Protein domains were identified in 65 % of the pu-

tative HGT proteins with an AI >0 and 88 % of those

with an AI >30 (Additional file 10: Table S3). The

HGT candidates included a set, with AI >29, with

predicted functions in plant cell wall modification and

degradation, including GH5 cellulases, expansin-like

proteins, GH53 candidate arabinogalactan endo-1,4-

beta-galactosidase and PL3 pectate lyases. Other cases

of HGT may be involved in nutrient processing. A

GH32 protein from G. pallida has been shown to be

a functional invertase expressed in the digestive sys-

tem [34]. This enzyme may convert sucrose, the main

circulating form of sugar in plants, into glucose and

fructose which are readily usable by nematodes. We

identified 11 GH32-bearing proteins in G. rostochien-

sis, suggesting that this function may be especially

important. The phylogenetically dynamic pattern of

HGT into tylenchomorph genomes is illustrated by

the absence of GH30_8 xylanases, GH28 polygalactur-

onase as well as GH43 candidate arabinanase in G.

rostochiensis and G. pallida, despite their presence in

root-knot nematodes [16]. Furthermore, of the 91

genes with AI >30, six are present in orthologous pro-

tein clusters unique to the Globodera and Meloidogyne,

yet many classes are functionally represented in both

genera, consistent with multiple acquisitions. The distribu-

tion of putative HGTcases across orthologous gene categor-

ies is broadly consistent between AI >0 and AI >30. Both

suggest a substantial proportion of genes putatively acquired

by HGT (36–45 %) are unique to the Globodera and may

Table 2 Genes acquired via HGT in other cyst and root-knot nematodes also found in the genome of G. rostochiensis (Continued)

VB1 thiD Vitamin B1 biosynthesis PF08543
Phosphomethylpyrimidine
kinase

154.50 [97] GROS_g07352

VB1 thiE Vitamin B1 biosynthesis PF02581
Thiamine monophosphate
synthase/TENI

163.99 [97] GROS_g07353

VB1 thi4 Vitamin B1 biosynthesis PF01946
Thi4 family

108.07 [97] GROS_g10855

VB1 thiM Vitamin B1 salvage PF02110 46.05 [97] GROS_g07354

Hydroxyethylthiazole kinase
family

VB1 tenA Vitamin B1 salvage PF03070 108.33 [97] GROS_g05327

TENA/THI-4/PQQC family GROS_g07355

VB5 panC Vitamin B5 biosynthesis PF02569 183.11 [97] GROS_g05752

Pantoate-beta-alanine ligase

VB6 aSNO Vitamin B6 biosynthesis PF01680 12.72 [98] GROS_g08956

SOR/SNZ family

Candidate PolS Polyglutamate
synthase

Not known PF09587 102.00 [99] GROS_g07961

Bacterial capsule synthesis
protein PGA_cap

Candidate GSI Glutamine synthase Nitrogen assimilation PF00120 29.24 [100, 101] GROS_g02362

Glutamine synthetase,
catalytic domain

Feeding site
induction

NodL - like Candidate
acetyltransferase

PF12464
Maltose acetyltransferase

13.12 [100, 102] GROS_g11033

PF00132
Bacterial transferase
hexapeptide (six repeats)

Not known Candidate L-threonine aldolase ?? PF01212
Beta-eliminating lyase

164.69 [100] GROS_g10421

GROS_g10422

GROS_g10423

Candidate Phosphorybosyl
transferase

?? PF00156
Phosphoribosyl transferase
domain

198.13 [100, 101] GROS_g04632

GROS_g06735
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give an insight into the relatively recent HGT history since

the Globodera–Meloidogyne divergence (Fig. 4a). Three-

quarters of genes with AI >30 and unique to Globodera are

present in differential expression super-clusters, the most

common of which are super-clusters 13 and 20 which, re-

spectively, describe genes specifically upregulated during in-

fective J2 and parasitic females. This may indicate that these

genes (several candidate invertases, candidate L-threonine

aldolase and VB1 tenA (Additional file 10: Table S3)) are

functionally deployed during parasitism following horizontal

transfer. Although transposable elements (TEs) are closely

associated with putative HGT events (p <0.001, Mann–

Whitney U test, Fig. 4b), the divergent transposable elem-

ent assemblage in Globodera species compared to other

tylenchomorphs (LINE/Jockey and SINE/Alu, Additional

file 11: Figure S6) is not preferentially associated with pu-

tative HGTcases also specific to the Globodera (Fig. 4c).

Effectors in G. rostochiensis are sequence diverse between

pathotypes

Effectors play central roles in both pathogenicity and

virulence. The evolution of virulence on a particular host

or variety can involve both gain and loss of effector

function. Effectors may become specialised to function

in a new host [35], while effector gene loss (or loss of ex-

pression) may allow a pathogen to evade recognition

[36]. We identified G. rostochiensis effectors by sequence

similarity to effectors with experimentally verified gland

cell expression in related taxa (Heterodera, Globodera).

Many effectors in plant-parasitic nematodes are mem-

bers of large multi-gene families, only a subset of which

are effectors [10, 13, 37]. For example, in G. pallida

there are ~300 SPRY (PF00622) domain containing pro-

teins, fewer than 10 % of which are deployed as effectors

[13]. We therefore further filtered the potential effector

set for the presence of a signal peptide for secretion and

absence of a transmembrane domain to retain a high

confidence list of 138 loci (Additional file 12: Table S4),

including 101 genes similar to sequences expressed in

the dorsal gland cell, 35 genes similar to those expressed

in subventral gland cells and two genes similar to those

expressed in the amphid sheath cells. The set included

representatives of 37 different effector gene families

(Additional file 12: Table S4). The vast majority of these

effectors (116/138) exhibited expression profiles con-

sistent with a role in parasitism (Additional file 12:

Table S4), as would be expected for effectors. The tem-

poral expression profiles of dorsal and subventral effec-

tors were also consistent with the observed changes in

activity of these glands throughout nematode develop-

ment [38–41]. Most subventral gland effectors were

primarily expressed at J2, while dorsal gland effectors

were expressed at J2 and/or 14 dpi. Approximately

8.5 % of genes putatively acquired via HGT (8.47 % of
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Fig. 4 Analysis of genes putatively acquired by HGT. a Using an AI >30 or >0, between 45 % and 36 % of putative HGT genes are present
in orthologous gene cluster categories unique to the Globodera and may give an insight into the relatively recent HGT history since the
Globodera–Meloidogyne divergence. b Genes putatively acquired by HGT (AI >0) are significantly closer to transposable elements when

compared to all other genes not predicted to be acquired by HGT (p <0.000, Mann–Whitney U test). c There was no significant association
of any independent class of transposable element with genes putatively acquired by HGT. Despite the divergent transposable element

composition of Globodera (Additional file 11: Figure S6), these were not associated with putative HGT events specific to Globodera
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those with AI >0 and 8.79 % of those with >30) are

present on the stringent effector list; examples of which

include putative pectate lyase, beta - 1,4 - endogluca-

nase and expansins.

Intra-species variation within the G. rostochiensis

effectorome was examined by mapping whole genome

resequencing data from nine populations across five

pathotypes (Ro1, Ro2, Ro3, Ro4 and Ro5) to the refer-

ence assembly (pathotype Ro1). A total of 1,081,802

variants were detected, of which 794,505 were single

nucleotide polymorphisms (SNPs) and 283,434 were in-

sertions/deletions (indels) (Additional file 13: Table S5).

Homozygous molecular markers descriptive of patho-

types 4 and 5 were identified (Additional file 14: Table

S6). Interestingly, no variants were descriptive of all Ro1,

Ro2 or Ro3 populations. Consistent with this, a maximum

likelihood phylogeny constructed from 730,705 genome

wide SNPs identifies two distinct groups of Ro1, together

separate from Ro2, Ro3, Ro4 and Ro5 (Additional file 15:

Figure S7A). The variation within pathotype Ro1 is as

great as, if not greater than, the variation between Ro1

and the other pathotypes (Additional file 15: Figure S7B).

A total of 108G. rostochiensis effectors (78 %) con-

tained predicted modification of function (non-syn-

onymous mutation) and/or predicted loss of function

(frame shift indel or premature stop codon) in at least

one pathotype. When accounting for gene length, G.

rostochiensis effectors did not show significantly differ-

ent numbers of predicted loss of function variants, but

did contain significantly more total variants and more

predicted modification of function variants per gene

(n = 131, Mann–Whitney U test, p <0.028 and p =

0.003, respectively), compared to randomly selected

non-effector genes. No individual variant was homozy-

gous for the reference allele in all populations avirulent

on H1 (Ro1 and Ro4) and homozygous for the variant

allele in all populations virulent on H1 (Ro2, Ro3 and

Ro5). This observation is consistent with the suggestion

that distinct populations of Ro1 (Additional file 15: Figure

S7 and [42]), in addition to Ro4, have evolved the same

phenotype on H1 independently [8]. Convergent evolution

of the same phenotype by independent mutations may be

explained by identifying genes which are always homozy-

gous present for at least one predicted loss or change of

function variant in populations virulent on H1 and always

homozygous absent for any predicted loss or change of

function variants in populations avirulent on H1. No such

cases were identified from these population sequencing

data. However, 190 genes were identified with at least one

predicted modification or loss of function variant homozy-

gous absent in all avirulent populations and homozygous

or heterozygous present in virulent populations. When

cross-referenced with the high-confidence effector list,

this was reduced to two genes. Gene g13394 is similar to

GLAND10 [43], which encodes a putative cellulose bind-

ing protein and originates from the subventral gland cell.

Gene g12477 is similar to the 3H07_Ubiquitin_extension

effectors that are expressed in the dorsal gland cell [44,

45], and are involved in host immune suppression [46].

Forty-eight SNPs were identified in 19 non-effector genes

with a difference in average allele frequencies of 70 % or

higher between virulent and avirulent populations and a

minimal difference in allele frequencies of 25 % between

individual virulent and avirulent populations (Additional

file 16: Table S7), of which four SNPs were located in

g03129, a Ryanodine receptor-like containing three SPRY

domains, and seven in g09064, a molecular chaperone

from the Hsp90 family.

Effectors in the G. rostochiensis genome are

compartmentalised into islands

In several unrelated eukaryotic plant pathogens, effec-

tors are not randomly distributed in the genome, but

are rather located in specialised regions. For example,

in Phytophthora infestans most effectors are located in

gene-sparse regions of the genome and it is proposed

that this facilitates rapid evolution and adaptation [47].

Comparatively, G. rostochiensis effectors were located

in gene-dense regions of the genome (Fig. 5a), albeit

with a skewed distribution of gene density compared to

an identically sized subset of non-effectors (Student’s t-

test, n = 138, p <0.001, Additional file 17: Figure S8).

Compared to an expectation of 2 % for a random set of

138 genes, the 138 high-confidence effectors had another

high-confidence effector as an immediate chromosome

neighbour in 22 % of cases (χ2, p <0.0005). This excess

was due to local tandem duplication, as effectors that were

directly adjacent to one another in the genome were often

from the same effector family, and were frequently more

similar to the adjacent gene than to other members of the

same gene family located elsewhere in the genome. Such

local tandem duplication is a common feature of gene

families in G. rostochiensis (Fig. 5), however, groups of

functionally related gene families (i.e. effectors) tend to be

in clustered in genomic islands. For a random subset of 37

non-effector containing gene families, increasing distance

from each gene reduces the likelihood of identifying an-

other member in any of the same 37 families. However,

the clustering of effector loci extends beyond immediate

neighbours, with an excess of effector loci as next-but-

two neighbours (n ± 3) and also at n ± 6 (χ2, p <0.01

and 0.001, respectively, Fig. 5b). Over one-third of all

effectors were described by 21 effector islands of 2–4

effector loci (Additional file 18: Table S8) with an aver-

age length of ~20 kb. Over half of the islands included

effectors from more than one effector gene family, yet

80 % comprised genes expressed in only one cell type

(dorsal gland cell, subventral gland cell). Several islands
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included loci similar to other effectors not included in

the high-confidence list.

G. rostochiensis effector islands were also identified in

G. pallida. Effector islands containing more than one

one-to-one orthologue were similarly arranged in close

proximity in G. rostochiensis and G. pallida, with just

three exceptions. One island in G. rostochiensis was split

across the ends of two scaffolds in G. pallida, suggesting

the split in G. pallida may be an artefact of gapped

assembly. Two other G. rostochiensis islands were dis-

persed in G. pallida, across different large scaffolds.

Synteny between the genome assemblies of G. rosto-

chiensis and G. pallida extends beyond effector islands,

despite the fragmented nature of both assemblies.

Based on OrthoMCL protein cluster-membership, 109

distinct syntenic clusters of scaffolds which contained

runs of at least five syntenic proteins each were identi-

fied, involving 249G. pallida and 202G. rostochiensis

scaffolds (Additional file 19: Figure S9). In total,

38.2 Mb of G. pallida (36.9 % of the genome) scaffolds

are partially syntenic to 31.1 Mb (34.0 % of the gen-

ome) of G. rostochiensis scaffolds (ignoring N’s). Break-

age of synteny between two scaffolds was observed in

20 pairs, seven of which involved inversions. The low

proportion of syntenic regions most likely reflects the

draft nature of both assemblies (G. pallida scaffolds in

clusters: 12 % N’s; G. rostochiensis scaffolds in clusters:

4.9 % N’s). A subset of the largest syntenic cluster is

shown in Fig. 6. Synteny breakpoints which primarily

co-occur with large insertions in the G. pallida assem-

bly may suggest that large-scale rearrangements have

taken place during their divergence and yet effector

islands remain predominantly intact. Long-range DNA-

sequencing data will prove crucial for assessing the true

proportion of syntenic scaffolds and estimating the

amount of synteny breakage.

Identifying features enriched within effector islands

in G. rostochiensis remains challenging; there is no evi-

dence for more AT-rich sequences, contig break points,

polymorphisms or microsatellite repeats within islands,

flanking islands or scaffolds containing islands (Fig. 5c).

However, despite no difference in transposon density

within islands (2.7/10 kb ±2.4), in the remainder of

scaffolds containing islands (2.4/10 kb ±1.7), in entire

scaffolds containing islands (2.8/10 kb ±0.9) or in scaf-

folds numerically adjacent to those containing islands

(See figure on previous page.)
Fig. 5 Effectors in G. rostochiensis are grouped into ‘islands’. a Dorsal (black) or subventral (grey) effectors are skewed towards a higher

neighbouring gene distance compared to random (Student’s t-test, p <0.01), yet are contained within gene dense regions of the genome.
b The presence of effectors in adjacent (n ± 1), or neighbouring positions (up to ±9), was determined. As a negative control, a subset of 612 G.

rostochiensis gene families not predicted to contain effectors was identified from the OrthoMCL. Starting from this initial negative set of 612
gene families, 37 of these gene families were selected at random and the presence of genes from these 37 families in adjacent (n ± 1), or
neighbouring positions (up to ±9), was determined. This process was repeated for 1000 iterations to generate a robust negative for the

average frequency in each neighbouring position. The observed frequency of effector occurrence at each position (black bars) was compared to the
average of 1000 iterations for the negative (white bars). For non-effector containing gene families, increasing distance from each gene reduces

the likelihood of identifying another member in any of the same families (error bars indicate standard deviation of 1000 iterations). The clustering of
effector loci extends beyond immediate neighbours, with an excess of effector loci as next-but-two neighbours (n ± 3) and also at n ± 6 (χ2, p 0.01 and
0.001, respectively). c Example of one island (7) at the edge of scaffold 00141. With the exception of high effector density (red), no obvious

genetic features are associated (gaps (Ns, purple), AT content (black line), gene density (blue) microsatellites (orange), variants (black bars) and
transposable elements (TEs, green)). d No difference in transposon density was found between islands, in the remainder of scaffolds containing islands,
in entire scaffolds containing islands or in scaffolds numerically adjacent to those containing islands (Kruskal–Wallis, p = 0.515, error bards indicate

standard deviation). When each island is treated as a single locus, the nearest external transposable element 5′ of the first gene, and 3′ of the
last, is significantly closer than expected (ANOVA, n = 39, p = 0.028 accounting for multiple testing, Fig. 5d). Interestingly, the inverse measurement

(the closest internal transposon to each island border), is not significantly closer than expected (n = 45, p = 0.116, Fig. 5d), suggesting that this may be
a feature of islands as an integral whole, rather than the separate genes comprising the islands

S0O 00R 0G 7

G
p

a
ls

c
a
ffo

ld
7
2

Gpalscaffold139

252dl off acsl ap G

3
5

dl
off

a
c

sl
a

p
G

Key

G. pallida genes

G. rostochiensis genes

GC%

Syntenic

N

Fig. 6 Synteny between G. rostochiensis and G. pallida. G. rostochiensis

genes (blue) in scaffold7 (500 kb) are syntenic (green arcs) with G.

pallida genes (red) on four scaffolds. Synteny breakpoints primarily

co-occur with large insertions in the G. pallida assembly. GC
content and regions of undetermined sequence are represented

by orange and black bars, respectively

Eves-van den Akker et al. Genome Biology  (2016) 17:124 Page 12 of 23



(2.4/10 kb ±1.5, Kruskal–Wallis, p = 0.515, Fig. 5d),

transposable elements are closely associated to island

borders. When each island is treated as a single locus,

the nearest external transposable element 5′ of the first

gene, and 3′ of the last, is significantly closer than ex-

pected (ANOVA, n = 39, p = 0.028 accounting for multiple

testing, Fig. 5d). Interestingly, the inverse measurement

(the closest internal transposon to each island border), is

not significantly closer than expected (n = 45, p = 0.116,

Fig. 5d), suggesting that this may be a feature of islands as

an integral whole, rather than the separate genes compris-

ing the islands.

Identification of a putative enhancer motif associated

with dorsal gland effectors

The existing roster of effector proteins in plant-parasitic

nematodes has been defined through painstaking and

exacting experimental studies employing gland cell-

specific complementary DNA (cDNA) sequencing and in

situ hybridisation [43]. We therefore sought possible

regulatory motifs associated with the highly tissue spe-

cific expression pattern of effector genes that might act

as an alternative criterion for their identification in silico

[10, 48]. By employing a differential motif discovery al-

gorithm which normalises for GC content (HOMER)

[49], we identified a short DNA motif (the DOrsal Gland

motif or DOG box, ATGCCA), specifically enriched in

the promoter region (500 bp upstream of the start codon)

of genes sequence-similar to experimentally validated dor-

sal gland cell effectors, compared to either sub-ventral

gland effectors or all other non-effectors (p = 1e–10). Of

the 101G. rostochiensis dorsal gland effectors, 77 % had

at least one DOG box in their promoter region. This

encompasses 26 of the 28 dorsal gland effector families

(92 %) including genes that are unrelated in sequence

and ontogeny, yet only 5/10 non-dorsal gland effectors

(subventral and amphid). Dorsal gland effectors con-

tained an average of 2.54 DOG boxes in their promoter

regions, compared to 0.22 for an identically sized subset

of non-effectors, 0.32 for all non-effectors or 0.48 for

effectors secreted from subventral glands (Fig. 7a).

Motif occurrence peaked 150 bp upstream of the start

codon and was not strand-specific. Despite the pres-

ence of an ATG within the DOG box, the motif does

not arise from specifically mis-predicting the start

codon of effectors. A strand-specific, Kozak-like motif

peak which includes the start codon (AAAATG) was

observed in dorsal, subventral and non-effectors at the

predicted start of the coding sequence (Fig. 7b). We

were unable to identify a motif that correlated with

A

B

Fig. 7 DOG box: a six-nucleotide motif enriched in the promoter region of dorsal gland effectors. a The ATGCCA motif is specifically enriched in

the promoter region of dorsal gland effectors compared to non-effectors and subventral gland effectors. On average, DOG box-containing dorsal
gland effectors contain ~2.54 copies of the motif in their promoter region, compared to ~0.22 for an identical sized random subset of non-
effectors or ~0.48 for subventral gland effectors. The frequency of this motif peaks 150 bp upstream of the start codon and is not strand-specific.

b A strand-specific, Kozak-like motif, which includes the start codon (AAAATG), can be seen for dorsal, subventral and non-effectors at the
predicted start of the coding sequence, indicating that predictions of translation start sites are accurate. No substantial cross-identification

between each motif is seen
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time of expression (e.g. when comparing dorsal gland

effectors expressed at 14 dpi versus dorsal gland effec-

tors expressed at J2) or with expression in the subven-

tral gland. We found no enrichment of DOG boxes

upstream of the first gene in tandem series of adjacent

dorsal gland cell-expressed effectors arranged in an

island.

The DOG box as a predictor of effectors

We screened the regions 500 bp upstream of all loci in

the G. rostochiensis genome for DOG boxes on either

strand. The number of genes associated with multiple

DOG boxes was significantly higher than expected by

chance (Fig. 8a). For some genes, nearly one-fifth of the

entire 500 bp promoter region comprised ATGCCA mo-

tifs. Sequences with more DOG boxes in their promoter

regions were more likely to have predicted a signal pep-

tide for secretion (Fig. 8b). These findings suggest that

the DOG box may be a strong predictor of secretion,

and thus likely effector function, of G. rostochiensis

genes. The same DOG box motif was also present at a

significantly higher frequency than would be expected

by chance and was preferentially associated with se-

creted proteins in G. pallida (Fig. 8a, b). In the more

distantly related M. hapla, the number of genes with

multiple occurrences of the motif in their promoter re-

gion is higher than expected by chance, but the presence

of motifs was not associated with the downstream gene

encoding a predicted signal peptide. No enrichment of

the DOG box or association with secreted proteins was

observed for the much more distantly related B. xylophi-

lus. This suggests that in addition to minimal overlap

between effector repertoires [22, 50], the control of

effector expression in the dorsal gland cell may also re-

quire a different motif/s in these nematodes.

Although not all secreted proteins are effectors, all

effector proteins are secreted. Within the 150G. rosto-

chiensis genes with three or more DOG boxes and a sig-

nal peptide, there were 31 known effectors from 14

families, an approximately 100-fold enrichment. The ex-

pression patterns of these 150 genes (including newly

discovered candidate effector sequences) were consistent

with a role in parasitism. For G. pallida, where more

comprehensive life stage expression data are available,

the same association was observed (Additional file 20:

Figure S10) [22]. Despite the fact that most genes with

>3 ATGCCA motifs in G. pallida and a signal peptide

are expressed at J2, the number of motifs in the pro-

moter region was not a quantitative predictor of gene

expression at J2 (R2 = 0.0002, Additional file 20: Figure

S10) or at any other life stage, indicating that the

ATGCCA motif is not a J2 enhancer. These data most

likely reflect the biology of the nematode which dictates

that a substantial proportion of effectors are required in

the dorsal gland during the infective juvenile stages.

We used an extended set of criteria to predict poten-

tial DOG effectors from G. rostochiensis and G. pallida.

Genes with two or more DOG box motifs within 500 bp

upstream of the start codon, a signal peptide and no

transmembrane domain on the corresponding protein,

A

B

Fig. 8 Scope for utility of the DOG box to predict secretory proteins. a The number of promoter regions with multiple copies of DOG motifs is
higher than random for G. rostochiensis, G. pallida and M. hapla, but not for B. xylophilus. Normal promoter regions are shown in red, 250
iterations of randomising the sequence of each promoter region are shown in grey, the average of which is shown in black. b For G. rostochiensis

and G. pallida, the more motifs present in the promoter region, the more likely it is that the corresponding gene will contain a signal peptide for
secretion (red line). Randomising each promoter region abolishes this effect (black line). For M. hapla and B. xylophilus, an increased number of

motifs in the promoter regions does not correlate with a greater chance of the corresponding gene containing a predicted signal peptide
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and temporal expression profiles consistent with a role

in parasitism (Fig. 9a, b, Additional file 21: Table S9 and

Additional file 22: Table S10) were classified as likely ef-

fectors. To validate these criteria, we examined the

spatial expression pattern using in situ hybridisation of

two new predictions that had no similarity to any pub-

lished effector. Both exhibited expression in the dorsal

gland cell (Fig. 9c), confirming that the DOG box, in

combination with other criteria, can act as a predictor of

novel effector candidates. Novel gland cell protein

g14226 was clustered in a genomic island with several

other similar genes with multiple DOG boxes in their

promoter region, another signature of canonical Globo-

dera effectors. As biological understanding of dorsal

(and other) gland expression in tylenchid plant parasites

grows, it may be possible to refine the interpretation of

DOG box presence and clustering and also develop un-

derstanding of the control of gland cell expression of ef-

fectors in other taxa.

Conclusions

The interactions between plant-parasitic nematodes

and their hosts are both complex and specific. In a

successful interaction, the nematodes can avoid induc-

tion of an effective host immune response, resist any

immune response that is expressed and manipulate

the host’s developmental and cell biology to induce

and maintain a functional feeding site. These interac-

tions are mediated by an armoury of effectors that

plant-parasitic nematodes appear to have assembled

from adaptation of endogenous genes and also loci

acquired by horizontal gene transfer from a diverse

range of other taxa. To probe and understand these

interactions, genomic analyses complement more di-

rected studies, to drive and focus future programmes.

Genomics can deliver whole-system analyses that per-

mit global recovery of likely actors in parasite-host

interactions. In turn, these insights can suggest new

approaches to the understanding of pathogenesis and

ultimately control of parasite-induced crop losses.

The expanded effector set, including new effector

types, the association of presence of particular ef-

fector loci with breaking of plant resistance and the

definition of shared transcriptional control systems we

have reported here from genomic and transcriptomic ana-

lyses of G. rostochiensis are demonstrations of this utility.

Methods

Nematode culture and DNA isolation

G. rostochiensis populations Ro1, Ro2, Ro3, Ro4 and

Ro5 from the JHI PCN collection were maintained on a

mixture of susceptible varieties in glasshouse conditions.

For the reference assembly (Ro1), DNA was extracted

according to described methods [22]. For population re-

sequencing, DNA extraction was carried out as previ-

ously described [42].

Genome sequencing and assembly

Three sequencing libraries were prepared from total

genomic DNA (Additional file 23: Table S11). A PCR-

free 400–550 bp paired-end Illumina library was pre-

pared using a previously described protocol [51], with

the addition of sample clean up and size selection

with Agencourt AMPure XP. DNA was precipitated

onto beads after each enzymatic stage with an equal

volume of 20 % Polyethylene Glycol 6000 and 2.5 M

sodium chloride solution. Beads were not separated

from the sample throughout the process until after

the adapter ligation stage: fresh beads were then used

for size selection. Two mate pair libraries with ~2 kb

virtual insert size were constructed [52]. The libraries

were denatured using 0.1 M sodium hydroxide and

diluted to 8 pM in hybridisation buffer for cluster

amplification on the Illumina cBOT using the V3

cluster generation kit following the manufacturer’s

protocol, followed by a SYBRGreen cluster density

QC prior to paired-end 100 base sequencing on an

Illumina HiSeq2000. Raw data were analysed using

the Illumina RTA1.8 analysis pipelines.

An initial assembly was produced from a combin-

ation of short-fragment paired-end and mate-pair Illu-

mina libraries (Additional file 23: Table S11). Short

paired-end sequence reads were first corrected and

initially assembled using SGA v0.9.7 30 [53]. This

draft assembly was then used to calculate the distri-

bution of k-mers for all odd values of k between 41

and 81, using GenomeTools v.1.3.7 [54]. The k-mer

length for which the maximum number of unique k-

mers were present in the SGA assembly (k = 63) was

then used as the k-mer setting for de Bruijn graph

construction in a second assembly with Velvet v1.2.03

32 [55]. The mate-pair library was then used to fur-

ther scaffold this Velvet assembly using SSPACE [56]

with an iterative approach, in which the number of

read-pair links required to scaffold two contigs was

initially set to 50, then reduced to 30, 20 and finally

set to 10 for two final iterations of SSPACE to pro-

duce assembly nGr.v0.9. The three whole genome se-

quencing libraries were subsequently used to gap fill

the assembly (GapFiller v1.10 [57], 10 iterations and

default values for extension parameters), producing

the final assembly nGr.v1.0.

A BlobDB (Blobtools v0.9.9 (https://drl.github.io/blob-

tools/) [58, 59] was constructed using: (1) the assembly;

(2) similarity search results against the NCBI Nucleotide

database (BLASTn 2.3.0+ [60] megablast, E-value cutoff

1e–65), Uniref90 (Diamond v0.7.12 [61], blastx, using the

options –sensitive, -k 25 and -c 1) and the G. pallida
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reference genome nGp.v1.0 (BLASTn megablast, E-value

cutoff 1e–65); (3) the three DNA-seq read libraries

mapped back to the assembly (CLC mapper

v4.21.104315 CLCBio, Copenhagen, Denmark). A

Taxon-Annotated-Gc-Coverage plot (TAGC) was drawn

at the rank of phylum and under taxrule ‘bestsum’.

Using Blobtools view, taxonomically annotated non-

nematode scaffolds with a bit-score ≥200 were inspected

manually and compared against NCBI Nucleotide data-

base (BLASTn). Twenty-three scaffolds could be ex-

cluded as contaminants based on strong similarity to

Bacteria or Fungi (span = 98.2 kb). TAGC plots pre- and

post-filtering are shown in Additional file 24: Figure S11.

SSU/LSU rDNA screening was carried out through se-

quence similarity searches (BLASTn megablast) of the

assembly against SILVA SSUParc and LSUParc data-

bases. Hits were only observed against G. rostochiensis

SSU (scaffolds GROS_00919, GROS_01231) and LSU

(scaffold GROS_00803, GROS_00919, GROS_01231).

Genome annotation

Genome annotation was carried out in a two-step

process detailed in the Additional file 2: Supplementary

information. An initial round of automated gene predic-

tions (nGr.v0.9.auto, 13,650 models) were refined in the

collaborative genome annotation editor WebApollo

(v1.0.4-RC3 [62]). Approximately one-eighth of the gene

models were manually inspected based on homology to

known Globodera genes, RNA-seq evidence and WGS

read coverage yielding 1566 manually curated gene

models (nGr.v0.9.manual). A second round of de novo

gene prediction was carried out on assembly nGr.v1.0

with the addition of manual annotations as protein hom-

ology evidence and mapped RNA-seq reads as intron-

hints to train and run Augustus (v3.1 [63]) resulting in

the final gene set nGr.v1.0 containing 14,309 protein-

coding genes. Functional annotation was performed

using InterProScan5 (v5.7-48.0 [64]) to identify motifs

and domains in the proteins by comparing them against

databases Gene3D, PRINTS, Pfam, Phobius, ProSitePat-

terns, ProSiteProfiles, SMART, SUPERFAMILY, Signal-

P_EUK, TIGRFAM, TMHMM, Annot8r with KEGG,

GO, EC, tRNAscan and rfam. GO-Term annotation and

GO-enrichment analysis was carried out using Blast2GO

3.1.3 [65].

Splicing

Splice sites were extracted from the genomes and

GFF3 files present on WormBase for the species in

Additional file 4: Figure S2, using custom script

extractRegionFromCoordinates.py (https://github.com/

DRL/GenomeBiology2016_globodera_rostochiensis/GNU

GENERAL PUBLIC LICENSE). Four base pairs up

and downstream of the 5′ donor site, and 6 bp up-

stream of the 3′ acceptor site were used to construct a

consensus sequence for all GC/AG introns, and an identical

sized sample of randomly selected GT/AG introns, using

MEME SUITE v4.9.1 [66].

Transcriptome sequencing and differential expression

RNA from two life stages (hatched second-stage juvenile

and 14 dpi female) was sequenced, each in biological du-

plicate, with Illumina Hiseq 100 bp paired-end reads

(SRA accessions ERR202479, ERR202487 and PRJEB

12075). These were compared with two additional life

stages (dormant cysts and hydrated eggs), similarly se-

quenced in biological duplicate (Genbank accessions

SAMN03393004 and SAMN03393005). All RNA-seq

was carried out on pathotype Ro1. Normalized gene ex-

pression values and differentially expressed genes were

identified as previously described [50]. In brief, raw

reads were trimmed of adapter sequences and low qual-

ity bases (Phred <22, Trimmomatic [67]), mapped to the

genome (Tophat2, [68]), counted on a per gene basis

(bedtools v2.16.2 [69]), TMM normalised and differential

expression analysis and clustering were performed using

a Trinity wrapper pipeline and associated scripts for

RSEM [70] and EdgeR [71] (FDR <0.001, minimum fold-

change 4, [72]). Expression clusters were grouped based

on the tree height parameter (12 %) and manually

assigned to expression super-clusters.

Phylogenetic analysis of WAGO proteins

Putative G. rostochiensis (n = 23), G. pallida (n = 18) and

M. hapla (n = 18) WAGOs present in OrthoMCL clus-

ters, which contained at least one G. rostochiensis pro-

tein with highest similarity to C. elegans WAGO1, were

aligned to 545 WAGO sequences from Buck and Blaxter,

2013 [30]. This comprised WAGOs from Clade I, Clade

III, Clade IV and Clade V nematodes, as well as non-

Nematode argonaute sequences (http://datadryad.org/

(See figure on previous page.)
Fig. 9 All DOG effectors from G. rostochiensis and G. pallida. Using a minimum of two DOG boxes, presence of a signal peptide, absence of

transmembrane domains and temporal expression profiles consistent with a role in parasitism as selection criteria, we identify and separate all
DOG effectors from G. rostochiensis (a) and G. pallida (b) into putative functional groups. For both (a) and (b), clusters were manually assigned to

‘strict’ or ‘inclusive’ subsets of the same overall expression pattern, based on how they conform to the observed pattern. c Experimental validation of
two novel G. rostochiensis DOG effectors confirms the dorsal gland cell expression prediction. DOG_0102 (g04707) contains five DOG boxes in
its promoter while DOG_0094 (g14226) contains six boxes
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resource/doi:10.5061/dryad.5qs11). Alignment was car-

ried out using clustal-omega 1.2.0 [73] and alignment

was trimmed to only include the core PIWI PAZ domain

section of argonautes. The WAG +G + F model of

amino acid sequence evolution was selected under AICC

using Prottest 3.4 [74] and phylogenetic trees were in-

ferred using RAxML 8.1.20 [75] (ML search + 100 rapid

bootstraps).

Horizontal gene transfer

Candidate horizontal gene transfers (HGT) were de-

tected as previously for plant-parasitic nematodes [37]

by calculating AIs as described in [32, 33] using Alien-

ness [31]. Briefly, AIs were calculated for each G. rosto-

chiensis protein returning at least one similar sequence

in either a metazoan or non-metazoan species (E-value

threshold of 1e–3) present in NCBI’s non-redundant (nr)

database, according to the following formula:

AI ¼ log best metazoan evalue þ e−200
� �

− log

best nonmetazoan evalue þ e−200
� �

Sequences derived from species under NCBI Taxon-

omy’s ‘Tylenchida’ (TaxID: 6300, equivalent to Tylencho-

morpha) were not included in this calculation to allow

detection of HGT events which took place in an ances-

tor of cyst nematodes and their tylenchomorph relatives.

No AI value could be calculated for proteins returning

no similar sequences in the nr database. An AI >0 indi-

cates a better hit to a non-metazoan species than to a

metazoan species and thus a possible acquisition via

HGT. An AI >30 corresponds to a difference of magni-

tude e10 between the best non-metazoan and best meta-

zoan E-values and is estimated to be a strong indication

of a HGT event [32]. Proteins with an AI >0 and ≥70 %

identity to a non-metazoan protein were considered pu-

tative contaminants and not included in further analysis.

Effector identification

Genes in the G. rostochiensis genome sequence similar

to previously reported effectors with experimentally vali-

dated gland cell expression were identified in a two-step

process. An inclusive list of effectors was generated by

sequence similarity alone. For those effectors that are

characterised by the presence of particular domains (e.g.

the SPRY domain of SPRY-SEC effectors), hmmsearch

[76] using the appropriate domain was used to identify

all sequences predicted to contain the same domain

using the gathering significance threshold. For all other

effectors, BLASTp was used to identify similar se-

quences (E-value ≤1e–5). Cell wall degrading enzymes

(CWDEs) identified as putatively acquired via HGT were

included if they had known in situ localisation to either

gland cell. This inclusive list was triaged by removing

those without a predicted signal peptide and/or those

with one or more transmembrane domain (Phobius

[77]), producing the high-confidence effector list (Additional

file 12: Table S4).

Variant analysis

Sequence reads (Bioproject PRJNA305631) were mapped

against the assembly using bwa mem v0.7.12-r1044 [78].

Duplicated read pairs were removed using Picard (http://

broadinstitute.github.io/picard). Variants were called using

freebayes v0.9.20-16-g3e35e72 [79]. Haplotypes and other

complex variants were decomposed using vcflib vcfallelic-

primitives v1.0.0-rc0 (https://github.com/ekg/vcflib/re-

leases/tag/v1.0.0-rc0) followed by normalisation using vt

normalize v0.57 [80]. The resulting VCF file was filtered

with the following parameters: DP > 10 & MQM> 30 &

QUAL > 1 & QUAL/AO> 10 & SAF > 2 & SAR > 2 &

RPR > 1 & RPL > 1 using vcffilter from vcflib. Variants

were annotated using SnpEff v4.1 L [81]. The resulting

VCF file was analysed using vt peek, RTG Tools [82] and

parse_snpeff.py. Variants (vcf file) were filtered to retain

only SNPs (TYPE = snp) with no missing data, 730,705

loci were found from whole genome data. Allele frequen-

cies at each locus was computed by dividing the reference

allele observation count (RO) by the read depth (DP). In

the same manner, allele frequencies for SNPs present in

non-coding regions (n = 619,886) were computed. Seqboot

module in PHYLIP v3.695 [83] was used to make 100

bootstrapped datasets. Maximum likelihood phylogenetic

trees of the nine populations of G. rostochiensis were cal-

culated with the Contml module based on genome-wide

SNP allele frequencies and a majority rule consensus tree

was constructed using Consense. Principal component

analysis (PCA) were calculated with the prcomp() function

from the stats package in R based on genome-wide allele

frequencies at these 730,705 loci.

Protein clustering

Putative one-to-one orthologues between G. pallida and

G. rostochiensis were identified by the reciprocal best

BLAST hit method. Both proteomes were compared

against each other using BLASTp (v2.2.30+) and the

resulting files were processed using the script rbbh.py

(https://github.com/DRL/GenomeBiology2016_globoder-

a_rostochiensis GNU GENERAL PUBLIC LICENSE, E-

value ≤1e–25 and reciprocal-query coverage >75 %). Pro-

tein clustering analysis was performed on the proteomes

(retrieved from Wormbase WS248) of B. xylophilus, C.

elegans, M. hapla, M. incognita, G. pallida (retrieved from

WormBase ParaSite WBPS2) and G. rostochiensis

(nGr.v1.0) using OrthoMCL (v2.0.9 [84]) (with an inflation

value of 1.5) and following the guidelines specified in [84].

Phylogenetically informative sets of clusters were plotted

using UpSetR (Release v1.0.0, https://github.com/hms-
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dbmi/UpSetR/releases [85]). For each of four orthologous

gene cluster categories (all nematodes tested, all plant par-

asites tested, Globodera and Meloidogyne and Globodera

alone), the percentage of genes present in each differential

expression super-cluster was determined. This value was

normalised by the total number of genes present in each

given differential expression super-cluster, to return a rela-

tive measure of abundance used in Fig. 3.

Effector islands, synteny and promoter analyses

The presence of effectors in adjacent (n ± 1), or neigh-

bouring positions (up to ±9), was determined. As a

negative control, a subset of 612G. rostochiensis gene

families not predicted to contain effectors was identi-

fied from the OrthoMCL. This subset contained gene

families of various sizes, the distribution of which with

respect to gene family size 1, 2 and ≥3 was the same as

that of the effectors. Starting from this initial negative

set of 612 gene families, 37 were selected at random

and the presence of genes from these 37 families in ad-

jacent (n ± 1), or neighbouring positions (up to ±9), was

determined. This process was repeated for 1000 itera-

tions to generate a robust negative for the average fre-

quency in each neighbouring position. The observed

frequency of effector occurrence at each position was

compared to the average of 1000 iterations. Non-over-

lapping islands, delineated by furthest distance at which sta-

tistically significant enrichment was observed (±6, χ
2

goodness of fit, p <0.001), were manually identified.

Synteny between scaffolds of G. pallida and G. rosto-

chiensis was assessed based on OrthoMCL-cluster member-

ship of both sets of proteins using i-adhore-3.0.01 ((https://

github.com/widdowquinn/Teaching/tree/master/Compara-

tive_Genomics_and_Visualisation/Part_2/i-ADHore) type =

family, tandem_gap = 10, gap_size = 15, max_gaps_in_a-

lignment = 20, cluster_gap = 20, q_value = 0.9, alignment_

method = gg2, prob_cutoff = 0.001, multiple_hypothesis_

correction = bonferroni, anchor_points = 5). Syntenic blocks

were visualised as clusters in a graph using parse_iadhor-

e.py. G. rostochiensis scaffold GROS_00007 (a member of

the biggest syntenic cluster) was plotted with its homolo-

gous G. pallida scaffolds using circos 0.67-7, including GC-

content and BLASTn results at an E-value cutoff of 1e-65.

To analyse putative enhancer elements, sequences 500 bp

upstream of genes of interest (termed the promoter re-

gions) were extracted from the genome using get_up-

stream_regions.py (https://github.com/peterthorpe5 GNU

GENERAL PUBLIC LICENSE). Enrichment of motifs be-

tween categories (DG versus all, DG versus SvG, etc.) was

calculated using HOMER [49], specifying max length of six

nucleotides. Instances of the motif were identified in

FASTA sequences of promoter regions using the FIMO

web server [86].

In situ hybridisation

The spatial expression patterns of two predicted G. rosto-

chiensis dorsal gland effectors were determined in J2s by

in situ hybridisation as described previously [87]. Single-

stranded digoxygenin-labelled DNA probes were synthe-

sised from amplified cDNA fragments using primers

g14226F (5′-CCGTTGAGCCGTCGACTAAT-3′) and g1

4226R (5′-TTTCCCGACGTCCAGTTGAC-3′) or g0470

7F (5′-AAGGAGCACCATCGTACCAAG-3′) and g04707

R (5′-GTTCTGAGCCTTGTTGAAAG-3′).

Description of additional data files

The following additional data are available with the on-

line version of this paper. Additional file 7: File S1 con-

tains the data matrix of normalised expression values.

Additional file 2: Supplementary information file 1 con-

tains various supplemental methods and results.

Additional files

Additional file 1: Figure S1. Gene duplication in the G. rostochiensis

and related genomes. Comparing the identity of each gene to the next
most similar gene in the genome gives insights into potential duplication
within the genome sequence. In a diploid species, with a good assembly
and gene prediction, we expect no overrepresentation of duplicates at
any particular divergence, as is seen in the genome of M. hapla. The G.

rostochiensis protein set has a very similar distribution to that of M. hapla,
but in G. pallida there is an overrepresentation of genes that are >97 %
identical to each other. As reported previously, the protein set from M.

incognita has a distinct excess of duplicates at ~96 % identity, thought to
derive from a hybrid origin, and subsequent aneuploidy changes, of this
species [23, 88]. G. pallida is not believed to derive from a hybridisation
event [26] and so this is probably a reflection of duplication at the
assembly stage (i.e. retention of allelic copies of loci because of the high
level of heterozygosity in UK populations). (PDF 1365 kb)

Additional file 2: Supplementary methods and results. (DOCX 28 kb)

Additional file 3: Table S1. Genome annotation. (XLSX 9 kb)

Additional file 4: Figure S2. Phylum wide analysis of GC/AG splice
sites in nematodes. The percentage of GC/AG splices sites with
associated consensus sequences are shown for 17 species against a
schematic phylogeny of the phylum Nematoda (adapted from [89]). Red
numbers indicate those which likely represent under reporting due to
over-strict parameter settings during gene prediction. (PDF 1371 kb)

Additional file 5: Figure S3. Comparison of gene expression between
parasitic G. pallida life stages. The key transitions to be captured in terms
of gene expression of all genes, and in particular for effectors, is from
outside the plant (J2) compared to inside the plant (sedentary female).
There is almost no difference in global gene expression between the
early sedentary time points [22]. A. 84 % of the variation in expression at
7 days post infection (dpi) is explained by variation in expression at 14
dpi. B. This correlation is even more profound if the analysis is restricted
to only the effectors (89 %). Similar correlations are possible between 14
and 21 dpi, albeit of lesser magnitude but an identical trend (60 %
correlation for all genes, and 64 % correlations for specifically effectors).
This is not the case, however, when comparing J2 and 7 dpi (44 % for all
genes, and zero correlation for all effectors). Fourteen dpi provides an
ideal intermediate for the sedentary stages. (PDF 4379 kb)

Additional file 6: Figure S4. Differential expression super-clusters.
Ninety-four percent of all differentially expressed genes are manually
grouped into 25 biologically relevant expression super-clusters. For each
super-cluster, individual cluster graphs are shown where for all expression
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displayed as centred log fold-change is in the order, Cyst, Cyst, Egg, Egg,
J2, J2, 14 dpi, 14 dpi. (PDF 1669 kb)

Additional file 7: File S1. Clusters and normalised expression tables.
(XLSX 956 kb)

Additional file 8: Figure S5. Phylogenetic analysis of Worm-specific
Argonauts (WAGOs). A. A total of 604 nematode and non-nematode
argonaute proteins drawn as an unrooted phylogram. It is assumed that
each subtree (B–F) is effectively rooted by the other subtrees; however,
the extreme divergence between these proteins yields low support for
some subtrees. B–F Subtrees containing G. rostochiensis WAGOs (GrWAGOs).
Branch widths of subtrees are drawn proportional to branch support.
Coloured boxes indicate membership of taxa to phylogenetic groups
(nematode Clade I, Clade III, Clade IV and Clade V, non-nematode taxa)
and coloured stars indicate clades composed entirely of Heteroderidae-
WAGOs (Globodera spp., Meloidogyne spp., Heterodera glycines). Orange
dots indicate GrWAGOs in differential expression super-clusters 19, 20 or
21. GrWAGOs are placed within Nematode WAGO-subclades ALG1/
ALG2 (1), RDE1/ERGO1/PRG1/2 (2), WAGO1/2/4/5 (7), CSR/WAGO-III/
WAGO-IV (8) and NRDE/WAGO-10/11 (5), sensu Buck and Blaxter, 2013
[30]. As expected, no GrWAGOs were observed in WAGO-subclades
SAGO2/PPW, WAGO-III/-V and ALG3/ALG4. Subclades NRDE/WAGO-10/
11, WAGO1/2/4/5 and CSR/WAGO-III/WAGO-IV show increased numbers
of paralogous expansion of these gene families within Clade IV in
general and Heteroderidae in particular. B All Globodera spp. and
Meloidogyne spp. exhibit one ALG1/ALG2 orthologue each, which
form a clade. C The RDE1/ERGO1/PRG1/2 subtree contains another
Heteroderidae-specific clade; however, one M. incognita sequence is
sister to a subclade of Clade III taxa. This is surprising since the Clade
III parasites A. suum and B. pahangi are thought to have lost the
piRNA pathway [30] and may be an artefact. D The NRDE/WAGO-10/
WAGO-11 subtree shows an expansion of paralogous Heteroderidae-
WAGOs, with three GrWAGOs expressed at 14 dpi. E The WAGO1/2/4/
5 subtree depicts two Heterodera-specific expansions, of which the
larger subclade contains four GrWAGOs expressed at 14 dpi. F The
CSR/WAGO-III/WAGO-IV subtree contains another two Heteroderidae-
specific expansion, of which one also includes a sequence from the
Clade V nematode Dictyocaulus viviparus (ochre star). (PDF 64 kb)

Additional file 9: Table S2. Alien indices. (XLSX 81 kb)

Additional file 10: Table S3. High confidence effectors. (XLSX 13 kb)

Additional file 11: Figure S6. Transposable elements in G. rostochiensis,
G. pallida and Meloidogyne spp. Quantities of transposable elements from
(A) DNA, (B) LTR, (C) LINE and (D) SINE super-familes. Globodera spp.
contain notably more Jockey (LINE) and Alu (SINE) than the Meloidogyne
spp. (PDF 623 kb)

Additional file 12: Table S4. Genes acquired via HGT in other cyst and
root-knot nematodes also found in the genome of G. rostochiensis.
(XLSX 21 kb)

Additional file 13: Table S5. Variants summary. (XLSX 11 kb)

Additional file 14: Table S6. Molecular markers of pathotypes Ro1, 4
and 5. (XLSX 24 kb)

Additional file 15: Figure S7. Phylogenetic analysis of G. rostochiensis
pathotypes. A. A maximum likelihood phylogeny based on 730,705
genome wide SNPs. Two distinct groups of Ro1 are together separated
from Ro2, Ro3, Ro4 and Ro5. Node labels indicate bootstrap support
values for 100 iterations. B. Principle component analysis (PCA) based on
the same dataset suggest that for pathotype Ro1, intra-pathotype
variation is similar to inter-pathotype variation. REF Ro1 = Reference
strain Ro1 assembly, MAR149 Ro1 = British Columbia, QC Ro1 = Quebec,
Ro19 Ro1 = European, NFLD Ro1 = Newfoundland, SCRI_Ro2, SCRI_Ro3,
SCRI_Ro4, SCRI_Ro5 are pathotype populations from the James Hutton
Institute collection. (PDF 1636 kb)

Additional file 16: Table S7. SNP allele frequency correlation with
virulence in non-effectors. (XLSX 15 kb)

Additional file 17: Figure S8. Comparison of distance to neighbouring
gene for effectors and non-effectors. A. The log nucleotide distance to
next gene 5′ and 3′ for a random subset of non-effectors (n = 138). B. The
log nucleotide distance to next gene 5′ and 3′ for high-confidence

effectors (n = 138). C. Comparing the distance of each gene to its
neighbour either upstream or downstream suggests that despite being
located in gene dense regions of the genome, effectors have a skewed
distribution of gene density compared to an identically sized subset of
non-effectors (lower case letters indicate homogenous subsets, Student’s
t-test correcting for multiple comparisons p <0.001). (PDF 1393 kb)

Additional file 18: Table S8. Effector islands. (XLSX 13 kb)

Additional file 19: Figure S9. Synteny clusters. Network representation
of i-ADHoRe results. Scaffolds are represented as nodes (blue = G. rosto-

chiensis, ochre = G. pallida) whose diameter is scaled by scaffold length
and vertices are drawn between them if five or more anchorpoints (i.e.
syntenic proteins, numbers on vertices indicate count of anchorpoints) have
been found. The biggest cluster (dashed black line) is composed of 26 G. ros-
tochiensis scaffolds (4.99 Mb) and 35 G. pallida scaffolds (5.54 Mb). Part of this
cluster (grey dotted line) is shown in Fig. 6. (PDF 570 kb)

Additional file 20: Figure S10. The DOG box is not a quantitative
predictor of temporal expression. A. In G. pallida, genes with four or more
motifs and a signal peptide are primarily expressed during the infective
stage. Each line represents the expression pattern of a different gene. B.
The number of motifs does not correlate with gene expression at J2
(black, all numbers of motifs; red, four or more motifs). (PDF 1707 kb)

Additional file 21: Table S9. G. rostochiensis putative DOG effectors.
(XLSX 36 kb)

Additional file 22: Table S10. G. pallida putative DOG effectors.
(XLSX 44 kb)

Additional file 23: Table S11. G. rostochiensis genome libraries.
(XLSX 9 kb)

Additional file 24: Figure S11. Blob plots. A. Blob plot of the initial G.
rostochiensis assembly, displaying some minor contamination from
Actinobacteria and Ascomycota. Each scaffold is drawn as a circle based
on its GC content (X-axis) and log-coverage (Y-axis), with a diameter
proportional to its length and coloured by its taxonomic annotation at
the phylum-level. In the legend, colours of phyla are listed together with
scaffold-count, scaffold span and scaffold N50. The histograms above and

to the right of the main scatter plot sum contig spans for GC proportion
bins and log-coverage bins, respectively. B. Blob plot of the G. rostochien-

sis assembly after removal of contaminant scaffolds. (PDF 8314 kb)

Additional file 25: Table S12. Microsatellite abundance. (XLSX 8 kb)

Acknowledgements

This work benefited from interactions promoted by COST Action project FA
1208. We thank Nathalie Smerdon and Lesley Shirley for creating the
sequencing libraries and Matthew Berriman for supporting this work. The
authors are grateful to the Genotoul bioinformatics platform Toulouse
Midi-Pyrenees for providing computing resources.

Funding

SE-vdA is supported by BBSRC grant BB/M014207/1. Sequencing was funded
by BBSRC grant BB/F000642/1 to the University of Leeds and grant BB/
F00334X/1 to the Wellcome Trust Sanger Institute). DRL was supported by a
fellowship from The James Hutton Institute and the School of Biological
Sciences, University of Edinburgh. GK was supported by a BBSRC PhD
studentship. The James Hutton Institute receives funding from the Scottish
Government. JAC and NEH are supported by the Wellcome Trust through its
core funding of the Wellcome Trust Sanger Institute (grant 098051). This
work was also supported by funding from the Canadian Safety and Security
Program, project number CRTI09_462RD.

Availability of data and materials

Genome sequence data are available in the SRA repository accessions
ERR114519, ERR123958 and ERR114520. Transcriptomic data are available in
the SRA repository under accession ERR202479, ERR202487 and PRJEB12075
and the GenBank repository accessions SAMN03393004 and SAMN03393005.
Whole genome resequencing data are available under the Bioproject
PRJNA305631. Raw and parsed VCF files, transposable element prediction
and gene coordinates, clusters and normalised expression tables,
interproscan results and blast2go results are available in Dryad accession
doi:10.5061/dryad.4s5r6. Custom scripts integral to the manuscript are

Eves-van den Akker et al. Genome Biology  (2016) 17:124 Page 20 of 23

dx.doi.org/10.1186/s13059-016-0985-1
dx.doi.org/10.1186/s13059-016-0985-1
dx.doi.org/10.1186/s13059-016-0985-1
dx.doi.org/10.1186/s13059-016-0985-1
dx.doi.org/10.1186/s13059-016-0985-1
dx.doi.org/10.1186/s13059-016-0985-1
dx.doi.org/10.1186/s13059-016-0985-1
dx.doi.org/10.1186/s13059-016-0985-1
dx.doi.org/10.1186/s13059-016-0985-1
dx.doi.org/10.1186/s13059-016-0985-1
dx.doi.org/10.1186/s13059-016-0985-1
dx.doi.org/10.1186/s13059-016-0985-1
dx.doi.org/10.1186/s13059-016-0985-1
dx.doi.org/10.1186/s13059-016-0985-1
dx.doi.org/10.1186/s13059-016-0985-1
dx.doi.org/10.1186/s13059-016-0985-1
dx.doi.org/10.1186/s13059-016-0985-1
dx.doi.org/10.1186/s13059-016-0985-1
dx.doi.org/10.1186/s13059-016-0985-1
http://dx.doi.org/10.5061/dryad.4s5r6


available on GitHub and cited where appropriate in the text. The G.

rostochiensis genome is available for query (BLAST etc) at: http://
globodera.bio.ed.ac.uk/search/species_search?genomeSelect=1213186
&Gid=1213187&GFFid=1213188).

Authors’ contributions

NEH and JAC carried out sequencing and assembly. DRL and GK carried out
automated annotations and gap filling. SEVDA, DRL, EGJD, BM, EG, MOD, IB,
JL, ME, MS, MR, HO, AT, GS, SM, PJAC, WP, CJL, JMCM, LMJ, JTJ and HBY
participated in manual annotation. DRL and SEVDA carried out phylum
and genus comparative analyses. DRL, BM, MOD, IB and SEVDA carried
out variant analysis. JM carried out microsatellite analysis. SEVDA and
MDR carried out transcriptomic analyses. EGJD and CR carried out HGT
calculations and analyses. BH carried out carbohydrate-active enzymes
analyses. AS predicted transposable elements. SEVDA and DRL carried out
splicing analyses. SEVDA, PT and CJL carried out effectors analyses. CJL
carried out in situ hybridisation. SEVDA, DRL, EGJD, MB and JTJ wrote the
manuscript. VB, PEU and MB critically revised the manuscript. SEVDA, DRL,
JTJ, CJL, VB, PEU and MB participated in design of the study. All authors
read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Ethics approval and consent to participate

Ethics approval was not needed for the study.

Author details
1Division of Plant Sciences, College of Life Sciences, University of Dundee,
Dundee DD1 5EH, UK. 2Institute of Evolutionary Biology, University of
Edinburgh, Edinburgh EH9 3FL, UK. 3Cell and Molecular Sciences Group,
Dundee Effector Consortium, James Hutton Institute, Dundee DD2 5DA, UK.
4Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK. 5INRA,
University Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia
Agrobiotech, 06900 Sophia Antipolis, France. 6Wellcome Trust Sanger
Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK.
7School of Biological, Biomedical and Environmental Sciences, University of
Hull, Hull HU6 7RX, UK. 8INRA, UMR1349 IGEPP (Institute for Genetics,
Environment and Plant Protection), 35653 Le Rheu, France. 9Agriculture and
Agri-food Canada, Horticulture Research and Development Centre, 430
Bboul. Gouin, St-Jean-sur-Richelieu, Quebec J3B 3E6, Canada. 10Sidney
Laboratory, Canadian Food Inspection Agency (CFIA), 8801 East Saanich Rd,
Sidney, BC V8L 1H3, Canada. 11Laboratory of Nematology, Department of
Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708, PB,
Wageningen, The Netherlands. 12Information and Computational Sciences
Group, James Hutton Institute, Dundee, UK. 13USDA-ARS Horticultural Crops
Research Laboratory, Corvallis, OR, USA. 14CNRS UMR 7257, INRA, USC 1408,
Aix-Marseille University, AFMB, 13288 Marseille, France. 15Department of
Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia. 16School
of Biology, University of St Andrews, North Haugh, St Andrews KY16 9TZ, UK.

Received: 8 January 2016 Accepted: 12 May 2016

References

1. Nicol JM, Turner SJ, Coyne DL, den Nijs L, Hockland S, Maafi ZT. Current
nematode threats to world agriculture. In: Jones J, Gheysen G, Fenoll C,
editors. Genomics and molecular genetics of plant-nematode interactions.
The Netherlands: Springer; 2011. p. 21–43.

2. Evans K, Franco J, De Scurrah MM. Distribution of species of potato cyst-
nematodes in South America. Nematologica. 1975;21:365–9.

3. Plantard O, Picard D, Valette S, Scurrah M, Grenier E, Mugniery D. Origin and
genetic diversity of Western European populations of the potato cyst
nematode (Globodera pallida) inferred from mitochondrial sequences and
microsatellite loci. Mol Ecol. 2008;17:2208–18.

4. Evans K, Rowe J. Distribution and economic importance. In: Sharma SB,
editor. The cyst nematodes. The Netherlands: Springer; 1998. p. 1–30

5. Boucher AC, Mimee B, Montarry J, Bardou-Valette S, Bélair G, Moffett P, et al.
Genetic diversity of the golden potato cyst nematode Globodera

rostochiensis and determination of the origin of populations in Quebec,
Canada. Mol Phylogenet Evol. 2013;69:75–82.

6. Phillips M, Trudgill D. Variation of virulence, in terms of quantitative
reproduction of Globodera pallida populations, from Europe and South
America, in relation to resistance from Solanum vernei and S. tuberosum ssp.
andigena CPC 2802. Nematologica. 1998;44:409–23.

7. Hockland S, Niere B, Grenier E, Blok V, Phillips M, Den Nijs L, et al. An
evaluation of the implications of virulence in non-European populations of
Globodera pallida and G. rostochiensis for potato cultivation in Europe.
Nematology. 2012;14:1–13.

8. Kort J, Ross H, Rumpenhorst H, Stone A. An international scheme for
identifying and classifying pathotypes of potato cyst-nematodes Globodera
rostochiensis and G. pallida. Nematologica. 1977;23:333–9.

9. Sobczak M, Golinowski W. Cyst nematodes and syncytia. In: Jones J,
Gheysen G, Fenoll C, editors. Genomics and molecular genetics of plant-
nematode interactions. The Netherlands: Springer; 2011. p. 61–82

10. Thorpe P, Mantelin S, Cock PJ, Blok VC, Coke MC, Eves-van den Akker S,
et al. Genomic characterisation of the effector complement of the potato
cyst nematode Globodera pallida. BMC Genomics. 2014;15:923.

11. Eves-van den Akker S, Lilley CJ, Jones JT, Urwin PE. Identification and
characterisation of a hyper-variable apoplastic effector gene family of the
potato cyst nematodes. PLoS Pathog. 2014;10, e1004391.

12. Smant G, Stokkermans J, Yan YT, de Boer JM, Baum TJ, Wang XH, et al.
Endogenous cellulases in animals: Isolation of beta-1,4-endoglucanase
genes from two species of plant-parasitic cyst nematodes. Proc Natl Acad
Sci U S A. 1998;95:4906–11.

13. Mei Y, Thorpe P, Guzha A, Haegeman A, Blok VC, MacKenzie K, et al. Only a
small subset of the SPRY domain gene family in Globodera pallida is likely to
encode effectors, two of which suppress host defences induced by the
potato resistance gene Gpa2. Nematology. 2015;17:409–24.

14. Lee C, Chronis D, Kenning C, Peret B, Hewezi T, Davis EL, et al. The novel cyst
nematode effector protein 19C07 interacts with the Arabidopsis auxin influx
transporter LAX3 to control feeding site development. Plant Physiol. 2011;155:866–80.

15. Wang XH, Mitchum MG, Gao BL, Li CY, Diab H, Baum TJ, et al. A parasitism
gene from a plant-parasitic nematode with function similar to CLAVATA3/
ESR (CLE) of Arabidopsis thaliana. Mol Plant Pathol. 2005;6:187–91.

16. Danchin EGJ, Rosso M-N, Vieira P, de Almeida-Engler J, Coutinho PM, Henrissat
B, et al. Multiple lateral gene transfers and duplications have promoted plant
parasitism ability in nematodes. Proc Natl Acad Sci U S A. 2010;107:17651–6.

17. Haegeman A, Jones JT, Danchin EGJ. Horizontal gene transfer in nematodes:
a catalyst for plant parasitism? Mol Plant-Microbe Interact. 2011;24:879–87.

18. Maier TR, Hewezi T, Peng J, Baum TJ. Isolation of whole esophageal gland
cells from plant-parasitic nematodes for transcriptome analyses and effector
identification. Mol Plant-Microbe Interact. 2013;26:31–5.

19. Bellafiore S, Shen Z, Rosso M-N, Abad P, Shih P, Briggs SP. Direct
identification of the Meloidogyne incognita secretome reveals proteins with
host cell reprogramming potential. PLoS Pathog. 2008;4:e1000192.

20. Hewezi T, Juvale PS, Piya S, Maier TR, Rambani A, Rice JH, et al. The cyst
nematode effector protein 10A07 targets and recruits host posttranslational
machinery to mediate its nuclear trafficking and to promote parasitism in
Arabidopsis. Plant Cell. 2015;27:891–907.

21. Wang J, Replogle A, Hussey R, Baum T, Wang X, Davis EL, et al. Identification of
potential host plant mimics of CLAVATA3/ESR (CLE)-like peptides from the
plant-parasitic nematode Heterodera schachtii. Mol Plant Pathol. 2011;12:177–86.

22. Cotton JA, Lilley CJ, Jones LM, Kikuchi T, Reid AJ, Thorpe P, et al. The genome
and life-stage specific transcriptomes of Globodera pallida elucidate key
aspects of plant parasitism by a cyst nematode. Genome Biol. 2014;15:R43.

23. Abad P, Gouzy J, Aury J-M, Castagnone-Sereno P, Danchin EGJ, Deleury E, et al.
Genome sequence of the metazoan plant-parasitic nematode Meloidogyne
incognita. Nat Biotechnol. 2008;26:909–15.

24. Opperman CH, Bird DM, Williamson VM, Rokhsar DS, Burke M, Cohn J, et al.
Sequence and genetic map of Meloidogyne hapla: A compact nematode
genome for plant parasitism. Proc Natl Acad Sci. 2008;105:14802–7.

25. Consortium S. Genome sequence of the nematode C. elegans: a platform
for investigating biology. Science. 1998;282:2012–8.

26. Grisi E, Burrows PR, Perry RN, Hominick WM. The genome size and
chromosome complement of the potato cyst nematode Globodera pallida.
Fundam Appl Nematol. 1995;18:67–70.

27. Burset M, Seledtsov I, Solovyev V. Analysis of canonical and non-canonical
splice sites in mammalian genomes. Nucleic Acids Res. 2000;28:4364–75.

28. Farrer T, Roller AB, Kent WJ, Zahler AM. Analysis of the role of Caenorhabditis
elegans GC‐AG introns in regulated splicing. Nucleic Acids Res. 2002;30:
3360–7.

Eves-van den Akker et al. Genome Biology  (2016) 17:124 Page 21 of 23

http://globodera.bio.ed.ac.uk/search/species_search?genomeSelect=1213186&Gid=1213187&GFFid=1213188
http://globodera.bio.ed.ac.uk/search/species_search?genomeSelect=1213186&Gid=1213187&GFFid=1213188
http://globodera.bio.ed.ac.uk/search/species_search?genomeSelect=1213186&Gid=1213187&GFFid=1213188


29. Kikuchi T, Cotton JA, Dalzell JJ, Hasegawa K, Kanzaki N, McVeigh P, et al.
Genomic insights into the origin of parasitism in the emerging plant
pathogen Bursaphelenchus xylophilus. PLoS Pathog. 2011;7:e1002219.

30. Buck AH, Blaxter M. Biogenesis and turnover of small RNAs: functional
diversification of Argonautes in nematodes: an expanding universe.
Biochem Soc Trans. 2013;41:881.

31. Rancurel C, Da Rocha M, Danchin EGJ. Alienness: rapid detection of horizontal
gene transfers in metazoan genomes. F1000Posters 2014. 5:1666 (poster).

32. Flot J-F, Hespeels B, Li X, Noel B, Arkhipova I, Danchin EG, et al. Genomic
evidence for ameiotic evolution in the bdelloid rotifer Adineta vaga. Nature.
2013;500:453–7.

33. Gladyshev EA, Meselson M, Arkhipova IR. Massive horizontal gene transfer in
bdelloid rotifers. Science. 2008;320:1210–3.

34. Danchin EGJ, Guzeeva EA, Mantelin S, Berepiki A, Jones JT. Horizontal gene
transfer from bacteria has enabled the plant-parasitic nematode Globodera

pallida to feed on host-derived sucrose. Mol Biol Evol. 2016;33:1571–79.
35. Dong S, Stam R, Cano LM, Song J, Sklenar J, Yoshida K, et al. Effector

specialization in a lineage of the Irish potato famine pathogen. Science.
2014;343:552–5.

36. Gilroy EM, Breen S, Whisson SC, Squires J, Hein I, Kaczmarek M, et al.
Presence/absence, differential expression and sequence polymorphisms
between PiAVR2 and PiAVR2‐like in Phytophthora infestans determine
virulence on R2 plants. New Phytol. 2011;191:763–76.

37. Eves-van den Akker S, Lilley C, Danchin E, Rancurel C, Cock P, Urwin P,
Jones J. The transcriptome of Nacobbus aberrans reveals insights into the
evolution of sedentary endoparasitism in plant-parasitic nematodes.
Genome Biol Evol. 2014;6:2181–94.

38. Hussey R, Mims C. Ultrastructure of esophageal glands and their secretory
granules in the root-knot nematode Meloidogyne incognita. Protoplasma.
1990;156:9–18.

39. Endo B. Ultrastructure of subventral gland secretory granules in parasitic
juveniles of the soybean cyst nematode, Heterodera glycines. J Helminthol
Soc Wash. 1993;60:22–34.

40. Endo BY. Ultrastructure of esophageal gland secretory granules in juveniles
of Heterodera glycines. J Nematol. 1987;19:469.

41. Maule AG, Curtis R. Parallels between plant and animal parasitic nematodes.
In: Jones J, Gheysen G, Fenoll C, editors. Genomics and molecular genetics
of plant-nematode interactions. The Netherlands: Springer; 2011. p. 221–51.

42. Mimee B, Duceppe MO, Véronneau PY, Lafond‐Lapalme J, Jean M, Belzile F,
et al. A new method for studying population genetics of cyst nematodes
based on Pool‐Seq and genomewide allele frequency analysis. Mol Ecol
Resour. 2015;15:1356–65.

43. Noon JB, Hewezi TAF, Maier TR, Simmons C, Wei J-Z, Wu G, et al. Eighteen
new candidate effectors of the phytonematode Heterodera glycines

produced specifically in the secretory esophageal gland cells during
parasitism. Phytopathology. 2015;105:1362–72.

44. Gao BL, Allen R, Maier T, Davis EL, Baum TJ, Hussey RS. The parasitome of the
phytonematode Heterodera glycines. Mol Plant-Microbe Interact. 2003;16:720–6.

45. Jones JT, Kumar A, Pylypenko LA, Thirugnanasambandam A, Castelli L,
Chapman S, et al. Identification and functional characterization of effectors
in expressed sequence tags from various life cycle stages of the potato cyst
nematode Globodera pallida. Mol Plant Pathol. 2009;10:815–28.

46. Chronis D, Chen S, Lu S, Hewezi T, Carpenter SC, Loria R, et al. A ubiquitin
carboxyl extension protein secreted from a plant-parasitic nematode
Globodera rostochiensis is cleaved in planta to promote plant parasitism.
Plant J. 2013;74:185–96.

47. Raffaele S, Win J, Cano LM, Kamoun S. Analyses of genome architecture and
gene expression reveal novel candidate virulence factors in the secretome
of Phytophthora infestans. BMC Genomics. 2010;11:637.

48. Vens C, Rosso M-N, Danchin EG. Identifying discriminative classification-
based motifs in biological sequences. Bioinformatics. 2011;27:1231–8.

49. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple
combinations of lineage-determining transcription factors prime cis-
regulatory elements required for macrophage and B cell identities. Mol Cell.
2010;38:576–89.

50. Espada M, Silva AC, Eves van den Akker S, Cock PJ, Mota M, Jones JT.
Identification and characterization of parasitism genes from the pinewood
nematode Bursaphelenchus xylophilus reveals a multi‐layered detoxification
strategy. Mol Plant Pathol. 2016;17:286–95.

51. Kozarewa I, Ning Z, Quail MA, Sanders MJ, Berriman M, Turner DJ.
Amplification-free Illumina sequencing-library preparation facilitates

improved mapping and assembly of (G+ C)-biased genomes. Nat Methods.
2009;6:291–5.

52. Park N, Shirley L, Gu Y, Keane TM, Swerdlow H, Quail MA. An improved
approach to mate-paired library preparation for Illumina sequencing.
Methods Next Generation Seq. 2013;1:10–20.

53. Simpson JT, Durbin R. Efficient de novo assembly of large genomes using
compressed data structures. Genome Res. 2012;22:549–56.

54. Gremme G, Steinbiss S, Kurtz S. GenomeTools: a comprehensive software
library for efficient processing of structured genome annotations. IEEE/ACM
Trans Comput Biol Bioinform. 2013;10:645–56.

55. Zerbino DR, Birney E. Velvet: Algorithms for de novo short read assembly
using de Bruijn graphs. Genome Res. 2008;18:821–9.

56. Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. Scaffolding pre-
assembled contigs using SSPACE. Bioinformatics. 2011;27:578–9.

57. Boetzer M, Pirovano W. Toward almost closed genomes with GapFiller.
Genome Biol. 2012;13:R56.

58. Kumar S, Blaxter ML. Simultaneous genome sequencing of symbionts and
their hosts. Symbiosis. 2011;55:119–26.

59. Kumar S, Jones M, Koutsovoulos G, Clarke M, Blaxter M. Blobology: exploring
raw genome data for contaminants, symbionts and parasites using taxon-
annotated GC-coverage plots. Front Genet. 2013;4:237.

60. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al.
BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421.

61. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using
DIAMOND. Nat Methods. 2015;12:59–60.

62. Lee E, Helt GA, Reese JT, Munoz-Torres MC, Childers CP, Buels RM, et al.
Web Apollo: a web-based genomic annotation editing platform. Genome
Biol. 2013;14:R93.

63. Stanke M, Waack S. Gene prediction with a hidden Markov model and a
new intron submodel. Bioinformatics. 2003;19:ii215–25.

64. Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, et al. InterProScan 5:
genome-scale protein function classification. Bioinformatics. 2014;30:1236–40.

65. Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO: a
universal tool for annotation, visualization and analysis in functional
genomics research. Bioinformatics. 2005;21:3674–6.

66. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, et al. MEME
SUITE: tools for motif discovery and searching. Nucleic Acids Res. 2009;37:
W202–8.

67. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina
sequence data. Bioinformatics. 2014;30:2114–20.

68. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2:
accurate alignment of transcriptomes in the presence of insertions,
deletions and gene fusions. Genome Biol. 2013;14:R36.

69. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing
genomic features. Bioinformatics. 2010;26:841–2.

70. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data
with or without a reference genome. BMC Bioinformatics. 2011;12:323.

71. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for
differential expression analysis of digital gene expression data.
Bioinformatics. 2010;26:139–40.

72. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al.
De novo transcript sequence reconstruction from RNA-seq using the Trinity
platform for reference generation and analysis. Nat Protoc. 2013;8:1494–512.

73. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable
generation of high‐quality protein multiple sequence alignments using
Clustal Omega. Mol Syst Biol. 2011;7:539.

74. Darriba D, Taboada GL, Doallo R, Posada D. ProtTest 3: fast selection of best-
fit models of protein evolution. Bioinformatics. 2011;27:1164–5.

75. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-
analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.

76. Finn RD, Clements J, Arndt W, Miller BL, Wheeler TJ, Schreiber F, et al.
HMMER web server: 2015 update. Nucleic Acids Res. 2015;43:W30–8.

77. Käll L, Krogh A, Sonnhammer EL. Advantages of combined transmembrane
topology and signal peptide prediction—the Phobius web server. Nucleic
Acids Res. 2007;35:W429–32.

78. Li H, Durbin R. Fast and accurate short read alignment with Burrows–
Wheeler transform. Bioinformatics. 2009;25:1754–60.

79. Garrison E, Marth G. Haplotype-based variant detection from short-read
sequencing. Preprint at arXiv 2012:1207.3907v2 [q-bio.GN].

80. Tan A, Abecasis GR, Kang HM. Unified representation of genetic variants.
Bioinformatics. 2015;31:2202–4.

Eves-van den Akker et al. Genome Biology  (2016) 17:124 Page 22 of 23



81. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program
for annotating and predicting the effects of single nucleotide
polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster

strain w1118; iso-2; iso-3. Fly. 2012;6:80–92.
82. Cleary JG, Braithwaite R, Gaastra K, Hilbush BS, Inglis S, Irvine SA, et al.

Comparing variant call files for performance benchmarking of next-
generation sequencing variant calling pipelines. bioRxiv 2015. doi:10.1101/
023754.

83. Plotree D, Plotgram D. PHYLIP-phylogeny inference package (version 3.2).
Cladistics. 1989;5:163–6.

84. Fischer S, Brunk BP, Chen F, Gao X, Harb OS, Iodice JB, et al. Using
OrthoMCL to assign proteins to OrthoMCL‐DB groups or to cluster
proteomes into new Ortholog groups. Curr Protoc Bioinformatics.
2011;Chapter 6:Unit 6.12.1–19.

85. Lex A, Gehlenborg N. Points of view: sets and intersections. Nat Methods.
2014;11:779–9.

86. Grant CE, Bailey TL, Noble WS. FIMO: scanning for occurrences of a given
motif. Bioinformatics. 2011;27:1017–8.

87. de Boer JM, Yan Y, Smant G, Davis EL, Baum TJ. In situ hybridization to
messenger RNA in Heterodera glycines. J Nematol. 1998;30:309–12.

88. Lunt DH, Kumar S, Koutsovoulos G, Blaxter ML. The complex hybrid origins
of the root knot nematodes revealed through comparative genomics.
Peer J. 2014;2, e356.

89. Blaxter ML, De Ley P, Garey JR, Liu LX, Scheldeman P, Vierstraete A, et al.
A molecular evolutionary framework for the phylum Nematoda. Nature.
1998;392:71–5.

90. Qin L, Kudla U, Roze EH, Goverse A, Popeijus H, Nieuwland J, et al. Plant
degradation: a nematode expansin acting on plants. Nature. 2004;427:30.

91. Vanholme B, Haegeman A, Jacob J, Cannoot B, Gheysen G. Arabinogalactan
endo-1, 4-galactosidase: a putative plant cell wall-degrading enzyme of
plant-parasitic nematodes. Nematology. 2009;11:739–47.

92. Kudla U, Milac AL, Qin L, Overmars H, Roze E, Holterman M, et al. Structural
and functional characterization of a novel, host penetration‐related pectate
lyase from the potato cyst nematode Globodera rostochiensis. Mol Plant
Pathol. 2007;8:293–305.

93. De Boer J, Davis E, Hussey R, Popeijus H, Smant G, Baum T. Cloning of a
putative pectate lyase gene expressed in the subventral esophageal glands
of Heterodera glycines. J Nematol. 2002;34:9.

94. Gao B, Allen R, Maier T, McDermott JP, Davis EL, Baum TJ, et al.
Characterisation and developmental expression of a chitinase gene in
Heterodera glycines. Int J Parasitol. 2002;32:1293–300.

95. Jones JT, Furlanetto C, Bakker E, Banks B, Blok V, Chen Q, et al.
Characterization of a chorismate mutase from the potato cyst nematode
Globodera pallida. Mol Plant Pathol. 2003;4:43–50.

96. Bauters L, Haegeman A, Kyndt T, Gheysen G. Analysis of the transcriptome
of Hirschmanniella oryzae to explore potential survival strategies and host–
nematode interactions. Mol Plant Pathol. 2014;15:352–63.

97. Craig JP, Bekal S, Niblack T, Domier L, Lambert KN. Evidence for horizontally
transferred genes involved in the biosynthesis of vitamin B1, B5, and B7 in
Heterodera glycines. J Nematol. 2009;41:281.

98. Craig JP, Bekal S, Hudson M, Domier L, Niblack T, Lambert KN. Analysis of a
horizontally transferred pathway involved in vitamin B6 biosynthesis from
the soybean cyst nematode Heterodera glycines. Mol Biol Evol. 2008;25:
2085–98.

99. Veronico P, Jones J, Di Vito M, De Giorgi C. Horizontal transfer of a bacterial
gene involved in polyglutamate biosynthesis to the plant-parasitic
nematode Meloidogyne artiellia. Febs Lett. 2001;508:470–4.

100. Scholl EH, Thorne JL, McCarter JP, Bird DM. Horizontally transferred genes in
plant-parasitic nematodes: a high-throughput genomic approach.
Genome Biol. 2003;4:R39.

101. Paganini J, Campan-Fournier A, Da Rocha M, Gouret P, Pontarotti P,
Wajnberg E, et al. Contribution of lateral gene transfers to the genome
composition and parasitic ability of root-knot nematodes. PLoS One.
2012;7:e50875.

102. Clifton W, Bird DM, Waterston RH. Analysis and functional classification of
transcripts from the nematode Meloidogyne incognita. Genome Biol. 2003;4:R26.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Eves-van den Akker et al. Genome Biology  (2016) 17:124 Page 23 of 23

http://dx.doi.org/10.1101/023754
http://dx.doi.org/10.1101/023754

	Abstract
	Background
	Results
	Conclusions

	Background
	Results and discussion
	The genome sequence of Globodera rostochiensis Ro1
	Collaborative manual gene refinement reveals a uniquely high frequency of non-canonical splice sites in Globodera
	Life stage specific transcriptome
	Genes acquired by horizontal transfer have substantially contributed to the genome of G. rostochiensis
	Effectors in G. rostochiensis are sequence diverse between pathotypes
	Effectors in the G. rostochiensis genome are compartmentalised into islands
	Identification of a putative enhancer motif associated with dorsal gland effectors
	The DOG box as a predictor of effectors

	Conclusions
	Methods
	Nematode culture and DNA isolation
	Genome sequencing and assembly
	Genome annotation
	Splicing
	Transcriptome sequencing and differential expression
	Phylogenetic analysis of WAGO proteins
	Horizontal gene transfer
	Effector identification
	Variant analysis
	Protein clustering
	Effector islands, synteny and promoter analyses
	In situ hybridisation
	Description of additional data files

	Additional files
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Ethics approval and consent to participate
	Author details
	References

