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Abstract

Background: Escherichia coli is a model prokaryote, an important pathogen, and a key organism for industrial
biotechnology. E. coli W (ATCC 9637), one of four strains designated as safe for laboratory purposes, has not been
sequenced. E. coli W is a fast-growing strain and is the only safe strain that can utilize sucrose as a carbon source.
Lifecycle analysis has demonstrated that sucrose from sugarcane is a preferred carbon source for industrial bioprocesses.

Results: We have sequenced and annotated the genome of E. coli W. The chromosome is 4,900,968 bp and
encodes 4,764 ORFs. Two plasmids, pRK1 (102,536 bp) and pRK2 (5,360 bp), are also present. W has unique features
relative to other sequenced laboratory strains (K-12, B and Crooks): it has a larger genome and belongs to
phylogroup B1 rather than A. W also grows on a much broader range of carbon sources than does K-12. A
genome-scale reconstruction was developed and validated in order to interrogate metabolic properties.

Conclusions: The genome of W is more similar to commensal and pathogenic B1 strains than phylogroup A
strains, and therefore has greater utility for comparative analyses with these strains. W should therefore be the
strain of choice, or ‘type strain’ for group B1 comparative analyses. The genome annotation and tools created here
are expected to allow further utilization and development of E. coli W as an industrial organism for sucrose-based
bioprocesses. Refinements in our E. coli metabolic reconstruction allow it to more accurately define E. coli

metabolism relative to previous models.

Background
Escherichia coli is a model prokaryotic organism, an

important pathogen and commensal, and a popular host

for biotechnological applications. Among thousands of

isolates, only four strains (the common laboratory strains

K-12, B, C, and W) and their derivatives are designated

as Risk Group 1 organisms in biological safety guidelines

[1,2]. A fifth strain, E. coli Crooks (ATCC 8739), has also

been used extensively in laboratories for over 70 years

[3-5]; more recently, it has been used as a host for indus-

trial biochemical production [6-8]. There have been no

reported cases of the strain being pathogenic, suggesting

that it is generally safe. When it was sequenced in 2007,

ATCC 8739 was designated as a C strain [6], however, it

is in fact a Crooks strain [4] and recent publications have

reflected this correction [9,10]. Of these five safe strains,

K-12 [11], B [12] and Crooks [GenBank:CP000946] have

been sequenced, but C and W have not.

E. coli W (ATCC 9637) was originally isolated from

the soil of a cemetery near Rutgers University around

1943 by Selman A. Waksman, around the same time he

and Alan Schatz discovered streptomycin (Eliora Ron,

personal communication). Waksman coined the term

‘antibiotic’, and his discovery of streptomycin (and many

other antibiotics) led to him being awarded the Nobel

Prize in Physiology or Medicine in 1952. The strain was

termed “Waksman’s strain” or “W strain” because it

showed the highest sensitivity to streptomycin compared

to other isolated E. coli strains in Waksman’s collection

(Eliora Ron, personal communication).

The first reported use of W was as the standard E. coli

strain in the assay for sensitivity to streptomycin and other

antibiotics [13]. Bernard Davis, a prominent microbiologist
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from Harvard Medical School, developed a large auxo-

trophic mutant library from the strain [14] using his peni-

cillin-based selection technique [15]. One of these

mutants, vitamin B-12 auxotroph 113-3 (ATCC 11105), is

well known as a production strain for penicillin G acyclase

(PGA) [16] and for studies of aromatic compound degra-

dation in bacteria [17]. It has also recently been discovered

that the popular ethanol-producing strain KO11 [18] is a

W strain rather than a B strain as previously thought [19].

Both W and KO11 have been engineered for the produc-

tion of several chemicals, including ethanol [18,20,21],

poly-3-hydroxybutyrate[22], lactic acid [23] and alanine

[19]. The W strain has several properties that make it a

preferred strain for industrial applications. It produces low

amounts of acetate even without tight sugar control, and

can be grown to high cell density during fed-batch culture

with relative ease [22]. It also has good tolerance for envir-

onmental stresses such as high ethanol concentrations,

acidic conditions, high temperatures and osmotic stress

[24,25]. It is a very fast growing strain; its superior growth

rate on LB medium compared to classical K-12-derived

strains has led to it being developed as a lab cl!oning strain

[27]. These combined characteristics make W extremely

attractive as a production strain. Significantly, W is the

only safe E. coli strain which can utilize sucrose as a car-

bon source, and it grows as fast on sucrose as it does on

glucose [22,27,28]. Sucrose is emerging as a preferred car-

bon source for industrial fermentation: life cycle analysis

demonstrates that sucrose from sugarcane has a superior

performance when compared to glucose from starch [29].

Modern development of good production strains entails

application of metabolic engineering principles. Increas-

ingly, metabolic engineering relies on a systems biology

approach [30]; a key aspect of this approach is the integra-

tion of a metabolic model (genome-scale model, GEM).

The first step in developing a GEM is to build an in silico

genome-scale reconstruction (GSR) derived from the

organism’s genome sequence. In this paper, we present

the complete genome sequence, detailed annotation of E.

coli W. Comparative genome analyses were performed

among safe E. coli strains and group B1 commensal/patho-

genic E. coli strains. In addition, a comprehensive, W-

specific GSR was developed to underpin construction of a

GEM for engineering industrial production strains.

Results and Discussion
Annotation and comparative analysis with other safe

laboratory strains

A combination of Roche/454 pyrosequencing, fosmid

end sequencing and Sanger sequencing was used to

obtain the complete genome sequence of E. coli W

(ATCC 9637). The W genome consists of a circular

chromosome [Genbank: CP002185] (Figure 1) and two

plasmids, pRK1 [Genbank: CP002186] and pRK2

[Genbank: CP002187]. Detailed results of genome analy-

sis can be found in Table 1. At 4,901 Kbp, the chromo-

some of E. coli W is the largest of all the sequenced safe

laboratory strains. Comparison with available E. coli

genome sequences in GenBank demonstrated that it is

similar in size to the commensal E. coli strain SE11

(4,888 Kbp) [31], but smaller than most sequenced

pathogenic strains. A total of 4,764 chromosomal genes

(including 82 non-coding RNA genes) were predicted

using Prodigal [32] and Glimmer[33]; these genes cover

89% of the chromosome.

A wide variety of algorithms were used to predict and

annotate coding and non-coding genes (see Methods).

Like the three other sequenced laboratory strains, W has

22 rRNA genes expressed from 7 rRNA operons; these

operons are present at similar locations in all four gen-

omes. The four strains share 85 tRNAs and there are four

unshared tRNAs located in large mobile elements. W has

thrX and tyrX, which occur within a variable region of the

Rac*W prophage and are homologous to thrU and tyrU of

E. coli K-12; due to separate IS-mediated deletions, W and

B are both missing a tRNA which occurs upstream of ypjC

in K-12; in K-12, ileY is present. In Crooks the sequence of

a tRNA in the same location is identical to ileY of K-12

but has been mis-annotated as a tRNA-Met2 variant.

All-against-all BLASTP comparison of chromosomal

protein-coding orthologs among the four safe laboratory

strains (Figure 2, Additional File 1) showed that of 4,482

predicted CDSs in W, 3,490 are shared among these four

strains. Another 413 are found in at least one other

strain, leaving 523 CDSs that are unique to W. Consis-

tent with the larger genome size, this is ~320-360 more

CDSs than were found to be unique in any other safe

strain. It should be noted that the number of shared

orthologs between strains is not an indicator of overall

relatedness, since increases in shared genes tends to arise

from large insertion elements (for example, K-12 and B

share a large genomic island encoding a restriction modi-

fication system while Crooks and W share two large gene

clusters encoding excretion systems). Furthermore, dif-

ferences in genome sizes bias this kind of relationship

comparison.

E. coli strains can be divided into five different ECOR

phylogroups (A, B1, B2, D and E) based on the sequences

of housekeeping genes [34]. Commensal strains are

found primarily in group A or group B1, which are sister

groups, while pathogenic strains are generally found in

Group B2, D and E [31,34,35]. A phylogenetic tree was

constructed by sequence concatenation of seven house-

keeping genes [36] (Figure 3). Using this approach,

W was assigned to group B1. Group B1 contains a large

number of commensal strains [37]. The other three

sequenced safe strains (K-12, B and Crooks), are all

members of phylogroup A [31,35]. Interestingly, these
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groupings are consistent with genome sizes of sequenced

strains: group B1 strains have larger genomes than group

A strains. W is arguably a more appropriate strain than

K-12, B or Crooks for comparison with commensal and

pathogenic strains of phylogroup B1.

Plasmids

An early report suggested that E. coli W contains three

plasmids [38]. However, it was later suggested that W

contains only two plasmids [26]. Our sequence data con-

firmed the latter report: W contains two plasmids, pRK1

and pRK2. pRK1 is a circular plasmid of 102,536 bp.

It encodes 118 genes: 114 protein coding genes, one

pseudogene and three ncRNAs (Table 1). BLAST analysis

demonstrated that it belongs to Incompatibility Group I1

(IncI1) and has high structural similarity with the IncI

plasmids pR64 (a reference IncI1 plasmid), pSE11-1

(a plasmid of roughly 100 Kbp isolated from E. coli

SE11), and pColIb-P9. Analysis of inc, a marker for IncI

designations [39], showed that inc in pRK1 differed by

only one base pair from the reference inc of Inc I1 sub-

group Ig [40]. IncI1 plasmids are characterized by the

Figure 1 Circular map of the E. coli W chromosome. The outer circle shows position in bp. The second, third and fourth circles (blue) show
forward ORFs, reverse ORFs, and pseudogenes, respectively. The fifth circle (green) shows pseudoknots. The seventh circle shows large mobile
elements (see Table 2 for details); pLEs are in green and prophages are in red. The inner circle shows a plot of G+C content, with purple being
G+C and tan being A+T.
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presence of genes encoding a thick pilus, a thin type IVB

pilus, the pilus-associated protein gene pilV, and the

DNA primase gene sog [41].

Genes for antibiotic resistance are found on most

sequenced IncI plasmids, including IncI1 plasmids [42]

and IncIg-type R621a [43]; however, pRK1 does not

encode any antibiotic resistance genes. This is desirable

in industrial strains as genetic manipulation for strain

improvement often involves the use of antibiotic selec-

tion. In addition, an IS91 insertion has interrupted two

genes involved in colicin production (cib and imm).

This insertion also resulted in the introduction of genes

involved in �-type fimbriae (see further comments

below).

The trbA-exc region in IncI1 plasmids is a diverse

region and includes genes that are involved in plasmid

maintenance and transfer. pRK1 contains a complete trb

regulon, which is required for plasmid transfer. Two

other genes are of interest: excAB, which controls sur-

face exclusion and thus determines which plasmid types

can conjugate into the host cell, and pndCA, which con-

trols plasmid stability [44]. In pRK1, pndCA has been

lost, suggesting that plasmid stability might be affected

even though there is no direct evidence that pRK1 is

unstable in W. In addition, the 3’ region of exc differs

greatly from other exc genes on IncI1 plasmids, suggest-

ing that this gene encodes a protein which determines

different mating specificity than other IncI plasmids.

Plasmid pRK2 has been sequenced previously [45] and

our analysis is in agreement with the reported informa-

tion. Briefly, pRK2 is a cryptic ColE1-type plasmid; it is

5,360 bp and encodes 16 predicted genes including 15

protein-coding genes and one non-coding RNA. It is

stably inherited and contains four putative mobilisation

genes and a gene encoding a Rom protein. It shares 99%

identity with pSE11-4, a plasmid isolated from the group

B1 commensal E. coli SE11 [31].

Finally, there is some evidence that E. coli W once har-

bored a third plasmid. An IS91 insertion in pRK1 (see

below for further details) is homologous to a region in

pSE11-3, an IncF plasmid from E. coli SE11 [31]. The

insertion has deleted a region of pRK1 which is normally

found in IncI plasmids. Additionally, the partial fimbrial

gene cluster which was transferred with the insertion is

known to be plasmid-encoded [46]. W and SE11 belong to

the same phylogroup and therefore might share a com-

mon ancestry; furthermore, two of the SE11 plasmids are

highly similar to pRK1 and pRK2 (pSE11-1 and pSE11-4,

respectively). Thus, it seems likely that an ancestral W

strain might have harbored a plasmid similar to pSE11-3.

Mobility elements and defence systems

E. coli genomes consist of a conserved core interspersed

with variable regions encoding accessory functions [47].

The conserved core is shared with closely related genera

such as Citrobacter [48], Shigella [49] and Salmonella

Table 1 Summary of genome features in safe strains

pRK1 pRK2 W K-12 B Crooks

Accession & Version CP002186 CP0021857 CP002185 U00096.2 CP000819.1 CP000946.1

Chromosome size (Kbp) 102.5 5.36 4901 4640 4630 4746

G+C content 49.95 46.03 50.84 50.78 50.77 50.87

genes (pseudogenes) 117 (1) 16 (0) 4764 (91) 4493 (177) 4383 (67) 4409 (82)

CDSs 114 15 4482 4149 4209 4200

structural RNAs 3 1 191 172 107 128

rRNAs 0 0 22 22 22 22a

tRNAs (pseudo) 0 (0) 0 (0) 87 89 (3) 85 (0) 87 (1)

other ncRNAs (pseudo) 2 (0) 1 (0) 82 61 (2) ND 19

Large Mobile Elements 0 0 10 10 11 9

Prophage regions 0 0 7 8 10 8

Integrative Elements 0 0 3 2 1 1

IS elements (pseudo) 2 (0) 0 (0) 18 (6) 41 (13) 50 (12) 39 (15)

LPS core type - - R1 K-12 R1 (IS1::waaT) R1

O antigen - - O6 O16 (IS5::wbbL) O7 (IS1::wbbD) O146 (IS1::wbwW)

H antigen H49 H48 - ND

K antigen - - - - K5 (IS1::kfiB) -

Colanic acid (M-antigen) - - + + + +

a ssrS is annotated as an rRNA in Crooks but in K-12 and W it is annotated as an ncRNA. It is included in this table as an ncRNA.

The total number of genes, tRNA, other ncRNAs and IS elements in each strain includes pseudogenes/pseudo-tRNAs etc.; the number of pseudo-elements in each case

is in noted in brackets. A ‘+’ means the element is present; a ‘-’ means the element is absent. ND = not determined in annotation. Safe laboratory strains: W (ATCC 9637)

and its plasmids pRK1 and pRK2; K-12 (MG1655); B (REL606); and Crooks (ATCC 8739). W is in phylogroup B1; K-12, B and Crooks are in phylogroup A.
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[50]. The accessory genome encodes lifestyle-specific

functions which are often found in large clusters or

related genes (so called ‘genomic islands’) [51-53]. These

clusters contain a different G+C content compared to

the rest of the genome (see Figure 1) and are acquired

through horizontal gene transfer (HGT) via natural

transformation, bacteriophage-mediated transduction or

conjugation.

Mobility elements

Large genomic islands which are flanked by mobility ele-

ments are known as large mobile elements (LMEs), and

include prophages or phage-like elements (pLEs) [54].

Differentiation between prophages and pLEs can be diffi-

cult; in general, a prophage will contain specific meta-

bolic and structural genes associated with a prophage,

while a pLE will contain an integrase and very few

regions which are homologous to known prophages.

LMEs carry large complements of genes which might

confer a variety of metabolic attributes. E. coli W has six

prophages and three pLEs, the latter of which we have

designated ‘E. coli W phage Like Elements’ (WpLEs).

A detailed list of LMEs in E. coli W and other safe strains

can be found in Table 2.

A total of twenty-eight LMEs are annotated amongst

the safe E. coli strains. They are spread out over nineteen

different sites in the chromosome and all but one can be

classified as either a pLE or one of three different pro-

phages (P2-like, P4-like or l-like). The exception is the

Mu prophage, a transpositional phage that inserts into

almost random chromosomal locations [55]; among the

four strains, Mu prophage is only found in W. None of

the LMEs in W encode any genes of particular note. In

the other strains, a few genes of interest are encoded on

prophages. Rybb*B carries retron Ec86 [6], which

encodes a reverse transcriptase that is missing from

Rybb*C and Rybb*W. The P4 prophage CP4-44 is absent

in W and Crooks but present in K-12; the flu gene is

encoded on this prophage in K-12 and is encoded on

Figure 2 Comparison of orthologous CDSs between W, K-12, B and Crooks strains. The number of shared genes, as well and the number
of unique genes and genes shared between one, two, and three strains are shown. All-against-All BLASTP for amino acids (E-value ≤ 1E-5,
identity ≥ 90%, coverage ≥ 80%) was used to assign orthologs. Total CDS counts for K-12, B & Crooks differ by 8, 14 & 5 respectively as some
CDSs had more than one ortholog in another genome (Additional File 1).
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Phev*B in B. The l prophage is the most promiscuous

prophage element among the four strains.

Ten pLEs are found among safe strains. Only KpLE2

is shared (being found in both K-12 and B). E. coli

Crooks might have harboured KpLE2: it contains a 259

bp pseudogene, the first 137 bp of which shares 72%

identity with the P4-integrases of KpLE2 in K-12 and B.

KpLE2 contains the fec regulon (discussed below) and

the sgc operon, which is involved in pentose and penti-

tol sugar breakdown [56]. K-12 contains KpLE1, which

includes the gtrAB regulon encoding a bactoprenol glu-

cosyl-transferase involved in O-antigen modification.

The Crooks strain harbours CpLE1, which contains an

endonuclease, and CpLE3 which also contains a fec reg-

ulon. The WpLE3 of W appears to comprise two sepa-

rate pLEs, as a second P4-integrase is found with

distinct regions of DNA following each integrase. The

first region contains a toxin-antitoxin system while the

second region contains a putative 5-methylcytosine

restriction system.

Insertion sequences (ISs) play an important role in the

cell’s ability to evolve and adapt to new environments

[57]. A complete description of the IS elements in safe

strains can be found in Table 3. Only two ISs are con-

served among all four strains; as previously reported

[58], no copies of IS1 were found within the W genome.

The W genome contains 24 IS elements, which is signif-

icantly fewer than K-12, B or Crooks; as a consequence,

W has no IS-related gene inactivation occurring in the

chromosome, whereas K-12 and B both have a number

of genes inactivated. These include genes involved in

lipopolysaccharide (LPS) and capsular polysaccharide

(CPS) synthesis, as well as large deletions such as the

41 Kbp region between uvrY and hchA in B which

removes the Flag-1 flagella-encoding gene cluster (see

below for further details).

Restriction modification and CRISPR systems

Restriction modification and clustered regularly inter-

spaced short palindromic repeat (CRISPR) systems play

an important role in antiviral defence against invasive

foreign genetic material (e.g., bacteriophages and inte-

grative elements) and hence control the extent of HGT

[59]. Restriction capabilities are conferred by the immi-

gration control region [60]. Both W and Crooks are

restriction minus as they lack hsdMRS, mcrBC and mrr,

which encode the restriction modification complexes. In

W, this cluster has been replaced by the pac gene

encoding a penicillin G acyclase (PGA), which catalyses

the breakdown of penicillin G into phenylacetic acid

and 6-aminopenicillanic acid [17]. This capability has

been exploited for the industrial production of PGA

using E. coli W [16]. In Crooks, the immigration control

region has undergone multiple changes due to IS ele-

ment insertions. The lack of restriction modification
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systems in W and Crooks suggests that these strains are

less able to inactivate foreign DNA.

CRISPR systems inhibit horizontal gene transfer. The

detailed mechanisms have just begun to be exposed

[61]. Recently, two CRISPR systems have been described

in E. coli: CRISPR2 and CRISPR4 [62]. These systems

differ by the presence or absence of CRISPR associated

sequence (CAS) proteins (the function of which is

unknown), and by the location, number and sequence of

repeats. E. coli W contains three CRISPR2 arrays,

CRISPR2.1, 2.2, and 2.3 (Table 4). Genes encoding E.

coli Cas proteins are present next to CRISPR2.1. W also

contains the CRISPR4.1-2 array but not the associated

Yersinia pestis Cas proteins, which are found in many E.

coli strains [62]. Each safe strain has the same number

of arrays, but the sequences and number of repeat

regions varies (Table 4). There are two cas gene clusters

found in E. coli which vary in the cas3-cse3 region; it is

unclear if they have the same function [63]. One is

found in K-12 and Crooks and the other is found in W

and O157. Multiple insertions and deletions have

destroyed the cas gene cluster in E. coli B.

Virulence/Fitness Factors

Virulence factors are classically considered to be asso-

ciated with host interactions and pathogenicity. How-

ever, it should be noted that many of these so-called

virulence factors can also be considered fitness factors

in a non-virulence context [64]. For example, adhesins

are important for colonizing all manner of niches; colo-

nisation does not necessarily lead to infection and

disease.

Serotypic antigens

E. coli serotypes are defined according to the polysac-

charide component of LPS molecules [65-67]. These

include CPSs, which can be either K-antigen or colonic

acid (M-antigen) and O-polysaccharides (O-antigen).

The H-antigen is used for serotyping, and its type is

usually determined by FliC, a flagellar structural protein

[68]. HGT of the gene regions responsible for produc-

tion of O-antigen, K-antigen, H-antigen, and the LPS

core has lead to a high degree of variability [69]. There

are 167 different O-antigen types and 80 K-antigen

types currently recorded amongst E. coli. Whereas other

safe E. coli strains have accumulated IS-mediated dele-

tions in antigenic clusters (Table 1), W has intact

clusters. It has an R1 type LPS core and an O6 type

O-antigen. Type O6 is widely distributed and found

both in uropathogenic E. coli (UPEC) strains and in

commensal strains [70]. W does not produce a K-anti-

gen, but it has the gene cluster involved in colonic acid

synthesis; colonic acid resembles K-antigen group IA

capsular polysaccharides [66]. It also has the phosphore-

lay regulon (encoded by rcsA and rcsDBC) which

Table 2 Large mobile elements found in safe strains

Insertion site W K-12 B Crooks

c - mom WMu (Mu) - - -

thrW tRNA - CP4-6 (CP4) - -

argU tRNA - DLP12 (l) DLP12 (l) -

ybhC-ybhB - - l*B l*Cr

rybB ncRNA Rybb*W (P2) - Rybb*B (P2) Rybb*Cr (P2)

icdA - e14 (l) - -

ompW - - - -

ttcA Rac*W (l) Rac (l) Rac (l) -

ydfJ Qin (l) Qin (l) Qin (l) Qin (l)

cobU-yeeX - CP4-44 (CP4) CP4-44 (CP4) -

cyaR RNA Wphi2 (P2) ogr-D’ P2*B -

argW tRNA Argw*W (l) CPS-53 (KpLE1) - -

eutA - CPZ-55 (CP4) - CrpLE1

ssrA tmRNA WpLE1 CP4-57 (CP4) Ssra*Ba CrpLE2

pheV tRNA - - Phev*B (CP4) CrpLE3

selC tRNA WpLE2 - Selc*B (CP4) Selc*Cr (CP4)

pheU tRNA - - - Pheu1*Cr (CP4)

cpxP-fieF Wphi1 (P2) - - -

pheU tRNA - - - Pheu2*Cr(CP4)

leuX tRNA WpLE3 KpLE2 KpLE2 KpLE2b

a Prophage type is unknown.
b KpLE2 P4 integrase is interrupted by IS3.

A ‘-’ means that no mobile element was found at that insertion site. Prophage types are shown in brackets. Strains are W (ATCC 9637), K-12 (MG1655),

B (REL606), Crooks (ATCC 8739).
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activates production of colonic acid. FliC homology sug-

gests that E. coli W produces an H49 type H-antigen

[71]. W can thus be antigenically characterised as E. coli

W (O6:K-:H49) CA+.

Adhesins

Fimbriae and other adhesins determine whether E. coli

can bind to and colonise specific environments, includ-

ing different types of cells. They are associated with

virulence in pathogenic strains of E. coli such as enter-

oaggregative E. coli 55989 (EAEC) [72] but are also key

to the fitness of probiotic E. coli strains such as strain

Nissle 1917, as they allow it to colonize the human

intestine [73]. In W, there are thirteen chromosomal

gene clusters involved in fimbrial biosynthesis, and most

of these are conserved among the safe strains of E. coli

(Table 5). Differences arise in genes encoding the fim-

brial usher protein and the tip adhesins. Tip adhesins

are important determinants of host cell specificity dur-

ing pathogenesis; the usher protein is a membrane pro-

tein which is involved in the assembly of a fimbria and

determines which group the fimbria belongs to [74].

There are 2 a-type fimbrial gene clusters in W:

ecpABC-yagW-ecpE, and a novel fimbrial gene cluster

found between exuT and exuR. We have designated this

novel cluster E. coli a-type fimbria, eafABCD. However,

neither of the clusters in W contains a gene encoding for

the tip adhesin protein, which is found in other a-type

fimbrial clusters and is responsible for cell binding [75].

Thus, it is unlikely that the W a-type fimbriae can func-

tion in pathogenesis or colonisation of cells in general.

W contains five g1-type fimbrial gene clusters. One of

these is E. coli YcbQ laminin-binding fimbria (ELF, for-

merly ycbQRST) [76] which is shared between group B1

strains. In W, the major subunit protein ElfA is relatively

different (84% identity) from that found in K-12 and

O157:H7 EDL933. Deletion of this gene in O157:H7

EDL933 has been shown to lead to a significant reduction

in ability to adhere to HEK293 cells [76]. A g1-type clus-

ter found in E. coli O157:H7 and annotated as ECs2113-

ECs2107, is also present in W. This cluster is also present

in E. coli K-12 (annotated as ydeQRST), but a deletion

removes ECs2113-ECs2112 and truncates ECs2111

(which normally encodes the usher protein). We have

designated this gene cluster E. coli g-type 1, with the

operon consequently designated egoABCDEF. Informa-

tion on the other three g1-type fimbrial gene clusters is

limited but all are found in K-12 and are cryptic or

poorly expressed under classic laboratory conditions [77].

Two groups of fimbriae closely related to g1-type fim-

briae and known as long polar fimbriae [78] are also

found in E. coli W. They are commonly found in both

pathogenic and commensal strains of E. coli and consist

of 3-6 genes. The first cluster, lpfA1-E1, is found in

other E. coli group B1 strains (Table 5) and shows

44-77% amino acid identity to the lpf gene cluster of

Salmonella enterica. The adherence of lpfA1-E1 homo-

logs in other E. coli strains is known to vary depending

on both the sequence of the gene cluster and on its reg-

ulation [78-80]. The second cluster, lpfA2-D2, is identi-

cal to the lpf operon found in E. coli 789. This lpf

operon has been shown to produce the fimbria responsi-

ble for adherence to human HEK293 cells [81].

There are also three π-type fimbrial gene clusters in

W and the other safe strains. One of these, located

between sixA-yfcN and consisting of seven genes, shows

Table 3 Insertion sequences found in safe strains

IS Gene W K-12 B Crooks

IS1 insAB 0 (0) 7 (0) 28 (0) 19 (0)a

IS1H insXY 1 (0) 0 (0) 0 (0) 0 (1)

IS2 insCD 0 (0) 6 (1) 0 (2) 0 (0)

IS3 insEF 3 (0) 5 (2) 5 (2) 1 (0)

IS4 insG 0 (0) 1 (0) 1 (0) 0 (0)

IS5 insH 0 (0) 11 (0) 0 (0) 2 (0)

IS30 insI 0 (0) 3 (1) 0 (1) 4 (0)

IS91 1 (0)b 0 (0) 0 (0) 0 (0)

IS150 insJ 2 (0)b 1 (0) 4 (1) 0 (0)

IS186 insL 0 (0) 3 (0) 5 (0) 3 (0)

IS600 0 (0) 0 (1) 1 (0) 0 (0)

IS609 tnpAB 4 (0) 1 (0)c 1 (0) 0 (2)

IS621 4 (1) 0 (0) 0 (0) 0 (0)

IS911 insO 2 (0) 0 (3) 1 (2) 0 (0)

ISEcB1 0 (0) 0 (0) 1 (0) 0 (0)

ISEhe3 insX 0 (0) 0 (1)d 0 (1) 0 (1)

ISEc14 0 (0) 0 (0) 0 (0) 3 (0)

ISEc17 0 (0) 0 (0) 0 (0) 3 (0)

ISZ’ insZ 0 (0) 1 (0) 0 (0) 0 (0)

ISSd1 0 (0) 0 (0) 0 (0) 0 (2)

Total 16 (1) 38 (9) 47 (9) 35 (6)

a Includes IS1 family elements.
b Found on plasmid pRK1.
c Annotated as predicted transposase in K-12 (MG1655) genome (locusTag

b1432). Predicted to be IS609 by ISFinder.
d Annotated as ISX in K-12 (MG1655) genome. Predicted to be ISEhe3 by

ISFinder.

Genes encoded on insertion sequences are noted; the number of additional

pseudogenes is noted in brackets. Strains are W (ATCC 9637), K-12 (MG1655),

B (REL606), Crooks (ATCC 8739).

Table 4 CRISPR arrays found in safe strains

CRISPR array

2.1 2.2 2.3 4.1-2

W 16a 3 11 2

K-12 14a 3 7 2

B 5 3 14 2

Crooks 22a 3 29b 4

a CAS-E genes proceed array.
b IS element occurs within array.

Strains are W (ATCC 9637), K-12 (MG1655), B (REL606), and Crooks (ATCC 8739).
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>95% sequence identity with a fimbrial gene cluster

located in the same chromosomal position in O157:H7.

In O157:H7, this cluster is annotated as ECs3222-

ECs3216; we have designated it E. coli π-type one, with

the operon consequently designated epoA-H.

Due to an insertion event on pRK1, W has five of the

eight genes from the �-type csh fimbrial gene cluster.

However, the lack of the terminal three genes most

likely renders this cluster non-functional.

Antigen-43 is a protein which works synergistically

with fimbriae to promote adhesion [82]. It is encoded

by the flu gene on the prophage CP4-44 [77], which is

present in E. coli K-12 and B, but is absent in W; conse-

quently, antigen-43 is also absent in W.

Pili are involved in gene transfer and thus in obtaining

pathogenicity factors and other elements. They also

affect biofilm formation, which is an important consid-

eration for industrial fermentation. Plasmid pRK1 con-

tains the 14-gene pil cluster which encodes a type IVB

thin pilus involved in liquid mating [83]. In contrast to

R64 and ColIb-P9, pRK1 does not contain the recombi-

nase gene rci or repeat-flanked shufflon regions that

increase the host adhesion variability of the thin pilus

[84]. In addition, there are mutations in pilS and pilU,

which encode essential functions for pilus activity. The

resulting PilS protein has three amino acid mutations at

positions where mutations have been shown to limit or

inactivate pilus function [85]. PilU has three amino acid

mutations at positions which severely affect transfer fre-

quency [86]. Furthermore, the PilS and PilU proteins

have an additional 33 and 12 amino acid changes,

respectively, at positions which have not been previously

characterised. Additionally, E. coli C producing the

PilVA-type thin pilus forms cell aggregates in liquid cul-

ture due to the pilus activity [87], whereas E. coli W

does not (data not shown). All of these considerations

suggest that E. coli W does not form thin pili.

Plasmid pRK1 also contains a set of transfer genes,

comprising 29 genes over 3 operons, which encode a

thick pilus involved in both surface and liquid mating

[88]. The pRK1 complement includes all but one of the

tra genes: the traABCD operon is incomplete as it is

missing traD, a non-essential thick pilus protein of

unknown function [89].

Secretion Systems

Secretion systems are required for the transport of pro-

teins across the cell membrane and play a role in viru-

lence [90] and fitness [91]. The conservation of core

genes between flagellar systems and Type III secretion

systems has led some authors to recognise the flagellar

Table 5 Fimbrial gene clusters found in safe strains and in representative Group B1 strains

Insertion site (W) Typea W K-12 B Crooks

Chromosome

yadN-ecpD-htrE-yadMLKC g4 + + + ECs0145-ECs0139b

ecpABC-yagW-ecpE a + + + +

sfmACDHF g1 + + + +

ybgDQPO π + + + +

elfADCG-ycbUVF g1 + + + +

csgDEFG-csgBAC curli + + + +

egoABCDEF g1 + ∆egoABC ∆egoAB ∆egoAB

yehDCBA g4 + + - +

esoABCDEFGH π + yfcOPQRSTUV yfcOPQRSTUV yfcOPQRSTUV

ygiL-yqiGHI π + IS2::yqiG + +

eafABCD a + - - +

yraHIJK g1 + + + +

gltF-yhcFc b - IS5::yhcE - -

lpfABCDE g1 + - - -

lpfA2-D2 g1 + - - -

fimAICDFGH g1 + + + IS3::fimG, *fimAICDF

Plasmids

faeCDEFGH � ∆faeHIJd - - -

a Type based on [74].
b Crooks contains a related g4 fimbrial found in E. coli O157:H7 at this location.
c Cluster location in E. coli K-12 MG1655.
d Cluster located on W pRK1.

A ‘+’means the element is present; a ‘-’ means the element is absent. Where some genes from the cluster are deleted, this is noted as e.g. egoABC. If a different

gene fimbria gene cluster is present in the insertion site, the alternative gene cluster is noted. Safe laboratory strains are W (ATCC 9637), K-12 (MG1655),

B (REL606), and Crooks (ATCC 8739). W is in phylogroup B1; K-12, B, and Crooks are in phylogroup A.
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export mechanism as a type of secretion system [92].

Consequently, there are seven secretion systems in

E. coli [90].

Flagella are required for cellular propulsion. There are

two flagella systems in E. coli [93]. In addition to the

well known Flag-1 flagellar cluster common in E. coli,

W has a Flag-2 gene cluster. The Flag-2 locus has been

found in many genera of gammaproteobacteria, includ-

ing Vibrio parahaemolyticus [94], Escherichia coli [93],

Yersinia enterolitica [95], Citrobacter rodentium [48]

and Aeromonas hydrophila [96]. The V. parahaemolyti-

cus and A. hydrophilia Flag-2 systems have been shown

to be active experimentally [94,96]. In E. coli, it is found

in some strains but not others; it was originally assigned

in E. coli 042 by homology [93] but has never been

shown experimentally to be functional. In E. coli 042,

lfgC (flgC in other genera), which encodes a rod protein

required for protein export through the outer mem-

brane, has a frameshift mutation, suggesting that the

Flag-2 system is not functional. In support of this, a

swarming motility assay was negative [97]. E. coli W and

Crooks both contain a Flag-2 locus. The lfgC genes are

not mutated, but a two-gene toxin/anti-toxin system

found in 042 between lafW and lafZ is absent. Both

strains are missing motY, which encodes a motor pro-

tein essential for swarming in V. parahaemolyticus; in

addition, they do not contain maf-5, a modification

accessory factor essential for a functional lateral flagellar

in A. hydrophilia [96]. W (but no!t Crooks) contains a

Mu prophage located in a non-coding region of the

Flag-2 locus (between EcolC_3376 and EcolC_3377).

Together, these observations suggest that the Flag-2

locus is not functional in E. coli W or in Crooks. In

K-12 and B, all that is left of the Flag-2 system are the

two terminal remnants, fhiA (lfhA pseudogene) and

mbhA (lafU pseudogene) [93].

A swarming motility assay was performed to examine

functionality of the Flag-2 locus (Figure 4). Consistent

with loss of the Flag-2 locus, E. coli B does not swarm.

However, despite the loss of what appear to be essential

Flag-2 genes, W and Cooks strains both swarm. Although

the swarming assay has been used to assess Flag-2 activity

[93,96], it should be stressed that the test is not specific to

Flag-2. E. coli K-12, which has clearly lost the Flag-2 locus,

shows very limited swarming; however a K-12 mutant

(RP437) exhibits a swarming phenotype even though it

does not contain a Flag-2 locus [98]. Further analysis by

specific deletion will be required to determine whether or

not the Flag-2 locus is active in W.

There are two Type II secretion systems (T2SSs) in

E. coli. T2SSs are required for toxin export from cells

[99] as well as a variety of other proteins which affect

fitness for specific environments [64]. E. coli K-12, B,

and Crooks all carry a repressed 14-gene T2SS gene

cluster (gspA-O, located between rpsJ and bfr) [100].

This T2SS has been lost in W due to a gspO-rpsJ dele-

tion. Both W and B (but not K-12 or Crooks) carry the

second T2SS gene cluster (yghJ-pppA-yghG-gspC-M).

Unlike E. coli B, in which gspL is truncated, all genes in

W appear functional. However, it should be noted that

unlike K-12, which can export chitinase through an

expressed T2SS [100], the W genome does not contain

any known genes encoding enzymes or toxins that can

be exported through T2SSs.

Type III secretion systems (T3SSs) inject effector pro-

teins into recipient cells leading to pathogenic or pro-

survival responses [101]. There are two T3SSs in E. coli:

the E. coli Type III secretion systems 1 and 2 (ETT1

and 2) [102]. ETT1 is absent in all four sequenced

laboratory strains. Remnants of the ETT2 locus can be

found in all of them, but they do not have a functional

ETT2. Mutational attrition of ETT2 is common in

E. coli strains [103].

Type VI secretion system (T6SS) gene clusters consist

of 15 to 25 genes and have been identified in numerous

Gram-negative Proteobacteria [104]. In some T6SSs, the

genes encoding the secreted proteins, Vgr and Hcp, are

found in different locations of the genome [105], but

commonly next to rhs genes [106]. This is the case in W,

which contains two T6SSs. The structure of the first gene

cluster is homologous to the system previously described

Figure 4 Swarming motility assay. A swarming motility assay was
performed using E. coli strains W, Crooks, K-12 (MG1655), K-12
(RP437), and B. B was negative; K-12 (MG1655) showed very minimal
swarming, while K-12 (RP437), Crooks and W were positive. Assays
were performed in triplicate at 25°C and at 37°C; results were similar
at both temperatures (figure shows representative results from 25°C
incubation).
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in E. coli O157:H7 Sakai [107]. It consists of 17 genes and

is termed the ‘enterohaemorrhagic E. coli type six secre-

tion system cluster’ (EHS) [48]. However, this system is

found in numerous other non-pathogenic strains, includ-

ing SE11 and HS (data not shown). A second T6SS is

located downstream of metV and is homologous to the

T6SS found in E. coli CFT073 [108], also located down-

stream of metV. We have designated this cluster Escheri-

chia coli type six secretion system cluster 2 (ETSS2) as

the EHS is cluster 1. In W, it is most likely deactivated

due to an IS621-mediated insertion. W is the only safe

strain which contains a T6SS, although none of the effec-

tor molecules which are transported into host cells [104]

are present. Therefore, this system is unlikely to function

in pathogenicity.

Rearrangement hot spot (Rhs) elements

Rhs elements are large highly repetitive regions; they

constitute roughly 1% of the E. coli genome [109]. They

are composed of four elements: a clade-specific N-term-

inal domain, a core domain, a hyperconserved domain,

and a variable C-terminal domain [106]. Often, partial

core domain and variable C-termini regions (called

C-terminal tips) are observed downstream of intact rhs

genes. These are proposed to play a role in intra-rhs

variability [106]. C-terminal tips have occasionally been

annotated as insertion sequences in the ISFinder data-

base due to the presence of an H-repeat (H-rpt),

although transposition activity has not been observed

[110]. E. coli W contains seven rhs genes (rhs1-rhs7;

Table 6), two of which are deactivated due to frame-

shift mutations. Of the remaining five, four have down-

stream C-terminal tips of varying number. Both Crooks

and W also possess type IV Rhs elements; these are

missing in K-12 and B.

Comparison with other group B1 strains

We performed a comparison between W and other

sequenced group B1 strains, including the commensal

strains SE11 and IAI1, and a variety of pathogenic

strains: EAEC strain 55989, ETEC strain E24377A, and

EHEC strains O26, O103, and O111 (Table 7). The

chromosome size is relatively variable, ranging from

4.7 Mbp (IAI1) to 5.7 Mbp (O26). A backbone genome

can be defined for each strain by subtracting the LMEs

(including plasmids and integrative elements) from the

total genome size (Table 7). Interestingly, the size of

this backbone genome is very similar (ca. 4.5 Mbp +/-

83 Kbp) for all strains. The backbone sequences are not

identical; differences are found primarily in the presence

or absence of large structural elements encoding secre-

tion systems (including flagella) and adhesins. For exam-

ple, the Flag-2 is found W and the two EHEC strains

O26 and O111 (but not in the EHEC strain O103 or in

other pathogenic strains, or in the commensal strains)

(Table 8). W has the largest backbone genome (4.588

Mbp) as it has the largest number of large structural

elements (T2SS, T3SS, T6SS and flagella). No group B1

strain contained the T2SS gspA-gspO which is present in

group A. E. coli. W contains the smallest number of

insertion sequences of all B1 strains; these sequences

also play a role in attrition, since recombination between

them may result in loss of large regions of DNA [111].

Additionally, each of the group B1 strains examined

contains the csc regulon for permease-mediated sucrose

utilisation.

A key observation arising from the Group B1 compar-

ison is that most virulence factors are found in LMEs

outside the backbone genome (Additional File 2, Addi-

tional File 3, Additional File 4). For example, in the

EHEC strains, the LEE is encoded on an LME, while

shiga toxins are encoded on lambdoid phages; and in

E24377A, the enterotoxin and CS3 fimbriae are encoded

on plasmid pE24377A_79; and in 55989, the aggregative

adhesion fimbrial operon is also plasmid-borne. While

each strain had a number of lambdoid prophages pre-

sent in its genome, only EHEC strains contained lamb-

doid prophages which encode the T3SS effectors which

enhance virulence in these strains (Additional File 4).

The presence of essential virulence factors on LMEs is

consistent with previous findings, which have shown

that non-pathogenic strains can be made pathogenic by

introduction of elements found on LMEs [72,112]. Fit-

ness factors related to colonisation of ecological niches

not related to pathogenicity can also be found encoded

on LMEs.

Genome-scale reconstruction and metabolic profiling

GSMs are in silico metabolic models built using the col-

lection of reactions that can be predicted from the

Table 6 Rearrangement hot spot (Rhs) elements found in

safe strains

RHS Region (K-12) W K-12 B Crooks

1 b0215-b0221 rhsW1 (0) 0 (0) 0 (0) 0 (0)

2 b0496-b0503 rhsW2a (1) rhsD (1) rhsD (1) 0 (0)

3 b0570-b0569 rhsW3 (3) 0 (0) 0 (0) EcolC_3079 (3)

4 b0699-b0706 rhsW4a (1) rhsC (1) rhsC (1) EcolC_2955 (0)

5 b1455-b1461 rhsW5 (0) rhsEa (0) rhsE (0) EcolC_2201 (0)

6 b1976-b4497 0 (0) 0 (0) 0 (0) EcolC_1663 (0)

7 b1988-b1990 0 (0) 0 (0) 0 (0) EcolC_1653 (0)

8 b3481-b3485 0 (0) rhsB (0) rhsB (0) EcolC_0234 (0)

9 b3592-b3596 rhsW6 (1) rhsA (1) rhsA (1) EcolC_0120 (1)

10 b3936-b3937 rhsW7 (0) 0 (0) 0 (0) EcolC_4081 (0)

a rhs gene is a pseudogene.

Positions are based on K-12 annotation (U00096). The number of C-terminal

tips is shown in brackets. Strains are W (ATCC 9637), K-12 (MG1655),

B (REL606), and Crooks (ATCC 8739).
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annotated genome of an organism together with experi-

mental data. They are used for many applications,

including production strain design, examining evolution-

ary relationships, and linking phenotype and genotype

information [113,114]. GSMs can be used to examine

theoretical flux phenotypes, ATP maintenance, and

redox balance requirements of cells under various geno-

typic and environmental conditions. These considera-

tions allow prediction of growth rates and other

characteristics such as organic acid production under

specific conditions of interest. GSMs allow one to exam-

ine the effect of network alterations by performing

in silico gene knock-out and gain-of-function experi-

ments prior to labour-intensive and expensive wet-lab

experiments. The first step in building a GSM is to

reconstruct the metabolic network using the annotated

genome (genome-scale reconstruction, GSR).

Numerous metabolic differences were observed

between E. coli W and the other safe E. coli strains. In

order to capture these differences, a GSR was constructed

for E. coli W. Protein-coding genes from W were com-

pared with those annotated in the E. coli K-12 MG1655

model, iAF1260 [115] using AUTOGRAPH [116]. Addi-

tional reactions were added or removed based on ana-

lyses of growth phenotypes, in silico simulations, and

bibliomics (in-depth literature search). The resulting W

model, iCA1273, includes 1,273 genes represented by

1,111 metabolites and 2,477 reactions (Additional File 5,

Additional File 6). Relative to the K-12 model, iCA1273

is missing 41 genes that were not present in the W gen-

ome (Additional File 7). Conversely, iCA1273 contains 61

new genes, including 28 found in K-12 which had not

previously been annotated (Additional File 8). Forty-eight

genes found in the K-12 model, representing 155 reac-

tions, were not included in iCA1273 as no functional

orthologs were present in the W genome. In terms of

modelling biomass formation, the most important differ-

ence between the two models was found in the produc-

tion of membrane components. Fourteen genes involved

in LPS synthesis in K-12 were not found in W and twelve

LPS genes found in W were not found in K-12. Several

genes common to both strains but not previously repre-

sented in the K-12 model were found. These included

seven genes involved in the modification of LPS, specifi-

cally the inner core consisting of Kdo2-lipid A; two genes

involved in the transport of peptidoglycan from the cyto-

plasm into the periplasmic space; and twelve genes

involved the phenylacetic acid degradation pathway.

Seven genes in the K-12 model were located on phage

Table 7 Comparison between sequenced Group B1 strain genome features

Safe Commensal EAEC ETEC EHEC

Strains W SE11 IAI1 55989 E24377A O26 O103 O111

Version CP002185.1 AP009240.1 CU928160.2 CU928145.2 CP000800.1 AP010953.1 AP010958.1 AP010960.1

Chromosome size (Mbp) 4.901 4.888 4.701 5.155 4.980 5.697 5.449 5.371

CDSs 4482 4679a 4356 4766 4634 5368 5058 4976

Large Mobile Elements 12 16 5 14 22 34 23 30

Prophage regions 7 7 3 5 8 19 15 17

Integrative elements 3 3 2 8 7 11 7 8

Plasmids 2 6 0 1 7 4 1 5

Total IS Elements 18 (6) 33 (ND) 42 (ND) 150 (ND) 80 (ND) 135 (ND) 116 (ND) 119 (ND)

Genome Backbone Size (Mbp) 4.588 4.511 4.529819 4.504999 4.536845 4.564564 4.520522 4.536492

Total Mobile Element Size 0.421363 0.644488 0.171181 0.722345 0.810839 1.290967 1.004338 1.229646

Total genome size (Mbp)b 5.009 5.156 4.701 5.227 5.348 5.856 5.525 5.766

a - pseudogenes were not calculated in the SE11 genome paper.
b - includes size of plasmids.

The total number of genes, tRNA, other ncRNAs and IS elements in each strain includes pseudogenes/pseudo-tRNAs etc.; the number of pseudo-elements in each

case is noted in brackets. Note that ncRNAs are not annotated/incompletely annotated in SE11 and E24377A, respectively; conseqeunctly, the absolute number

of genes shown for these strains is inaccurate. ND = not determined in annotation.

Table 8 Large structural components found in Group B1

strains

Strain Flag-1 Flag-2 T2SS ETT1 ETT2a EHS ETSS2

W x x x - x x x

SE11 x - - - x x -

IAI1 x - - - x x -

55989 x - - - x x -

E24377A x - - x x x

O26 x x x x x ∆etsH-etsG -

O103 x - x x x x x

O111 x x - x x x -

a - This locus is inactive in each group B1 strain.

Presence (x) or absence (-) of large structural elements in group B1 strains.

Flag-1 & Flag-2 refers to the two flagellar systems found in E. coli. T2SS refers

to the second type two secretion system (yghJ-pppA-yghG-gspC-M). ETT1 &

ETT2 are the E. coli Type III secretion systems. EHS is the enterohemorrhagic

type six secretion system, and ETSS2 is the Escherichia coli type six secretion

system.
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regions, whereas no genes encoding metabolic reactions

relevant to the mod!el werefound in phage regions in the

W genome. The localisation of gene-protein-reaction

information was also refined relative to the K-12 model.

Carbon and nitrogen source utilization were investigated

using Biolog™ phenotype arrays (Additional File 9) in

order to characterise the metabolism of the strain and

further refine the GSR. All of these refinements allow

improved resolution of pathways involved in metabolism

in our model. Comparative analyses between K-12 and

W were made both at genome and phenome levels

[115,117] (Additional File 10). In addition, comparative

studies were done between all four safe strains where

appropriate. Key differences are detailed below.

Carbon and nitrogen source utilization

Sugars are ubiquitous throughout the environment and

their breakdown supplies a key source of carbon and

energy for bacteria. Sucrose is the main carbohydrate

transport molecule in plants, and is therefore the most

abundant disaccharide encountered in most environ-

ments. A key metabolic difference between E. coli W

and the other three safe strains is the ability of E. coli

W to grow on sucrose. This is due to the presence of

the csc regulon, which was originally described in E. coli

EC3132 and encodes a regulator (cscR), a sucrose trans-

porter (cscB), an invertase (cscA) and a fructokinase

(cscK) [118]. The csc regulon has been inserted between

the highly variable argW gene region and the dsdX gene

of the D-serine regulon [119,120]. Due to the insertion

in dsdX, a D-serine transporter, E. coli W has lost the

ability to utilize D-serine.

Several operons have been identified in E. coli strains

for uptake and metabolism of cellobiose, a glucose dis-

accharide formed by hydrolysis of cellulose. The four

safe strains contain only the six gene bgl regulon for cel-

lobiose metabolism. This operon has been reported to

be silenced in wild-type E. coli strains [121] and K-12 is

unable to grow on cellobiose [122]. In contrast, W dis-

plays weak growth on cellobiose, indicating that the bgl

genes are not silenced. Uptake of the b-glycosides salicin

and arbutin is generally seen in conjunction with cello-

biose uptake [122], though E. coli W exhibited growth

only on salicin. The absence of the arbutin transporter

gene arbT [122] is the most likely explanation for lack

of growth on arbutin.

The pentose monosaccharide D-ribose is a key com-

ponent of DNA and RNA; D-allose is a ribose analog.

Ribose can be transported into the cell [123] and enter

amino acid and pentose phosphate pathways after it is

phosphorylated; allose can be converted to fructose-6-

phosphate [124] for entry into central carbon metabo-

lism. The D-allose transporter can also transport

D-ribose [125]. In contrast to the other safe strains, W

is unable to catabolise ribose or allose; this is explained

by the absence of the rbsDACBKR [123,124] and alsBA-

CEK [125] regulons in W.

Many environmental applications require industrial

strains to break down aromatic compounds, which are

typically found in soil and water. This capability varies

between safe strains. W is able to break down the widest

range of aromatic compounds among four strains [17].

Unlike the other strains, K-12 is unable to break down

3- and 4-hydroxyphenylacetic acids as it does not con-

tain the eleven-gene hpa gene cluster [17].

Both K-12 and W can break down phenylacetic acid

due to the presence of paa gene cluster. E. coli B has

lost this cluster due to an IS3-mediated insertion while

Crooks has an intact paa gene cluster and can presum-

ably also break down phenylacetic acid. E. coli W was

isolated from soil, which may help explain its capability

to break down diverse aromatic compounds. In addition,

loss of extraneous carbon source genes can be observed

in strains maintained for long periods on laboratory car-

bon sources [127]. Since W was archived shortly after

isolation, it is less likely to have undergone this selective

pressure.

D-Galactosamine is a constituent of animal glycopro-

tein hormones while N-acetyl-D-galactosamine (NAG) is

a core component of peptidoglycan. Both are important

nitrogen sources. W shares with B and Crooks the agaV-

I gene cluster, which is involved in D-galactosamine and

NAG catabolism [128,129]. This cluster has been par-

tially lost in K-12 due to deletion of agaEF.

In K-12, two separate base pair insertions in ilvG

result in valine sensitivity [130]. When K-12 is grown

with valine as a nitrogen source, valine accumulation

results in positive inhibition of the branched chain

amino acid synthesis pathway and a subsequent deficit

of isoleucine and leucine. IlvG is intact in W, B and

Crooks; consequently, these strains are likely to have

high L-valine tolerance.

There are a number of discrepancies between model

predictions and phenotype array data (Additional File 10).

In some cases, C and N sources which can be used by W

and K-12 according to the phenotype array data are not

supported by model predictions. This can be explained by

insufficient annotation of metabolic pathways for many of

these C and N sources. In other cases, the models predict

utilization of C and N sources which do not support

growth (or support only poor growth) in phenotype arrays;

in these cases, it is likely that specific conditions (e.g. anae-

robic growth, requirement for cofactors) are not met in

the phenotype assay.

Other metabolic considerations

Inorganic ions such as iron and cobalt play important

roles in many biological processes, and there are many

uptake systems available for different ionic forms.

W differs from other safe strains in two ion transport
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systems. Firstly, it does not contain the seven-gene

tonB-dependant diferric dicitrate uptake system, fecIR-

ABCDE. In K-12 and B, this gene cluster is located

within the phage-like element KpLE2. Secondly, it has a

cobalt transport system, cbiQ-O2, located in the region

epd-yggC; this transport system is not present in the

other three strains.

Conclusions
E. coli W has been used in research laboratories and for

industrial applications for almost seventy years. Because

of this long history, the strain is considered a ‘safe’

laboratory strain. The safety of a strain is an important

consideration both for laboratory research and for

industrial applications. Containment and handling in

both environments is less complex for safe strains, and

safety requirements can significantly impact on the eco-

nomics of production. Like other safe strains, W harbors

genes which encode pathogenicity determinants. W has

more such genes than other safe strains; however, many

have been mutationally inactivated or are missing key

components required for pathogenicity. These observa-

tions confirm the historical attribution of W as a safe

strain.

Amongst the four safe laboratory strains, W has sev-

eral unique features: it belongs to phylogroup B1 rather

than A; it has a larger genome size; and the period of

time between isolation and strain archiving was rela-

tively short. The two latter features are probably related:

strains that are maintained under laboratory conditions

for extended time periods are subject to specific selec-

tion pressures, and tend to lose genes which are not

required for survival under laboratory conditions [127].

In line with this, and consistent with its larger genome

size, the W genome encodes more genes than other safe

strains. Additionally, it has fewer ISs, which tend to

multiply in genomes of organisms maintained under

laboratory conditions [131]. Overall, W is more similar

to other pathogenic and commensal strains than it is to

the other safe laboratory strains. Furthermore, it has the

largest backbone sequence of the Group B1 strains, sug-

gesting that it has the most complete complement of

ancestral genes. These considerations place W as the

preferred laboratory strain for use in genomic compari-

sons aimed at investigating genes involved in pathogeni-

city and commensalism.

Like other wild-type isolates [132], W encodes a large

number of carbon source utilization genes, and it grows

on a much broader range of carbon substrates than

K-12 strains (Additional File 9). Of particular interest is

the ability of W to utilize sucrose as a carbon source.

For industrial production applications, in particular for

large-scale production of commodity biochemicals (e.g.,

biofuels, industrial polymers, and other industrial

feedstocks), sucrose from sugarcane is the preferred

carbon source [29]. It is abundant, it is cheaper than

glucose [133] and it is also ‘greener’ than glucose; for

example, greenhouse gas emissions for ethanol produc-

tion are reduced by 85% relative to petrochemicals

when using sugarcane sucrose as a carbon source,

whereas use of glucose from corn reduces emissions by

only 30% [133]. The growth of W on sucrose, in combi-

nation with its many other desirable industrial traits

(fast growth rate, growth to high cell densities, lack of

adhesins which result in clumping, lack of antibiotic

markers, and relative resistance to environmental stres-

ses) also place E. coli W as a preferred strain for indus-

trial biotechnology applications. Some of these

characteristics (e.g. sucrose utilisation and lack of adhe-

sins/antibiotic markers) are easily explained by genome

analysis. However, the raw sequence data does not shed

any light on why W exhibits the other characteristics.

Further experimental analysis using a systems biology

approach might shed light on this.

An annotated genome sequence is an important step

in characterisation of an organism, and allows construc-

tion of genome scale models which can be used to (a)

interrogate the metabolic attributes of organisms and

(b) facilitate strain development for industrial applica-

tions. Our W GSR includes a number of genes which

were not annotated in the original K-12 GEM; this

includes both genes that are unique to W and genes

that were omitted from the K-12 model. Our improved

model more accurately reflects the metabolism of an

E. coli cell. There is good agreement between genome

data, phenome data, and model data; the combination of

these allows us to define the metabolic capabilities of

E. coli W both in vitro and in silico. The W strain exhi-

bits many industrially desirable traits, including fast

growth, stress tolerance, growth to high cell densities,

and the ability to utilise sucrose efficiently [22,24-28].

With the availability of an annotated genome and GSR,

the W strain can now be used as a platform organism

for developing sucrose-based bioprocesses to replace

current unsustainably-produced industrial chemicals.

Methods
Sequencing and assembly

E. coli W (ATCC 9637) was obtained from NCIMB Ltd

(Aberdeen, Scotland; Accession Number 8666. The

NCIMB stock was supplied by ATCC). Roche/454 pyrose-

quencing and fosmid end sequencing followed by manual

gap-filling were used to construct the E. coli W genome.

The shotgun reads in SFF files that were produced from

GS 20 (707,210 reads, 81.8 Mb; MWG Biotech, Germany)

and GS FLX (236,190 reads, 56.5 Mb; National Instrument

Center for Environmental Management, Korea), totalling

ca. 27.7× genome coverage, were assembled into 209
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contigs by Roche’s gsAssembler. CONSED [134] was used

for sequence manipulation that included read/contig edit-

ing, primer design, and finish read processing. Specifically,

127 large contigs with accompanying quality scores pro-

duced by the gsAssembler were imported into CONSED

as single-read contigs. 2,479 paired-end reads of pCC1FOS

(EPICENTRE Biotechnologies, United States) off from ABI

3700 (1.98 Mb, ca. 9.9× clone coverage; GenoTech Co.,

Korea) were then aligned on the contigs and the resulting

scaffolds were validated using the mate information

derived from the fosmid end reads.

The remaining sequence gaps were filled by Sanger

sequencing of the gap-spanning PCR products or fosmid

clones. Repeat-induced over-collapsed short contigs

were resolved by reproducing contigs according to the

copy number deduced from the read depth of contigs

and by ordering them using ‘from/to’ information given

by the gsAssembler. The most difficult assembly was

with two highly similar copies of P2-like prophages

(31,005 bp and 32,732 bp); each was reconstructed into

the relevant sequences after disentangling the over-

collapsed contigs. Ambiguous sequences resulting from

the differences of the two prophages were refined by

primer walks on fosmid clones containing each proph-

age segment. The overall error rate of the assembled

genome sequence was calculated as 0.09 bp/10 kb, and

verification of the assembly came from the consistency

of fosmid end reads on the final contig.

The sequence was validated by comparison against

independent sequence data generated using a GAII plat-

form. The 65-bp reads were assembled by scaffolding

against the original sequence using Burrows-Wheeler

Aligner (BWA) [135]. SNPs and INDELS relative to origi-

nal sequence were identified using SAMtools [136].

Corrections were made based on confidence (related to

depth of local sequencing) for each reported discrepancy.

Annotation

ORF prediction was performed using Prodigal [32] and

Glimmer [33]. AutoFACT [137], an automatic annota-

tion pipeline, was employed to score predicted ORFs

against existing databases, including non-redundant pro-

tein sequences (nr) in GenBank [138], KEGG [139] and

COG [140], using homology search. Where the Auto-

FACT annotation differed from the K-12 annotation for

shared orthologs, the difference was resolved through

manual curation. In particular, if AutoFACT proposed a

less ambiguous annotation, experimental evidence for

the AutoFACT annotation was sought in the literature.

tRNA genes were predicted using tRNAscan-SE [141],

rRNA genes were predicted using rnammer [142], and

ncRNA genes were predicted using INFERNAL [143].

These predictions were integrated into the annotation

using Artemis [144]. ORFs which resided within rRNA

genes and ncRNAs covering rRNA or tRNA genes were

removed. Transcriptional start sites were further curated

using Artemis and modified based on matches to homo-

logous genes from E. coli K-12, B and Crooks. CRISPR

regions were predicted using a combination of CRT

[145] and PILER [146].

Comparative Genome Analysis

Comparative genome analysis was based on protein-

coding sequences predicted from the E. coli W (ATCC

9637) annotation and three other safe E. coli strains: K-

12 MG1655 [GenBank:U00096], B REL606 [GenBank:

CP000819], and Crooks ATCC 8739 [GenBank:

CP000946]. Comparative analysis of the E. coli W plas-

mids pRK1 and pRK2 was based on protein-coding

sequences and was performed against five representative

plasmids: pSE11-1 [GenBank: AP009241], pSE11-3

[GenBank: AP009243], ColIb-P9 [GenBank:AB021078],

R64 [GenBank:AP005147, and pSE11-5 [GenBank:

AP009245]. All-against-All BLASTP for amino acids was

used to assign orthologs; these were further curated

using gene context data, analysis of orthologs provided

by the E. coli B REL606 genome annotation, and litera-

ture data.

Protein-coding genes and pseudogenes were mapped

to orthologs in each of the three other sequenced

laboratory strains by BLAST to attain the bi-directional

best hit (BBH) relationships. Genes with high sequence

similarities to a gene in another strain but differing sig-

nificantly in length were inspected manually to establish

the cause of variation.

Insertion Sequences (ISs) for E. coli W, Crooks and

SE11 were annotated using BLASTN against the ISFin-

der database [147,148]. Large mobile elements and rear-

rangement hot spot (Rhs) elements were identified

during the annotation using BLASTP against the nr

database in GenBank. Labels for rhs genes were assigned

using nomenclature described by Jackson et. al. (2009).

Phylogenetic analysis was performed using the gene

concatenation method [36]. Concatenated sequences of

seven housekeeping genes (adk, fumC, gyrB, icd, mdh,

purA, recA) and sequence types (STs) of E. coli refer-

ence (ECOR) collection strains and related organisms

were downloaded from the E. coli MLST Database

[149]. W gene sequences were aligned using ClustalW

[150] then concatenated. A phylogenetic tree was gener-

ated by the neighbour joining method with 1000 boot-

strap iterations using MEGA4 [151].

Motility Assay

Motility assays was performed as described previously

[95] with the following alterations: assays were per-

formed at 25°C and 37°C only, and antibiotics were not

included in the medium.
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GSR Construction

The GSR was created using AUTOGRAPH [116] to

generate a database of predicted ORFs against the

E. coli K-12 GSR, iAF1260 [115]. Additional reactions

were added or removed based on an in-depth literature

search, high-throughput carbon/nitrogen/phosphorous/

sulphur source growth assays (PM Kit, Biolog, Hayward,

CA) and in silico validation using the COBRA toolbox

[152] to ensure all biomass components could be

synthesized. In silico simulations used the biomass com-

position of iAF1260 [115].

Gene-protein-reaction associations were curated and

assigned a confidence score based on experimental data

and information from the E. coli K-12 iAF1260 GEM.

Boolean logic was employed to denote the relationships

between proteins and whether they formed complexes; iso-

zymes were described as an ‘OR’ relationship and protein

complexes were represented as ‘AND’ relationships linked

to other peptides required for a functional protein. In cases

where different combinations of proteins can form a com-

plex which catalyses the same reaction, each complex was

represented by an ‘AND’ relationship and ‘OR’ relation-

ships were made between complexes. Gaps in the meta-

bolic network, resulting from missing genes which are

essential for the synthesis of biomass components and pro-

duction of waste products, were filled by incorporating

reactions from the iAF1260 and KEGG database.

Additional material

Additional file 1: List of CDSs which occur once in the genome of

one safe strain but more than once in genomes of other safe

strains. A list of CDSs which have only one copy in one safe strain, but
have more than one ortholog in one or more other safe strains. For
example, hokE occurs once in the K-12 genome but multiple times in
the W genome. The CDS count of each strain does not reconcile unless
these one-to-many and many-to-many relationships are considered.
Detailed CDS counts are provided within the file. The counts explain the
CDS skew which occurs when counting the number of CDSs in Figure 2
for K-12, B, or ATCC 8739. For example, in ATCC 8739 one copy of
EcolC_3064 is present, while two are present in W as ECW_m0635 and
ECW_m0636. When shared orthologs are counted the number in the
ATCC 8739-W region can be one or two, depending on whether the
number of orthologs is taken from W or ATCC 8739s context. We have
thus detailed all orthologous CDSs which are found in different copy
numbers in the other safe strains genomes.

Additional file 2: Description of supplementary files and instructions

for use thereof. Detailed description of the contents of each additional file.

Additional file 3: Plasmids found in Group B1 strains. Overview and
analysis of the integrative elements which are present in each
sequenced group B1 strain. Sheet “Group B1 IEs” presents the
attachment sites and significant fitness or virulence factors which are
present in each integrative element. Sheet “IE sizes” shows the assumed
start and finish sites of each integrative element and the elements size.
These sizes were used to calculate each group B1 strains genome
backbone size.

Additional file 4: Integrative elements found in Group B1 strains.
Analysis of the plasmids which are found in sequenced group B1 strains
including plasmid size and fitness/virulence factors which are present on
each plasmids genome.

Additional file 5: iCA1273 GSR. A list of the reactions, including GPR
associations and constraints (lower bound, upper bound, objective
functions) which are present in iCA1273.

Additional file 6: iCA1273 GSR. iCA1273 in xml format for use with the
COBRA Toolbox.

Additional file 7: List of unique iAF1260 features compared to

iCA1273. A list of reactions which are present in iAF1260 but either do
not occur in iCA1273 or do occur but have different gene-protein-
reaction associations. Data columns are as follows: 1. Reaction
abbreviation 2. Function of the reaction 3. Reaction catalysed 4. The
genes necessary for the reaction to be catalysed in Boolan format 5.
Notes about the reaction including reference to literature which details
experimental evidence for the reaction and the PubMed ID of the paper.

Additional file 8: List of unique iCA1273 reactions and metabolites

compared to iAF1260. A list of new reactions and metabolites in
iCA1273 which are not found in iAF1260. This file contains the following:
1. “Missing iAF1260 reactions” details reactions which occur in iAF1260
that are not present in W 2. “iCA1273 rxns miss K12 ortho” details
reactions from iAF1260 which still occur in iCA1273 but are missing
genes which are not present in the W genome. e.g. reaction “RPE” from
iAF1260 can be catalyzed by the enzyme encoded by b3386 or b4301.
However, in W, an ortholog for b4301 is not present while an ortholog
for b3386 is present so the reaction still occurs within the cell.

Additional file 9: Growth phenotype data for E. coli W (ATCC 9637).
Results of the Biolog™™ growth phenotype assays for E. coli W and E.

coli K-12 on a wide range of carbon and nitrogen sources.

Additional file 10: Comparison between predictions and

experimental growth data for K-12 GEM and W GSR. A comparison
between K-12 GEM (iAF1260) predicted growth phenotypes and
Biolog™™ data growth, and between W GEM (iCA1273) predicted
growth phenotypes and Biolog™™ data growth. Overlap between
predicted and actual growth phenotypes is higher in W than in K-12.

List of abbreviations

BBH: bi-directional best hit; CAS: CRISPR associated sequence; COG: clusters
of orthologous groups of proteins; CPS: capsular polysaccharide; CRISPR.:
clustered regularly interspaced short palindromic repeat; ECOR: Escherichia
coli Reference Collection; EHS: enterohaemorrhagic E. coli type six secretion
system cluster; ELF: E. coli YcbQ laminin-binding fimbria; ETEC:
enterotoxigenic E. coli; ETT1: E. coli Type III secretion system 1; ETT2: E. coli
Type III secretion system 2; GEM: genome-scale model; GSR: genome-scale
reconstruction; HGT: horizontal gene transfer; H-rpt: H-repeat; IncI1:
Incompatability group I1; IS: insertion sequence; KEGG: Kyoto Encyclopaedia
of Genes and Genomes; LME: large mobile element; LPS: lipopolysaccharide;
NAG: N-acetyl-D-galactosamine; ORF: open reading frame; PGA: penicillin G
acyclase; pLE: phage-like element; Rhs: rearrangement hot spot; T2SS: type II
sectrtion system; T3SS: type III secretion system; T6SS: type VI secretion
system; UPEC: uropathogenic E. coli; WpLE: E. coli W phage Like Elements
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