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Abstract

Natural populations harbor considerable genetic variation for lifespan. While evolutionary

theory provides general explanations for the existence of this variation, our knowledge of

the genes harboring naturally occurring polymorphisms affecting lifespan is limited. Here,

we assessed the genetic divergence between five Drosophila melanogaster lines selected

for postponed senescence for over 170 generations (O lines) and five lines from the same

base population maintained at a two week generation interval for over 850 generations (B

lines). On average, O lines live 70% longer than B lines, are more productive at all ages,

and have delayed senescence for other traits than reproduction. We performed population

sequencing of pools of individuals from all B and O lines and identified 6,394 genetically

divergent variants in or near 1,928 genes at a false discovery rate of 0.068. A 2.6 Mb region

at the tip of the X chromosome contained many variants fixed for alternative alleles in the

two populations, suggestive of a hard selective sweep. We also assessed genome wide

gene expression of O and B lines at one and five weeks of age using RNA sequencing and

identified genes with significant (false discovery rate < 0.05) effects on gene expression

with age, population and the age by population interaction, separately for each sex. We

identified transcripts that exhibited the transcriptional signature of postponed senescence

and integrated the gene expression and genetic divergence data to identify 98 (175) top

candidate genes in females (males) affecting postponed senescence and increased life-

span. While several of these genes have been previously associated with Drosophila life-

span, most are novel and constitute a rich resource for future functional validation.

Introduction

Lifespan and senescence (the post-reproductive decline in survival and fertility with advancing
age) vary enormously within and among taxa, with some organisms attaining exceptional lon-
gevity and negligible senescence [1–3]. The question of why lifespan is limited and why there is
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variation in aging within species is addressed in general terms by evolutionary theory. Natural
selection declines with age [4], so mutations with late age-specific deleterious effects are nearly
neutral with respect to natural selection and can accumulate in populations at appreciable fre-
quencies [5]. In addition, mutations with beneficial effects early in life but detrimental effects
later in life will accumulate [6,7]. Both classes of mutations, in addition to unconditionally del-
eterious mutations affecting survival and fertility at all ages, will result in segregating genetic
variation for lifespan in natural populations.

Indeed, estimates of the heritability of lifespan range from 10–30% in humans and other
organisms [1,2,8–16], and quantitative trait loci (QTLs) affecting lifespan have been mapped in
C. elegans [17–19], Drosophila [20–31], mice [32–34] and humans [35–39]. However, with a
few exceptions [40–42], naturally segregating loci affecting lifespan have not been mapped to
the level of individual genes. In contrast, studies assessing changes in gene expression with age,
transgenic manipulation of candidate genes and direct screens for mutations affecting lifespan,
largely in model organisms, have identified multiple genetic mechanisms affecting lifespan,
some of which are ‘public’ [3,43] and common to multiple taxa. One such general mechanism
of aging is the regulation of metabolism, in particular components of the insulin or insulin-like
signaling pathway [44–59]. The increase in lifespan associated with decreased insulin signaling
may be mechanistically related to the increase in life span conferred by dietary restriction [60–
64]. Other general mechanisms of aging inferred from analyses of model organisms include
genes affecting the ability to detoxify reactive oxygen species [65–69], reproduction [21,48,70–
77], gene silencing [78–80], telomere integrity [81], DNA repair and replication [82–84], mito-
chondrial [85,86] and membrane function [87], resistance to heat, starvation and other envi-
ronmental stressors [88–94], sensory perception [95,96], and immune response [97–100].
Despite these insights, we do not know to what extent these genes harbor polymorphisms
affecting naturally segregating variation in lifespan within populations.

A powerful alternative to mapping QTLs by linkage and association analysis is to track
changes in allele frequency between replicated populations undergoing laboratory evolution
via natural or artificial selection [101–103]. This approach has the potential to identify causal
genes and even variants affecting the trait of interest that are in common between all evolved
populations under favorable experimental conditions (sufficient replication, large and geneti-
cally diverse populations, many generations of evolution, and genome wide variant detection
by whole genome sequencing) [104–107]. Combining genetic divergence analyses with changes
in gene expression can further aid in identifying causal genes and provide biological context to
genome wide polygenic divergence [104,105]. D.melanogaster populations respond rapidly to
laboratory selection for increased lifespan [15,104,108–110], facilitating the application of the
‘evolve and re-sequence’ approach to this trait. Here, we combine pooled DNA sequencing
with RNA sequencing at two chronological ages to quantify the genetic and genomic responses
of five replicate lines selected for postponed senescence via later reproduction (Old, or O lines)
relative to five unselected control lines (Base, or B lines) [109]. We identify many novel candi-
date genes affecting increased lifespan and postponed senescence, many of which are ortholo-
gous to human genes.

Materials and Methods

Drosophila stocks

Ten D.melanogaster lines generated by Rose [109] were used in this study. Five lines were
selected for delayed reproductive senescence (O1, O2, O3, O4, O5) and five were unselected (B1,
B2, B3, B4, B5). The B and O line stocks were maintained in 14-day and 70-day generations,
respectively, as described previously [111]. All lines were maintained at 25°C on cornmeal-
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molasses-agar medium (cornmeal, 65 g/L; molasses, 45 ml/L; yeast, 13 g/L) under a 12:12 hour
light:dark cycle. These flies were a generous gift of Dr. Philip Service.

Life history phenotypes and statistical analyses

Lifespan. To minimize larval density effects, experimental flies were produced for each
line by allowing 6 males and 6 females to mate and lay eggs for one day in vials containing 10
ml culture medium. Offspring from these vials were collected at 1–3 days post-eclosion for life-
span assays. Lifespan was assessed for each population using 50 replicate vials, each containing
3 males and 3 females and 5 ml culture medium. Flies were transferred without anesthesia to
new vials containing 5 ml of fresh food every 2–3 days; dead flies were removed from the vials
upon observation. Deaths were recorded every 1–3 days until all individuals were deceased. We
performed two-way factorial mixed-model analyses of variance (ANOVA) of lifespan sepa-
rately for males and females of form: Y = μ + P + L(P) + Rep(P×L) + ε, where P is the fixed
effect of population (B vs. O), L and Rep are the random effects of line and replicate, respec-
tively, and ε is the residual (error) variance. Parentheses indicate nested effects. ANOVAs were
performed using SAS software version 9.4 [112].

Phototaxis. Parental flies were reared as described above for lifespan. Offspring used in
phototaxis assays were maintained in bottles with 50 males and 50 females per bottle and trans-
ferred to fresh bottles every 2–3 days. Phototaxis was assessed in the countercurrent apparatus
[113] for three replicates of 50 flies per sex per line at one, two, three and four weeks of age. Flies
were allowed to recover overnight from CO2 exposure, and dark-adapted for 30 minutes prior
to performing the assay in a dark room between 9:00–11:30 am. To assess phototaxis, flies were
tapped to the bottom of the first start tube and the apparatus was laid horizontally with the distal
tubes 5 cm away from a 15W fluorescent light. The flies were given 15 seconds to reach the dis-
tal tube, and the procedure was repeated 7 more times per trial. Thus, each fly received a score
between 1 (did not move toward the light in the first tube) and 8 (moved towards the light 7
times). We performed two-way factorial mixed-model ANOVAs of phototaxis separately for
males and females of form: Y = μ + P + A + P×A + L(P) + A×L(P) + Rep(A×P×L) + ε, where P
and A are the fixed effects of population and age, L and Rep are the random effects of line and
replicate, respectively, and ε is the residual (error) variance. Parentheses indicate nested effects.

Capillary feeding (CAFÉ) assay. Parental and experimental flies were reared as described
above for lifespan. Food consumption was assessed using a modified version of the CAFÉ assay
[114] at one, two, three and four weeks of age. Eight flies of the same sex, line and age were
anesthetized with CO2 and placed into each of six replicate vials containing 2 ml of 1.5% non-
nutritive agarose and three 5 μL capillary tubes (Kimble Glass Inc.) containing a 4% (weight/
volume) sucrose solution inserted through a foam plug. The capillary tubes were capped with
mineral oil to minimize evaporation. The vials were placed in a transparent plastic container in
which high humidity is maintained with open containers of water at 25°C and the flies were
allowed to feed on the sucrose solution for 24 hours. After the first 24 hours of acclimation, the
capillaries were removed and three fresh capillaries with sucrose solution were added to each
vial. The flies were then given another 24 hours to feed on the sucrose solution after which the
capillaries were marked to indicate the amount of food consumed and removed and the num-
ber of surviving flies was recorded. The amount of sucrose solution consumed was measured in
millimeters to the closest 0.5 mm and adjusted to μl per fly per vial after correction for evapora-
tion using control vials containing no flies in the same humidity chamber. We performed two-
way factorial mixed-model ANOVAs of food consumption separately for males and females of
form: Y = μ + P + A + P×A + L(P) + A×L(P) + ε, where P, A, L and ε are as defined above for
phototaxis. Parentheses indicate nested effects.
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Chill coma recovery time. Parental and experimental flies were reared as described above
for phototaxis. Chill coma recovery time [115] was assessed at one, two, three and four weeks
of age with 50 flies per sex, line and age. We anesthetized flies using CO2 and let them recover
for 24 hours prior to the assays. We then quantified chill coma recovery by transferring (with-
out anesthesia) flies to empty vials, and placing them on ice for three hours. We transferred the
flies to room temperature, and recorded the time it took for each individual to right itself and
stand on its legs. We performed two-way mixed model ANOVAs as described for food
consumption.

Productivity. Parental and experimental flies were reared as described for phototaxis. Pro-
ductivity was assessed at one, two, three and four weeks of age with 10 vials containing 10 ml
culture medium and 3 males and 3 females per line and age. Experimental animals were anes-
thetized using CO2 and given 24 hours to recover prior to setting up the experimental vials.
Flies were allowed to lay eggs for 24 hours, and the total number of emerging progeny was
counted every day for a total of 16 days. We performed two-way mixed model ANOVAs as
described for food consumption.

B and O sequence divergence

Genomic DNA was extracted from 100 females of each line using Genomic-Tip 100/G columns
(Qiagen Inc.), following homogenization using liquid nitrogen with a mortar and pestle. Geno-
mic DNA was sequenced on the Illumina GAIIx platform by 68bp paired-end sequencing at
the Genome Sciences Laboratory, North Carolina State University. Sequence reads were
aligned to the BDGP5 reference genome using BWA (version 0.6.2) [116]. Alignments were
locally realigned, marked for PCR duplicates, and base qualities were recalibrated using GATK
(version 2.4) [117] and Picard Tools (version 1.89) [117]. Subsequently, uniquely mapped
reads were piled up at each genomic position to identify putative SNPs. A polymorphic site was
considered for further analysis if it passed the following filters: (1) at least 10X coverage by
bases with Phred scale quality> 13; (2) bases passing the quality filter constituted at least 80%
of all bases at the site; (3) no more than 250X coverage; (4) maximally 5% reads at the site rep-
resented indels; (5) the two most frequent alleles accounted for more than 95% of all alleles; (6)
the minor allele frequency was at least 5% in at least one of the ten samples; (7) the Chernoff
bound of the P-value for testing polymorphism versus sequencing error was smaller than 10−5;
and (8) the Fisher’s exact test for strand bias had P> 10−5. Divergence of allele frequency
between O and B was tested using t-tests at each site individually, requiring that at least three
O lines and three B lines had estimable allele frequencies.

Gene expression analysis

RNA extraction and sequencing. Flies were reared exactly as described for lifespan. We
collected 80 samples for RNA sequencing, all between 1–3 pm. There were two replicate sam-
ples of 50 3–5 day old males and females (week 1 samples) and 50 33–35 day old males and
females (week 5 samples) from each line, with one exception. The B1 females are shorter-lived
than the other B lines; therefore the old B1 females were 26–28 days old (4 weeks) in order to
obtain sufficient flies. Flies were flash frozen over dry ice and stored at -80°C. Total RNA was
extracted with Trizol (Life Technologies, California, USA) and an RNAeasy Mini Kit (Qiagen,
Limburg, Germany). Ribosomal RNA (rRNA) was removed using a Ribo-Zero™ Gold Kit (Epi-
centre, Wisconsin, USA) with 5 ug total RNA input. Depleted mRNA was fragmented and con-
verted to first strand cDNA. During the synthesis of second strand cDNA, dUTP instead of
dTTP was incorporated to label the second strand cDNA. cDNA from each RNA sample was
used to produce barcoded cDNA library using NEXTflex™DNA Barcodes (Bioo Scientific,
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Texas, USA) with an Illumina TrueSeq compatible protocol. Library size was selected using
Agencourt Ampure XP Beads (Beckman Coulter, Indiana, USA) and centered around 250 bp
with an approximate insert size of 130 bp. Second strand DNA was digested with Uracil-DNA
Glycosylase before amplification to produce directional cDNA libraries. Libraries were quanti-
fied using Qubit dsDNA HS kits (Life Technologies) and a 2100 Bioanalyzer (Agilent Technol-
ogies, California, USA) to calculate molarity. They were then diluted to an equal molarity, re-
quantified, and 16 libraries were pooled. Pooled library samples were quantified again to calcu-
late the final molarity, denatured, and diluted to 14 pM. Pooled library samples were clustered
on an Illumina cBot and sequenced on an Illumina Hiseq2500 using 125 bp single-read v4
chemistry.

Transcriptome assembly and analysis. RNA sequences were demultiplexed using the Illu-
mina bcl2fastq program (version 1.8.4) and summarized as follows: there was an average of
17,447,402 reads generated per sample (min. 14,194,039 reads/sample, max. 24,652,714 reads/
sample), and 93% of reads had a base call accuracy of� 99.9%. Read quality was assessed using
the FastQC program (version 0.11.2) (http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/). The reads were pre-processed using Cutadapt (version 1.6) [118] to remove residual
adapter sequences. Ribosomal RNA (rRNA) sequences were removed by aligning the sequenc-
ing reads using TopHat (version 2.0.13) [119] to known rRNA sequences downloaded from
GenBank [120] and FlyBase (Dmel Release 5.57) [121]. The remaining reads were processed
following the Tuxedo suite pipeline [122]. The sequencing reads were aligned to the D.melano-

gaster reference transcriptome and reference genome (FlyBase Dmel Release 5.57) using default
parameters, allowing for up to 5 mismatches per read. Alignment rates were highly variable
with an average alignment rate of 86%. We ruled out sample degradation, human contamina-
tion, and sequencing lane errors as the cause for the observed mapping rate variability, and
inferred that natural sources of bacteria and other environmental components were the most
likely explanation. After alignment, reads were assembled against the FlyBase reference tran-
scriptome for gene-level analysis of annotated genes using Cuffquant (version 2.2.1) and
default parameters, allowing for an increased number of fragments per locus (-max-bundle-
frags increased to 10,000,000). The resulting expression values were geometric mean normal-
ized using Cuffnorm (version 2.2.1) [123]. For the analysis of unannotated transcripts, tran-
scriptome assembly was first performed using Cufflinks (version 2.2.1) without providing the
annotated Flybase transcriptome; all other parameters were maintained. The resulting tran-
scriptomes, from all 80 samples, were merged using Cuffmerge (version 2.2.1) to generate a
high-confidence, sample-specific, reference transcriptome. Sample transcriptomes were then
re-assembled against the generated reference transcriptome and expression levels were quanti-
fied using Cuffquant. The expression values were then geometric mean normalized using Cuff-
norm. Finally, unannotated genes were identified for analysis by selecting expressed loci
classified as ‘unknown, intergenic’ (transfrag class code u). After normalization, any gene
(annotated or unannotated) whose mean expression value was 0 or whose maximum expres-
sion value was< 1 was dropped from the analysis.

We performed a factorial mixed effect ANOVA of the normalized gene-level count data
using the following model: Y = μ + A + S + P + A×S + A×P + S×P + A×S×P + L(P) + ε, where S
denotes the fixed effect of sex and all other terms are as defined above. We used the Benjamini
and Hochberg method [124] of controlling the false discovery rate (FDR), and considered an
FDR of< 0.05 for any term in the ANOVA to be significant. Over 94% of genes had a signifi-
cant sex main effect or interaction term. Therefore, we performed ANOVAs separately for
males and females for each gene expression trait using the model: Y = μ + A + P + A×P + L(P)
+ ε. All statistical analyses were conducted using SAS software [112]. Gene annotation and
identification of human orthologs was done using Ensembl databases [125].

Genomic Basis of Postponed Senescence

PLOS ONE | DOI:10.1371/journal.pone.0138569 September 17, 2015 5 / 22

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/


Gene ontology (GO) and functional annotation analyses

We performed gene ontology and functional annotation analyses for genetically divergent
genes and genes significant for the fixed effects in the ANOVAs of gene expression using the
functional annotation cluster tool in DAVID (version 6.7) [126,127]. If a gene subset of interest
was larger than 3,000 (a DAVID-set threshold), then the top 3,000 most significant genes were
used in the analysis. An enrichment score of 5 (corresponding to a geometric mean normalized
P-value threshold of 1E-5) was used as the significance cutoff.

Results

The O and B lines were derived from an outbred laboratory population founded by wild-caught
animals from South Amherst, MA, USA in 1970, and maintained at large population size for
130 generations prior to establishing the experimental populations [109]. Thus, the base popu-
lation had been adapted to laboratory conditions and should have reached global quasi-linkage
equilibrium before the establishment of the B and O populations in February 1980 [109]. At
the time the experiments described here were conducted, the B populations had been continu-
ally maintained at 14 day discrete generation intervals for over 850 generations and the O pop-
ulations at 70 day generation intervals for over 170 generations, since 1996 in the Mackay
laboratory. Population sizes each generation are of the order of one to two thousand individu-
als for all lines. Thus, these lines have many desirable properties for analysis by the ‘evolve and
re-sequence’ approach. The populations are large and genetically heterogeneous, well-repli-
cated, and have undergone many generations of evolution under controlled environmental
conditions.

Phenotypic characterization of O and B lines

The O and B populations are highly divergent for lifespan (Fig 1A and 1B; S1 Table). On aver-
age, O lines live 70% longer than B lines (62.1 days vs. 35.7 days, respectively). Since the O lines
were selected for postponed reproductive senescence, we assessed productivity and other fit-
ness-related traits of all lines at one, two, three and four weeks of age (Fig 1C–1I, S1 Table).
The productivity of O lines is higher than that of B lines averaged over all ages, and the B lines
exhibit marked reproductive senescence while the O lines do not (Fig 1I). Averaged over all
ages, the B lines consume more sucrose in the CAFÉ assay than the O lines, and food consump-
tion generally declines with age. However, this decline is greatest for the B lines (Fig 1C and
1D). The O lines respond robustly in the phototaxis assay and this tendency declines with age,
but surprisingly, the B lines barely move towards light, even at week one (Fig 1E and 1F). With
respect to the CAFÉ and phototoaxis assays, B lines have a ‘couch potato’ phenotype, eating a
lot and moving little, while the O lines eat less and are more motile (at least in response to a
light stimulus). The time to recover from a chill induced coma increases with age, but there is
little differentiation between the O and B lines averaged over all ages. However, the B lines dis-
play more senescence for this trait than do the O lines, particularly in females (Fig 1G and 1F).
Thus, response to continuous selection for postponed senescence has persisted, and is accom-
panied by correlated responses in lifespan and other fitness traits, and delayed senescence for
traits other than reproduction.

B and O sequence divergence

We performed population sequencing of pools of individuals from all B and O lines. We identi-
fied 432,580 single nucleotide polymorphisms (SNPs) segregating in these lines, and performed
simple t-tests to assess differences in allele frequency between the populations (Fig 2, S2 Table).
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At a lenient reporting P-value threshold of P� 10−3, we identified 6,394 variants in or near
1,928 genes (for a false discovery rate of FDR = 0.068). A total of 450 variants in or near 413
genes exceeded a rigorous Bonferroni correction for multiple tests. The majority of the highly
significant variants were located in a 2.6 Mb region at the tip of the X chromosome, which con-
tained many variants fixed for alternative alleles in the two populations, suggestive of a hard
selective sweep and long range linkage disequilibrium (LD) [128]. Several of the genes with dif-
ferences in SNP allele frequencies between the B and O populations had previously been impli-
cated to affect lifespan (e.g., Cat [65], Cct1 [87], cpo [129], Dhc64c [130], Eip75B [131], but the
vast majority are novel candidates. We performed Gene Ontology (GO) enrichment analyses
[126,127], excluding genes in the 2.6 Mb region of the X chromosome because the high degree
of LD in this region precludes identifying candidate genes. The genetically divergent genes are
highly enriched for biological process categories involved in development and differentiation,
in particular the development and function of the nervous system (S3 Table).

Fig 1. Phenotypic differentiation and senescence in the O and B populations. (A) Female lifespan. (B) Male Lifespan. (C) Female food consumption.
(D) Male food consumption. (E) Female phototaxis. (F) Male phototaxis. (G) Female chill coma recovery time. (H) Male chill coma recovery time. (I)
Productivity. The B and O lines are color coded as indicated.

doi:10.1371/journal.pone.0138569.g001

Fig 2. Genome-wide DNA divergence between O and B lines. The 95% quantiles of t-statistics within
sliding windows of size 0.5Mb (by a sliding size of 0.1Mb) are plotted along the chromosome arms. The t-
statistics are capped at 20 to enhance visualization of smaller differences.

doi:10.1371/journal.pone.0138569.g002
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Gene expression analysis

We assessed genome wide gene expression of O and B lines at one and five weeks of age, sepa-
rately for males and females, using RNA sequencing (S4 Table). Week one corresponds to 11%
and 20% of the average lifespan of O and B lines, respectively; while week five corresponds to
56% of the average lifespan of O lines and 98% of the average lifespan of B lines. We performed
a three-way factorial analysis of variance (ANOVA) on each gene expression trait to partition
the variation in gene expression between the main effects of sex, age, population and all interac-
tions. We used a false discovery rate of FDR< 0.05 to account for multiple tests. We found
that sex was significant for 94% of genes as a main effect or interaction term, consistent with
previous analyses documenting substantial sexual dimorphism of gene expression
[23,130,132,133]. Therefore we performed two-way ANOVAs to partition variance of gene
expression between the main effects of age, population and the age by population interaction,
as well as among lines within each population, for all annotated genes with detectable expres-
sion (15,586 in females and 16,174 in males). A summary of the number of significant genes
for each term in the ANOVAs is provided in Table 1 and full ANOVA results are given in S5
and S6 Tables.

We first examined the genomic distribution of genes with significant main effects of age,
population, and the age by population interaction (Fig 3). We plotted the fraction of significant
genes in each category in non-overlapping 0.5 Mb windows, and found they were largely uni-
formly distributed across the genome, with a few notable exceptions. In females, there is strong
enrichment of genes significant for the age by population interaction near the centromeres of
chromosomes 2L and 2R and also near the centromere of chromosome 3L. In males, the
enrichment is near the centromere and telomere of chromosome 2R. The genes in these regions
do not have anything obvious in common, nor are they members of gene families (S7 Table).

Genes whose expression changes with age are candidate genes affecting lifespan as well as
biomarkers of aging. A large fraction of the genome– 27% in females and 61% in males—
changes expression with age (Table 1), consistent with previous studies [23,130,134–136]. We
performed GO enrichment analyses for the genes that were up- and down-regulated with age,
separately for females (S8 Table) and males (S9 Table). In females, genes up-regulated with age
were highly enriched for GO terms associated with immune response, stress response, defense
response and detoxification of xenobiotics, while genes that were down-regulated with age
were highly enriched for GO terms associated with mitochondrial function and oxidative phos-
phorylation. Genes that were up- and down-regulated with age in males were enriched for the
same GO categories as for females, as expected since 74% of the genes that changed with age in
females and males were the same (Table 1, S9 Table). In addition, genes that were up-regulated
with age in males were highly enriched for GO categories associated with morphogenesis and
development, including development of the nervous system; regulation of metabolism, gene
expression and protein synthesis; signal transduction, mitosis, DNA repair, and programmed
cell death. In addition, 41 up-regulated genes were significantly enriched for the GO terms
“determination of adult life span”, “aging” and “multicellular organismal aging” (S9 Table).
Genes that were down-regulated with age in males were also enriched for GO terms associated
with metabolism and catabolism (S9 Table).

Genes with significant changes in expression between the B and O populations are candi-
date QTLs affecting variation in lifespan. In contrast to the large fraction of the genome associ-
ated with expression changes with age, only ~5% of the genome fell into this category, and
these genes were largely different in females and males (Table 1). In females, genes down-regu-
lated in B lines were enriched for GO terms associated with gene expression, protein synthesis,
mitosis, metabolism, RNA binding and mitochondrial function; while genes up-regulated in B
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lines were enriched for GO terms associated with immune, defense and stress responses and
detoxification of xenobiotics (S8 Table). In males, genes down-regulated in B lines were
enriched for GO terms associated with detoxification of xenobiotics while genes up-regulated
in B lines were enriched for GO terms associated with morphogenesis and development (S9
Table).

Transcripts exhibiting the signature of postponed senescence are those for which there is a
change in gene expression of B lines with age but this change is attenuated but in the same

Table 1. Numbers of significant (FDR < 0.05) annotated genes for each term in the ANOVAmodels of gene expression.

Term Female Male Both sexes

Age 4,145 (27%) 9,853 (61%) 3,085 (20%)

Age up-regulated (W1 < W5) 1,999 4,231 1,300*

Age down-regulated (W1 > W5) 2,146 5,622 1,360*

Population 780 (5%) 1,011 (6%) 178 (1%)

Population B < O 568 438 115*

Population B > O 212 573 58*

Age × Population 3,171 (20%) 4,998 (31%) 1,276 (8%)

Total number of tested genes 15,586 16,174 15,563

W1: Week 1; W5: Week 5.

* These numbers do not sum to the total numbers in both sexes because of differences in the directionality of effects across sexes.

3,085 genes have a significant age effect in both the male and female dataset but only 2660 have an effect in the same direction. The remaining 425

genes are up-regulated in one sex and down-regulated in the other. Likewise, 5 genes have opposite effects in the B and O populations.

doi:10.1371/journal.pone.0138569.t001

Fig 3. Genome-wide distribution of genes showing significant age, population, and age x population interaction effects on gene expression. The
proportions of genes showing significant age, population or age x population interaction effects within 0.5Mb non-overlapping windows are plotted along the
chromosome arms. Genes are located by their mid-gene coordinates. The top and bottom panels are the distributions for females and males, respectively.

doi:10.1371/journal.pone.0138569.g003
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direction in the O lines, and further the gene expression of older O lines remains similar to that
of young B lines. Genes exhibiting this signature of postponed senescence will be among those
with a significant age by population interaction term. The population by age interaction term
was significant for 3,171 genes in females and 4,998 genes in males (Table 1). In females, genes
with significant age by population interactions were enriched for GO terms involving the
plasma membrane and development and function of the nervous system (S8 Table). In males,
genes with significant age by population interactions were enriched for GO terms associated
with mitochondrial function, oxidation reduction and amine metabolism (S9 Table).

Finally, we extended the analysis to previously unannotated genes, of which there were
1,950 in females and 2,299 in males (S10 and S11 Tables). Many of the novel genes were located
in heterochromatic regions: 1,104 (57%) in females and 1,311 (57%) in males. Very few of the
female novel genes were significantly associated with age (100, 5.1%), population (0) and the
age by population interaction (29, 1.4%) (S10 Table). In contrast, many of the male novel genes
were significantly associated with age-specific gene expression changes (1,037, 45.1%),
although very few were associated with population (15, 0.65%) and the age by population inter-
action (50, 2.17%) (S11 Table).

Candidate genes for postponed senescence

Causal variants affecting postponed reproductive senescence, increased lifespan and other
traits that are among the list of variants that are divergent in allele frequency between the B
and O populations. However, these variants often occur in local LD blocks leading to poor res-
olution of individual genes—particularly within the 2.6 Mb region at the tip of the X chromo-
some. Further, the genes with these divergent variants may be associated with other traits that
have evolved as a correlated response to selection for postponed selection in the O lines and are
not necessarily associated with differences in lifespan between the B and O lines. Candidate
genes affecting increased lifespan and postponed senescence are also among the transcripts
with significant age by population interactions. However, gene expression analyses alone can-
not distinguish between expression changes causing phenotypic divergence in lifespan from
those that are a consequence of phenotypic divergence, and a cis-regulatory change in expres-
sion of gene can cause trans-regulatory changes in gene expression of other genes, leading to
correlated gene expression modules [132,137,138]. Therefore, we hypothesized that integrating
results from sequence divergence gene expression divergence would enable us to identify the
top candidate genes affecting postponed senescence and increased lifespan as those significant
in both analyses.

Not all significant age by population interactions in the gene expression analyses are consis-
tent with the pattern of gene expression difference between the O and B lines expected from
postponed senescence. We therefore filtered these genes by requiring that they fall into one of
eight interaction groups consistent with postponed senescence (Fig 4). We defined interaction
groups 1 and 2 as those for which there was no significant difference in expression between the
B and O populations at week 1, expression in the B populations significantly increases in week
5, and expression in the O populations either remains constant (group 1) or changes margin-
ally at week 5 (group 2). Similarly, we defined interaction groups 3 and 4 as those for which
there is again no significant difference in expression between the B and O populations at week
1, expression in the B populations is significantly decreased in week 5, and expression in the O
populations either remains constant (group 3) or changes marginally at W5 (group 4). Interac-
tion groups 5 and 6 are those for which there is a significant difference in expression between
the B and O populations at both weeks, but the difference is larger at week 5 than week 1,
expression in the B lines is significantly increased at week 5, and expression in the O lines either
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Fig 4. Interaction plots showing signatures of postponed senescence. Each plot shows the mean gene expression levels in normalized fragments per
kilobase of exon per million fragments mapped (FPKM) at week 1 (W1) and week 5 (W5) in the B population (blue) and the O population (red). All examples
are for male gene expression. See text for the description of the groups. (A) Group 1: CG6188 (interaction FDR = 5.57E-04). (B) Group 2: CG2233

(interaction FDR = 9.89E-06). (C) Group 3: Sfp53D (interaction FDR = 4.83E-06). (D) Group 4: CG31198 (interaction FDR = 8.72E-05). (E) Group 5:
CR45054 (interaction FDR = 5.01E-05). (F) Group 6: CG6910 (interaction FDR = 3.63E-06). (G) Group 7: CG2930 (interaction FDR = 2.10E-05). (H) Group
8: Vap-33B (interaction FDR = 4.22E-03).

doi:10.1371/journal.pone.0138569.g004
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remains constant (group 5) or changes marginally at week 5 (group 6). Finally, interaction
groups 7 and 8 are those for which there is a significant difference in expression between the B
and O populations at both weeks, but this difference is larger at week 5 than week 1, expression
in the B populations is significantly decreased at week 5, and expression in the O populations
either remains constant (group 7) or changes marginally at W5 (group 8). Applying these fil-
ters reduced the number of candidate genes to 687 in females (S12 Table) and 1,459 in males
(S13 Table). The vast majority of these genes were in interaction groups 1–4 (94.5% in females
and 94.3% in males).

We next required that a variant from the divergence analysis occurred within 1 kb of the
genes with expression changes consistent with postponed senescence and increased lifespan. A
total of 98 genes in females and 175 genes in males remained after applying this filter (S14 and
S15 Tables). These genes were not enriched for any GO terms. Rather, they spanned the diver-
sity of biological functions previously associated with aging, including the regulation of metabo-
lism and macromolecule biosynthesis, immune/defense response, stress resistance,
reproduction, mitochondrial function, oxidation-reduction, DNA repair and replication, and
regulation of gene expression. Many of these genes affect developmental processes, including
development and function of the nervous system, none of which have previously been associated
with lifespan. Possibly the same genes that act early in development to build organismal struc-
tures are also responsible for the long-term maintenance of these structures in adults. Approxi-
mately one-third of the candidate genes associated with postponed senescence have no known
biological functions. Finally, only 20 of these genes are in common between males and females.

Discussion

We have characterized the phenotypic, genetic and genomic divergence of lines subjected to
long-term laboratory evolution for postponed reproductive senescence [109]. The O lines live
nearly twice as long as the B lines, have increased productivity at all ages, and exhibit post-
poned senescence for other phenotypes not under direct selection. We determined the genomic
DNA sequences of the O and B lines to assess the pattern and magnitude of genetic differentia-
tion between them. Of the ~18,000 genes in the Drosophila genome, ~11% have a variant that
is genetically divergent between the O and B populations at our reporting threshold of
P< 10−3 (FDR = 0.068), many of which are in a 2.6 Mb region of the X chromosome that
appears to have undergone a hard selective sweep [128].

We performed RNA sequencing of the O and B lines at one and at five weeks of age, and
used ANOVA to partition the variation in gene expression for each expressed transcript into
the main effects of age and population, and the age by population interaction, separately for
each sex. Consistent with previous studies [23,130,134–136], we found that a substantial frac-
tion of the genome exhibits significant (FDR< 0.05) changes in gene expression with age.
Intriguingly, transcriptional divergence between the O and B populations was modest (5–6% of
the genome) with respect to the main effect of population, but much greater (20–31%) for the
age by population interaction. This suggests that transcriptional divergence between the O and
B populations is age-specific, as would be expected for transcripts with less change with age in
the O lines relative to the B lines (i.e., postponed senescence). We identified the subset of genes
with significant age by population interactions with gene expression signatures consistent with
postponed senescence, and the subset of those genes that are candidates for postponed senes-
cence because they are also genetically divergent between the B and O population– 98 genes for
females and 175 genes for males.

Several of these candidate genes have been previously associated with Drosophila lifespan.
We identified CG10383, which encodes a hydrolase, as a candidate gene for postponed
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senescence and increased lifespan in both sexes. Over-expression of CG10383 in the nervous
systems extends lifespan [139]. Catalase (Cat) and Autophagy-related 7 (Atg7) were among the
candidate genes affecting lifespan in females. Null mutations of Cat [65] and Atg7 [140] reduce
lifespan. Candidate genes in males includedmethuselah-like 8 (mthl8),molting defective (mld,
also known as DTS-3), CTP:phosphocholine cytidylyltransferase 1 (Cct1), Peptidoglycan recogni-

tion protein LF (PGRP-LF) and brummer (bmm).mthl8 is annotated to affect lifespan by virtue
of its homology withmth (methuselah), which encodes a G-protein coupled receptor that,
when down-regulated, increases lifespan [114].mld (DTS-3) encodes a protein with Krüppel
Zn-finger domains and is involved in ecdysone biosynthesis. A dominant temperature sensitive
allele ofmld has been associated with a female-specific increase in lifespan [141]. The observa-
tion thatmld is a male-specific candidate gene in this study is not surprising, since we have pre-
viously observed that the same mutation affecting lifespan can have different sex-specific
effects depending on the genetic background, and that different mutations in the same gene
and genetic background can have variable and sometime opposite effects on longevity
[131,142]. Cct1 [87] and PGRP-LF [139] were both identified in large scale screens for genes
with increased lifespan. bmm, which encodes a triglyceride lipase, was found to be up-regulated
on starvation in a genome wide transcriptome analysis comparing fed and food-deprived flies
[143]. Subsequent analyses showed that a mutation in bmm had a context-dependent effect on
lifespan, with decreased lifespan under fed conditions, but increased lifespan when flies were
starved [143].

Several of the candidate genes for postponed reproductive senescence and increased lifespan
were associated with a variant from the divergence analysis with a P-value exceeding a Bonfer-
roni correction for multiple tests: CG18031, CG42340, CG11378, CG3699 andmus81 in
females; Insulin-like peptide 6 (Ilp6), Cytochrome P450-4d1 (Cyp4d1), silver (svr), female sterile

(1) Nasrat (fs(1)N), CG2854, CG13868, CG6428, CG7713, Centaurin gamma 1A (CenG1A) and
CG33307 in males. This study represents the first biological functional annotation for the
majority of these genes (CG18031, CG42340, CG11378, CG3699, Cyp4d1, CG2854, CG13868,
CG6428, CG7713, CG33307). While the others have not been implicated to affect lifespan previ-
ously, most are plausible candidates because they perform similar roles as other genes known
to affect aging.mus81 plays a role in DNA repair [144]. Ilp6 is thought to be an insulin receptor
and affects adult body size by regulating post-feeding growth [145] as well as growth under
conditions of nutritional deprivation [146]. svr encodes Carboxypeptidase D [147] and has
pleiotropic effects on imaginal disc-derived wing morphogenesis, long term memory, stress
response and phagocytosis [148,149]. CenG1A is a member of the gamma subgroup of the Cen-
taurin superfamily of small GTPases and is a Phosphoinositide-3-kinase enhancer (PIKE) pro-
tein thought to regulate ecdysone signaling-dependent second to third instar larval transition
[150]. fs(1)N is an unexpected candidate affecting male postponed senescence since it in
involved in oogenesis and highly expressed in female reproductive tissues [121]. However, it
does have a low level of expression in testes [121].

The genetic architecture of Drosophila lifespan is highly sex-specific [24–
27,29,130,131,142], as indeed is the majority of the candidate genes identified in this study.
However, 20 of our top candidate genes (including the above-mentioned CG10383) were found
in both sexes. Again, this study represents the first biological functional annotation for most of
these genes (CG12253, CG5991, CG2233, CG3604, Organic anion transporting polypeptide 30B

(Oatp30B), CG6357, CG11395, CG30098, CG32061, CG42557, CG43175, CR45054, CR45272);
and the other genes common to males and females are plausible candidates. Cecropin A2

(CecA2) is involved in antibacterial humoral response [151–153], as is Ras-like protein A

(RalA) [154]. RalA also regulates polar-cell differentiation during oogenesis [155]. fat (ft) is
involved in cadherin and calcium ion binding and acts to regulate planar cell polarity in the
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wing [156] and body hair [157]. ft is also a tumor suppressor and as such acts to regulate
growth [158].multiple wing hairs (mwh) encodes a G protein binding domain-formin homol-
ogy 3 (GBD-FH3) domain protein that acts downstream of the planar cell polarity pathway to
regulate wing hair development [159,160]. exit protein of rhodopsin and TRP (Xport) is a chap-
erone for the transient receptor potential (TRP) channel and its G-protein coupled receptor,
rhodopsin (Rh1) and interacts with both Trp and Rh as well as the small heat shock proteins
Hsp27 and Hsp90 [161]. shrub (shrb, also known as ESCRT) has pleiotropic effects on multiple
biological process, including autophagy [162], nervous system development [163–166], nega-
tive regulation of mycobacterial growth [167] and growth of the female germ line [168,169].

The candidate genes affecting postponed senescence and increased lifespan identified in this
study are a rich resource for future functional validation. Many of these genes have human
orthologs and may advance our understanding of ‘public’mechanisms of aging [3,43].
Although we used the lowest P-value from the genetic divergence analysis as a filter to integrate
with the gene expression data, these polymorphisms are not necessarily the causal ones. How-
ever, many are indeed in transcriptional start and end sites of the genes exhibiting transcrip-
tional signatures of postponed senescence, a hallmark of Drosophila cis-eQTLs [170].
Determining which polymorphisms are causal will be a critical step towards functional analyses
of their pleiotropic effects on fitness and insights about why they remain segregating in nature,
providing specific examples of general evolutionary explanations.
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