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N
atural selection acts in distinct ways in males and females1–6 
and this has resulted in pervasive differences in gene expres-
sion between the sexes1,6. However, sex-specific evolution is 

constrained because males and females share a common genome. 
An evolutionary tug-of-war driven by sexually antagonistic (SA) 
selection, where alleles favoured in females are disfavoured in males 
(and vice versa), is thus believed to generate genome-wide balanc-
ing and diversifying selection through widespread SA pleiotropy4 
which will act to maintain genetic variation in fitness7. Genes with 
sex-biased gene expression (SBGs) do tend to show increased levels 
of standing genetic variation within populations, greater divergence 
between populations and rapid evolution across species8,9. Yet, the 
relative role of SA selection and genetic drift in such genome-wide 
patterns is not well established and most studies involve taxa where 
we lack an understanding of SA selection and SA phenotypes4,5. This 
is problematic because SBGs are predicted to experience relaxed 
purifying selection and this could in theory underlie the striking 
genetic features of SBGs3. Further, the form of selection may gener-
ally differ across classes of SBGs1: male-biased genes (MBGs) are 
expected to experience strong sexual selection while female-biased 
genes (FBGs) may be more subject to selection deriving from life-
history trade-offs4. Genome-wide studies of genetic diversity in 
SBGs10 in species where SA phenotypes are well understood are 
needed to untangle concomitant processes affecting the evolution 
of SBGs4,5.

The seed beetle C. maculatus is an experimental model system 
for studies of SA selection and SA phenotypes. Males carry genital 
spines that cause injuries in females at mating and such spines are 
favoured in males by post-mating sexual selection11. Males trans-
fer large amounts of ejaculate proteins to females at mating that 
are under sexual selection in males but some of which also have 
detrimental effects in females12. More importantly, phenotypic 

selection on shared life-history traits is SA such that females show 
lower optima for a pace-of-life syndrome: lower metabolic rate, 
prolonged juvenile development, larger body size, lower adult activ-
ity and a longer life-span13–15. In concordance, genotypes showing 
high female fecundity simultaneously tend to show low male fit-
ness in this species16–18. Here, we sequenced, de  novo assembled 
and annotated the genome of C. maculatus and then resequenced 
three divergent populations by sequencing pools of individuals 
(Pool-seq). Leaning on detailed information on gene expression 
in males and females19 and in-house annotations of focal gene sets 
(Supplementary Materials and Methods), we relate the degree and 
direction of sex-biased expression of almost 5,000 genes to mea-
sures of within-population genetic polymorphism and to indices of 
selection. We then identify candidate SA loci and ask whether these 
match known SA phenotypes.

Results and discussion
Genetic variation within populations was significantly higher in 
SBGs, whether estimated as single nucleotide polymorphism or as 
nucleotide diversity (π), and this was particularly pronounced for 
MBGs (Fig. 1a–c). In theory, increased genetic variation could be 
due to stronger balancing selection but relaxed purifying selection 
on SBGs could also contribute, since net screening of gene copies 
by selection is weaker if only one sex expresses a gene3. We used the 
ratio of substitution rates (p) at non-synonymous and synonymous 
sites (pN/pS) between segregating variants to infer the efficacy of 
purifying selection within populations20. The absolute value of pN/pS 
is somewhat difficult to interpret in this context but our observa-
tion of within-population pN/pS ratios for weakly SBGs of approxi-
mately 0.1 is at least consistent with simulations of strong purifying 
selection21. More importantly, that this ratio was significantly higher  
for more strongly SBGs (Fig. 1d) aligns very well indeed with the 
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prediction that SBGs should experience relaxed purifying selection3. 
That this pattern was more pronounced for nucleotide diversity at 
non-synonymous sites (πns) than at synonymous sites (πs) (Fig. 1b 
versus 1c) is also consistent with this conclusion. Similar findings 
have previously been reported in flycatchers20, guppies10, birds9 and 
humans22. This strongly suggests that the unique properties of SBGs 
are at least in part due to relaxed purifying selection3.

Variation in standing genetic variation within populations rep-
resents the outcome of several interacting processes, notably bal-
ancing selection, purifying selection and genetic drift. To estimate 
the net effect of these processes, we related Tajima’s D (D) to sexual 
dimorphism in expression. D summarizes the site-frequency spec-
trum (the distribution of single nucleotide polymorphism, SNP, fre-
quencies in a population) and represents a measure of the relative 
proportion of variable sites at a given locus, normalized such that 
D = 0 is expected for genes under mutation-drift equilibrium while 
D > 0 signifies balancing selection and D < 0 purifying selection. 
Our analyses unveiled a characteristic wave-shaped relationship 
between expression dimorphism and D, which was consistent across 
populations and across synonymous and non-synonymous sites 
(Fig. 1e,f), showing that the strength and nature of overall selection 
depends upon the type and degree of sex-bias in gene expression. 
Weakly biased FBGs showed strongest signs of balancing selection 
within populations, consistent with an elevation of genetic variation 
in these genes due to SA selection. We identified 149 candidate SA 
loci, representing FBGs (log2FC > 1, where FC denotes fold change) 
that also showed Dns > 0 and Ds > 0 in all three populations. Classic 
theory23 predicts that the X chromosome should be enriched with 
SA loci24, and some population genomic studies have found support 
for this tenet25 while others have not26. We found little evidence for 
a general enrichment of candidate SA loci on the X chromosome 
in our study, as only two of these 149 loci were located on X-linked 
contigs (Fisher’s exact test; P = 0.336). We also note that genes with 
sex-limited expression, potentially reflecting genes where SA has 
been resolved1, were not significantly overrepresented on the X 
chromosome although this may in part reflect the apparent occur-
rence of partial dosage compensation and/or female X-inactivation 
in this species (Supplementary Results). Gene ontology enrichment 
analyses of our candidate set showed enrichment for genes involved 
in (1) a variety of general metabolic processes, (2) organelle (for 
example mitochondrial) organization and (3) cell division and egg 
production (Supplementary Table 6). Several of those FBGs that 
showed a signal of strong balancing selection in all three popula-
tions showed significant homologies with key metabolic genes, for 
example involved in ATP production, known to affect life-history 
traits such as life-span in other species27 (Supplementary Results).

Sexual conflict can be resolved by sex-limited expression of 
genes1. We therefore expect balancing SA selection to be absent or 
weakened in highly SBGs, as an indirect result of relaxed selection 
in the sex showing little or no expression of a given gene3. We found 
that overall balancing selection was indeed weakened in strongly 
FBGs (Fig. 1e,f). A similar finding in humans has been interpreted 
as evidence for SA selection being a major source of balancing selec-
tion among SBGs28. The fact that weakly SBGs showed the clearest 
hallmarks of balancing selection is consistent with the hypothesis 
that SA is more likely to promote the maintenance of polymor-
phism in genes where the evolution of sex-specific expression is 
constrained such that SA selection is more enduring29,30.

The pattern of overall selection in MBGs within populations was 
different from that in FBGs (Fig. 1e,f). While very weakly biased 
MBGs showed some evidence for overall balancing selection in 
two populations, intermediately biased MBGs tended to show, if 
anything, overall purifying selection. Clearly, the overall pattern 
of selection is distinct in MBGs and FBGs and the marked influ-
ence of balancing selection seen in intermediately biased FBGs was 
absent in MBGs. This does of course not negate the possibility that 

some MBGs may be involved in balancing SA selection but it does 
suggest that MBGs are overall more affected by negative selection 
than are FBGs. This is in concord with the suggestion that MBGs 
should be less constrained by pleiotropy than FBGs or unbiased 
genes4,8,30 and should be more affected by purifying sexual selection1 
than FBGs. The fact that there are overall more MBGs than FBGs 
in C. maculatus supports this possibility as does the interesting 
fact that FBGs generally show more overlap across tissues than do 
MBGs19. Available evidence thus implies that FBGs are more often 
subject to antagonistic pleiotropy through shared function across 
sexes and tissues. We found further support for this hypothesis in 
that the degree of shared expression across tissues (abdomen versus 
head and thorax) among our 149 candidate SA loci was consider-
ably and significantly higher (92%) than expected on the basis of all 
expressed genes (79%; Supplementary Results).

Several studies have shown that genetic variation in fitness 
in C. maculatus populations is, to an appreciable extent, SA16–18. 
Detailed phenotyping and experimental studies have placed gen-
eral life-history traits, such as metabolic rate, locomotor activity, 
body mass, life-span, mitochondrial function and female egg pro-
duction at the epicentre of SA selection13–15. The molecular hall-
marks of selection documented here accord remarkably well with 
this previous body of research: general life-history genes tend to 
be female- rather than male-biased in expression in this species19 
and we found that candidate SA loci were indeed enriched with 
genes involved in general metabolic processes and egg production. 
MBGs are instead enriched with genes with more special functions, 
such as receptor signalling pathways, visual perception, detection of 
chemical stimulus and neurotransmitter transport19. Interestingly, 
a focused analysis of 185 genes encoding C. maculatus male ejacu-
late proteins, which are male-biased in expression (Supplementary 
Results), under sexual selection12 and generally assumed to be 
candidate SA loci31, provided only limited evidence for overall bal-
ancing selection (Supplementary Figs. 5 and 6). Our results thus 
imply that genetic variation maintained by balancing SA selection 
is highly polygenic and is dominated by weakly FBGs involved in 
general life-history traits rather than by sex-specific traits under 
sexual selection in males.

Loci under balancing SA selection are predicted to show a higher 
degree of shared polymorphism across diverging populations, as 
ancestral polymorphisms are more likely to be maintained over time 
by balancing selection5. Previous studies have found that candidate 
SA loci are indeed more likely to show shared polymorphism, both 
across populations in fruit flies26 and across closely related species in 
flycatchers20. We tested this prediction by modelling the probability 
that genes carrying ≥1 SNP showed shared intermediate frequency 
polymorphism (minor allele frequency 0.3–0.5 in all three popu-
lations). This analysis revealed that FBGs showed a significantly 
higher probability of shared intermediate frequency polymorphism 
than did MBGs (Fig. 2). This is consistent with our analyses of 
balancing selection and, in fact, within-population estimates of D 
covaried strongly with shared polymorphism across populations 
(Supplementary Table 5). Genes with high values of Dns, and to a 
lesser extent also pN/pS, in the three populations were more likely to 
show shared polymorphism, while genes with more divergent esti-
mates of Dns were less likely to show shared polymorphism. Male 
seminal fluid proteins and, in particular, sex-linked genes showed a 
relatively low incidence of shared intermediate frequency polymor-
phism, in concordance with a more pronounced role of purifying 
selection in these genes (Supplementary Fig. 7).

The identification of candidate SA loci can be refined by com-
bining several metrics, each of which suggests a history of balanc-
ing SA selection6. We inspected the subset of genes showing (1) 
shared intermediate frequency polymorphism across populations, 
(2) signs of balancing selection within all populations (Dns > 1) 
and (3) at least weak sex-biased expression (log2FC > 1 or < −1). 
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This identified 15 FBGs and 10 MBGs. Functional enrichment of 
these genes again showed an enrichment for general metabolic and 
catabolic processes (both sets) and egg production (the female set) 
(Supplementary Table 7).

We currently lack a recombination map of the C. maculatus 
genome and it is therefore not possible to assess whether and how 
variation in recombination rate across the genome might have 
influenced our results. C. maculatus has a fairly large (1.2 giga-
bases) and repeat-rich (>65%) genome with ten chromosome pairs 

(2n = 18 + XX/XY), and we found that genes carrying SNPs show-
ing intermediate frequency polymorphism were distributed across 
contigs in accordance with random expectations rather than being 
enriched on some contigs (Supplementary Results). These facts sug-
gest that linked selection is not responsible for the genome-wide 
patterns documented here.

Some studies have shown that loci with SB expression, in partic-
ular MB genes, tend to show increased rates of divergent sequence 
and expression evolution1. This is consistent with relaxed purifying  

p
N

/p
S
 r

a
ti
o

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

π
s

0.014

0.016

0.018

0.020

0.022

0.024

0.026

0.028

0.030

S
N

P
 d

e
n

s
it
y
 (

p
e

r 
b

p
)

0.0040

0.0045

0.0050

0.0055

0.0060

0.0065

0.0070

0.0075

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

π
n

s

D
s

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

D
n

s

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

MBG expression FBG expression MBG expression FBG expression

a d

b e

fc

Fig. 1 | Population genomic analyses of SBG expression in three diverged C. maculatus populations. Shown are mean (±95% bootstrap CI) metrics for 

genes showing different degrees of sex-biased expression, separately for the three populations (Brazil, blue; California, red; Yemen, green). Genes were 

grouped into quartiles based on their log2FC value, separately for FBGs and MBGs, resulting in eight bins in total. Sample size per bin is n = 592–656 

genes. a, The density of polymorphism varied significantly across SBG categories (all P < 10−6). b,c, Nucleotide diversity also varied significantly across 

the SBG categories in synonymous (b; all P < 0.002) and, particularly, in non-synonymous (c; all P < 10–6) sites. These three different measures of DNA 

sequence variation all showed increased variation in SBGs, particularly in MBGs. d, The pattern of pN/pS across SBGs genes (all P < 10–6) was consistent 

with a history of strong negative selection in the least SBGs and relatively relaxed purifying selection with increasing sex-bias. e,f, Estimates of D also 

varied across SBG categories, significantly so in all populations when based on synonymous sites (e; Brazil: F7,4697 = 3.05, P = 0.004; California: F7,4877 = 4.97, 

P < 0.001; Yemen: F7,4851 = 5.66, P < 0.001) and in one population when based on non-synonymous sites (f; Brazil: F7,4011 = 1.76, P = 0.090; California: 

F7,4149 = 4.35, P < 0.001; Yemen: F7,4176 = 1.63, P = 0.122). Those SBG categories showing overall positive D with CIs not overlapping zero were intermediately 

biased FBGs. In fact, D tended to relate to sex-bias in gene expression by a wave-shaped pattern, which was significantly sigmoidal in three out of the four 

cases where the effect of SBG category was significant (third-order polynomial contrasts: California Dns: F1,4190 = 6.372, P = 0.012; California Ds: F1,4877 = 11.59, 

P < 0.001; Yemen Ds: F1,4851 = 8.45, P = 0.003). Fitted functions in e and f represent cubic polynomials. This pattern was also seen when instead modelling 

sex-bias as a continuous trait (Supplementary Fig. 4) and remained intact when accounting for variation in overall gene expression, gene length and GC 

content (Supplementary Table 5).
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selection in SBGs3 but is difficult to reconcile with theory4,7 and 
empirical observations26 of signals of balancing selection and 
shared polymorphism in candidate SA genes. This apparent incon-
gruence is not yet fully resolved. Possible resolutions may include a 
release from SA constraints in strongly SBGs29, allowing such SBGs 
to respond to divergent sex-specific selection. Other factors may 
involve strong positive sexual selection in a subset of MB genes4, less 
constraints through antagonistic pleiotropy in certain MB genes1,4,30, 
the fixation of alternative alleles across some SA loci for complex 
polygenic traits under SA selection32 and the possibility that inter-
locus SA coevolution2 spurs rapid evolution in a subset of SBGs. 
This is clearly an issue that deserves further attention.

In conclusion, the hypothesis that balancing SA selection has a 
major influence on genome-wide levels of genetic variation has con-
siderable support from quantitative genetic studies but has rarely 
been tested using large-scale genomic data in species in which SA 
selection, SBG expression and SA phenotypes are well understood4. 
We provide such a test and our findings supported many key pre-
dictions and generated new insights ((1)–(4) as follows). (1) We 
found genome-wide evidence for relaxed purifying selection in 
SBGs, supporting the tenet that relaxed selection contributes to 
relatively high levels of genetic variation and rates of evolution of 
SBGs3. (2) However, our analyses also showed that indices of bal-
ancing selection showed a tighter covariation with shared genetic 
variation across populations than did those of relaxed purifying 
selection—the latter fact suggests that SA pleiotropy plays a central 
role in the elevation of genetic variation seen in SBGs. (3) Theory 
suggests that SA should be highly polygenic7, which seems to be 
true in Drosophila26. In line with this last prediction, our analyses 
identified many candidate SA loci. This molecular genetic find-
ing corresponds well with recent quantitative genetic findings in 
this species, which have documented a negative genetic covariance 
between male and female reproductive fitness15–17 and have pro-
vided evidence for genome-wide sex-specific dominance reversal 
for fitness18. The latter phenomenon greatly increases the capac-
ity for SA selection to generate balancing selection that results in 
stable polymorphism33 and promotes the maintenance of polygenic 
SA variation.

Finally, strong sexual selection on MBGs and male-specific 
traits has traditionally been assumed to be the primary generator of 
SA pleiotropy. In contrast to this belief, we found that (4) the foot-
prints of balancing SA selection were most pronounced in weakly 
FBGs involved in metabolic processes that affect general life- 
history traits, matching previous studies identifying SA phenotypes 
in this species14–18. MBGs known to be under sexual selection in 
males (that is, male seminal fluid proteins) did not generally show 
consistent evidence for balancing SA selection. The degree to which 
the patterns documented here are general, as opposed to being spe-
cific for our model system, is currently unclear, as few studies have 
studied genetic diversity in SBGs in species with known SA pheno-
types4,5. However, in conjunction with recent single-locus studies 
that have also revealed SA selection on genes related to metabolic 
processes and life-history traits33–35, our findings do suggest that 
our understanding of SA pleiotropy may need to be revised: a pri-
mary generator of this perpetual genetic tug-of-war between the 
sexes seems to be genes involved in a variety of general metabolic 
cascades, where sex-biased expression is constrained by shared 
function across the sexes.

Methods
Model system. The beetle C. maculatus (Bruchinae) is originally a West African 
species that has become a serious pest of legume crop seed stores in all tropical 
and subtropical arid regions of the world36. It has recently been established as an 
amenable model system in ecology and evolution because its natural habitat can 
be well replicated in the laboratory. Females lay eggs on dry beans and the larvae 
complete their development inside the bean in about 3 weeks under optimal 
conditions. This species shows an XY sex-determination system, with males being 
the heterogametic sex. We used the inbred South India SI4 reference strain for the 
genome assembly, to minimize SNP density in sequence data. We then resequenced 
three outbred populations, originally collected in Yemen, California and Brazil. 
Seed beetles were brought to Asia from West Africa by human farmers of its main 
host (Vigna unguiculata) some 2,000 years ago (Yemen) and were introduced to the 
Americas from West Africa by Spanish settlers in the early 1700s (California and 
Brazil)36. The three populations have been kept in the laboratory on V. unguiculata 
(29 °C, 65% relative humidity) for some 300 generations at population sizes >400 
individuals. Refer to the Supplementary Materials and Methods for full details.

Genome assembly and annotation. A de novo genome assembly was generated 
using a sample (n = 12) of males from the SI4 strain. PacBio long-read sequences 
representing 32× genomic coverage with an average read-length of 9.0 kilobases 
were assembled using FALCON, and subsequently error-corrected based on 
realignment of both PacBio (32×) and Illumina (125×) reads. The resulting 
polished assembly is 1.01 gigabases in total size (somewhat smaller than the 
expected 1.19 gigabases genome size37), with an N50 of 149 kilobases and the 
longest contig spanning 2.1 megabases. Notably, RepeatMasker (v.4.0.5) identified 
as much as 64% of the assembly as repetitive elements (Supplementary Materials 
and Methods). Using a comprehensive MAKER3 pipeline using transcriptome 
data38, homology, and ab initio prediction methods, we identified 21,264 coding 
genes. Despite the high repeat content and the fragmented assembly, evaluations 
based on conserved proteins sets indicated a high fraction of well-assembled 
genes in the assembly (CEGMA: 85% complete, 11% partially complete; BUSCO: 
75% complete, 10% partially complete). The CEGMA and BUSCO estimates 
for duplicated complete genes indicated a relatively high level of uncollapsed 
haplotypes in the assembly, not unusual for assemblies based on pooled samples 
(Supplementary Table 3).

Putative sex-linked contigs were identified by analysing Illumina read coverage, 
normalized to median coverage over all contigs, from Illumina sequencing of a 
male (~125×) and a female (~125×) sample from SI4 (HiSeq2000; two sequencing 
libraries and four lanes per sample). This is based on the prediction that X-linked 
contigs should show twice as high coverage in the female sample as in the male 
sample and that Y-linked contigs should have no or very low coverage in the female 
sample (see Supplementary Materials and Methods).

Resequencing. To assess polymorphism within and between populations, we 
sequenced pools of individuals (n = 100 males in each sample/pool) from Yemen, 
California and Brazil (two replicate samples per population)39. Each sample was 
sequenced in two Illumina lanes, resulting in ~62× coverage per sample (~125× 
per population).

Analyses. Data on gene expression were obtained from Immonen et al.19, who used 
RNA-seq of replicated samples of males and females to characterize expression. 
Here, we focused on all genes where data on sex-specific gene expression in the 
abdomen of adult reproductively mature virgin beetles were available (n = 4,993)19. 
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These genes were grouped into eight bins, based on their pattern of SBG 
expression. Genes showing female-biased expression log2FC  > 0; n = 2,623; FBGs) 
were divided into quartiles as were all genes showing male-biased expression 
(log2FC) < 0; n = 2,370; MBGs). Our inferences are based on (1) bootstrapped 
mean and 95% confidence intervals (CI; bias corrected) for each bin and/or (2) 
linear models treating bin as a fixed effect factor testing for effects of direction and 
relative magnitude of SB expression (Supplementary Results).

Parameters of interest were extracted from analyses in PoPoolation and 
PoPoolation2 (ref. 40), using default settings (Supplementary Materials and 
Methods). Genes harbouring ≥1 SNP showing a minor allele frequency of ≥0.3 in 
a given population were deemed to show intermediate frequency polymorphism 
in that population, given that genes showing minor allele frequencies of ≥0.3 show 
signs of balancing selection in Drosophila41. In these analyses, both samples from a 
given population were pooled.

We also analysed several additional gene sets. These were (1) a set of 741 
enzymes involved in digestion of food in larval guts, (2) 185 male reproductive 
proteins42, (3) 126 candidate female reproductive proteins, (4) 281 candidate 
Y-linked genes and (5) 658 candidate X-linked genes. Refer to the Supplementary 
Results for the results for these gene sets.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The annotated genome assembly, along with sequence data, are available from 
the European Nucleotide Archive under accession PRJEB30475. Pool-seq raw 
sequencing data have been deposited at the NCBI sequence read archive, under the 
accession number PRJNA503561.

Code availability
Custom scripts have been published at GitHub where they are openly and freely 
available at: https://doi.org/10.5281/zenodo.3382061.
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