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Abstract  

The immense increase in the generation of genomic scale data poses an unmet 

analytical challenge, due to a lack of established methodology with the required 

flexibility and power. We propose a first principled approach to statistical analysis of 

sequence-level genomic information. We provide a growing collection of generic 

biological investigations that query pairwise relations between tracks, represented as 

mathematical objects, along the genome. The Genomic HyperBrowser implements the 

approach and is available at http://hyperbrowser.uio.no.  

 

Rationale  

The combination of high-throughput molecular techniques and deep DNA sequencing 

is now generating detailed genome-wide information at an unprecedented scale. As 

complete human genomic information at the detail of the ENCODE project [1] is 

being made available for the full genome, it is becoming possible to query relations 

between many organizational and informational elements embedded in the DNA 

code. These elements can often best be understood as acting in concert in a complex 

genomic setting, and research into functional information typically involves 

integrational aspects. The knowledge that may be derived from such analyses is, 

however, presently only harvested to a small degree. As is typical in the early phase 

of a new field, research is performed using a multitude of techniques and 

assumptions, without adhering to any established principled approaches. This makes it 

more difficult to compare, reproduce and realize the full implications of the various 

findings.  



  

The available toolbox for generic genome scale annotation comparison is 

presently relatively small. Among the more prominent tools are those embedded 

within the genome browsers, or associated to them, such as Galaxy [2], BioMart [3], 

EpiGRAPH [4] and UCSC Cancer Genomics Browser [5]. BioMart at this point 

mostly offers flexible export of user-defined tracks and regions. Galaxy provides a 

richer, text-centric suite of operations. EpiGraph presents a solid set of statistical 

routines focused on analysis of user-defined case-control regions. The recently 

introduced UCSC Cancer Genomics Browser visualizes clinical -omics data, as well 

as providing patient-centric statistical analyses.  

We have developed novel statistical methodology and a robust software system 

for comparative analysis of sequence-level genomic data, enabling integrative systems 

biology, at the intersection of genomics, computational science and statistics. We 

focus on inferential investigations, where two genomic annotations, or tracks, are 

compared in order to find significant deviation from null-model behavior. Tracks may 

be defined by the researcher or extracted from the sizable library provided with the 

system. The system is open-ended, facilitating extensions by the user community.  

 

Results  

Overview  

Our system is based on an abstract representation of generic genomic elements as 

mathematical objects. Hypotheses of interest are translated into mathematical 

relations. Concepts of randomization and track structure preservation are used to build 

complex problem-specific null models of the relation between two tracks. Formal 



  

inference is performed at a global or local scale, taking confounder tracks into account 

when necessary (see Figure 1). 

Abstract representation of genomic elements  

A genome annotation track is a collection of objects of a specific genomic feature, 

such as genes, with base pair (bp) specific locations from the start of chromosome 1 to 

the end of chromosome Y. Tracks vary in biological content, but also in the form of 

the information they contain. A track representing genes contains positional 

information that can be reduced to segments (intervals of bps) along the genome. A 

track of SNPs can be reduced to points (single bps) on the genome. The expression 

values of a gene, or the alleles of a SNP, are non-positional information parts and are 

attributed as marks (numerical or categorical) to the corresponding positional objects, 

i.e. segments or points. Finally, a track of DNA melting assigns a temperature to each 

base pair, describing a function on the genome. We thus define five genomic types: 

Unmarked points (UP), marked points (MP), unmarked segments (US), marked 

segments (MS) and functions (F). These five types completely represent every one-

dimensional geometry with marks. 

Catalogue of investigations 

We translate biological hypotheses of interest into a study of mathematical relations 

between genomic tracks, leading to a large collection of possible generic 

investigations. 

Consider the relation between histone modifications and gene expression, as 

investigated by visual inspection in [6] (see Figure S1 in Additional file 1). The 

question is whether the number of nucleosomes with a given histone modification 

(represented as type: UP), counted in a region around the TSS of a gene, correlates 

with the expression of the gene. The second track is represented as marked segments 



  

(MS). This study of histone modifications and gene expressions can then be phrased 

as a generic investigation between a pair of tracks (T1, T2) of type UP and MS: are 

the number of T1 points inside T2 segments correlated with T2 marks? Figure 2 

shows the results when repeating this analysis for all histone modifications studied in 

[6], and different regions around TSS. See Section 1 in Additional file 1 for a more 

detailed example investigation, analyzing the genome coverage by different gene 

definitions. 

In the context of the catalogue of investigations, the genomic types are minimal 

models of information content. In the above example, nucleosome modifications are 

only used for counting, and thus considered unmarked points (UP), even though they 

are typically represented in the file system as marked or unmarked segments. As the 

gene-related properties of interest are the genome segments in which the nucleosomes 

are counted, as well as the corresponding gene expression values (marks), T2 is of the 

type marked segments (MS). The choice of genomic type clarifies the content of a 

track, and also restricts which analyses are appropriate. Investigations regarding the 

length of the elements of a track is, for instance, relevant for genes, but not for SNPs 

and DNA melting temperatures.  

The five genomic types lead to 15 unordered pairs (T1, T2) of track type 

combinations, with each combination defining a specific set of relevant analyses. For 

instance the UP-US combination defines several investigations of potential interest: 

Are the T1-points falling inside the T2-segments more than expected by chance? Do 

the points accumulate more at the borders of the segments, instead of being spread 

evenly within? Do the points fall closer to the segments than expected?  A growing 

collection of abstract mathematical versions of biological questions is provided. We 

have currently implemented 13 different analyses, filling 8 of the 15 possible 



  

combinations of track types (see Additional file 2 for mathematical details). Note that 

information reduction of a track to a simpler type (e.g. segments to points) may open 

up additional analytical opportunities, and are handled dynamically by the system, 

e.g. by treating segments as their middle points. 

Global and local inference 

A global analysis investigates if a certain relation between two tracks is found in a 

domain as a whole. A local analysis is based on partitioning the domain into smaller 

units, called bins, and performing the analysis in each unit separately. Local analysis 

can be used to investigate if and where two tracks display significant concordant or 

discordant behavior, and thus be used to generate hypotheses on the existence of 

biological mechanisms explaining such perturbations. Local investigations may also 

be used to examine global results in more detail. The length of each bin defines the 

scale of the analysis. Inference is then based on the computation of p-values, locally 

in each bin, or globally, under the null model. 

To illustrate the value of local analysis, we consider viral integration events in 

the human genome. These may result in disease and may also be a consequence of 

retroviral gene therapy. Derse et al. [7] examined integration for six types of 

retroviruses, with different viral integrases, thus having different integration sites 

(type:UP). Using these data, we asked whether there are hotspots of integration inside 

2 kb flanking regions of predicted promoters (type: US), i.e. whether and where the 

points are falling inside the segments more than expected by chance. Figure 3 displays 

the hotspots as calculated p-values in bins across the genome, using the subset of 

MLV sites. We find locations of increased integration, thus generating hypotheses on 

the role of integration site sequences and their context.  



  

Local analysis may be used to avoid drawing incorrect conclusions from global 

investigations. Consider the repressive histone modification H3K27me3 as studied in 

[8]. Data from ChIP-chip experiments on mouse chromosome 17 were analyzed, 

finding that H3K27me3 falls in domains that are enriched in SINE and depleted in 

LINE repeats. Using the line of enquiry raised in [8], we asked whether H3K27me3 

regions (type: US) significantly overlap with SINE repeats (type: US), but here using 

formal statistical testing at the base pair level. The chosen null model only allows 

local rearrangements of genomic elements (for more detail, see next section). This 

preserves local biological structure, but allows for some controlled level of 

randomness. 

Performing this test globally on the whole chromosome 17 leads to rejection of 

the null hypothesis (p=10-4), in line with [8]. However, a local analysis leads to a 

deeper understanding. At a 5Mbp scale, no significant findings were obtained in any 

of the 19 bins (10% FDR-corrected). The frequency of H3K27me3 segments varies 

considerably along chromosome 17 (see Figure S2 in Additional file 1), which may 

cause the observed discrepancy between local and global results. 

Precise specification of null models 

A crucial aspect of an investigation is the precise formalization of the null model, 

which should reflect the combination of stochastic and selective events that 

constitutes the evolution behind the observed genomic feature. 

Consider again the example of H3K27me3 versus repeating elements. In the 

chosen null model, we preserved the repeat segments exactly, but permuted the 

positions of the H3K27me3 segments, while preserving segment and intersegment 

lengths. We then computed the total overlap between the segments, and used a Monte 

Carlo test to quantify the departure from the null model. The effect of using 



  

alternative null models is shown in Table 1. The null model examined in the first 

column, which does not preserve the dependency between neighbouring base pairs, 

produces lower p-values. Unrealistically simple null models may thus lead to false 

positives. In fact, two simulated independent tracks may appear to have a significant 

association if their individual characteristics are not appropriately modelled (see 

Section 2 in Additional file 1). In this example, the choice between the biologically 

more reasonable null models is difficult. The two other columns of Table 1 include 

models that preserve more of the biological structure. The fact that these models do 

not lead to clear rejection of the null hypotheses suggests that we in this case lack 

strong evidence against the null hypothesis. Thus, examining the results obtained for a 

set of different null models may often contribute important information. The null 

model should reflect biological realism, but also allow sufficient variation to permit 

the construction of tests. A set of simulated synthetic tracks is provided as an aid for 

assessing appropriate null models (see Additional file 3). 

 The Genomic HyperBrowser allows the user to define an appropriate null 

model  by specifying  (a) a preservation rule for each track, and (b) a stochastic 

process, describing how the non-preserved elements should be randomized. 

Preservation fixes elements or characteristics of a track as present in the data. For 

each genomic type, we have developed a hierarchy of less and less strict preservation 

rules, starting from preserving the entire track exactly (see Section 3 in Additional file 

1). For example, these preservation options for unmarked segments can be assumed: 

(i) Preserve all, as in data; (ii) preserve segments and intervals between segments, in 

number and length, but not their ordering; (iii) preserve only the segments, in number 

and length, but not their position; (iv) preserve only the number of bps in segments, 

not segment position or number. Depending on the test statistic T, the level of 



  

preservation and the chosen randomization, p-values are computed exactly, 

asymptotically or by standard or sequential Monte Carlo [9, 10]. 

Confounder tracks 

The relation between two tracks of interest may often be modulated by a third track. 

Such a third track may act as a confounder, leading, if ignored, to dubious conclusions 

on the relation between the two tracks of interest.  

Consider the relation of coding regions to the melting stability of the DNA 

double helix. Melting forks have been found to coincide with exon boundaries [11-

15]. Although few studies have reported statistical measures of such correlation[11], 

the correlation is confirmed by a straightforward investigation. Tracks (type: F) 

representing the probabilities of melting fork locations [16] in S. cerevisiae, were 

compared to tracks containing all exon boundaries (see Figure 4). We asked if the 

melting fork probabilities (P) were higher than expected at the exon boundaries (E) 

than elsewhere. In the null model, the function was conserved, while points were 

uniformly randomized in each chromosome. Monte Carlo testing was carried out on 

the chromosomes separately, giving p-values < 0.0005 (see Table S3 in Additional 

file 1). In the absence of a confounder, it is thus tempting to conclude that there is an 

interesting relation between DNA melting and coding regions, for which functional 

implications have been previously discussed [15, 17, 18]. 

An alternative view is that the GC content, being higher inside exons than 

outside, contains information about exon location that is simply carried over, or 

decoded, by a melting analysis, thus acting as a confounder. We have developed a 

methodology to investigate such situations further. Non-preserved elements of a null 

model can be randomized according to a non-homogeneous Poisson process with a 

bp-varying intensity, which can depend on a third (or several) modulating genomic 



  

tracks [19, 20]. We have defined an algebra for the construction of intensities, where 

tracks are combined, to allow rich and flexible constructions of randomness (see 

Methods). 

To investigate the influence of GC content on the exon-melting relation, we first 

generated a pair of custom tracks (type: F), assigning to each base the value given by 

the GC content in the 100bps left and right flanking regions, respectively, weighted 

by a linearly decreasing function. These two functions were used, together with the 

exon boundary track to create an intensity curve proportional to the probability of 

exon points, given GC content (see Methods). When performing the same analysis as 

before, but now using the null model based on this intensity curve (rather than 

assuming uniformity), a significant relationship was found in only one yeast 

chromosome (see Table S3 in Additional file 1). In conclusion, there is a melting-

exon relationship in yeast, but it may simply be a consequence of differences in GC 

contents at the exon boundaries (high GC inside, low GC outside), which may exist 

for biological reasons not involving melting fork locations. 

Resolving complexity: system architecture 

The Genomic HyperBrowser is an integrated, open-source system for genome 

analysis. It is continually evolving, supporting 28 different analyses for significance 

testing, as well as 62 different descriptive statistics. The system currently hosts 

184500 tracks. The majority of these represent literature-based information, 

previously mostly utilized in network-based approaches [21]. As natural language 

based text mining allows for the identification of a wide variety of biological entities, 

we have generated tracks representing genomic locations associated with terms for the 

complete gene ontology tree, all MeSH terms, chemicals, and anatomy. 



  

The system is implemented in Python [22], a high-level programming language 

that allows fast and robust software development. A main weakness of Python 

compared to languages like C++ is its slower performance. Thus, a two-level 

architecture has been designed. At the highest level, Python objects and logic have 

been used extensively to provide the required flexibility. At the base pair level, data is 

handled as low-level vectors, combining near-optimal storage with efficient indexing, 

allowing the use of vector operations to ensure speed. Interoperability with standard 

file formats in the field [23] is provided by parallel storage of original file formats and 

preprocessed vector representations. To reduce the memory footprint of analyses on 

genome-wide data, an iterative divide-and-conquer algorithm is automatically carried 

out when applicable. A further speedup is achieved by memoizing intermediate results 

to disk, automatically retrieving them when needed for the same or different analyses 

on the same track(s) at any subsequent time, by any user.  

The system provides a web-based user interface with a low entry point. 

However, the complex interdependencies between the large body of available tracks, 

a number of syntactically different analyses, and a range of choices for constructing 

null models, all pose challenges to the concepts of simplicity and ease of use. In order 

to simplify the task of making choices, a step-wise approach has been implemented, 

displaying only the relevant options at each stage. This guided approach hides 

unnecessary complexities from the researcher, while confronting her with important 

design choices as needed. We rely on a dynamic system to infer appropriate options, 

aiding maintenance. The list of selectable tracks is based on scans of available files on 

disk. The list of relevant questions is based on short runs of all implemented analyses, 

using a minimal part of the actual data from the selected tracks. For each analysis, a 



  

set of relevant options is defined. The dynamics of the system also provides automatic 

removal of analyses that fail to run, enhancing system robustness. 

Allowing extensibility along with efficiency and system dynamics is a 

challenge. The complexities of the software solutions are hidden in the backbone of 

the system, simplifying coding of statistical modules. Each module declares the data 

types it supports and which results are needed from other modules. The backbone 

automatically checks whether the selected tracks meet the requirements, and if so, 

makes sure the intermediate computations are carried out in correct order. Redundant 

computations are avoided through the use of a RAM-based memoization scheme. The 

system also provides a component-based framework for Monte Carlo tests, where any 

test statistic can be combined with any relevant randomization algorithm, simplifying 

development. In addition, a framework for writing unit and integration tests [24] is 

included. Further details on the system architecture are provided in Section 4 in 

Additional file 1. 

Step by step guide to HyperBrowser analysis 

One of the main goals of the Genomic HyperBrowser is to facilitate sophisticated 

statistical analyses. A range of textual guides and screencasts are available in the help 

section at the web page, demonstrating execution of various analyses, how to work 

with private data, and more. To give an impression of the user experience, we here 

provide a step-by-step guide to the analysis of BLOC segments versus SINE repeats, 

as discussed in the section on "Precise specification of null models". 

First, we open "hyperbrowser.uio.no" in a web browser and we select the 

"Perform analysis" tool under "The Genomic HyperBrowser" in the left-hand menu. 

We select the mouse genome (mm8) and continue to select tracks of interest. As the 

first track, we select "Chromatin"-"Histone modifications"-"BLOC segments"-



  

"MEFB1". These are the BLOC segments according to the algorithm of Pauler et al. 

for the MEFB1 cell line. As the second track, we select "Sequence"-"Repeating 

elements"-"SINE". Now that both tracks have been selected, a list of relevant 

investigations is presented in the interface (i.e. investigations that are compatible with 

the genomic types of the two tracks: US vs US). We select the question of "Overlap?" 

in the "Hypothesis testing" category, and the options relevant for this analysis are 

subsequently displayed in the interface. The different choices for "Null model" will 

produce the various numbers in Table 1 (6 different choices are directly available 

from the list. The other variants can be achieved by reversing the selection order of 

the tracks). The original BLOC paper [8] focused on chromosome 17. We want to 

perform a local analysis along this chromosome, avoiding the first three megabases 

that are centromeric. Under "Region and scale" we thus choose to "Compare in" a 

custom specified region, writing "chr17:3m-" as "Region of the genome" and writing 

"5m" (5 megabases) as "Bin size". Clicking the "Start analysis" button will then 

perform an appropriate statistical test according to the selected null model 

assumption, and output textual and graphical results to a new Galaxy history element. 

Figure 5A shows the user interface covering all selections above and Figure 5B shows 

the answer page that results from this analysis.  

This example assumed the BLOC segments were already in the system. If not, 

they could simply be uploaded to the Galaxy history and then selected in the first 

track menu as "-- From history (bed, wig) --"-"[your BLOC history element]". For 

information on how to use the Galaxy system, we refer to the Galaxy web site [25]. 

 



  

Discussion  

The current leap in high-throughput sequencing technology is opening the way for a 

range of genome-wide annotations beyond the presently abundant gene-centric data. 

Not least, chromatin-related data are becoming increasingly important for 

understanding higher-level organization and regulation of the genome [26].  

As is typical for a subfield that has not reached maturation, analysis of new 

massive sequence-level data is performed at a per-project basis. For instance, a paper 

on the ENCODE project describes how inference can be done by Monte Carlo testing, 

sampling bins for one of the real tracks at random genome locations under the null 

hypothesis [1]. Independently, a newer study of histone modifications instead 

permuted bins of data for one of the tracks [27]. Although genomic visualization tools 

have been available for several years, few generic tools exist for inference at the 

sequence level. 

The following aspects distinguish our work from currently available systems. 

First, we focus on genomic information of a sequential nature, that is, with specific 

base-pair locations on a genome, and thus not restricted to only genes. Second, it 

focuses on the comparison of pairs of genomic tracks, possibly taking others into 

account through the concept of intensity tracks. Third, all comparisons are performed 

using formal statistical testing. Fourth, we provide analyses on any scale, from 

genome-wide studies to miniature investigations on particular loci. Fifth, we offer 

flexible choices of null models for exploration and choice where relevant.  Finally, we 

provide a user interface where the user describes the data and the null models, while 

the system based on this chooses the appropriate statistical test. Comparing this to the 

EpiGRAPH and Galaxy frameworks, which we believe are the closest existing 

systems, we find that both require substantial technical expertise when choosing the 



  

correct analysis and options. EpiGRAPH is focused on a specific type of scenario 

that, according to our cataloguing, amounts to the comparison of unmarked points or 

segments versus categorically marked segments (with mark being case or control). 

Galaxy provides a simple user interface, is rich in tools for manipulating and 

analyzing datasets of diverse formats, but has little support for formal statistical 

testing. Note also that our system is tightly connected to Galaxy and can make use of 

all the tools provided within Galaxy. 

We provide tools for abstraction and cataloguing of what we believe are typical 

questions of broad interest. The abstractions of genomic data, the proposing of 

prototype investigations, and the careful attention given to null models simplifies 

statistical inference for a range of possible research topics.  Our approach invites 

researchers to build relevant null models in a controlled manner, so that specific 

biological assumptions can be realistically represented by preservation, randomness 

and intensity based confounders. In addition, time used for repetitive tasks like file 

parsing and calculation of descriptive statistics may be significantly reduced. 

Our system is highly extensible. The software is open source, inviting the 

community to add new investigations and tools. Attention has been given to 

component-based coding and simple interfaces, facilitating extensions of the system.  

The highly specialized nature of many research investigations poses a major 

challenge for a generic system such as the one presented here. Even though a range of 

analyses and options are provided, chances are that at a given level of complexity, 

functionality beyond what is provided by a generic system will be needed. Still, the 

time and effort used to reach such a point may be shortened considerably, and it 

should in many cases be possible to meet demands through custom extensions. 



  

Genomic mechanisms commonly involve more than two tracks, and the current 

focus on pair-wise interrogations is limiting. Our methodology allows the 

incorporation of additional tracks through the concept of an intensity track that 

modulates the null hypothesis, acting as a confounder. However, the investigation of 

genuine multi-track interactions is not yet possible within the system, as complex 

modelling and testing of multiple dependencies will be required.  

Attention should be given to the trade-off between fine resolution and lack of 

precision. When large bins are considered, there may be too little homogeneity, while 

small bins may contain too little data. There is also an unresolved trade-off relating to 

preservation of tracks in null-hypotheses construction: too little preservation may give 

unrealistically small p-values, while too strong preservation may give too limited 

randomness. 

On a more specific note, a set of tissue-specific analytical options would be 

beneficial with respect to many types of experimental data, e.g. chromatin, expression 

and also gene subset tracks. Such options are now under development. 

Novel sequencing technologies are instrumental in realizing the personalized 

genomes [28], and with them the task of identifying phenotype-associated information 

contained in each genome. An imminent challenge in understanding cellular 

organization is that of the three dimensions of the genome. While a number of 

genomes have been sequenced, and a number of important cellular elements have 

been mapped on a linear scale, the mapping of the three-dimensional organization of 

the DNA and chromatin in the nucleus is still only in its beginnings. Consequently, 

the impact from this organization on cell regulation is still largely unresolved.  

However, the advent of methods like Hi-C [29] permits detailed maps of three-

dimensional DNA interactions to be combined with coarser methods of mapping of 



  

other elements. It appears that looking simultaneously at multiple scales seem 

important for understanding the dynamics of different functional aspects, from 

chromosomal domains down to the nucleosome scale. The need for taking multiple 

scales into account has recently been emphasized in both theoretical and analytical 

settings [30, 31]. Consequently, statistical genomics needs to consider several scales 

when proper analytical routines are developed. Our approach is open to 3D 

extensions, where the bins, which are flexibly selected in the system, will become 3D-

volumes, and local comparison will be within each volume. What appears much more 

complex is the level of dependence of such volumes. But as the 3D organization of 

the genome will become increasingly known, appropriate volume topologies will be 

possible, so that neighbouring volumes representing 3D contiguity may be used as 

basis for statistical tests. 

 

Conclusions  

By introducing a generic methodology to genome analysis, we find that a range of 

genomic data sets can be represented by the same mathematical objects, and that a 

small set of such objects suffice to describe the bulk of current data sets. Similarly, a 

range of biological investigations can be reduced to similar statistical analyses. The 

need for precise control of assumptions and other parameters can furthermore be met 

by generic concepts such as preservation and randomization, local analysis (binning) 

and confounder tracks. 

Applying these ideas on a sample set of genomic investigations underline that 

the generic concepts fit naturally to concrete analyses, and that such a generic 

treatment may expose vagueness of biological conclusions or expose unforeseen 

issues. A re-analysis of relation between BLOCs of histone modification and SINE 



  

repeats shows that conclusions regarding direct overlap at the base pair level depends 

on the randomizations used in the significance analysis. Using biologically reasonable 

null models, the correspondence between BLOCs and SINE appear not to be due to 

overlap at the base pair level, but rather seems to be due to local variation in 

intensities of both tracks. This does not directly oppose the original conclusions, but 

brings further insight into the nature of the relation. Similarly, an analysis of the 

relation between DNA melting and exon location confirms the conclusion from 

previous studies that exon boundaries coincide with gradients of melting temperature. 

However, taking GC content into account as a possible confounder, the analysis does 

not suggest a direct functional relation between melting and exons. Instead, it suggests 

that the association is due the relationship of both exons and melting tracks to GC 

content. 

We believe the generic concepts and challenges identified by our work will 

trigger community efforts to improve genome analysis methodology. The Genomic 

HyperBrowser demonstrates the feasibility of applying our approach to large-scale 

genomic datasets, providing a concrete basis for further research and development in 

inferential genomics. We thus consider the solutions presented here more like a start 

than an end of this important endeavor.  

 

Materials and methods 

Statistical methods 

A track is defined over the whole genome or only in parts of it, masking away the 

rest. In a local analysis, statistical tests are performed in each bin with sufficient 

sample size. Resizing of bins allows for localization of events (similarities, 



  

differences, etc., between the two tracks) with flexible precision. Preservation rules 

leads to conditional p-values that are not necessarily ordered, even if the preservation 

mechanism is incremental. Statistical tests have been tried on simulated data, also 

when model assumptions are not completely fulfilled. Standard Monte Carlo requires 

deciding on the number of MC samples. We suggest at least 2-5 times the number of 

tests, in order to allow for FDR adjustment. Additionally, we adopt sequential Monte 

Carlo, where the algorithm continues sampling until the observed statistic has been 

exceeded a given number of times (say 20) [9]. This gives better estimates of small p-

values with overall reduced computations. Intensity tracks are used to define non-

standard null hypothesis. Several strategies for building intensity curves are described 

in Section 3 in Additional file 1. Intensity curves allow performing randomizations 

that mimic another track (or a combination of tracks), useful to account for 

confounding effects. For unmarked points, the intensity curve can be any regular 

function λ0(b) where b is the position along, say, a chromosome. If λ0(b) = c 

(constant), points are uniformly distributed. As another example, λ0(b) can be a kernel 

density estimate based on the track of observed points. In general, the intensity λ0(b) 

may depend on several different tracks g1, g2, ..., gk, through a function s, so that λ0(b) 

= s ( g1(b), g2(b), ..., gk(b)), for example λ0(b) = c +  Σ βi gi(b). An important case that 

requires a special choice of intensity track is when the comparison between two tracks 

T1 and T2 might be confounded by a third, confounder, track T3. This is discussed in 

further detail in Section 5 in Additional file 1 for the melting-exon example, where 

each track depends on a function of the GC content. 

Software system  

The Genomic HyperBrowser [30] is implemented in Python [22], version 2.5.2. It is 

running as a stand-alone application tightly connected to the Galaxy framework [2], 



  

using the version dated 2009-09-24. The user interface is based on Mako templates 

for Python [32], version 0.2.5, and Javascript library Jquery [33], version 1.3.2. The 

software uses NumPy [34], version 1.2.1, for disk based vector mapping and fast 

vector operations. R [35], version 2.6.2, is used for plotting and basic statistical 

routines, using the RPy API [36], version 1.0.3. The software is open source and 

freely available, using GPL [37] version 3, and can be downloaded from [30]. The 

Genomic HyperBrowser runs on a dedicated Linux server, with large computations 

offloaded to the Titan cluster [38]. 

Biological example: Histone modifications versus gene expression 

Raw histone modification data [39] were preprocessed using the NPS (Nucleosome 

Positioning from Sequencing) software [40], using peak detection, leading to 

nucleosome positioning information as short segments, treated as unmarked points 

(UP). Raw microarray expression values [41] were used to represent gene expression, 

in line with [6]. Direct comparison of the expression levels of individual probes is not 

generally justified. As Barski et al. [6] compares sets of 1000 genes each, the direct 

comparison of values between groups may be justified by noise averaging (although 

not discussed in [6]). Using Kendall’s rank correlation test, a similar reduction of 

error is obtained. Detailed correlation values for the different histone modifications 

are given in Table S1 in Additional file 1. The distribution of histone modifications 

relative to TSS is given for two different modifications in Figure S4 in Additional file 

1. 

Biological example: Histone modifications versus repeating elements 

ChIP-seq data on histone modification [39, 42] were preprocessed using the SICER 

software [43], which returns clusters of neighboring nucleosomes as islands unlikely 

to have appeared by chance, using an appropriate random background model. These 



  

clusters are treated as unmarked segments (US). The ChIP-chip data of H3K27me3 

positions have been obtained directly from Pauler [8], and was preprocessed by them 

using their BLOCs software, which returns broad local enrichments, also treated as 

unmarked segments (US). Detailed overlap results between repeats and different 

histone modification sources are given in Table S2 in Additional file 1. 

Biological example: Exons versus DNA Melting 

The melting fork probability tracks PL(x) and PR(x) used in this study were obtained 

using the Poland-Scheraga  model [44]. To make the correction for GC content, a pair 

of GC-based function tracks, L(x) and R(x), were created using a moving window 

approach. Let EL (ER) be the left (right) exon boundaries. For testing the melting-exon 

relation in tracks (EL,PL), an intensity track was created based on L(x), R(x) and 

EL.(and similarly for tracks (ER,PR)). See Section 5 in Additional file 1 for more 

details. 
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Figure legends 

Figure 1. Flow diagram of the mathematics of genomic tracks. Genomic tracks 
are represented as geometric objects on the line defined by the base pairs of the 
genome sequence: (unmarked or marked) points, (unmarked or marked) segments, 
and functions. The biologist identifies the two tracks to be compared, and the 
Genomic HyperBrowser detects their type. The biological question of interest is stated 
in terms of mathematical relations between the types of the two tracks. The relevant 
questions are proposed by the system. The biologist then selects the question and 



  

needs to specify the null hypothesis. For this purpose she is called to decide about 
what structures are preserved in each track, and how to randomize the rest. Thereafter, 
the Genomic HyperBrowser identifies the relevant test statistics, and computes actual 
p-values, either exactly or by Monte Carlo testing. Results are then reported, both for 
a global analysis, answering the question on the whole genome (or area of study), and 
for a local analysis. Here, the area is divided into bins, and the answer is given per 
bin. P-values, test-statistic, and effect sizes are reported, as tables and graphics. 
Significance is reported when found, after correction for multiple testing. 

Figure 2. Gene regulation by histone modifications. The correlation between 
occupancy of 21 different histone modifications and gene expression within 4 
different regions around the TSS (up- and downstream, 1 and 20 kb), sorted by 
correlation in 1kb upstream regions. Sixteen of 21 histone modifications show 
significant correlation in 1kb upstream regions, while inspection of the actual value of 
Kendall’s tau (Table S1 in Additional file 1) shows very little effect size for 6 of these 
16 (< 0.1).  

Figure 3. Viral integration sites. Plot of FDR-adjusted p-values along the genome, 
in 30 Mbps bins. Small p-values indicate regions where Murine Leukemia Virus 
(MLV) integrates inside 2kb regions around FirstEF promoters, more frequently than 
by chance. The FDR cutoff at 10% is shown as a dashed line. The inset of a local area 
(chromosome 1:153,250,001-153,450,000) indicates FirstEF promoters expanded by 
2kb in both directions, MLV integration sites, RefSeq genes, and unflanked FirstEF 
sites. 

Figure 4. Comparison of exon boundary locations and melting fork probability 

peaks. Independent analyses were carried out on left and right exon boundaries as 
compared to left- and right-facing melting forks, respectively. In the upper part, 
dashed vertical lines indicate left (red) and right (blue) exon boundaries. In the lower 
part, probabilities of left- and right-facing melting forks appear as red and blue peaks, 
respectively. The black curve shows the GC content in a 100 bps sliding window 
(values on right axis).  

Figure 5. Screenshots of The Genomic HyperBrowser. (a) Screenshot of the main 
interface for selecting analysis options. The selections for the example relating 
H3K27me3 BLOCs to SINE repeats have been preselected. In the interface, the user 
selects a genome build followed by two tracks. A list of relevant investigations is then 
presented, based on the genomic types of the two tracks. After selecting an 
investigation, the interface presents the user with a choice of null models, alternative 
hypotheses and other relevant options. (b) Screenshot of the results of the analysis. 
The question asked by the user is presented at the top, in this case: “Are 'MEFB1 
(BLOC segments)' overlapping 'SINE (Repeating elements)', more than expected by 
chance?” A first, simplistic answer is then presented: “No support from data for this 
conclusion in any bin”. A more precise answer follows, detailing any global p-values, 
a summary of local FDR-corrected p-values, the particular set of null and alternative 
hypotheses tested, in addition to a legend of the test statistic that has been used. 
Further links to a PDF-file containing the statistical details of the test, and to more 
detailed tables of relevant statistics for both the global and the local analysis are also 
included. The global result table also includes links to plots and export opportunities 
for the individual statistics. 



  

Table 1. Significant bins of the overlap test between H3K27me3 and SINE under 
various null models. 

Tracks to randomize 

Preserve total number of 

base pairs covered 

Preserve segment lengths, but 

randomize position 

Preserve segment and intersegment 

lengths, but randomize positions 

H3K27me3 10/19 1/19 0/19 

SINE 10/19 5/19 4/19 

H3K27me3 & SINE 10/19 5/19 4/19 

 

The number of significant bins of the overlap test between H3K27me3 segments and 

SINE repeats under different preservation and randomization rules for the null model. 

The test was performed in 19 bins on mouse chromosome 17, with the MEFB1 cell 

line. (Use of the MEFF cell line gave similar results, see Table S2 in Additional file 

1). In this case, less preservation of biological structure leads to smaller p-values. 

Also, randomizing the SINE track gave smaller p-values than randomizing the 

H3K27me3 track (or both).  

 

Additional files 

Additional file 1. Supplementary material. 

Miscellaneous supplementary material: Gene coverage example. On the importance of 

realistic null models. On mathematics of genomic tracks. On system architecture. On 

Exon DNA Melting example. Supplementary figures and tables. 

Additional file 2. Statistical tests. 

Detailed description of the statistical tests implemented in the software system. 

Additional file 3. Supplementary note on simulation. 

Description of basic algorithms for simulating synthetic tracks, used to assess 

statistical tests. 
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