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Abstract

Strain NI1060 is an oral bacterium responsible for periodontitis in a murine ligature-induced

disease model. To better understand its pathogenicity, we have determined the complete

sequence of its 2,553,982 bp genome. Although closely related to Pasteurella pneumotro-

pica, a pneumonia-associated rodent commensal based on its 16S rRNA, the NI1060 geno-

mic content suggests that they are different species thriving on different energy sources via

alternative metabolic pathways. Genomic and phylogenetic analyses showed that strain

NI1060 is distinct from the genera currently described in the family Pasteurellaceae, and is

likely to represent a novel species. In addition, we found putative virulence genes involved

in lipooligosaccharide synthesis, adhesins and bacteriotoxic proteins. These genes are

potentially important for host adaption and for the induction of dysbiosis through bacterial

competition and pathogenicity. Importantly, strain NI1060 strongly stimulates Nod1, an

innate immune receptor, but is defective in two peptidoglycan recycling genes due to a

frameshift mutation. The in-depth analysis of its genome thus provides critical insights for

the development of NI1060 as a prime model system for infectious disease.

Introduction

The oral cavity of animals is host to several hundreds of bacterial species, collectively known as

the oral microbiota. The healthy oral microbiota plays an important role in maintaining host

health by protecting it from invasions by pathogenic species. However, under certain circum-

stances some of the commensal members, namely pathobionts, can cause disease after dysbio-

sis, the disruption of healthy microbiota [1–3]. One example of these so-called ‘pathobionts’ is

the bacterium NI1060, which plays an important role in the development of murine periodon-

titis in a ligature-induced model [4]. In the model, placement of the ligature between the
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molars damages the gingival epithelium and induces oral dysbiosis at the damaged site, leading

to resorption of alveolar bone adjacent to the damaged site, in a bacteria-dependent fashion

[4], where strain NI1060 dramatically accumulates in the oral cavity [4]. NI1060 induces peri-

odontitis by stimulation of Nod1, an innate immune receptor that recognizes small peptidogly-

can-like molecules containing D-γ-glutamyl-meso-diaminopimelic acid (iE-DAP) derived

from bacteria [4,5]. Like Aggregatibacter actinomycetemcomitans (Aa), a bacterium that is asso-

ciated with the development of aggressive periodontitis in humans [6], it releases high amounts

of unidentified iE-DAP-containing molecules that stimulate Nod1 [4]. However, the mecha-

nisms are still unknown.

Monocolonization of NI1060 in germ-free mice is sufficient for its accumulation in the oral

cavity and for the induction of alveolar bone loss at the ligature-damaged gingival site [4].

Moreover, other commensals do not accumulate at the damaged gingival site of specific-patho-

gen free (SPF) mice[4], whereas NI1060 does, suggesting that it possesses unknown mecha-

nisms to out-compete other commensals at these sites. Unraveling the genetic makeup of

NI1060 could help us understand these mechanisms at the molecular level and shed light on

new preventive strategies against periodontitis. Here we report the complete genomic sequence

of NI1060, compare it to several members of the oral microbiota, investigate its taxonomic

position in the Pasteurellaceae family, and find several genes that could be involved in the regu-

lation of dysbiosis and pathogenicity.

Materials and Methods

Genomic sequencing and sequence analysis

NI1060 was grown in Brain-heart infusion medium (BHI) and genomic DNA was isolated as

described in [4]. NI1060 genomic DNA was sequenced by combining the Illumina HiSeq 2000

platform as described in [4] and the PacBio RS technology. The high quality Illumina paired-

end reads (read length = 51, insert size = 200, total bases = 6163075388) were subsampled by a

factor of 14 then assembled into contigs using the SPAdes genome assembler (v.3.1.1) [7]. The

resulting contigs (size> 100bp) were then placed into 1 scaffold (size> 400bp) using

SSPACE-long-reads (v.1.1) [8] and corrected PacBio Continuous Long Reads (CLR). Gaps in

scaffolds were closed iteratively using PBJelly (v.14.9.9) [9] and GapFiller (v.1.10) [10]. The

final assembly was automatically improved using Pilon (v1.8) [11] and consists of 2,553,982

bps. The genome sequence was annotated using the RAST annotation server (v.2.0) [12].

Search for common genes with its closest phylogenetic neighbor Pasteurella pneumotropica

(Pp), Aa and Escherichia coli (Ec) was performed using Reciprocal Smallest Distance [13]. The

predicted features were visualized in a genomic context using DNAPlotter [14]. The domain

structures of the ORFs were predicted by PFAM. Synteny scores were calculated by Quota syn-

teny alignment [15]. The bacteriophage regions were identified by PHAST [16]. For phyloge-

netic assignment, all Pasteurellaceae genomes (finished or permanent draft) were selected from

IMG (v.400) [17] to construct 16S rRNA and marker gene trees. For the former, 16S rRNA

gene sequences were extracted using an in-house Biopython [18] script that selects the longest

of the predicted 16S sequences in a genome and discards sequences smaller than 1200 bases.

The selected 16S rRNA gene sequences were refined (using NCBI’s BLASTN [19] on the

rRNA_typestrains database) to replace poorly predicted sequences by higher quality sequences

from GenBank or SILVA. The refined sequences were aligned using MUSCLE (v3.8.31) [20]

with default parameters, then the tree was constructed using FastTree (v2.1.8) [21] with the fol-

lowing arguments: FastTree -nt -gtr -gamma -bionj -slownni -mlacc 2 -spr 4. The procedure

described here is similar to the workflow of Phylophlan (0.99) [22] which was used to construct

the concatenated tree based on 400 universal proteins. For this purpose, we edited the
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MUSCLE section of Phylophlan to allow 16 iterations (default in MUSCLE) for the refinement

of the multiple sequence alignment instead of only 2, to use the WAG substitution model of

sequence evolution, and to compute the tree likelihood under the gamma model with 20 rate

categories instead of the CAT model. Trees were displayed using iTol [23]. Phylogenetic matri-

ces were generated using the -makematrix option in FastTree (S1 Table).

Results

Genome analysis indicates that NI1060 is a novel member of the
Pasteurellaceae family

The genome of NI1060 is comprised of 1 genomic scaffold totaling 2,553,982 bp in length and

contains 2,478 predicted protein-encoding genes. Its GC content is 40.3%, which is similar to

the average GC content of the Pasteurellaceae, but its size (2.6 Mbp) is slightly larger than the

average species of this family (2.2 Mbp, data obtained from IMG (v.400)). In addition, it con-

tains six copies of the 16S ribosomal RNA gene with high similarity to those of Pp strains such

as T087011-V2, Q480011-V1 (99.5% identical; near-complete sequences of 1517 bp) and

ATCC 35149 (96.4% identical; full sequence). This Genome Project has been deposited at

DDBJ/EMBL/GenBank under the accession PRJNA288779, biosamples SAMN03801592 and

SAMN03840806. Phylogenetic analysis showed disagreement between the 16S rRNA (LogLk =

-6729.367) and the concatenated trees (LogLk = -121259.803), which has been previously

reported for the Pasteurellaceae family [24–26]. Only the concatenated tree recovers the two

major clades previously observed in the Pasteurellaceae and largely agrees with the marker

gene trees reported in recent studies [24,26,27]. In addition, the concatenated tree has a mini-

mum support value of 0.986 for the major branches while the 16S rRNA gene tree shows

smaller support values overall with the smallest value of 0.202, meaning that the former is

more reliable and underscores again the improved resolution provided by concatenated trees

of several universal genes [22,26,28]. However, both phylogenetic trees (16S rRNA and

concatenated marker genes) positioned NI1060 next to Pp strain ATCC 35149 on the same

branch and phylogenetically well separated from other Pasteurella species (Fig 1) suggesting

they might represent a novel genus. Moreover the branch length suggests that NI1060 repre-

sents a novel species which we subsequently verified by calculating several metrics for species

delineation using the JSpecies software [29]. All these metrics (ANIb = 86.83%,

ANIm = 87.88%, Tetra = 0.98766) fell below the species boundary threshold and thus con-

firmed our finding. Furthermore, 635 of its 2478 predicted genes (25%) are not present in the

genome of Pp strain ATCC 35149 (Fig 2) which supports the hypothesis that NI1060 is a spe-

cies different from Pp which also colonizes the oral and respiratory tracts of rodents [30]. Con-

sistent with the latter finding, NI1060 and Pp behave differentially in that NI1060, but not Pp,

accumulates and becomes dominant at the day 10 damaged-ligature sites in 20 tested mice

(Figure S2D in [4]). All these findings, suggest that NI1060 therefore represents a novel species

of a new genus within the family of Pasteurellaceae. A detailed summary of genomic and gene

content differences can be found in S2 Table.

NI1060 possesses unique metabolic pathway genes

The lifestyle of NI1060 suggests that proliferation of this organism may require certain host

factors including nutrients from damaged tissue. Consistently, NI1060 was unable to grow in

M9 minimal medium (data not shown) and the analysis of its genomic sequence shows that it

could grow on host-derived nutrients, via metabolic pathways (e.g. host tissue breakdown) that

are not found in any Pasteurellaceaemember (S3 Table). For example, some Pasteurellaceae
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species, such asHistophilus somni [31], lack thiamine and pantothenic acid transport systems

and genes for the thiamine synthetic pathway. NI1060 harbors these metabolic pathways, but

lacks the Pan operon for de novo synthesis of pantothenic acid. It also carries genes for the utili-

zation of mono- and di-saccharides like galactose, sucrose, lactose, mannose, maltose, and tre-

halose, but not of ribitol and cellobiose (S3 Table). Like other Pasteurellaceae species, it

possesses complete gene sets of core biochemical pathways such as glycolysis and gluconeogen-

esis [4] (also see S2 Table) but also has genes for the phosphoglycerate transport system (ORFs

Fig 1. Phylogenetic placement. Phylogenetic placement of NI1060 using the 16S gene (A) and a set of 400 most conserved bacterial genes using
Phylophlan (B). The scale indicates the number of nucleotide or amino acid substitutions per site. Both methods show that NI1060 is closest to P.
pneumotropica ATCC 35149 but with a branch length suggesting that NI1060 represents a novel species.

doi:10.1371/journal.pone.0158866.g001

Fig 2. Comparative analysis between NI1060 and P. pneumotropicaATCC 35149. The putative protein-coding genes on
forward (outside) and reverse (middle) strands are show by blue bars. Red bars represent tRNA and purple bars represent
rRNA. The protein-coding genes, which are conserved in the related bacterium P. pneumotropica ATCC 35149, are indicated
by green bars.

doi:10.1371/journal.pone.0158866.g002
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617–620) and the lysine antitransporter system (ORFs 2074, 2075), unlike some Pasteurella-

ceae species(S3 Table). Moreover, NI1060 specifically possesses 3 orphan YncD homologues

(ORFs 2024–2026) that are presumably involved in the import of unidentified nutrient(s).

Consistent with the fact that NI1060 is a facultative anaerobe, its genome contains several

genes that confer the ability to grow under both anaerobic and aerobic conditions. These

include genes encoding catalases for aerobic conditions(kat, ORF194), periplasmic nitrate

reductase system (nap, ORFs 1362–1368) and fumarate reductase (frd, ORFs 1757–1758)

which supports anaerobic growth in the presence of the respective substrates [32,33]. In addi-

tion, the orthologues (cyd, ORFs1011, 1914) of cytochrome c uniquinol oxidase supports its

growth under aerobic conditions, and the orthologues of anaerobic regulatory proteins HlyX/

ORF2421, ArcA/ORF1543 and NarP/ORF765 are also found. In contrast to some other Pas-

turellaceae species including Pp, Aa, andHaemophilus influenzae (Hi) [34] that do not possess

citrate synthase, aconitase, and isocitrate dehydrogenase (encoding a partial TCA cycle)

NI1060, like P.multocida Pm70, harbors the operon that encodes these enzymes (ORFs260-

262) and all other genes important for this process. However, it lacks genes encoding malate

synthase and isocitrate lyase which are involved in the glyoxylate cycle, like some Pasteurella

andMannheimiamembers including P.multocida Pm70 (S3 Table). It also contains all critical

operons for the synthesis of 20 amino acids, purine and pyrimidine nucleotides. This contrasts

with Hi and other Pasteurellaceae species that require external arginine and uracil as nitrogen

sources, whereas external glutamine and cysteine are required for growth in minimal condition

medium [35,36]. In addition, Aa and Pp lack phosphoribosylformylglycinamidine synthase

which is involved in the de novo biosynthesis of purines [35,36]. As for iron, one of the most

critical resources for the growth of bacteria [37], NI1060, like other Pasteurellaceae species,

possesses six iron transport systems including ABC type transporters and iron storage system

such as ferritin (S2 Table).

Via the host Nod1 receptor, NI1060 stimulates the recruitment of neutrophils [4] that pro-

duce oxygen radicals, which some bacteria such as Salmonella species can use as an energy

source via the tetrathionate utilization (ttr) system [38]. However, NI1060 does not possess the

crucial ttr orthologues of Salmonella. Therefore, it is unlikely that the accumulation of NI1060

at neutrophil-rich damaged gingival sites is due to increased availability of tetrathionate, sug-

gesting that NI1060 may utilize other energy sources for its accumulation in the oral cavity.

Repeats, phage-like elements and immunity

Close inspection of the NI1060 genome revealed the presence of several repetitive sequences

including those found in transposons and other genes whose details are described below.

NI1060 possesses eight genes homologous to ISH50-type transposons and one homologous to

the IS1595-type. It also has one mu-type transposon and two retrotransposons (S4 Table).

Because mu-type transposons are commonly found in other Pasteurellaceae species, they are

likely to mediate parallel gene transfer and evolution of NI1060 and associated species.

In terms of resistance to bacteriophages, seven regions in the NI1060 genome (� 6.9% of

the genome) are associated with bacteriophage-like sequences (Table 1), similar to those of

bacteriophage S1249 in Aa D11S-1, mu/lambda-type bacteriophages, bacteriophages P4 and

CP4-57. These phage-related sequences could confer immunity against related bacteriophages

such as lysogens. In addition to these, NI1060, like other bacteria, possesses a clustered regu-

larly interspaced short palindromic repeat region (CRISPR) and restriction systems for immu-

nity against pathogens such as phages. The CRISPR system [39] is found in between ORF 1819

and 1822. We also found type I to III restriction systems, which also protect bacteria from bac-

teriophage infection. Importantly, the homologues of NI1060 type I restriction operons t1a
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(ORFs 2/2472-2475) and t1b (ORFs 276–278) and type III restriction operon t3a (ORFs 2223–

2225) exist in the genomes of Aa and Hi, but not in that of Pp. In addition, the homologue of

its type II restriction operon t2a (ORFs 683–684) is not present in the genomes of Hi, Pp and

Aa (S3 Table). Moreover, the transposon element (position 962862–983841) was found to dis-

rupt the comM gene, which is required for efficient bacteriophage recombination [40]. These

observations suggest that NI1060 possesses several mechanisms for protection against phage

infection.

One hypothesis for the mechanism of induction of bone loss by NI1060 could be via the

cleavage of peptidoglycan by lysozyme (muramidase). This cleavage is expected to produce

Nod1 ligand molecules, which are critical for the induction of alveolar bone loss in the ligature

model of periodontitis [4,5,41]. Even though NI1060 possesses bacteriophage-related loci with

two ORFs homologous to peptidoglycan lysozymes, (1lyz/ORF2375 and 5lyz/ORF1616), we

found no evidence of phage-mediated lysis of bacteria under several culture conditions tested

(data not shown), suggesting the presence of lysozyme inhibitors. Therefore, the presence of

1lyz and 5lyz could not explain why NI1060 releases high amounts of Nod1 ligand molecules.

LPS/LOS and polysaccharide structures of NI1060

The structures of lipopolysaccharide/oligosaccharide (LPS/LOS) and capsular polysaccharide

are important for resistance against host immunity and dehydration [42,43]. While the struc-

ture of the Lipid A portion of LPS/LOS is a critical determinant for TLR4/MD2-mediated

immune responses, other polysaccharide portions including the O-region of LPS are critical for

recognition by both the innate and acquired immune receptors [43,44]. We found that the

NI1060 genome harbors the tetraacyldisaccharide 4'-kinase (lpxK/ORF171), an important

enzyme for the production of the phosphorylated lipid A moiety, which is crucial for TLR4

stimulation (Table 2). Both NI1060 and Aa, but not Pp nor Hi, possess an operon, that is puta-

tively involved in lipid synthesis of the outer membrane (ORFs 860 to 892), which includes the

1-acyl-sn-glycerol-3-phosphate acyltransferase homologue ORF890, suggesting that this

operon is potentially involved in acyl modification of lipid A.

All essential proteins for LPS/LOS core synthesis, including Wzx flippases, Wzy polymer-

ases and WaaL ligases, were encoded in the NI1060 genome. These essential proteins include

synthetic enzymes of phospho-KDO (ORF1387, ORF220) and heptose (ORF1388; ORF1320

and ORF1319; ORF1339 to ORF 1341). Interestingly, two sets of loci for putative outer region-

associated synthesis were found in the NI1060 genome: oas2 (ORF1743 to ORF1752) and oas1

(ORF68 to ORF75) (S1 Fig). Both loci are unique to this particular group of bacteria. oas1 con-

tains two operons (ORFs 68–72 and 73–75) that might be involved in capsular polysaccharide

synthesis because of the high similarity of yvfF/ORF74 to Bacillus exopolysaccharide synthesis

gene epsO [43].

We also found an additional locus, (ias, ORFs 869–891), containing putative genes for syn-

thesis of the lipid and the inner carbohydrate regions. NI1060 has two sets of lipid synthesis

Table 1. Bacteriophage location and annotation.

Region Region length Completeness Score #CDS Region position Possible phage GC%

1 38.3Kb intact 130 32 504023–542401 PHAGE_Shigel_SfIV_NC_022749 41.11%

2 22.1Kb incomplete 20 16 1667697–1689798 PHAGE_Aggreg_S1249_NC_013597 38.99%

3 32.9Kb intact 150 49 1680840–1713790 PHAGE_Vibrio_pYD38_A_NC_021534 40.12%

4 27.8Kb questionable 70 27 2275583–2303450 PHAGE_Entero_mEp237_NC_019704 39.99%

5 54.1Kb intact 120 77 2434453–2488582 PHAGE_Haemop_Aaphi23_NC_004827 39.92%

doi:10.1371/journal.pone.0158866.t001
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proteins, including 3-oxoacyl-(acyl-carrier-protein) synthase, suggesting that it has heteroge-

neous acyl composition within the lipid A. Both oas1 and oas2 loci encode Wzx flippase and

glycosyltransferase homologues, but no polysaccharide ligase gene was found in oas2 suggest-

ing that oas1 is involved in the synthesis of the outer core region, whereas oas2may be involved

in the synthesis of carbohydrate branches. The latter includes wbaP for galactose export, imply-

ing that the first component of polysaccharide metabolism is galactose. It also possesses rmlB

which encodes the synthetic enzyme of L-Rhamnose precursor, suggesting that the second and

distal component of polysaccharide is L-Rhamnose. Importantly, the third predicted compo-

nent of the polysaccharide is N-acetylneuramine due to the presence of neuA, neuB, neuC,

neuD and siaA in oas2. This is important because sialylation of the LPS/LOS outer region in Hi

and other bacteria is known to be crucial for resistance to complement attack [42] and poten-

tially, for reducing TLR4 activation [43]. Oas2 also contains two putative glycosyltransferases

(orfO/ORF1750 and kfiC/ORF1751), which mediate modification of the outer chain, although

their substrate specificities cannot be predicted due to the low homology to known glycosyl-

transferases. Furthermore, NI1060 encodes an uncharacterized glycosyltransferase (ORF1455),

which could further modify the core structure of LOS. The homologous loci to NI1060 oas1

and oas2 were also found in Pasteurellaceae species including Hi encapsulated and non-capsu-

lated strains, indicating their potential implication in the production of the outer core of the

LOS R region but not the capsule. Importantly, we found that the gene organization of oas1

and oas2 in NI1060 is different from all Actinobacillus or Pasteurella commensals. This

Table 2. List of NI1060 genes potentially involved in dysbiosis and pathogenicity.

Function Domain Gene ID# (ORF#)

Hemolysin hemolysin (1714, 1717)

Adhesin YadA (anchor) yadA1(310), yadA7a(1772), yadA2(1293), yadA3(1236), yadA4(1144), yadA5
(1083), t6ss5K(990)

YadA_head yadA1(310), yadA7c(1769), t6ss5K(990)

YadA_stalk yadA1(310), yadA7b(1770), yadA2(1293), yadA4(1149), yadA5(1083), t6ss5K
(990)

Fil_haemagg cdiA(1943)

Fil_haemagg_2 CdiA(1943), hlyA(622), cdilA(2445), cdiA2(1954), CdiA3(1956)

Haemagglutination activity domain cdiA(1943), hlyA(622), cdilA(2445)

Type V (ESPR) yadA1(310), hlyA(622), cdilA(2445), yadA5(1083), 1149, 1293, 1945

Secretion system Type Vb (two factor) cdiB(1942), hlyB(624), cdilB(2446)

Type Va (autotransporter) ag43L(25), picA(826), perT(1077)

Type VI rhs1(80–85), t6ss1(285–309), t6ss2(323–326), t6ss3(1453–1451), t6ss4(1404–
1406), t6ss5(983–991)

Bacteriocin colicin-type nuclease cdiA(1943)

PT-VENN cdiA(1943), cdiA2(1946), cdiA3(1948)

Pfam-B_9947 cdiA(1943)

FhaB(Pfam-B_7836) cdiA(1943)

Fido (Fic) cdilA(2442, 2443)

Haemocin synthesis protein (Colicin V
production protein)

cvpA(1885)

Flp operon flp(1409–1423)

Type IV pilus 598–606

Nod1 ligand
recovery

mppA(230),oppA(1115)

Nod1 ligand
processing

ampD(598), ampG(1686)

doi:10.1371/journal.pone.0158866.t002
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suggests that the LPS/LOS structures of NI1060 are different from these commensals and likely

contribute to different sensitiveness to host immunity including the complement system.

Putative virulence factors in NI1060

NI1060 is sufficient to induce alveolar bone loss after ligature-induced host damage in a mouse

periodontitis model and belongs to the Pasteurellaceae family like Aa, a bacterium associated

with aggressive periodontitis in humans [45]. To gain insight into the mechanism by which

NI1060 induces alveolar bone loss at host damaged sites, we searched its genome for known

factors of bacterial pathogenicity. We found that it lacks the ltxA gene, a released factor which

is important to induce host cell cytotoxicity by Aa [45]. However it contains fragmented ORFs

(ORF1713-ORF1717) similar to pnxIIIA of Pp that might be linked to the pathogenicity of Pp

[46,47]. Consistent with the latter, we found that NI1060 does not exhibit significant cytotoxic

activity against several human and mouse cells tested, when compared to Aa [4]. We found no

orthologues of Porphyromonas gingivalis gingipains, Treponema denticola dentilicins, Tanner-

ella forsythiaHrtH proteases and toxins, except Cdi proteins that are described later. This is

consistent with the fact that oral colonization of NI1060 does not cause damage of the gingival

epithelium or alveolar bone loss in the absence of ligature-induced host damage [4]. Interest-

ingly, NI1060 possesses InlA (ORF1779), a homologue of Listeria monocytogenes internalin A,

which mediates internalization of Listeria monocytogenes into epithelium via interaction with

E-cadherin [48]. The function of this protein is unclear because we have no evidence for intra-

cellular localization of NI1060 but one possibility is the attachment to host cells on epithelium

or in the damaged tissues.

PFAM analysis showed that several ORFs in the NI1060 genome are homologous to essen-

tial proteins for bacterial competition and pathogenicity. For instance, we found homologs for

the machinery of several secretion systems including type I, II, V and VI, but not III and IV.

Importantly, many proteins that are translocated across the outer membrane by type V and VI

secretion systems (T5SS and T6SS) are known to be involved in bacterial competition and

interactions with eukaryotic cells [49,50]. In NI1060, there are three proteins for the autotran-

sporter Va-type system, five proteins for two factor type V (Vb) secretion system (Table 2),

and six loci for T6SS. All T5SS proteins, except Ag43L/ORF25, possess either one or a combi-

nation of haemagglutination activity domains, YadA domains, and filamentous haemaggluti-

nation domains (Table 2). Cdi, one of the T5SS-related loci, is homologous to those involved

in contact-dependent inhibition (CDI) in proteobacteria including Ec and Burkholderia pseu-

domallei [51]. It is an "orphan"-type locus that contains two additional CdiA C-terminal

region-CdiI modules [51]. One, Ag43L, is similar to Ec autotransporter Ag43, which is

involved in adhesion and virulence [52]. Although Ag43L does not contain the AidA adhesion

domain like Ag43, it contains an uncharacterized conserved domain (amino acid position

1–220) that is homologous to other putative adhesins and autotransporter proteins including

Oscillatoria nigro-viridis PCC 7112 (YP_007114496) and Ec 536 (YP_669320), suggesting that

NI1060’s Ag43L might also be involved in adhesion and virulence through a novel domain.

NI1060 harbors seven loci encoding proteins that are translocated across membranes via

T6SS. The locus t6ss1 (ORFs285-309) is composed of three operons that encode a full set of

secretion system components and effectors including VgrG, Hcp, ImpB ClpV, EvrB and FHA

domain proteins [50], and four loci encode at least 9 effector proteins. However, we found that

ORF298 the orthologue of vasE, which is critical for a functional T6SS [53], has one frame-shift

mutation. This, together with the fact that the enforced colonization of NI1060 induces peri-

odontitis phenotype at the ligature-damaged site [4], indicates that T6SS is not required for the

disease development.
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NI1060 also possess the tad locus encoding Flp fimbriae (ORFs 1409–1423), which is critical

for biofilm formation, colonization and virulence in Aa [45,54]. Furthermore, in a rat model

for periodontal disease, flp-1/ORF1409 and tadA/ORF1416 mutants of Aa showed no evidence

of bone loss, demonstrating that the tad locus is essential for virulence in Aa [55]. In addition,

NI1060 possess a locus encoding the type IV pili (ORFs598-606), known to be important for

interactions with other bacteria and host cells [56] (S3 Table). Although NI1060 is Nod1-sti-

mulatory, it lacks a type IV secretion system which is used byHelicobacter pylori to inject Nod1

ligands into host cells [57]. Yet, many bacteria including NI1060 are known to stimulate host

cells without active injection of microbial ligands [58], probably due to the presence of active

transport systems present in host cells [59]. Concerning the secretion of Nod1 ligand mole-

cules, we found two homologues (OppA/ORF230 and OppA/ORF1115) of Ec MppA, which

are important for the salvage of Nod1 ligand molecules and the release of Nod1 ligands during

peptidoglycan remodeling [41,60]. Interestingly, the associated Opp Transport system contains

a frameshift mutation in the oppC gene (validated by Sanger sequencing; data not shown).

Therefore, it is likely that the high amount of Nod1 ligands released by NI1060 is due to the

lack of a functional OppABCDF system required for peptidoglycan recycling. Another frame-

shift mutation was found in the oligopeptide transporter gene (opt/ORF856-857) (validated by

Sanger sequencing; data not shown), also reported to be involved in the uptake of iE-DAP into

the cytosol [59], and thus this frameshift mutation could be involved in Nod1 stimulation by

NI1060. In contrast, wild type copies of oppC and opt are found in Pp. We also found that

NI1060 has YafK/ORF631, a homologue of Campylobacter Pgp2, which can affect Nod1-sti-

mulatory activity of peptidoglycan-related molecules [61], and therefore NI1060 YafK may be

also involved in Nod1 stimulation (S3 Table).

Discussion

In this study, we have determined and analyzed the complete NI1060 genome, a novel model

organism for oral pathobiont research. Although its 16S rRNA phylotype is highly similar

(99.5%) to partial 16S sequences of Pp T087011-V2 and Q480011-V1, it is only 96% similar to

that of Pp strain ATCC 35149. Moreover, 25% of NI1060’s genes are absent in Pp ATCC

35149, and thus, NI1060 potentially represents a novel species of a new genus as illustrated by

ANI analysis and phylogenetic reconstruction as well. In contrast to Pp which is a dominant

member of the healthy murine-oral microbiota, NI1060 is a low abundant member but accu-

mulates and becomes dominant at damaged gingival tissues (based on 20 mice, as shown in the

Supplemental Experimental Procedures in [4]). For this reason, we performed an in-depth

comparison of the genomes of these two related species, and that of human periodontitis-

associated Aa, with the ultimate aim of unraveling the mechanisms by which NI1060 accumu-

lates and becomes dominant at the damaged gingival epithelium, and induces alveolar bone

loss in the murine periodontitis model. Overall, the two species show different gene syntenies

and a considerable variation in their gene pool with regards to metabolism, bacterial and host

interactions. Notably, Aa possesses leukotoxin which is important for its cytotoxicity [62],

while NI1060 does not, which suggests that NI1060 cannot induce epithelial damage by

leukotoxin and might explain why NI1060 can only induce alveolar bone loss in the presence

of ligature-induced gingival damage [4,45]. In addition, both Aa and NI1060 induce high

Nod1-stimulatory activity leading to the recruitment of neutrophils that activates the secretion

of inflammatory cytokines [4]. In activated T cells, proinflammatory cytokines induce the

expression of RANKL which plays an essential role in alveolar bone loss during periodontitis

development [63]. Indeed, in the ligature-induced periodontitis model, RANKL expression

is increased and mature lymphocytes are essential for alveolar bone loss [4]. Also, in Aa
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infection-induced periodontitis model, Pp is important for T cell activation via the cross reac-

tivity between the Aa Omp29 (OmpA orthologue) and the Pp OmpA. Consequently Pp may

play a key role in the induction of lymphocyte activation and alveolar bone loss [64]. Then for

the fact that NI1060’s OmpA is 78% and 66% identical to Pp DSM 21403 and Aa D7S-1 OmpA

proteins, respectively, whereas DSM 21403 OmpA is also 66% identical to Aa D7S-1 OmpA, it

will be interesting to test if Aa-induced periodontitis is dependent on NI1060, using GF mice

colonized by these two bacteria. Finally, the possibility that NI1060 is capable of triggering

both neutrophil recruitment and lymphocyte activation via Nod1 ligand and OmpA, respec-

tively, could also explain why monocolonization of NI1060 is sufficient to induce alveolar bone

loss [4].

The current work suggests a model for the induction of periodontitis in humans in which

multiple oral bacteria play an important role in alveolar bone loss. These include 1) bacteria

that release Nod1 ligands, 2) host-damaging bacteria that damage the epithelial barrier to allow

translocation of Nod1 ligands, 3) commensals that provide antigens to activate lymphocytes

that induce RANKL expression. These hypotheses could be further tested by colonizing GF

mice with NI1060 mutants lacking critical factors for alveolar bone loss, in the presence or

absence of a particular set of bacteria of the human healthy oral microbiome.
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