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ABSTRACT

This paper formulates tracer stirring arising from the Gent–McWilliams (GM) eddy-induced transport in terms
of a skew-diffusive flux. A skew-diffusive tracer flux is directed normal to the tracer gradient, which is in
contrast to a diffusive tracer flux directed down the tracer gradient. Analysis of the GM skew flux provides an
understanding of the physical mechanisms prescribed by GM stirring, which is complementary to the more
familiar advective flux perspective. Additionally, it unifies the tracer mixing operators arising from Redi isoneutral
diffusion and GM stirring. This perspective allows for a computationally efficient and simple manner in which
to implement the GM closure in z-coordinate models. With this approach, no more computation is necessary
than when using isoneutral diffusion alone. Additionally, the numerical realization of the skew flux is significantly
smoother than the advective flux. The reason is that to compute the skew flux, no gradient of the diffusivity or
isoneutral slope is taken, whereas such a gradient is needed for computing the advective flux. The skew-flux
formulation also exposes a striking cancellation of terms that results when the GM diffusion coefficient is
identical to the Redi isoneutral diffusion coefficient. For this case, the horizontal components to the tracer flux
are aligned down the horizontal tracer gradient, and the resulting computational cost of Redi diffusion plus GM
skew diffusion is roughly half that needed for Redi diffusion alone.

1. Introduction

Gent and McWilliams (1990, GM hereafter) and Gent
et al. (1995, hereafter GWMM) suggested a closure for
the tracer equation to be used in ocean models. With
this closure, certain adiabatic stirring effects from ocean
mesoscale eddies are encapsulated by a divergence-free
eddy-induced velocity. The GM velocity incorporates
that aspect of baroclinic eddies representing the transfer
of available potential energy to eddy kinetic energy. It
has been noted in various atmospheric contexts (e.g.,
Plumb 1979; Plumb and Mahlman 1987) that eddy-in-
duced transport velocities are generally equivalent to
antisymmetric components in the tracer mixing tensor.
This mixing will not alter any of the tracer moments as
long as no-normal flow, or equivalently no-flux, bound-
ary conditions are applied to the corresponding advec-
tive or skew-diffusive tracer flux. In this sense, the mix-
ing is nondissipative, reversible, and sometimes referred
to as ‘‘stirring’’ (Eckart 1948).

Prior to the work of GM, Redi (1982) (see also Sol-
omon 1971) noted that a symmetric component to the
mixing tensor should be present in order to represent
irreversible downgradient diffusive effects of various
subgrid-scale processes. The orientation of the diffusive
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flux is down the tracer gradient as it occurs along the
neutral directions. The result is to align the tracer par-
allel to the neutral direction in the process of dissipating
all tracer moments except the mean. Such diffusion will
not affect locally referenced potential density. There-
fore, isoneutral diffusion will not change the system’s
available potential energy. More discussion of isoneutral
diffusion, and references, can be found in the companion
paper by Griffies et al. (1998, hereafter referred to as
GGPLDS).

Gent and McWilliams stirring and Redi diffusion
form a framework in which many coarse-resolution
ocean models parameterize the mixing of tracers. Cur-
rently, there is a great deal of energy focused on un-
derstanding the implications and relevance of this
framework for simulating ocean circulation. There have
been notable improvements in the simulations (e.g.,
Danabasoglu and McWilliams 1995; Hirst and McDou-
gall 1996) and yet there have also been some rather
tentative results (e.g., England 1995; England and Hol-
loway 1996; Duffy et al. 1995). In addition to realistic
coarse-model simulations with the GM and Redi param-
eterizations, there is an increasing number of theoretical
and idealized studies aimed at clarifying certain of the
conceptual issues (e.g., Held and Larichev 1996; Mc-
Dougall and McIntosh 1996; Tandon and Garrett 1996;
Holloway 1997; Treguier et al. 1997; Visbeck et al.
1997; Greatbatch 1998; Killworth 1998, Gille and Davis
1997, manuscript submitted to J. Phys. Oceanogr.; Duk-
owicz and Smith 1997).
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This paper does not resolve any of the outstanding
issues. Rather, it simply endeavors to bring the Redi and
GM ideas onto an equal footing so that certain of their
mathematical and physical properties can be directly
compared and contrasted. The purpose of such an effort
is twofold: First, the results presented here are arguably
the simplest conceptual framework for thinking about
the individual and combined effects of GM stirring and
Redi diffusion (see also Holloway 1997). This frame-
work may be useful when examining the effects of these
subgrid-scale parameterizations on ocean density and
tracer fields. Second, and most pragmatically, these re-
sults provide an almost trivial manner for which to im-
plement GM and Redi in z-coordinate ocean models.
The key element in this effort is the skew-diffusive flux
(e.g., Plumb 1979; Moffatt 1983; Middleton and Loder
1989) arising from the GM closure. The perspective
engendered by the GM skew flux provides some useful
insights, which can be considered complementary to the
more familiar advective flux formulation of GWMM.

The plan of this paper is the following. General kin-
ematical notions of skew fluxes are presented in section
2. Properties of the GM skew flux are discussed in sec-
tion 3. The combined effects of GM skew diffusion and
Redi diffusion are given in section 4, and numerical
considerations are presented in section 5. Summary and
conclusions are provided in section 6.

2. The advective flux and skew-diffusive flux

The results in this paper depend on the mathematical
and physical equivalence of the stirring operator ob-
tained by taking the divergence of either an advective
flux or its corresponding skew-diffusive flux. The math-
ematical details of this equivalence are described in this
section. Further discussion of these points in an ocean-
ographic context can be found in Middleton and Loder
(1989) and McDougall and McIntosh (1996). The no-
tation used here is consistent with that used by
GGPLDS. Most notably, the summation convention is
followed in which repeated indexes are summed over
the three spatial directions.

Let us begin with the tracer equation written in the
form

(] t 1 u ·=)T 5 R(T), (1)

where the tracer mixing operator R(T) is given in an
orthogonal coordinate system by

R(T) 5 ]m(Jmn]nT). (2)

Here J is a second-order tracer mixing tensor whose
contravariant components are written as Jmn; T repre-
sents a tracer such as potential temperature, salinity, or
a passive tracer; and u is a divergence-free Eulerian
velocity (= ·u 5 0) representing the resolved currents
in the model.

It is useful to split the mixing tensor Jmn into its
symmetric, 2Kmn 5 Jmn 1 Jnm, and antisymmetric, 2Amn

5 22Anm 5 Jmn 2 Jnm, parts since they parameterize
physically distinct mixing processes. For diffusive or
dissipative mixing, Kmn is positive semidefinite. For
downgradient isoneutral diffusion, Kmn is the Redi
(1982) diffusion tensor. Kinematical aspects of isoneu-
tral diffusion are discussed in GGPLDS. The kinematics
of the antisymmetric stirring tensor Amn, and the re-
sulting stirring operator RA(T) 5 ]m(Amn]nT), are central
to the development in this paper, and so are established
here.

There are two mathematically equivalent ways to con-
struct the stirring operator RA(T). One is through com-
puting the convergence of an advective tracer flux,
which is based on the observation that

mnR (T ) 5 (] A )] TA m n

mn5 ] (] A T )n m

n5 2] (U T ), (3)n *

where Amn]m]nT 5 0 and ]m]nAmn 5 0 were used to
establish this result, and these two identities follow sole-
ly from the antisymmetry of Amn. This manipulation
allows for the identification of an advective tracer flux

5 T,n nF Uadv * (4)

whose convergence yields the stirring operator RA(T) 5
2= ·Fadv. The corresponding tracer transport velocity

5 2]mAmnnU* (5)

has zero divergence since ]n 5 2]n]mAmn 5 0. WithnU*
no-normal flow boundary conditions placed on the
transport velocity, the resulting stirring operator will
conserve all tracer moments, just as occurs for transport
by the Eulerian current u.

For purposes of comparison with the skew flux to be
derived below, it is useful to introduce a vector stream-
function c, whose components are related to the anti-
symmetric tensor through Amn 5 emnpcp, with emnp the
Levi-Civita or alternating tensor.1 The vector stream-
function c has only two functional degrees of freedom
since the third degree of freedom can always be gauged
away (gauge freedom is discussed in the next section).
Written in terms of c, the advective flux takes the form

Fadv 5 T(= 3 c). (6)

The second, completely equivalent, form for the stir-
ring operator is given by the convergence of a skew-
diffusive flux (Moffatt 1983; Middleton and Loder
1989)

1 Here e123 5 1, as does any even permutation of 1, 2, 3; e213 5
21, as does any odd permutation of 1, 2, 3; epst vanishes if any two
labels are the same.
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mnR (T ) 5 ] (A ] T )A m n

m5 2] F , (7)m skew

where the skew flux has components defined by

5 2Amn]nT.mF skew (8)

The skew flux of a tracer is always oriented perpendic-
ular to the gradient of that tracer since

=T ·Fskew 5 2]mTAmn]nT 5 0, (9)

which follows from the antisymmetry of Amn. This ori-
entation of the skew flux motivates its name; that is,
the flux is precisely ‘‘skewed’’ relative to the tracer
gradient. It is neither upgradient nor downgradient.
Note, however, that in any given direction, the skew
flux may be up or down the component of the tracer
gradient in that particular direction. The most general
form for the skew flux consistent with this orientation
is given by

Fskew 5 2=T 3 c, (10)

where c is the same vector streamfunction defined by
Eq. (6) for the advective tracer flux.

The skew flux Fskew 5 2=T 3 c and advective flux
Fadv 5 TU* 5 T(= 3 c) have different magnitudes and
directions. Indeed, in certain circumstances they have a
completely opposite orientation (Middleton and Loder
provide examples). However, their convergences are
identical, which means that the nondissipative stirring
operator RA(T) is the same. In other words, the fluxes
differ by the curl of some function, as can be seen ex-
plicitly through the identity

Fadv 5 Fskew 1 = 3 (Tc). (11)

3. The GM skew-diffusive flux

The particular form of the transport velocity U* cor-
responding to GM is given by (GWMM),

u 5 2] (kS) (12)h z*

w 5 = · (kS), (13)h*

where U* 5 (uh*, w*), =h 5 (]x, ]y, 0) is the horizontal
gradient operator, S 5 2=h r/]z r is the isoneutral slope
vector, r is the locally referenced potential density, and
k is a positive diffusion coefficient, which can depend
on space–time. The normal component to the eddy-in-
duced velocity is assumed to vanish on all boundaries
(GWMM), which corresponds to a no-flux boundary
condition on the skew flux and results in a stirring op-
erator that conserves all tracer moments.

The expression 5 2]mAmn relating the eddy-in-nU*
duced velocity to the antisymmetric tensor allows for
an identification of the tensor components correspond-
ing to the GM parameterization. In general, in order to
obtain the antisymmetric tensor corresponding to a di-
vergence-free velocity field, a nontrivial elliptic equa-

tion must be solved. However, the antisymmetric tensor
corresponding to the GM velocity is extremely simple.
For the purpose of determining Amn, it is important to
note that it is unique only to within a gauge. This re-
dundancy means that the same stirring operator results
from Amn or Amn 1 Bmn, where ]mBmn 5 0, Bmn 5 2Bnm,
and Bmn does not affect the boundary conditions. Since
the particular gauge used is not physically relevant, it
is sufficient to work with the most convenient gauge.
For the zonal velocity 5 2]mAm1 5 2]yA21 2 ]zA311U*
5 2]z(kSx), the most convenient choice suggests setting
A21 5 0, which allows for the identification A31 5 kSx.
Likewise, A32 5 kSy is suggested by 5 2]z(kSy).2U*
These choices lead to the antisymmetric stirring tensor
corresponding to the GM advective transport velocity:

0 0 2kS x
 

mnA 5 [A ] 5 0 0 2kS . (14) y 
kS kS 0 x y

This tensor was also written down by Visbeck et al.
(1997) for a two-dimensional model, and Greatbatch
(1998) for the three dimensions considered here. Mc-
Dougall and McIntosh (1996) also considered such a
tensor for generalizations of GM. The corresponding
vector streamfunction is given by c 5 k 3 kS 5 (2kSy,
kSx, 0), which yields for the GM advective and skew
fluxes:

F 5 T= 3 (k 3 kS) 5 TU (15)adv *

F 5 2=T 3 (k 3 kS) 5 kS] T 2 k(kS ·= T).skew z h

(16)

Both fluxes vanish when the isoneutral slope vanishes.
Additionally, the skew flux vanishes when the tracer is
uniformly distributed, which is also the case for the Redi
diffusive flux.

For constructing the GM stirring operator using the
advective flux, the relevant part of the eddy-induced
velocity field U* is that part parallel to the tracer gra-
dient since = · (TU*) 5 U* ·=T. This result means that
for locally referenced potential density r, the only rel-
evant piece of U* is that piece in the dianeutral direction.
In contrast, the skew-diffusive flux is always perpen-
dicular to the tracer gradient. Therefore, the GM skew
flux of r,

r21Fskew(r) 5 2(b=s 2 a=u) 3 (k 3 kS), (17)

is manifestly orthogonal to the dianeutral direction,

b=s 2a=u
ĝ 5 , (18)

|b=s 2 a=u |

where a 5 2]u lnr, b 5 ]s lnr, and s is salinity (see
GGPLDS for further details). The orthogonality holds
even in the small slope limit since for that case, øĝ
(b=s 2 a=u)|r/]zr|. Therefore, the GM skew flux lo-
cally manifests the adiabatic nature of the GM closure
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FIG. 1. An example of the GM skew flux arising from a slanted
temperature front. The temperature gradient is parallel to the unit
vector . The skew flux vector is oriented parallel to the temperatureû
isolines, and the horizontal component is downgradient (to the east),
whereas the vertical component is upgradient (upward).

in the sense that the skew flux is precisely aligned par-
allel to neutral directions.

To help understand some further properties of the GM
skew flux, it is useful to write Fskew(r) more explicitly

F 5 2k= r (19)skewh h

z 2F 5 k|= r| /] r. (20)skew h z

It is seen that the horizontal components to this flux are
strictly downgradient. This very simple result has been
noted previously by McDougall et al. (1996), Visbeck
et al. (1997), and Treguier et al. (1997) in various con-
texts. Note that no quasigeostrophic assumption was
used to reach this result; rather, it holds in general for
the GM closure. The vertical component in a stably
stratified portion of the ocean (]zr , 0) is always neg-
ative. Therefore, the vertical flux component is always
directed up the vertical density gradient: (r)]zr $zF skew

0. To reemphasize, the combined effects of the hori-
zontal downgradient components and the vertical up-
gradient component bring the r skew-flux vector exactly
parallel to the neutral directions: Fskew(r) ·=r 5 0.
Hence, there is no net dianeutral GM skew flux of r,
and so no ‘‘Veronis effect’’ (Veronis 1975), even though
the horizontal flux components are downgradient. This
discussion is illustrated in Fig. 1, which shows a tem-
perature field that slopes upward to the east, and tem-
perature is assumed to be the only active tracer. Such
a profile has an associated horizontal temperature skew-
flux component to the east (down the temperature gra-
dient) and an upward vertical temperature skew-flux
component (up the temperature gradient). The full skew-
flux vector is parallel to the temperature isolines.

The orientation of the skew-flux components shown
in Fig. 1 suggests a general tendency to rotate the tem-
perature profile in a clockwise manner, hence reducing

the available potential energy (APE). Such a rotation is
indeed realized in cases where there are nonzero skew-
flux divergences. More generally, the upgradient ori-
entation of (r) results in a tendency for the GMzF skew

closure to reduce gravitational potential energy locally
at every point (see also the discussion in GM). In order
to understand this property of GM from the skew-flux
perspective, it is useful to consider the special case
where density is a linear function of potential temper-
ature. In this case, there is a clear definition of APE,
and r is materially conserved if there are no diabatic
effects. Consider now the gravitational potential energy
budget, for which the potential energy density is given
by P 5 rgz. Under the effects of GM, the time tendency
for P is given by

] P 5 2gz= ·F (r)t skew

z5 2= · (gzF ) 1 gF . (21)skew skew

A no-flux boundary condition on the GM skew flux
implies that the total derivative term will vanish when
integrated over the full domain. Therefore, the potential
energy budget takes the form

z] dx P 5 g dx F , (22)t E E skew

which expresses the fact that gravitational potential en-
ergy is altered by moving parcels in the vertical direc-
tion. In a stably stratified column of water, an upgradient
vertical component to the density skew flux [Fz(r) #
0] results in a reduction in gravitational potential energy.
With nonzero divergences in the skew flux, as the po-
tential energy decreases, the isoneutral slope decreases
and likewise the horizontal density gradients decrease.
This process brings both the horizontal and vertical
components of the skew flux to zero upon reaching a
zero slope, for which the available potential energy is
zero. Again, this process is adiabatic since Fskew(r) ·=r
5 0.

4. Mixing tensor for Redi and GM

In models for which there is more than one active
tracer or where there are passive tracers, GM stirring is
typically combined with Redi isoneutral diffusion. Giv-
en the above discussion of the antisymmetric stirring
tensor for GM, it is natural to consider the mixing tensor
representing the combined effects of GM stirring and
Redi diffusion. Such an approach is not novel. For ex-
ample, Visbeck et al. (1997) employ a unified mixing
tensor for their two-dimensional simulations. The full
extent of the simplifications resulting from using such
a tensor are the subject of the remainder of this paper.

To simplify the diffusion component of the mixing
tensor, it is useful to employ the small angle approxi-
mation to the Redi diffusion tensor (Cox 1987; GM;
GWMM). The differences between the small angle and
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full diffusion tensors become on the order of 1% only
when the isoneutral slopes reach above 1/10; otherwise,
the differences are completely negligible. A slope of
1/10 is a rather large slope realized mostly near con-
vective regions. In such regions, it is unclear how rel-
evant the details of the isoneutral diffusion tensor are
for parameterizing tracer mixing. Some discussion of
the small versus full tensor is provided by GGPLDS,
and further comments are given in the subsequent de-
velopment. Making the small angle approximation, the
combined mixing tensor for GM and small angle Redi
diffusion takes the form

A 0 (A 2 k)S x
 

mnJ 5 [J ] 5 0 A (A 2 k)S . y 
2(A 1 k)S (A 1 k)S AS x y

(23)

This is the key practical result of this paper. It provides
the tracer mixing tensor to be used in z-level ocean
models that implement both Redi isoneutral diffusion
and GM skew diffusion. This tensor is quite simple in
that it differs from the Redi isoneutral diffusion tensor
only by the adjustment of the various diffusivities for
the off-diagonal elements; that is, there are no additional
terms to compute beyond isoneutral diffusion alone.
Hence, the implementation of GM skew diffusion is
trivial once a proper implementation of Redi isoneutral
diffusion is provided. The special nature of an equal
setting for the diffusivities is discussed at length in the
following.

It is useful to explicitly note the two different tracer
fluxes corresponding to Redi diffusion and GM stirring.
The first is given by the sum of the Redi diffusive flux
and the GM advective flux

F 5 2A(= T 1 S] T ) 2 T] (kS) (24)a h h z z

z 2F 5 2A(S ·= T 1 S ] T ) 1 T= · (kS). (25)a h z h

The second, which corresponds directly to the mixing
tensor in Eq. (23) through sFm 5 2Jmn]nT, is given by
the sum of the Redi diffusive flux and the GM skew
flux:

F 5 2A= T 2 (A 2 k)S] T (26)s h h z

z 2F 5 2(A 1 k)S ·= T 2 AS ] T. (27)s h z

The ‘‘a’’ and ‘‘s’’ prefixes on the fluxes distinguish the
tracer flux associated with the GM advective and skew
fluxes, respectively. Again, the advective and skew flux-
es have the same convergence and, so, correspond to
equivalent tracer mixing operators.

The choice of equal diffusivities, A 5 k, is commonly
used in numerical models, if for no other reason than
simplicity. Furthermore, there is some suggestion from
the recent work of Dukowicz and Smith (1997) that
these coefficients should be equal. However, it should
be noted that the Dukowicz and Smith results corre-

spond to the GM closure only in the special case of a
constant diffusivity. Additionally, there are currently
many issues to be clarified before providing a self-con-
sistent dynamical theory for the diffusivities. Neverthe-
less, it is intriguing to consider the implications of mak-
ing such a choice. For the advective flux formulation
of GM, there are no significant implications as the form
for the flux [Eqs. (24) and (25)] remain structurally the
same regardless of the diffusivities. However, with A 5
k, the sum of the Redi diffusive and GM skew-diffusive
flux takes the very simple form

F (T ) 5 2k= T (28)s h h

z 2F (T ) 5 2k(2S ·= T 1 S ] T ). (29)s h z

Therefore, the horizontal tracer flux is equivalent to a
geopotentially oriented downgradient diffusive flux.
This is a kinematical result, which results from an exact
cancellation of the off-diagonal term in the horizontal
flux occurring in the Redi diffusive flux with the hor-
izontal GM skew flux. Recall that the off-diagonal term
arises in the formulation of isoneutral diffusion when
representing the horizontal gradient at constant density
in the z-coordinate system, whereas off-diagonal terms
in the GM antisymmetric tensor are present in any co-
ordinate representation. Choosing to represent the an-
tisymmetric tensor in z coordinates using the most ob-
vious gauge exposes the combined Redi diffusion plus
GM stirring tensor to this rather striking simplification.
Note that this result does not depend on any assumption
about the equation of state or the spatiotemporal struc-
ture of the diffusivities. It applies to all tracers, active
and passive, which are fluxed according to the small
angle Redi and GM parameterizations, again using equal
diffusivities. Despite the simplification of the horizontal
components, the precise form of the vertical flux com-
ponent is crucial for preserving the underlying physical
properties of the parameterizations. In other words, this
choice of diffusivities does not yield downgradient dif-
fusion in all three directions, only in the two horizontal
directions.

5. Numerical considerations

a. Algorithmic unification

A comparison between the advective and skew-flux
forms for the tracer flux [Eqs. (24), (25) and (26), (27)]
points out certain simplifications that arise when nu-
merically implementing the skew-flux formulation. No-
tably, the skew-flux formulation provides for an algo-
rithmic unification of the Redi and GM fluxes. All that
is necessary to add GM stirring to Redi diffusion is to
alter the mixing coefficients normally used with Redi
diffusion alone. No more calculation of the GM eddy-
induced velocity or the corresponding advective flux is
necessary. Importantly, the efforts of GGPLDS in dis-
cretizing the diffusion tensor provide some confidence
in implementing tracer mixing tensors in ocean models.
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It is therefore natural to exploit that effort for imple-
menting the GM stirring operator. It is worth noting that
for diagnostic purposes, it is still useful within the skew-
flux approach to compute the eddy-induced velocity in
order to construct its streamfunction (see GWMM for
examples). Just as for the GM advective flux, the stream-
function of the eddy-induced velocity provides some
insight toward how the convergence of the GM skew
flux is affecting the tracer.

b. Reduction in numerical noise

Besides the great algorithmic simplification, the GM
skew flux is simpler to compute and is generally more
accurate than the GM advective flux. The crucial dif-
ference is that, to construct the advective flux, it is nec-
essary to take a spatial derivative on both the slope
vector and the diffusivity in order to construct the ad-
vection velocity U*. For the skew-flux formulation, the
spatial derivative is instead placed on the tracer. The
increased numerical accuracy of the skew flux is most
easily seen for the case of a single active tracer. For the
zonal direction, the downgradient skew flux 5xF skew

2k]xu is trivially computed with second-order accuracy
for a numerical scheme using second-order difference
operators. The accuracy realized when computing the
advective flux 5 u]z(k]xu/]zu), however, is severelyxF adv

compromised due to the extra spatial derivative acting
on the ratio of two terms, each of which consist of spatial
derivatives. The zonal advective flux is also ill-behaved
in regions near steep isoneutral slopes where artificial
slope checking schemes are necessary in order to main-
tain numerical stability (see GGPLDS for a review of
such schemes). The vertical skew flux 5 k|=hu| 2/zF skew

]zu is less trivial to compute than the horizontal skew
flux. Yet it again involves no derivative on the diffu-
sivity or slope vector, whereas the vertical advective
flux 5 2u=h · (k=hu/]zu) requires a computation ofzF adv

the horizontal divergence of the slope weighted by the
diffusivity. The difficulties of numerically maintaining
integrity with the advective flux formulation has been
recently documented by Weaver and Eby (1997). Their
results support the arguments made here.

Weaver and Eby point out additional difficulties aris-
ing when positive definiteness of the tracer field is not
guaranteed, as occurs when computing GM advective
fluxes with centered differencing or many other advec-
tion schemes. Coupled to the problems inherent in com-
puting U* near convective regions and its resulting
noisy structure, they conclude that it is necessary to
employ a positive definite advection scheme such as flux
corrected transport (FCT) (see Gerdes et al. 1991) in
order to eliminate unphysical tracer extrema. By elim-
inating the extra slope and diffusivity gradients and by
eliminating the computation of advective fluxes, the
skew-flux formulation may provide a reasonable alter-
native to using FCT. In addition, as shown in the sub-
sequent discussion, the skew-flux formulation, when im-

plemented in terms of the density triads of GGPLDS,
conserves tracer variance just as a centered difference
advective scheme.

For nonconstant diffusivities (e.g., Held and Larichev
1996; Visbeck et al. 1997; Killworth 1998), the spatial
derivative of the diffusivity will be nonzero. These co-
efficients will themselves typically be computed in
terms of large-scale Richardson numbers. Consequently,
they hold the potential to provide yet another source of
noise in the numerical model beyond the calculation of
slope derivatives. Hence, it is sensible to eliminate nu-
merical differentiation of these coefficients if possible.
Again, there is no differentiation of these coefficients
when constructing the GM skew flux.

c. A comment on steep isoneutral slopes

The cancellation between the off-diagonal terms in
the horizontal tracer flux occurring when A 5 k occurs
only when employing the small angle Redi diffusion
tensor. The question therefore arises as to the consis-
tency of using the resulting horizontal diffusion for
those steep sloped regions in which the small Redi ten-
sor is not valid. In general, regardless of the relative
values of the diffusivities, the issues surrounding steep
slopes are quite important since it is for these regions
that much of the climatologically crucial middle to high
latitude air–sea interaction takes place. In turn, it is the
region where the assumptions of adiabaticity tend to
break down, so the use of isoneutral diffusion and GM
transport may not be completely justified. The details
of such boundary regions are still the topic of research.
A preliminary discussion of such issues can be found
in Treguier et al. (1997). They suggested that horizontal
tracer diffusion should be applied in a mixed layer,
where their definition of a mixed layer basically equates
to regions of steep isoneutral slopes. It is perhaps in-
tuitive that in such regions, eddies will efficiently mix
tracers laterally and hence across the mean neutral di-
rections. It should be noted that the arguments for hor-
izontal diffusion in the mixed layer are not universally
agreed upon. For example, Large et al. (1997) describe
coarse-resolution model results in which all lateral tracer
fluxes are eliminated when the isoneutral slopes steepen.

Even though Treguier et al. differ somewhat from GM
in their form for a tracer closure, it is interesting to
pursue their conclusions regarding horizontal diffusion
in the mixed layer within the present context. First, with-
in the framework of the unified mixing tensor given by
equation (23), it is simple to prescribe a smooth transfer
from interior mixing, using Redi diffusion and GM skew
diffusion, to a horizontal–vertical mixed layer diffusion
scheme. Second, if choosing to mix in the interior with
A 5 k, one is led to the conclusion that a horizontal
downgradient tracer flux is relevant regardless of the
isoneutral slope. In this special case, there is no slope
checking for the horizontal flux components since hor-
izontal diffusion is applied everywhere. This approach
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FIG. 2. Zonally averaged meridional-depth snapshot of potential
temperature after 4000 years of integration. (a) Upper panel: The
result from the advective flux formulation of GM using centered
differences to construct the GM stirring operator. (b) Lower panel:
The result from the skew-flux formulation of GM. Both solutions
employ centered differences for computing the advective flux from
the Eulerian velocity.

brings the onus of the calculation onto the vertical flux
component [Eq. (29)]. For this component, a sensible
means to scale it to zero when the slopes steepen should
be employed (see GGPLDS for a summary of slope
checking schemes). In general, a physically based pa-
rameterization of boundary layer physics should be im-
plemented in the steep sloped regions [see Large et al.
(1994) for a summary].

d. Cox isoneutral diffusion and GM advection

Recently, modelers have found that when using the
Cox (1987) implemented Redi diffusive flux along with
the GM advective flux, there has been a reduction in
the need to employ stabilizing horizontal background
diffusion (e.g., Danabasoglu and McWilliams 1995;
Hirst and McDougall 1996). The question arises as to
why such stabilization occurs. As described by
GGPLDS, the essential problem with Cox diffusion
scheme is that, when the density is a nonlinear function
of either the temperature or salinity, the scheme pro-
duces an upgradient diffusive flux of locally referenced
potential density. This upgradient flux then induces an
unbounded growth in tracer variance, hence making the
scheme unstable. The upgradient flux in the Cox scheme
originates from the off-diagonal term in the horizontal
isoneutral diffusion flux components; that is, the term
in which the isoneutral slope vector appears [see Eq.
(26)].

What apparently occurs is that, even when formulated
in terms of advective fluxes, the introduction of GM
into the models may alleviate some of the destabilizing
effects from the problematical off-diagonal piece of the
horizontal diffusive flux. However, this cancellation is
incomplete at best since the advective flux is numeri-
cally not the same as the skew flux. This incomplete
cancellation is consistent with modeling experiences at
GFDL in which it has been found that the model sta-
bilization appearing with the GM advective formulation
is sensitive to the choice of the GM thickness diffusivity,
the momentum dissipation, and the roughness of the
bottom topography (R. Toggweiler 1996, personal com-
munication). Indeed, Fig. 2D of GGPLDS shows a case
in which the addition of GM advective fluxes to the Cox
diffusion scheme results in more unstable numerical be-
havior than with the Cox scheme alone. However, re-
alistic model tests with the GM skew flux and the un-
stable Cox isoneutral diffusion scheme indicate com-
plete stabilization of the numerical mixing operator
when A 5 k, without the addition of horizontal back-
ground diffusion (not shown).

e. Conservation of tracer variance

One of the advantages of constructing advective flux-
es using centered differences is that, with no-flux bound-
aries, both the tracer mean and variance remain constant
in time (Bryan 1969). The GM advective fluxes, when

computed using centered differences, therefore satisfy
this property. It is important to test whether the skew-
flux formulation, as implemented numerically in terms
of the ‘‘triad’’ approach proposed by GGPLDS, will also
allow for these properties to be satisfied. First, the tracer
mean is trivially conserved because the divergence of
the skew flux, summed over the model domain, reduces
to the normal component of that flux on the boundaries.
A no-flux boundary condition brings the boundary con-
tribution to zero. In the continuum, the constancy of the
tracer variance is directly related to the orthogonal ori-
entation of the skew flux relative to the tracer gradient
(i.e., =T ·Fskew(T) 5 0). On the lattice, such an orien-
tation will hold within a finite volume (GGPLDS) if
implemented in terms of the functional approach de-
scribed by GGPLDS.

The proof that tracer variance remains unchanged
with the skew-flux formulation can be seen in its most
streamlined form by employing the GGPLDS functional
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formalism. The functional corresponding to the skew
flux vanishes since =T ·Fskew 5 0. Therefore, the func-
tional2 for Redi diffusion plus GM skew diffusion is
given by

dx=T · (F 1 F )E Redi skew

5 2 dx ] T [A] T 1 S (A 2 k)] T ]E x x x z

22 dx ] T [A] TS 1 S (A 1 k)] T ], (30)E x z x x

where y variation has been ignored for brevity. For the
same reason that the discretized Redi diffusive flux is
constrained to reduce the tracer variance (GGPLDS),
the discretized skew flux will not change the tracer vari-
ance. Namely, all that has been done to construct the
Redi plus GM functional is to add zero in a nontrivial
manner to the negative semidefinite Redi functional.
Such an addition cannot change the global properties of
the resulting functional, so long as it is discretized in a
consistent fashion.

It is useful to be a bit more explicit in showing that
the tracer variance is conserved with the proposed dis-
cretization of the skew flux. As shown in GGPLDS,
when starting from the functional in Eq. (30) with k 5
0, the deduced grid stencil arising from second-order
differencing operators consists of triads of density
points. In turn, the triads are used to construct the dis-
cretization of the isoneutral slopes, and they weight the
gradients of the tracers in the construction of the dif-
fusive flux. The result is a variance-reducing numerical
diffusion scheme. When allowing for k . 0, the func-
tional approach leads to the identical grid stencil in
terms of triads. In particular, the resulting zonal and
vertical components to the skew flux can be written

xF 5 ^kS] T& 5 2^k] T /] r& ] r (31)x x z z x x

z 21F 5 2^kS] T& 5 ^k] r] T& (] r) , (32)x z x x z z

where the angled brackets symbolize an average to be
taken over the four density triads as described by
GGPLDS (see their section 5). For brevity, the lattice
labels are absent in these equations. Taking the scalar
product of this skew flux with the tracer gradient yields

x] TF 5 2(] T] r)^k] T /] r& (33)x x x x z x

z] TF 5 (] T /] r)^k] r] T& . (34)z z z x x z

Summing these terms over the extent of the model lattice
will provide for exact cancellation of terms, hence yield-
ing the lattice equivalent of ∫ dx =T ·Fskew 5 0. The
conservation of tracer variance follows, and this result
holds for arbitrary diffusivity.

2 Actually, twice the functional.

f. A numerical example

For the purpose of illustrating the numerical solutions
arising from the skew-flux formulation of GM, a single
active tracer is employed. This case is sufficient to ad-
dress the numerical issues raised by Weaver and Eby
(1997). With a single active tracer, no isoneutral dif-
fusion will act on this tracer regardless of the equation
of state (GGPLDS).3 As seen in the discussion of section
3, the horizontal temperature skew flux is directed down
the horizontal temperature gradient, whereas the vertical
skew-flux component is up the vertical gradient. Again,
the sum of these two flux components provides for a
skew-flux vector that is orthogonal to the temperature
gradient, resulting in a zero cross isothermal tempera-
ture skew flux.

For the numerical test, the idealized sector model used
in GGLPDS, employing the MOM 2 ocean model doc-
umented by Pacanowski (1996), is integrated using the
two GM formulations. This model has 18 unevenly
spaced vertical levels, and the temperature field is re-
stored to a linear profile with a 50-day restoring time
over the top model layer 35 m deep. The steady-state
solution has convection occurring in the far north due
to the cooling and a strong amount of downwelling in
the northeast (e.g., see Bryan 1975). Weaver and Eby
(1997) employed a similar model for performing their
numerical tests of the GM advective flux formulation.
The most notable difference between their model and
the present one is their use of increased vertical reso-
lution: they used 80 evenly spaced vertical levels reach-
ing to 4000 m in depth.

The triad scheme of GGPLDS (see their section 5)
is used to compute the skew flux. The method of Dan-
abasoglu and McWilliams (1995) is used to compute
the eddy-induced velocity U*, and centered differences
are used to compute the corresponding GM advective
flux. Both experiments compute the advective fluxes
from the Eulerian current u with centered differences.
Figures 2a and 2b show a zonally averaged meridional–
depth snapshot in the upper portion of the model ob-
tained after 4000 years of integration.4 Both the advec-
tive flux (Fig. 2a) and skew-flux (Fig. 2b) solutions
show similar profiles, with the advective flux solution
slightly cooler. The colder advective flux solution might
be related to the presence of increased dispersion errors
associated with problems in the steeply sloped regions.

3 A point of clarification is warranted. Weaver and Eby employed
a linear equation of state and the Cox (1987) diffusion scheme. As
shown by GGPLDS, the Cox scheme is stable in this case since it
correctly provides an identically zero isoneutral diffusive flux of tem-
perature when using a linear equation of state. Isoneutral diffusion
of temperature, therefore, is completely absent in the study of Weaver
and Eby.

4 For the vertical diffusivity ky 5 0.5 cm2 s21 was used. Therefore,
the diffusive spinup time is D2/ky ø 104 yr, where D 5 4000 m is
the depth of the model.
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FIG. 3. Snapshot of potential temperature at the bottom level after
4000 years of integration. (a) Upper panel: The result from the ad-
vective flux formulation of GM using centered differences to con-
struct the GM stirring operator. (b) Lower panel: The result from the
skew-flux formulation of GM. Both solutions employ centered dif-
ferences for computing the advective flux from the Eulerian velocity.
Note the use of identical contour intervals (0.028C), yet different
ranges.

To address this point, it is useful to look at the bottom
level since it is for this level that many of the problems
occurring in the upper regions accumulate over long
integrations. In particular, undershoots creating anom-
alously cold water parcels will eventually find their way
to the bottom due to convective adjustment. Figures 3a
and 3b show the bottom-level temperature. As sug-
gested, the advective formulation results in somewhat
colder water than the skew-flux formulation. Most im-
portantly, note that the temperature profile arising from
the advective formulation is afflicted with unphysical
extrema. These extrema are thought to be associated
with dispersion errors with the centered difference
scheme acting on the noisy U* field. In contrast, the
skew-flux solution is completely smooth.

It is important to emphasize that the tracer transport
obtained with the GM skew flux and centered differ-
ences for the Eulerian advective flux conserves tracer
variance. Therefore, the smoothness in the solution

shown in Fig. 3b is not achieved with enhanced dissi-
pation coming in ‘‘through the back-door.’’ Rather, it
arises from a cleaner formulation of the GM mixing
operator, which sidesteps the problems inherent in com-
puting the U* velocity and the corresponding problems
of using this velocity within the centered difference ad-
vection scheme.

Besides problems with the flat bottom experiments
described by Weaver and Eby (1997), the numerical
integrity of models run with centered difference advec-
tive fluxes is sometimes compromised when running
with rectangular stepped topography. What can occur is
an excessive amount of dispersion error recurring near
the topography and producing tracer values far from
those that are physically realistic. This ‘‘digging’’ is
currently a reason some modelers choose to employ FCT
and similar advection schemes for computing advective
fluxes corresponding to the Eulerian currents. Due to
the presence of the horizontal downgradient fluxes of r
in the skew-flux formulation of GM and its inherently
large horizontal flux divergences next to the no-flux
boundaries, it might be that it could alleviate digging.
However, preliminary tests have indicated that the dig-
ging near topography is not removed. It seems that such
problems, if they are found in a particular model, either
require some form of dissipative advection or, more
physically, some form of topographic sculpting such as
done by Adcroft et al. (1997).

6. Summary and conclusions

A closure of the tracer equation in terms of a diver-
gence-free eddy-induced velocity necessarily implies
the relevance of both an advective tracer flux and its
corresponding skew-diffusive flux. These two fluxes dif-
fer by a curl, which means that they lead to the same
tracer stirring operator. So far, thinking regarding GM
has mostly focused on its advective form (GWMM), for
which GM stirring arises from the addition of an eddy-
induced velocity to the usual Eulerian velocity. This
paper emphasized the skew-diffusive form of GM, and
it was argued that it provides a tidy summary of the
physics incorporated into the GM closure. In general,
the skew flux of any tracer is directed parallel to the
isolines of that tracer. In particular, the horizontal com-
ponents of the GM skew flux for locally referenced
potential density are directed downgradient. This down-
gradient flux is combined with an upgradient vertical
component rendering the skew-flux vector parallel to
the neutral directions. Hence, there is a zero dianeutral
component to the GM skew flux of locally referenced
potential density: a result indicative of the adiabatic
nature of the GM closure. Additionally, the upgradient
vertical component is directly associated with the re-
duction of APE resulting from GM closure.

The skew-flux perspective provides a very useful and
efficient means to implement GM stirring in z-coordi-
nate ocean models. Currently, GM is typically imple-
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mented in its advective form, which involves a calcu-
lation of the eddy-induced velocity U* and the diver-
gence of the advective tracer flux TU*. The calculation
of the advective flux suffers from a number of problems.
Most notably, 1) it requires taking a spatial derivative
of both the isoneutral slope vector S 5 2=hr/]zr and
the diffusivity k in order to compute U*. This derivative
is most difficult to compute numerically in regions
where either the slope or the diffusivity are changing
rapidly. Furthermore, if k is proportional to the Rich-
ardson number, then these regions may coincide, thus
exacerbating the problem. 2) It requires the construction
of advective fluxes. If these fluxes conserve tracer vari-
ance, they are not monotonic. The numerical implica-
tions of both issues were described by Weaver and Eby
(1997). They concluded that in order to implement the
advective form of GM, even when using constant dif-
fusivities in a flat bottom model, it is necessary to em-
ploy a dissipative advection scheme such as FCT when
computing the GM advective flux. Otherwise, the nu-
merical integrity of the solution will be greatly com-
promised. Besides being computationally expensive, the
use of such advection schemes in the context of non-
constant tracer diffusivities is cumbersome. The reason
is that both the physically based closure and the nu-
merically based dissipative advection potentially will be
active in the interesting dynamical regions associated
with strong currents and convection. This confusion of
effects may make it difficult to assess the relevance of
various subgrid-scale closures for the diffusivities.

The skew-flux formulation avoids the two problems
with the advective formulation. First, to compute the
skew flux requires taking a spatial derivative on the
tracer rather than on the product of the diffusivity and
isoneutral slope. As a result, the skew flux involves the
same differentiation operations needed to compute the
Redi diffusive flux. The result is an inherently smoother
GM skew flux than GM advective flux. Second, for-
mulating GM in terms of its skew flux allows for a clean
unification of the symmetric Redi diffusion and anti-
symmetric GM stirring tensors. Within this framework
of a general mixing tensor [Eq. (23)], there is no need
to compute either the GM eddy-induced velocity U*, or
its corresponding advective flux. Furthermore, by im-
plementing the mixing tensor using the algorithm of
GGPLDS, the discretized skew flux conserves both trac-
er mean and tracer variance. This approach requires no
more computation than required for Redi diffusion alone
since there is no longer a separate computation of the
GM advective flux and the Redi diffusive flux. The rel-
ative savings in computational load increase in propor-
tion to the number of tracers used in the model. For
example, many biogeochemical models now employ
tens of tracers, so the total cost of those models using
Redi diffusion and GM advective transport could be
substantially reduced with the skew-flux approach to
GM. To support this analysis, an idealized model test
was run, where the focus was on the problems with the

advective flux formulation pointed out by Weaver and
Eby (1997). The results of this test indicate that the
skew-flux formulation resolves the problems with the
advective formulation, again, while conserving tracer
variance.

Formulating GM in terms of the skew flux exposes
the potential to realize a rather striking cancellation be-
tween the horizontal Redi diffusive flux and horizontal
GM skew flux. Namely, setting the GM diffusivity equal
to the Redi isoneutral diffusivity (k 5 A) yields a strictly
downgradient horizontal tracer flux for the sum of Redi
diffusion plus GM skew diffusion. The vertical flux
component, whose precise form is crucial in order to
preserve the physics of the closure, is less trivial yet no
more difficult to compute than the vertical Redi diffu-
sive flux. The cancellation occurs only when formulat-
ing small angle Redi diffusion with GM skew diffusion
in a z-level model. Currently, the justification for setting
the diffusivities equal is mostly based on simplicity, and
is currently employed by most ocean modelers (e.g.,
Danabasoglu and McWilliams 1995; Hirst and McDou-
gall 1996).

Regardless of the diffusivities, for those wishing to
test the GM and Redi schemes in z-level models, it is
recommended that the GM skew flux be implemented
within the framework of the GGPLDS isoneutral dif-
fusion scheme. By doing so, one gains the assurance
that the discretized GM skew flux will conserve tracer
mean and variance, and the Redi plus GM tracer flux
will preserve the physical properties discussed in this
paper and in GGPLDS. However, it is recognized that
the new algorithm of GGPLDS represents a major
change in the diffusion code, and so may require a non-
trivial investment in model restructuring if not employ-
ing the latest version of the MOM 2 code (versions
subsequent to October 1996). What has been shown in
this paper is that in general there is no impediment
toward implementing GM stirring within any model al-
ready containing some form of isoneutral diffusion. The
reason is that to do so is trivial when using the most
common diffusivity setting of A 5 k. The resulting
mixing operator will be stablized relative to the behavior
encountered using the unstable Cox (1987) diffusion
scheme alone, and the stabilization will be realized with-
out adding horizontal background diffusion. Further-
more, the corresponding GM plus Redi tracer mixing
scheme requires roughly half the computational load
engendered by isoneutral diffusion alone. Such savings
have translated into a 30% reduction in total model run
time for a realistic four degree global ocean model car-
rying two active tracers and one passive tracer.
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