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Abstract
Motivation: Trait variation within species can reveal plastic and/or genetic responses 
to environmental gradients, and may indicate where local adaptation has occurred. 
Here, we present a dataset of rangewide variation in leaf traits from seven of the most 
ecologically and economically important tree species in Europe. Sample collection 
and trait assessment are embedded in the GenTree project (EU-Horizon 2020), which 
aims at characterizing the genetic and phenotypic variability of forest tree species 
to optimize the management and sustainable use of forest genetic resources. Our 
dataset captures substantial intra- and interspecific leaf phenotypic variability, and 
provides valuable information for studying the relationship between ecosystem func-
tioning and trait variability of individuals, and the response and resilience of species 
to environmental changes.
Main types of variable contained: We chose morphological and chemical characters 
linked to trade-offs between acquisition and conservation of resources and water 
use, namely specific leaf area, leaf size, carbon and nitrogen content and their ratio, 
and the isotopic signature of stable isotope 13C and 15N in leaves.
Spatial location and grain: We surveyed between 18 and 22 populations per species, 
141 in total, across Europe.
Time period: Leaf sampling took place between 2016 and 2017.

mailto:rbenavidescalvo@gmail.com
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1  | INTRODUC TION

Leaves are the primary site for photosynthesis in terrestrial ecosys-
tems, generating resources and underpinning ecosystem functions. 
Nitrogen uptake and carbon assimilation by plants are the basis of 
trophic interactions and, together with leaf decomposability, drive 
the terrestrial biogeochemical cycling. These essential roles imply 
the simultaneous performance of multiple functions, for exam-
ple light interception, water and nutrient transport, gas exchange 
and heat dissipation, in addition to deploying defence mechanisms 
against herbivores and pathogens and physical damage. Trade-offs 
among these functions exist such that under different environmen-
tal pressures, shape, anatomy and chemical composition of leaves 
exhibit great diversity arising from phylogenetic and adaptive 
processes over evolutionary time (Ackerly & Reich,  1999; Nicotra 
et al., 2011). Wright et al. (2004) examined 2,548 plant species and 
found a comprehensive global pattern, suggesting that the trade-
offs span a leaf economics spectrum (LES). This spectrum shows a 
strong relationship among leaf traits related to the growth potential 
versus construction costs, going from plants with low photosyn-
thetic rates and slow return on investment of leaf dry matter and 
nutrients (long life span), to plants with high rates and a rapid return 
(short life span). The LES concept led to the adoption of leaf trait 
syndromes being widely used to define species strategies, as they 
describe how species manage resources (Garnier et al., 2016) from a 
whole-plant perspective (Poorter et al., 2014).

Traits are measured at the individual plant level and can thus 
reflect the individual resource use and plant–plant interactions be-
yond the species averages (McGill et al., 2006). It has been shown 
that 25% of the estimated trait variation in plant communities occurs 
at the intraspecific level (Siefert et al., 2015), highlighting the im-
portance of this component of variation for ecosystem functioning 
(Crutsinger et al., 2006; Pérez-Ramos et al., 2019; Siefert et al., 2012) 
and warning us against neglecting it. In fact, datasets such as LEDA 
(Kleyer et al., 2008), TRY (Kattge et al., 2011) and BROT (Tavsanoglu 
& Pausas, 2018), amongst others, that compile functional traits from 
different species, biomes and traits incorporate data at the individ-
ual level. This variation arises from phenotypic plasticity, genetic 
diversity and their interaction, driven by adaptation to different 
local environments (Leimu & Fischer,  2008) and to environmental 

gradients at different scales (Messier et al., 2010). Nevertheless, a 
large effort is required to quantify and collate trait variation within 
species, and accordingly it is frequently under-represented with data 
from a limited number of individuals per species.

Here, we present a dataset of inter- and intraspecific variation in 
leaf traits from seven ecologically and economically important tree 
species, evaluated from materials collected in populations across 
Europe. These data were collected as part of the European research 
project GenTree (http://www.gentr​ee-h2020.eu), which aims to 
characterize phenotypes (see also Martínez-Sancho et al., 2020) and 
genetic variation in a set of European tree species. The final data-
set will be of interest to study the relationships between ecosys-
tem functioning and trait variability, to evaluate the relative extents 
to which genetic variation and plasticity contribute to intraspecific 
phenotypic variation, to assess the association between genetic and 
phenotypic variation, and ultimately to estimate the adaptive poten-
tial and resilience of species to environmental changes.

2  | METHODS

2.1 | Data source

We study leaf traits in seven European tree species in populations 
across their distributions. The species list comprised the conifers 
Norway spruce (Picea abies (L.) Karst), maritime pine (Pinus pinaster 
Aiton) and Scots pine (Pinus sylvestris L.), and the broadleaves sil-
ver birch (Betula pendula Roth), European beech (Fagus sylvatica L.), 
European black poplar (Populus nigra L.) and sessile oak (Quercus pe-
traea (Matt.) Liebl.).

Between 18 and 22 populations per species (141 populations 
in total) were selected in pairs across Europe (Table 1, Supporting 
Information Table S1; Figure 1) to represent the range of environ-
mental variation experienced by the species but excluding stands 
disturbed by intense or very recent natural or anthropogenic ac-
tions. Locally, population pairs were sampled along an environmen-
tal gradient (such as elevation, water availability or day length), but 
they were close enough to be connected by gene flow. A paired de-
sign offers increased statistical power to detect signatures of selec-
tion, whilst minimizing the confounding effect of population genetic 

Major taxa and level of measurement: We sampled at least 25 individuals in each 
population, 3,569 trees in total, and measured traits in 35,755 leaves from seven 
European tree species, i.e. the conifers Picea abies, Pinus pinaster and Pinus sylvestris, 
and the broadleaves Betula pendula, Fagus sylvatica, Populus nigra and Quercus petraea.
Software format: The data files are in ASCII text, tab delimited, not compressed.

K E Y W O R D S

European forests, intraspecific variability, leaf economics spectrum, leaf functional traits, 
phenotypic variation, tree species

http://www.gentree-h2020.eu
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structure (Lotterhos & Whitlock,  2015). In the north, where it is 
mostly flat and the gradient was often day length, distance within 
a pair was sometimes large. Nevertheless, site selection was done 
considering genetic estimates of gene flow and differentiation of 

the species there, which showed that distances under c.  100  km 
do not prevent gene flow and are not sufficient to yield significant 
differentiation among populations (Robledo-Arnuncio et al., 2004; 
Rusanen et al., 2003; Tollesfrud et al., 2009). Further details about 

TA B L E  1   Geographical and altitudinal ranges across sampled species, and sample sizes for leaf trait estimation. For each species, the 
table gives the number of study populations (Npop), surveyed trees (Ntrees), subsampled trees for chemical leaf trait assessment (Ntreech) 
and leaves measured to assess morphological leaf traits (Nleafmorp)

Species
Latitudinal 
range (º N)

Longitudinal range 
(º E)

Elevational range 
(m a.s.l.) Npop Ntrees Ntreech Nleafmorp

Betula pendula 41.9689–
66.3663

−3.6645–29.2824 14.6–1,552.1 20 505 280 5,053

Fagus sylvatica 40.5484–
59.3843

−1.0280–23.7195 75.4–1,626.2 22 558 308 5,574

Populus nigra 40.1605–
51.1556

−4.4065–22.8203 5.2–764.9 18 471 279 4,709

Quercus petraea 38.1406–
58.4150

−3.0298–23.7577 10.0–1,619.9 20 500 280 4,999

Picea abies 41.4808–
66.4354

6.4809–58.8777 81.8–2,029.1 20 499 272 5,060

Pinus pinaster 36.8246–
44.9702

−5.1238–11.3479 10.7–1,084.3 20 500 280 5,000

Pinus sylvestris 40.1907–
66.4371

−5.3659–29.3002 18.7–1,857.4 21 536 298 5,360

F I G U R E  1   Distribution maps and site locations of the seven study tree species. Distribution information was downloaded from European 
Forest Genetic Resources Programme (http://www.euforgen.org)

http://www.euforgen.org/
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the selection of populations can be found at https://ec.europa.eu/
resea​rch/parti​cipan​ts/docum​ents/downl​oadPu​blic?docum​entId​
s=08016​6e5b2​f16f3​e&appId​=PPGMS

2.2 | Variables

The specific leaf area (SLA, the area of an individual fresh leaf di-
vided by its dry mass; mm2/mg) is one of the most frequently used 
traits in functional ecology. This is partly due to its ease of measure-
ment, but also because it can be used to estimate the position of a 
species along the acquisition–conservation continuum on the leaf 
economics spectrum (Garnier et al., 2016). Very sensitive to varia-
tion in resource availability, high SLA is common in nutrient rich or 
shady environments (i.e. acquisitive value) and low SLA in nutrient 
poor and exposed environments (i.e. conservative value) (Pérez-
Harguindeguy et  al.,  2013). The area of a leaf (LA; mm2) is linked 
to the energy balance and water-use during photosynthesis. Small 
leaves can easily maintain favourable temperature and photosyn-
thetic water-use efficiency under stressful conditions such as low 
water availability and high solar radiation compared to large leaves 
(Parkhurst & Loucks,  1972). LA varies at the interspecific and in-
traspecific levels, and it is influenced by different factors at different 
scales including phylogeny, climate, geology, altitude, latitude and 
allometry (Ackerly et al., 2002).

Leaf nitrogen and carbon contents (LNC, LCC; %) are indicative of 
variation in resource acquisition (nitrogen and carbon assimilation). 
Leaf N constitutes the proteins involved in the photosynthesis, espe-
cially RuBisCO, which fixes CO2 inside the leaf (Lambers et al., 2008). 
Thus, photosynthetic capacity (Amax, the photosynthetic rate per 
unit leaf mass) correlates linearly with LNC (Field & Mooney, 1986). 
Nutrient rich environments favour the allocation of an important 
fraction of leaf N to the photosynthetic machinery, instead of to de-
fensive compounds or supporting tissue, which is more typical in poor 
environments (Berendsen et al., 2007). LCC is the structural basis and 
constitutes a rather stable 50% of plant dry mass, and its usefulness 
lies in its relationship with other nutrients (leaf stoichiometry) that 
can be indicative of life history strategies, such as responses to stress 
(Zhang et al., 2017). For instance, an increase in the C : N ratio in plant 
tissues can reflect a shift from photosynthetic to structural tissue al-
location under harsher conditions (Ågren, 2008).

The estimation of stable isotope abundance in leaves can provide 
information about the physical, chemical and metabolic processes 
(Griffiths,  1991; and references therein). Plant photosynthesis 
discriminates against the stable 13C isotope (Faquhar et al., 1989) 
until stomata close and intercellular CO2 concentration drops. 
Consequently, the isotopic signature δ13C (‰; Equation 1) is linked 
to plant's water use efficiency (WUE), with higher levels of δ13C 
achieved under prompt stomatal closure. In this way, higher δ13C is 
observed in drier sites and during drier years (Marshall et al., 2007).

where R is the ratio between the amount of the heavy isotope of 
an element to the amount of the light isotope in a sample, in refer-
ence to a ratio of a given standard material.

The isotopic signature of stable isotope 15N in leaves (δ15N; ‰; 
Equation (1)) varies among species, ecosystems and climatic gradi-
ents, and thus it can reveal spatial and temporal patterns of N cycling 
(Craine et al., 2009, and references therein). For example, at large 
scales and under cool and wet conditions, there is a trend towards 
increasing losses of the heavier 15N in soils resulting in 15N-depleted 
forms of NO3, N2O and other N-containing compounds, and hence 
lower δ15N in plants (Amundson et  al.,  2003). Contrastingly, rain 
events after dry periods cause a larger proportional loss of 14N and 
increased δ15N in N compounds in ecosystems (Ogaya & Peñuelas, 
2008). Hence, δ15N can reflect time-integrated measures of N stor-
age and terrestrial N cycling (Amundson et al., 2003).

2.3 | Data collection and trait estimation

We selected at least 25 healthy adult individuals within each popula-
tion, totalling 3,569 trees. Ten young but fully expanded leaves were 
taken from a fully exposed branch – from the top of the crown – with-
out visible herbivory or other damage. They were scanned within 
48  hr and LA of each leaf was assessed using WinFOLIA (Regent 
Instruments Inc., Canada). All samples were then oven-dried at 60 °C 
for 72 hr and each leaf weighed for dry mass with an electronic bal-
ance to the nearest 0.1 mg (Kern ALS 120-4N, Balingen, Germany) to 
assess SLA. Leaf collection, storage, processing and morphological 
trait measurement followed Pérez-Harguindeguy et al. (2013). This 
resulted in 35,755 leaves being used for leaf morphological trait as-
sessment (Supporting Information Table S2, Figures S1, S2).

For a subset of 14 trees out of 25 alternatively selected in each 
population, together with the whole set from two populations (see 
below for details), a sample composed of several leaves was oven- 
dried and ground. Then, 3–3.5  mg of the ground material was 
weighed and sealed in tin foil capsules. These samples from 1,997 
trees were shipped to the UC Davis Stable Isotope Facility, where 
the chemical analyses were carried out with an elemental analyser 
interfaced to a continuous flow isotope ratio mass spectrometer 
(IRMS; see the website for details https://stabl​eisot​opefa​cility.ucdav​
is.edu/). The final δ isotope values are expressed relative to inter-
national standards Vienna Pee Dee Belemnite (VPDB) and Air for 
carbon and nitrogen, respectively (Supporting Information Table S2, 
Figures S3, S4, S5, S6, S7).

2.4 | Technical validation

The assessment of morphological leaf traits is relatively simple but 
sample processing needs to be transparent and repeatable to avoid 
mistakes. Hence, we generated a sampling protocol followed by all 
project partners to ensure that samples of each surveyed tree could 
be tracked (https://ec.europa.eu/resea​rch/parti​cipan​ts/docum​

(1)�isotope =

(

Rsample − Rstandard

Rstandard

)

× 1, 000,

https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5b2f16f3e&appId=PPGMS
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5b2f16f3e&appId=PPGMS
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5b2f16f3e&appId=PPGMS
https://stableisotopefacility.ucdavis.edu/
https://stableisotopefacility.ucdavis.edu/
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5b2f16f3e&appId=PPGMS
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ents/downl​oadPu​blic?docum​entId​s=08016​6e5b2​f16f3​e&appId​
=PPGMS).

Morphological trait assessment and sample preparation for 
chemical analyses were conducted entirely at the Museo Nacional de 
Ciencias Naturales (Consejo Superior de Investigaciones Científicas, 
Madrid). After recording weights and leaf area values, we examined 
the outliers within each population and checked their credibility by 
examining the samples and images. We kept these values as long as 
they were not identified as typos or mixed-up samples. This process 
was repeated after the estimation of SLA.

The validation technique used for the chemical analysis can be 
found on the UC Davis Stable Isotope Facility website (https://stabl​
eisot​opefa​cility.ucdav​is.edu/).

3  | DATA STRUC TURE

3.1 | Data tables

The dataset comprises three files. The first file (morpho_leaf_traits.
csv) provides the morphological traits (i.e. SLA and LA) at leaf 
level, meaning a dataset with 35,755 observations. The second file 
(chemical_leaf_traits.csv) contains the chemical composition (LNC, 
LCC, and isotope signatures) in a subset of 14 trees of each popu-
lation and the whole batch from two populations of Populus nigra 
(FR_PO_04 and FR_PO_06), totalling 1,997 observations. In both 
files, each population has its own code, composed of two letters 
indicating the country, another two letters indicating the species 
and a two-digit number (from 01 to 22) to indicate the population. 
For example, ES_FS_01 is the code of a population located in Spain 
(ES) of Fagus sylvatica (FS), numbered 01. Moreover, each sampled 
tree has a unique identifier, which includes the population code 
with an additional two-digit number indicating the order of survey 
(from 01 to 25). Country acronyms are: AT: Austria, CH: Switzerland, 
DE: Germany, ES: Spain, FI: Finland, FR: France, IT: Italy, GB: Great 
Britain, GR: Greece, LT: Lithuania, NO: Norway, PL: Poland, RU: 
Russia, SE: Sweden. Species acronyms are: BP: Betula pendula, FS: 
Fagus sylvatica, PA: Picea abies, PO: Populus nigra, PP: Pinus pinaster, 
PS: Pinus sylvestris, QP: Quercus petraea.

A third file (sites_leaves.csv) contains information about sites 
(target species, population code, site name, country, geographical 
coordinates and elevation).

3.2 | Format type

Each data file is in ASCII text, semicolon delimited, not compressed.

3.3 | Header information

Header information includes the population code (population), the tree 
identifier (treeID), the leaf identifier (leafID) in the file with data at the 

leaf level, and the acronyms of the variables: specific leaf area (SLA), 
leaf size (LA), leaf carbon content (LCC), leaf nitrogen content (LNC), 
ratio between carbon and nitrogen (C:N), isotopic signature of stable 
13C isotope (δ13C), isotopic signature of stable 15N isotope (δ15N).

3.4 | Row information

Each row represents a single measurement.

3.5 | Variable definition

All variables measured in the seven species are detailed in the 
Methods section.
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