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Abstract

The genus Geobacillus comprises a group of Gram-positive thermophilic bacteria,

including obligate aerobes, denitrifiers, and facultative anaerobes that can grow

over a range of 45e75 �C. Originally classified as group five Bacillus spp., strains of

Bacillus stearothermophilus came to prominence as contaminants of canned food

and soon became the organism of choice for comparative studies of metabolism

and enzymology between mesophiles and thermophiles. More recently, their cata-

bolic versatility, particularly in the degradation of hemicellulose and starch, and rapid

growth rates have raised their profile as organisms with potential for second-genera-

tion (lignocellulosic) biorefineries for biofuel or chemical production. The continued

development of genetic tools to facilitate both fundamental investigation and meta-

bolic engineering is now helping to realize this potential, for both metabolite produc-

tion and optimized catabolism. In addition, this catabolic versatility provides a range

of useful thermostable enzymes for industrial application.

A number of genome-sequencing projects have been completed or are underway

allowing comparative studies. These reveal a significant amount of genome rearrange-

ment within the genus, the presence of large genomic islands encompassing all the

hemicellulose utilization genes and a genomic island incorporating a set of long chain

alkane monooxygenase genes. With G þ C contents of 45e55%, thermostability

appears to derive in part from the ability to synthesize protamine and spermine, which

can condense DNA and raise its Tm.

s0010 1. INTRODUCTION

p0010 Geobacillus spp. are Gram-positive thermophilic aerobic or faculta-

tively anaerobic spore forming bacilli. Prior to 2001, they were grouped

together as thermophilic variants of Bacillus spp., but accumulating evidence

for clustering of many of the thermophiles in a separate subgroup (group 5)

supported by 16SrRNA analysis led to their reclassification as a separate

genus, Geobacillus gen. nov. (Nazina et al., 2001), with Geobacillus stearother-

mophilus as the type strain (note that the moderate thermophiles Bacillus

2 Ali Hussein et al.
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caldotenax and Bacillus smithii, which fell into group 1, are excluded from this

group). The majority of Geobacillus strains grow over the temperature range

45e70 �C and, being catabolically diverse, they are readily isolated from

active communities growing in compost, hot springs and deep geothermal

sites, including oil wells and deep sediments. However, it has long been

known that Geobacillus spp. can be isolated from a wide range of moderate-

and low-temperature environments including temperate soils, and have also

been isolated from low-temperature environments such as the Bolivian

Andes, deep sea water, and even the Mariana Trench. Indeed, they can

be isolated in significant numbers from sites that rarely, if ever, exceed

30 �C. This paradoxical distribution has recently been analyzed by Zeigler

(2014) who attributes it largely to the properties ofGeobacillus spp. spores. It

is well established that Bacillus and Geobacillus spores are extremely resistant

to ultraviolet (UV) light, desiccation, and thermal inactivation (Setlow,

2006), the latter property lending itself to the use of these spores as viability

indicators for the effectiveness of heat sterilization methods. Furthermore,

once released into the lower atmosphere, their small size allows the spores

to remain airborne for considerably longer than a typical bacterium. Indeed,

there is known to be a “scavenging gap” that allows particles of about 1 mm

in diameter to remain suspended in the atmosphere for disproportionately

long times (Burrows, Elbert, Lawrence, & Poschl, 2009), which leads to an

intriguing suggestion that the size of bacterial spores may have been under

evolutionary pressure for their ability to disperse more effectively. The abil-

ity to remain suspended for long periods, certainly sufficient for inter-

continental transit, can readily explain the widespread distribution of

Geobacillus spp. spores to regions where they are incapable of reproduction.

However, the relatively high abundance of Geobacillus spp. in these envi-

ronments (e.g., 104e105 m�2 in some Northern Ireland soil; Marchant

et al., 2008) is a little more difficult to explain. Clearly, spores can remain

viable for a considerable time and, assuming they can withstand the accu-

mulated UV damage, an estimation of their thermal inactivation time in

temperate climates based on extrapolating the effect of temperature on their

D-value (decimal reduction time) gives a figure in excess of a billion years

(Nicholson, 2003)! So a picture is gradually emerging of a genus that prob-

ably reproduces explosively on composting vegetation and more gradually

in other geothermal environments, and then forms spores that can be easily

distributed over wide distances and remain dormant but viable for extensive

periods.

The Genus Geobacillus and Their Biotechnological Potential 3
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s0015 2. PHYLOGENY AND GENOMIC ANALYSIS

p0015 Nazina et al. (2001) divided the genus Geobacillus into eight species,

based on a combination of 16SrRNA gene sequence analysis and a variety

of physical and biochemical characteristics. Two were novel species, namely,

Geobacillus subterraneus and Geobacillus uzenensis, while six were transferred

from group 5 of the genus Bacillus, namely, G. stearothermophilus, Geobacillus

thermoleovorans, Geobacillus thermocatenulatus, Geobacillus kaustophilus, Geobacil-

lus thermoglucosidasius, and Geobacillus thermodenitrificans. Over the subsequent

years, a number of new species have been proposed based primarily on

16SrRNA gene sequence differences, but this has been shown to be a

poor discriminator for detailed classification, with the recN gene (or a com-

bination of 16SrRNA and recN gene sequences) being a better phylogenetic

marker of closely related species because of its higher rate of divergence

(Zeigler, 2005). Based on recN analysis, nine distinct groups with strong

bootstrap support were recognized. Five of these corresponded unambigu-

ously with G. stearothermophilus, Geobacillus toebii, Geobacillus caldoxylosylitus,

G. thermoglucosidasius, andG. thermodenitrificanswhile one group comprised a

single strain of (Geo)Bacillus thermoantarcticus, which Ziegler has argued

should be reclassified as G. thermoglucosidasius. The classification of the

remaining three groups is a little more contentious with one group covering

all three of the previously described species G. thermoleovorans, G. thermoca-

tenulatus, and G. kaustophilus, which DNAeDNA hybridization has previ-

ously suggested should form a single species. The other groups cover

G. subterraneus and G. uzenensis, which may be subspecies of G. thermodeni-

trificans and G. stearothermophilus NUB3621, which is probably a subspecies

of G. caldoxylosylitus. Studholme (2014) has attempted to resolve the “kaus-

tophilus clade” by core genomewide phylogenetic analysis, but given the

high level of horizontal gene transfer evident in the noncore-genome, the

reliability of this approach is open to question. The division into monophy-

letic groups based on recN sequence comparison shown in Figure 1 repre-

sents the most robust phylogenetic analysis available to date.
p0020 A number of genome sequences of Geobacillus spp. have been reported

since 2004 (Studholme, 2014) allowing both analysis of potentially inter-

esting metabolic characteristics and analysis of genome structure and dy-

namics. The G þ C content varies between species with a clear difference

between the “kaustophilus clade” of G. thermoleovorans (52%), Geobacillus

vulcani (53%), Geobacillus lituanicus (52.5%), G. kaustophilus (51.9%) and

4 Ali Hussein et al.
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G. thermocatenulatus (55%), the denitrifying Geobacillus denitrificans (48.9%)

and the facultative anaerobes G. caldoxylosylitus (44%), G. toebii (43.9%)

and G. thermoglucosidasius (43.9%). Geobacillus stearothermophilus sensu strictu

also has a gas chromatography½Q1� content of 43.8%, close to that of G. thermo-

glucosidasius even though it groups more closely with G. thermodenitrificans.

While it is clear that Geobacillus spp. do not have a high G þ C content, un-

like their mesophilic counterpart, they have genes for the production of

protamine and spermine, small cationic histone-like proteins, which allow

chromosome condensation and increase the Tm of DNA (Takami, Takaki,

et al., 2004).
p0025 The average genome size forGeobacillus spp. ranges from 3.5 to 3.9 Mbp.

The smallest genomes can be found in the “kaustophilus clade” and the

highest in the “thermoglucosidasius clade.” This might reflect the additional

coding requirements associated with anaerobic growth, CRISPR regions as

well as genes of unassigned function found between transposable elements in

the genome of G. thermoglucosidasius. Analysis of the number of transposases

f0010 Figure 1 Evolutionary relationships of taxon Geobacillus. The evolutionary distances

were computed using the maximum composite likelihood method and are in the units

of the number of ½Q29�base substitutions per site. Evolutionary analyses were conducted in

MEGA6 (Tamura, Stecher, Peterson, Filipski, & Kumar, 2013).

The Genus Geobacillus and Their Biotechnological Potential 5
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in the genomes of G. kaustophilus HTA46 (Takami, Nishi, Lu, Shimamura,

& Takaki, 2004), G. thermodenitrificans NG80-2 (Feng et al., 2007), G. ther-

moglucosidasius C56-YS93 and G. thermoleovorans CCB_US.3_UF5 (Muhd

Sakaff, Abdul Rahman, Saito, Hou, & Alam, 2012) showed that the highest

number of IS/Transposable elements were present in the “kaustophilus

clade.”Geobacillus kaustophilus encodes 95 transposases (of which 19 are asso-

ciated with IS-like elements: ISBst12, IS654, IS5377, IS642, IS604, and IS3)

and G. thermoleovorans encodes 105 transposases with IS elements: IS204,

IS5377, IS1001, IS1096, IS1165, IS605, IS654, IS605, and IS116. Clade

“kaustophilus” shares the IS elements IS654 and IS5377 among all members.

The G. thermodenitrificans genome is annotated with 14 transposases, six of

them associated with the IS elements: IS426 and IS605, which indicates

that G. thermodenitrificans and G. thermoleovorans both have IS605 elements.

The G. thermoglucosidasius genome encodes 41 transposases where 39 are

associated with the IS elements: IS4, IS3, IS911, IS116, IS110, IS902, and

IS653. These four strains have also been analyzed for the presence of

CRISPR-related sequences. Here, we found that the highest numbers of

annotated CRISPR motifs are present in the G. thermoglucosidasius C56e

YS93 genome with over 112 CRISPR-associated proteins (Cas5, Cas6,

Cst1, Cas8a1, Cas3, Cas1, Cas2, Cmr3, Cmr5, Crm2, Crm1, Csx1,

Csm6, Cas4, and Csh2). In comparison, G. kaustophilus HTA46 encodes

only one annotated CRISPR-associate helicase, which is also found in

G. thermoleovorans CCB_US.3_UF5. Geobacillus thermodenitrificans NG80-2

was found to encode the same helicase as these two strains together with

a Cas2 protein.

s0020 2.1 Genome Organization
p0030 Comparison of the genome organization (Figure 2) of these four well-

studied Geobacillus species (G. kaustophilus HTA46 (Takami, Nishi, et al.,

2004), G. thermodenitrificans NG80-2 (Feng et al., 2007), G. thermoglucosida-

sius C56-YS93, and G. thermoleovorans CCB_US.3_UF5 (Muhd Sakaff

et al., 2012)) shows a major rearrangement that appears to be associated

with the early divergence into obligate aerobes (plus denitrifiers) and facul-

tative anaerobes (although the latter is only represented by a single species in

this analysis). Clade “kaustophilus” (G. thermoleovorans and G. kaustophilus)

has the highest conservation of genome arrangement (Figure 2(a)) consistent

with the recN analysis. However, when comparingG. thermoglucosidasiuswith

G. kaustophilus (Figure 2(b)), a significant genome rearrangement is evident

with maximum conservation found at the beginning, end, and a fragment of

6 Ali Hussein et al.
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800 kbp localized in the middle of the genome sequences. Comparison

between G. thermoleovorans and G. thermodenitrificans (Figure 2(c)) shows

that despite their greater phylogenetic separation based on the recN analysis,

there is a relatively high degree of conservation in genome order (although

less than within the “kaustophilus clade”) between the two species. Finally,

f0015 Figure 2 Comparison of the genome arrangement between Geobacillus kaustophilus

HTA46 (Takami, Nishi, et al., 2004), Geobacillus thermodenitrificans NG80-2

(Feng et al., 2007), Geobacillus thermoglucosidasius C56-YS93 and Geobacillus thermoleo-

vorans CCB_US.3_UF5 (Muhd Sakaff et al., 2012) using ACT software. All genomes start

at the origin of replication with the same orientation. Red (gray in print versions) lines

link orthologous genes in the same orientation, blue (black in print versions) lines link

orthologs in the reverse orientation. The images show comparison (first named at the

top) between (a) G. kaustophilus and G. thermoleovorans, (b) G. kaustophilus and G. ther-

moglucosidasius, (c) G. thermoleovorans and G. thermodenitrificans, and (d) G. thermoglu-

cosidasius and G. thermodenitrificans.

The Genus Geobacillus and Their Biotechnological Potential 7
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comparison between G. thermoglucosidasius with G. thermodenitrificans

(Figure 2(d)) is consistent with the argument that the major genome rear-

rangement is associated with the separation of facultative anaerobes from

the rest.

s0025 2.2 Bacteriophage
p0035 Complete prophage sequences can be found within the genomes of

G. kaustophilus, G. thermoleovorans, and G. thermodenitrificans but not in the

genome of G. thermoglucosidasius. The prophage found in the genome of

G. thermoleovorans is a Thermus sp phage phiOH2, which is 45.7 kb in length

and contains 150 open reading frames½Q2� (ORFs). Geobacillus kaustophilus has in

its genome a sequence that derives from phage phiIBB_Pl23, which comes

from Paenibacillus larvae (48 ORFs with a size of 52.6 kb). Geobacillus thermo-

denitrificans, on the other hand, encode within its genome sequences for the

Geobacillus virus E2½Q3� of a length 61 kb. Thus, there are no common prophage

sequences present in different strains and the position of the phage sequence

in the genome differs depending on the strains. The abundance of CRISPR

sequences and Cas genes found in the genome G. thermoglucosidasius might

explain the lack of prophage sequence within its genome.

s0030 2.3 Plasmids
p0040 Some of the sequenced strains ofGeobacillus spp. have one or more large plas-

mids in their genomes. Mega plasmids have been found and characterized for

the following strains: G. kaustophilus HTA426 (pHTA426), G. stearothermo-

philus STK (pSTK1), G. thermoglucosidasius NCIMB 11955 (pGTH11955-1,

pGTH11955-2), and C56-YS93 (pC56-YS93) along with G. thermodenitri-

ficans NG80 (pNG8O-2).

s0035 3. PHYSIOLOGY AND MESSAGES FROM THE GENOME

s0040 3.1 Fermentative Metabolism
p0045 Geobacillus spp. are recorded as being facultative anaerobes, with anaer-

obic (nondenitrifying) metabolism involving mixed acid fermentation pro-

ducing lactate, formate, acetate, ethanol, and succinate. However, a few

strains have also been found to produce R,R 2,3-butanediol (Xiao et al.,

2012). Based on the presence of genes encoding pyruvateeformate lyase

(PFL; or formate acetyltransferase) and the PFL-activating enzyme, the genus

clearly divides into an obligately aerobic cluster, comprised of the “kausto-

philus clade” of G. thermoleovorans, G. thermocatenulatus, and G. kaustophilus,

8 Ali Hussein et al.
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the denitrifying but nonfermentative “G. denitrificans clade” and the truly

fermentative G. caldoxylosylitus, G. toebii, and G. thermoglucosidasius clade,

and this is consistent with physiological studies. However,G. stearothermophi-

lus forms an exception to this rule; the partial genome sequence of G. stear-

othermophilus ATCC7953 (the original Donk isolate from the 1920s) which,

based on recN analysis is closely related to the type strain, BGSC9A20, does

encode these genes, despite G. stearothermophilus sensu strictu being phyloge-

netically close to the “kaustophilus” and “denitrificans” clades.G. stearother-

mophilus NUB3621 is probably a strain of G. caldoxylosylitus based on both

its recN sequence, and it also has genes encoding PFL and the activating

enzyme. Based on sequenced genome annotations, the ability to produce

butanediol (based on the presence of a gene encoding R,R-butanediol

dehydrogenase), appears to be found only in the truly fermentative G. toebii

and G. thermoglucosidasius and not G. caldoxylosylitus. However, there is one

anomalous record of a butanediol dehydrogenase gene in Geobacillus sp.

WSUCF1, a strain that clusters with the “kaustophilus clade” based on

recN phylogenetic analysis. A blastp search suggests that this shows a

much greater similarity to homologs from mesophilic Bacillus spp. than

the genes from the fermentative Geobacillus spp., which have a high

degree of sequence identity; hence, the identity and role of the gene in

Geobacillus sp. WSUCF1 need confirmation.
p0050 Lactate dehydrogenase appears to be common to all Geobacillus spp.

Typically, strains encode both FAD½Q4� -linked and NAD-linked enzymes,

with the latter being linked to lactate production under limiting oxygen

concentrations, where respiration is unable to reoxidize NADH sufficiently

fast. Given the relatively low oxygen solubility over the normal growth tem-

perature range of Geobacillus spp., lactate production may be envisaged as a

redox sink to allow continued metabolism. In fermentative strains, this forms

the primary fermentation pathway under reduced oxygen tensions, with the

PFL pathway predominating under fully anaerobic conditions. The FAD-

linked enzymes probably function primarily in lactate catabolism, although

some lactate production has been observed in strains where the gene encod-

ing the NAD-dependent enzyme has been deleted, suggesting that this may

also act as a sink for reducing equivalents.
p0055 Unlike the situation in Escherichia coli, succinate production does not

appear to be part of a dedicated fermentation pathway and probably reflects

the simple reversal of flux from oxaloacetate as an additional redox sink.

Typically, succinate forms a very small part of the fermentation products

in a wild-type strain.

The Genus Geobacillus and Their Biotechnological Potential 9
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s0045 3.2 Can Geobacillus spp. Grow Fully Anaerobically?
p0060 While some Geobacillus spp. clearly have functional fermentation pathways,

and can be grown at low cell densities under seemingly anaerobic condi-

tions, our work with the company TMO Renewables Ltd has clearly

demonstrated that a small amount of oxygen is essential for fermentative

growth of G. thermoglucosidasius (this is particularly obvious at high cell den-

sities), and we normally produce fermentation products in cultures grown at

low redox potential (�230 to�280 mV) by supplying a small amount of air.

The amount of oxygen being supplied to achieve this is too low to be

involved in central metabolism, but inspection of the genome sequence of

the fermentative Geobacillus spp. shows that the production of thiamine in-

volves the oxygen requiring glycine to iminoglycine (EC 1.4.3.19) route

rather than the tyrosine to iminoglycine route (4.1.99.19) typically found

in obligate and some facultative anaerobes. Supplementation of oxygen

limited cultures of G. thermoglucosidasius 11955 with thiamine certainly en-

hances the growth rate, but it is clear that this is not the only process

requiring oxygen in these cells and studies continue.

s0050 3.3 Growth, Lysis, and Sporulation
p0065 Geobacillus spp. can grow extremely rapidly and aerobically in rich growth

media, with G. thermoglucosidasius 11955 growing at rates approaching

2 h�1 at 65 �C (TMO Renewables, personal communication), which is

marginally below its optimum growth temperature. Anaerobic growth is

slower but still impressive. Growth can also be obtained both aerobically

and anaerobically on a mineral salts medium, but some strains require sup-

plementation with biotin. However, in our experience, it is difficult to

grow directly by inoculation in a mineral salt medium, so this tends to be

reserved for growth in bioreactors, where strains are initially grown in a

richer medium, then adapted to growth on the leaner mineral salt medium.

A mineral salt medium supplemented with a small amount of yeast extract

and tryptone works reliably and is a good compromise.
p0070 Where it has been measured, Geobacillus spp. appear to have a relatively

high maintenance energy at 60e65 �C, so maintenance becomes a domi-

nant feature of growth at low growth rates, particularly in minimal media.

Although cells can be maintained without problem for extended periods

in nutrient-limited continuous culture (although there is a question as to

whether to the high maintenance reflects a certain amount of cell lysis,

they tend to lyse as a result of rapid nutrient starvation typical of the late

10 Ali Hussein et al.
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stages of batch culture (Pavlostathis, Marchant, Banat, Ternan, &McMullan,

2006). While this partly reflects the rate of transition from growth to starva-

tion, it is clear that there are, as yet unexplained, regulatory factors involved

that trigger an irreversible loss of viability and lysis. This feature may also

explain why it is difficult to grow cultures directly from inoculation in min-

eral salts media. Like their mesophilic counterparts, all Geobacillus spp.

encode the majority of the core sporulation genes (Zeigler, 2014), so this

response may be connected with sporulation, even if excessively rapid star-

vation fails to produce viable spores (as has been observed). The ability to

inactivate G. stearothermophilus spores is a well-established test for the effi-

ciency of heat sterilizing equipment. Comparison of sporulation gene

homologs in the sequenced genomes shows that 67 of the 75 core sporula-

tion gene orthologs (Galperin et al., 2012; Zeigler, 2014) are present inGeo-

bacillus spp. and sporulation is commonly observed, suggesting that the other

functions are either not essential in Geobacillus spp. or provided by nonor-

thologous proteins.
p0075 Natural competence is a feature that is an integral part of the regulatory

cascade, which typically precedes sporulation inBacillus spp. As with the spor-

ulation genes, many of the genes involved in the development of competence

are present in the genome sequences of Geobacillus spp. but not the complete

set identified in Bacillus subtilis (Kovacs, Smits, Mironczuk, & Kuipers, 2009).

Like Bacillus cereus, Geobacillus spp. (with the exception of G. caldoxylosilyticus

NBRC107762½Q5� which has comGE and comGG orthologs) appear to lack

comFB, comGE, and comGG genes (and also uniquely lack the nin and bdb

genes). Although natural competence was difficult to demonstrate in B. cereus,

artificial induction of the master regulator ComK was shown to produce a

low level of competence (Mironczuk, Kovacs, & Kuipers, 2008), so it is

reasonable to assume that natural competence is also a feature of Geobacillus

spp., but conditions have not been established for induction. Interestingly,

there has been a single report where natural competence has been used

(Zhang, Yi, Pei, & Wu, 2010), but no conditions were provided.

s0055 4. CATABOLISM

s0060 4.1 Polysaccharide and Oligosaccharide Hydrolysis
s0065 4.1.1 Hemicellulose
p0080 In a recent analysis, De Maayer, Brumm, Mead, and Cowan (2014) have

shown that most of the sequenced and partially sequenced strains of

The Genus Geobacillus and Their Biotechnological Potential 11
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Geobacillus spp. have a range of hemicellulose utilization genes present in a

genomic island, typically although not exclusively located between echD,

an enoyl coenzyme A½Q6� (CoA) hydratase-encoding gene, and npd, a nitropro-

pane dioxygenase-encoding gene. Comparison of the G þ C content be-

tween the genes in the island and the rest of the chromosome suggests

that the island was acquired from an organism with lower G þ C content,

and this has occurred in at least two independent events in different strains.

Based on the extensive work characterizing hemicellulose utilization in

G. stearothermophilus T6 (Alalouf et al., 2011; Salama et al., 2012; Shulami

et al., 2011; Tabachnikov & Shoham, 2013), identification of orthologous

genes in other strains shows that both the gene complement and arrange-

ment of clusters in the genomic island are highly variable. A pattern emerges

that suggests that Geobacillus spp. fully secrete only a small number of glyco-

side hydrolases, but these degrade noncrystalline polymeric substrates to

short oligomers that can be transported inside the cell. These are then further

hydrolyzed to monomers by nonsecreted glycoside hydrolases and glycosi-

dases inside the cell. This catabolic strategy reveals a notable metabolic effi-

ciency, employing a minimal set of secreted enzymes together with

enhanced energy gain through transporting (then internally hydrolyzing)

oligomers rather than monomers.
p0085 There is no evidence for true cellulolytic activity (ability to degrade crys-

talline cellulose) in Geobacillus spp., although extracellular enzymes showing

endoglucanase activity (probably low specificity GH5; Aspeborg, Coutinho,

Wang, Brumer, & Henrissat, 2012) have been detected. However, GH10

xylanases are secreted by many strains (Balazs et al., 2013; Liu et al., 2012)

and GH43 endo a-1,5-arabinanases (pectin-derived arabinan degrading)

by a few (De Maayer et al., 2014; Shulami et al., 2011).
p0090 In G. stearothermophilus, T6 the island encodes 13 gene clusters covering

76.1 kb (De Maayer et al., 2014). One “cluster” comprises the single extra-

cellular xylanase gene, which is functionally complemented by a cluster

encoding xylooligosaccharide transport, two clusters encoding intracellular

xylooligosaccharide degradation, and a cluster encoding xylose utilization.

This strain is also capable of pectin degradation, with a gene cluster encod-

ing arabinan utilization that includes abnA, encoding the GH43 endo

a-1,5-arabinanase, and abnEFG, which encodes an arabinosaccharide trans-

porter. This is functionally complemented by clusters encoding intracellular

arabinofuranose metabolism (a single “cluster” of abnF encoding arabino-

furanosidase), arabinose transport, and arabinose metabolism. For meta-

bolism of the glucuronic acid-rich backbone of pectin, the T6 genomic

12 Ali Hussein et al.
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island also has clusters that encode aldotetrauronic acid transport, intracel-

lular aldotetrauronic acid degradation, and glucuronic acid metabolism.

Some strains that express a GH5 endoglucanase also encode an oligosaccha-

ride transporter, although its substrate specificity is not known and an intra-

cellular b-glucosidase, which is consistent with the extracellular breakdown

of amorphous cellulose, transport of b-glucan oligosaccharides, and subse-

quent intracellular hydrolysis.

s0070 4.1.2 Starch
p0095 The main commercial a-amylases derive from Bacillus amyloliquefaciens and

Bacillus licheniformis and are particularly thermostable (Termamyl, a modified

version of the B. licheniformis enzyme is active at 110 �C; Nielsen & Borchert,

2000). It is therefore not surprising to find that manyGeobacillus spp. also pro-

duce a-amylases with excellent thermostability (Offen, Viksoe-Nielsen,

Borchert, Wilson, & Davies, 2015; Suvd, Fujimoto, Takase, Matsumura, &

Mizuno, 2001). As a-amylases tend to be specific for cleavage of the a1-4

linkage, the complete breakdown of starch requires a debranching enzyme

to cleave the 1-6 linked side chains. In commercial starch breakdown, this

is normally done after high-temperature (to aid liquefaction) a-amylase treat-

ment using a fungal glucoamylase. Bacteria tend to use a 1-6 specific pullula-

nase for this step, and a few Geobacillus spp. also express this activity (Kuriki,

Okada, & Imanaka, 1988), although accumulating evidence suggests that the

enzyme involved might actually belong to a novel class of enzyme known as a

neopullulanase, which cleaves both 1-4 and 1-6 linkages and also have high

activity against cyclodextrin (Lee et al., 2002; Takata et al., 1992).

s0075 4.2 Hydrocarbons
s0080 4.2.1 Alkanes
p0100 The ability of Geobacillus spp. to use aliphatic and aromatic hydrocarbons as

carbon substrates and transform hydrocarbon substrates such as steroids has

been frequently reported, but has only been systematically studied in a

few cases. A conventional alkane-degrading alkBFGHJKL operon has

been elucidated (Wentzel, Ellingsen, Kotlar, Zotchev, & Throne-Holst,

2007), with the first ORF encoding a membrane-bound alkane monooxy-

genase (AlkB), which is functional against midchain length (C6eC18)

alkanes. An alkB homolog has been amplified from G. thermoleovorans strain

T70, and demonstrated to be induced in a temperature-dependent manner

in the presence of 1% n-hexadecane (Marchant, Sharkey, Banat, Rahman, &

Perfumo, 2006). To date, alkB homologs have been found in Geobacillus sp.

The Genus Geobacillus and Their Biotechnological Potential 13
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MH-1 (Liu et al., 2009) and G. subterraneus K (Korshunova et al., 2011), as

well as in 11 alkane-degrading Geobacillus isolates in a single study (Tourova

et al., 2008).
p0105 Geobacillus denitrificans NG80-2 has also been shown to grow on long

chain (C15eC36) alkanes employing a novel, plasmid-encoded monooxyge-

nase, LadA. Clearly, the ability to metabolize very long chain hydrocarbons

is assisted by high temperatures, which should keep the substrate liquid and

improve solubility Although LadA was originally thought to be extracellular

and functions without cofactors, it is now known to contain FMN and½Q7�

require an NADPH-dependent FMN reductase for activity. The crystal

structure of G. thermodenitrificans NG80-2 LadA has since been elucidated

in complex with FMN, which suggests that hydroxylation goes½Q8� via a

C4a-hydroperoxyflavin intermediate, rather than the classic haeme or non-

haeme iron mechanisms (Feng et al., 2007; Li et al., 2008; Wang et al.,

2006). LadA orthologs have subsequently been described in G. thermoleovor-

ans B23, Geobacillus sp. GHH01, G11MC16, Y4.1MC1, and G. thermoglu-

cosidasius C56-YS93 (Boonmak, Takahashi, & Morikawa, 2014). In these

strains, the ladA orthologs are present on a genomic island, which also

includes the gene encoding the FMN reductase; however, in G. thermoleo-

vorans B23 at least one of these genes is more similar to an alkanesulphonate

monooxygenase from the same SsuD bacterial luciferase family.

s0085 4.2.2 Aromatics
p0110 The capacity ofGeobacillus strains to metabolize aromatic compounds has been

studied since the mid½Q9� -1970s, then generally referred to as thermophilic Bacil-

lus spp. (Buswell & Twomey, 1975). Since then, several phenol-degrading

Geobacillus spp. have been isolated and characterized, including G. stearother-

mophilusDSM 6285 (Omokoko, J€antges, Zimmermann, Reiss, & Hartmeier,

2008) and G. thermoglucosidasius A7 (Duffner, Kirchner, Bauer, & M€uller,

2000).
p0115 The phenol degradation pathway in G. stearothermophilus DSM 6285,

encoded by 20.2 kb of DNA, has been elucidated as 15 ORFs residing on

a low-copy megaplasmid (Omokoko et al., 2008). Ten genes encode pro-

teins that are directly linked with the meta-cleavage pathway, including a

phenol hydroxylase (PheA), a catechol 2,3-dioxygenase, a 4-oxalocrotonate

tautomerase, a 2-oxopent-4-dienoate hydratase, a 4-oxalocrotonate decar-

boxylase, a 4-hydroxy-2-oxovalerate aldolase, and an acetaldehyde dehy-

drogenase (Duffner et al., 2000; Omokoko et al., 2008). The largest

ORF, pheR, displays a strong similarity to transcriptional regulators associated

14 Ali Hussein et al.
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with phenol metabolism in Geobacter lovleyi SZ, and is thought to be the first

example of a transcriptional regulator of phenol metabolism identified in

Gram-positive bacteria (Omokoko et al., 2008).
p0120 Notable work has been done on the characterization of the first enzyme

in the degradation pathway, PheA, which catalyzes the ortho-hydroxylation

of phenol to catechol. PheA, a two-component enzyme encoded by the

pheA1 and pheA2 genes, is strictly FAD dependent (Kirchner, Westphal,

M€uller, & van Berkel, 2003). Intriguingly, a function of PheA2 is in the

catalysis of the NADH-dependent reduction of free flavins according to a

Ping-Pong BieBi mechanism, and it represents the first member of a newly

recognized family of short-chain flavin reductases that use FAD both as a

substrate and as a prosthetic group. The reduced FAD is subsequently

used by the oxygenase component PheA1, which hydroxylates phenol

and its derivatives to the corresponding catechols (van den Heuvel et al.,

2004).
p0125 Many Geobacillus strains have chromosomal gene clusters encoding ben-

zoate and phenylacetate metabolism, via initial conversion to the CoA de-

rivative and 4-hydroxyphenylacetate and naphthalene metabolism via ring

monohydroxylation and dihydroxylation together with downstream steps

to join with central metabolism. G. thermodenitrificans also encodes a

3-hydroxyanthranilate dioxygenase, but the downstream pathway is either

missing or not annotated. Marchant, Banat, Rahman, and Berzano (2002)

isolated strains of G. caldoxylosylitus, G. toebii, and G. oleovorans from soil us-

ing a range of polyaromatic hydrocarbons as sole carbon sources, but there

was no obvious pattern of usage between species.

s0090 5. CENTRAL METABOLISM

p0130 All Geobacillus spp. appear
½Q10�

to use a combination of the Emdene

MeyerhofeParnas pathway of glycolysis and the oxidative pentose phos-

phate pathway for carbohydrate metabolism. There is no evidence for a

functional EntnereDoudoroff pathway in any of the sequenced strains,

due the lack of ability to produce phosphogluconate dehydratase (Alm

et al., 2005; Tang et al., 2007). They also½Q11� have a classical TCA cycle, glyox-

ylate cycle and can use both pyruvate carboxylase and PEP carboxylase as

anaplerotic reactions to top up the TCA cycle as well as PEP carboxykinase

for gluconeogenesis. So, in many ways, they look like classical Bacillus spp.

However, there are some subtle differences, particularly in pentose
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phosphate interconversions. Unlike Bacillus spp., Geobacillus spp. do not

encode a 6-phosphogluconolactonase, but they do have a gene for

glucose-6-phosphate dehydrogenase and transcriptomic studies (manuscript

in preparation) have shown that this and the other pentose phosphate

pathway enzymes are expressed during growth on glucose. 6-Phosphoglu-

conolactone is known to undergo spontaneous hydrolysis at room temper-

ature, although the rate is not sufficient to allow the growth of mesophiles

without a lactonase (Miclet et al., 2001), but may be sufficient in thermo-

philes. However, some Geobacillus spp. may have an alternative oxidation

route for production of ribulose-5-phosphate as they encode 6-phospho-

3-hexuloisomerase and 3-hexulose-6-phosphate synthase, two key enzymes

in the ribulose monophosphate pathway of formaldehyde fixation (Ferenci,

Strom, &Quayle, 1974; Kato, Yurimoto, & Thauer, 2006). Given that these

steps can act reversibly (Kato et al., 2006) and some Geobacillus spp. also ex-

press a formaldehyde dehydrogenase, an alternative oxidative route may be

available.
p0135 While the lack of 6-phosphogluconolactonase is clearly an interesting

piece of cellular economy, it does impose a fixed (presumably tempera-

ture-dependent) rate on this step, which may explain the changes in flux

through the phosphoprotein phosphatase½Q12� with growth rate, observed by

Tang et al. (2009). These authors ascribed the changes in flux to the lack

of a transhydrogenase activity in Geobacillus spp.
p0140 Finally, some members of the genus are uniquely equipped with 2-oxo-

glutarate synthase (2-oxoglutarate:ferredoxin oxidoreductase (decarboxylat-

ing)) (Lisowska et al., in preparation½Q13� ), which facilitates the conversion of

2-oxoglutarate to succinyl-CoA. Interestingly, this½Q14� enzyme was originally

found and characterized in photosynthetic bacteria (Buchanan & Evans,

1965) and later in the hypothermophile Thermococcus litoralis (Mai & Adams,

1996). It is not found in the mesophilic close relative B. subtilis or E. coli.

s0095 6. THE GEOBACILLUS GENETIC TOOL KIT

p0145 The wealth of potential applications arising from the engineering of

Geobacillus spp., together with the importance of gene deletion and comple-

mentation in physiological studies, leads to a requirement for robust and

seamless genetic manipulation of their genomes. The promise of these tools

is augmented by the relatively close phylogenetic relation of Geobacillus spp.

to the workhorse B. subtilis.
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p0150 However, the thermophilic nature of Geobacillus spp. means that poten-

tially translatable genetic tool kits used in Bacillus spp. and other mesophiles

are limited due to thermal instability of proteins and commonly used anti-

biotics. This is illustrated by the adaptation of the Lactococcus lactis group II

intron-based Targetron technology for use in Clostridium acetobutylicum

(Heap, Pennington, Cartman, Carter, & Minton, 2007), yet technologies

developed for B. subtilis are incompatible for use in Geobacillus spp. There-

fore, the development of novel thermoactive tools for the genetic engineer-

ing of Geobacillus spp., and other thermophilic bacteria, requires the

exploitation of native genetic machinery.

s0100 6.1 Plasmid Vectors
p0155 The initial developments in the genetic manipulation ofGeobacillus spp. were

the characterization and development of plasmids capable of self-replication

and selection markers for plasmid maintenance through multiple generations

(Table 1). Plasmids that replicate via the rolling-circle (RC) mechanisms and

theta-replicating mechanisms have been described (reviewed by del Solar,

Giraldo, Ruiz-Echevarría, Espinosa, & Díaz-Orejas, 1998). Initially, multiple

vectors based on different replicons were constructed, but with drawbacks

that made them inconvenient for use as genetically malleable shuttle vectors.

The G. stearothermophilus shuttle vector pBST22 (derived from the natural

G. stearothermophilus plasmid pBST1) lacked a multiple cloning site and the

facility for b-galactosidase-mediated blueewhite screening in E. coli, and

pNW33N (derived from a Bacillus coagulans cryptic plasmid pBC1) is main-

tained in Geobacillus spp. using chloramphenicol, which is only moderately

thermostable (Taylor, Esteban, & Leak, 2008).
p0160 To improve versatility, pUCG18 was constructed by introducing the

evolved kanamycin resistance gene and origin of replication (theta) from

pBST22 with pUC18, retaining all the cloning and selection benefits of

the latter (Taylor et al., 2008). This has subsequently been further improved

as pUCG3.8 by a reduction of size (Bartosiak-Jentys, Hussein, Lewis, &

Leak, 2013) and more recently converted into a modular format that allows

ready replacement of parts, such as origins of replication and antibiotic resis-

tance genes (Klimova et al., in preparation½Q15� ).
p0165 It has been argued that RC plasmids usually have a broader host range

and sometimes a higher plasmid copy number than their theta-replicating

alternatives (Heinl, Spath, Egger, & Grabherr, 2011), leading to efforts to

isolate, sequence, and characterize new RC replicating plasmids from Geo-

bacillus spp. (Kananavi�ci�ut _e, Butait _e, & �Citavi�cius, 2014).
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t0010 Table 1 Escherichia colidGeobacillus shuttle vectors

Year of

Publication Plasmid name Size Selective marker

Origins of

replicon

Mechanism of

replication References

2013 pUCG3.8 3.8 KanR (TK101) pBST1 Q Bartosiak-Jentys et al. (2013)
2009 pTMO31 5.1 KanR (pUB110) pUB110 RC Cripps et al. (2009)
2008 pUCG18* 6.3 KanR (TK101) pBST1 Q Taylor et al. (2008)
2001 pNW33N 3.9 CamR (pC194) pBC1 RC Zeigler (2001)
2001 pBST22 7.6 KanR (TK101),

CamR (pC194)
pBST1 Q Liao and Kanikula (1990)

1993 pSTE33* 5.7 KanR (TK101) pSTK1 Q Narumi et al. (1993)
1992 pSTE12 5.8 TetR (pTHT15) pTHT15 e Narumi et al. (1992)

*Conjugation-mediated transfer has been reported with derivatives of these shuttle vectors incorporating an incP origin of transfer.
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s0105 6.2 DNA Transfer
p0170 Several procedures to transfer plasmid DNA into Geobacillus spp. have been

developed, which can be categorized into protoplast transformation

(Imanaka, Fujii, Aramori, & Aiba, 1982; Liao, McKenzie, & Hageman,

1986; Wu & Welker, 1989), electroporation (Cripps et al., 2009; Zeigler,

2001), and conjugation protocols (Suzuki, Wada, Furukawa, Doi, &

Ohshima, 2013).
p0175 The first successful transformation procedure for the transfer of DNA

into Geobacillus spp. involved the preparation of protoplasts by the removal

of the peptidoglycan cell wall (Imanaka et al., 1982). The protoplast trans-

formation procedure, modified from an established procedure for B. subtilis,

involves the treatment of cells with lysozyme in an osmotically buffered

media to prepare the protoplasts. DNA transfer into the ‘naked’ cells is sub-

sequently mediated by the addition of polyethylene glycol as a transforming

agent (Liao et al., 1986). The main drawbacks of this method are its incon-

venience, as each new transformation requires the preparation of fresh pro-

toplasts, and unreliability, due to the fragility of the prepared protoplasts.

Nevertheless, frequencies of 103e104 transformants per microgram of

plasmid DNA have been reported, and the procedure was used consistently

for over a decade (Imanaka et al., 1982).
p0180 During the early 1990s, less time-consuming electroporation protocols

were developed to introduce plasmid DNA into Bacillus spp. without pre-

paring protoplasts, and extended to G. stearothermophilus transformations

(Narumi et al., 1993, 1992). Frequencies of up to 2.8 � 106 transformants

per microgram of pSTE33 DNA were published for the isolated G. denitri-

ficans K1041 (originally classified as Bacillus stearothermophilus), which are the

highest transformation frequencies among a large collection of Geobacillus

strains (Zeigler, 2001). For instance, the transformation efficiencies observed

by electroporation of pUCG18 DNA in G. thermoglucosidasius DL44 were

over two orders of magnitude lower at 9.8 � 103 (Taylor et al., 2008). Still,

where high transformation frequency is not critical, electroporation proce-

dures have replaced protoplast transformation as the preferred method for

transferring DNA to Geobacillus spp., not only due to the relative ease of

the procedure but also for the facility for long-term storage of electrocom-

petent cell preparations.
p0185 Recent demonstrations of efficient plasmid transfer into G. kaustophilus

HTA426 (Hirokazu, 2012; Suzuki, Wada, et al., 2013) and G. thermogluco-

sidasius (A. Pudney, personal communication½Q16� ) using conjugative transfer
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look set to establish an even simpler method for the routine transformation

of Geobacilli. Conjugative transfer is typically performed by incubating mix-

tures of recipient Geobacillus spp. cells and donor E. coli cells harbouring

mobilization genes found on the chromosome (E. coli S-17) or on helper

plasmids (pRK2013 and pUB307). Exploiting their inherent thermophilic-

ity, the recipient Geobacillus spp. are readily distinguished from donor cells

after incubation at 60 �C, and conjugative transfer has been reported to

result in transfer efficiencies as high as 1.2 � 10�3 and 2.83 � 10�4 trans-

formants per recipientG. kaustophilus andG. thermoglucosidasius, respectively.
p0190 One problem encountered with the transfer of foreign DNA into some

Geobacillus spp. is native restriction-modification (R-M) systems that cleave

specific sites in double-stranded exogenous DNA, which probably provide a

natural defense mechanism against invasion by bacteriophage DNA. Four

types of R-M systems have been characterized, all of which involve methyl-

ation of target sites on host DNA and restriction activity of exogenous

unmethylated DNA. Geobacillus kaustophilus, for example, has been reported

to harbour two sets of type I R-M genes, one set of type II R-M genes and

three type IV R-M genes (Suzuki, Wada, et al., 2013). Global deletion of

the type I and IV R-M system gene clusters in G. kaustophilus MK72, a de-

rivative of strain HTA426 produced strain MK244, which was able to

receive pUCG18T DNA transferred from E. coli DH5a with a transforma-

tion efficiency of 1.3 � 10�5 recepient�1, whereas strains HTA426 and

MK72 could not (Suzuki, Wada, et al., 2013). An alternative strategy is to

methylate the DNA at the appropriate site before transfer into the recipient.

This can either be done enzymatically, or more conveniently by expressing

the cognate methylase in the host strain from which DNA is to be

transferred.

s0110 6.3 Positive-Selection Markers
p0195 All endeavors in genetic engineering require indication of successful delivery

of foreign DNA into the recipient strain, and selection for maintenance of

the genetic construct through subsequent generations. In the research

laboratory, this is conventionally done using antibiotic resistance genes

that confer resistance to supplemented growth inhibitors. The thermophilic

nature of Geobacillus spp. limits the use of established selection markers, with

few antibiotic resistance proteins or antibiotics currently available with suf-

ficient thermostability at 60e70 �C (Table 2).
p0200 The chloramphenicol acetyltransferase gene (CamR), derived from the

Staphylococcus aureus plasmid pC194, confers resistance to the bacteriostatic

20 Ali Hussein et al.
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antibiotic chloramphenicol. As a selective marker, it has been shown to be

functional in Geobacillus spp. at growth temperatures of at least 60 �C

(Blanchard, Robic, & Matsumura, 2014), and the gene present on fourGeo-

bacillus shuttle vectors (pBST22, pRP9, pIH41, and pNW33N) (Liao &

Kanikula, 1990; Zeigler, 2001). However, above 60 �C, both the antibiotic

and acetyltransferase are thermolabile. Furthermore, direct selection of

transformants with chloramphenicol has been shown be inefficient, with

the transformation efficiencies of pIH41 in G. thermodenitrificans K1041

decreasing from 1.4 � 105/mg using tetracycline selection to 7.2 � 104/mg

using chloramphenicol selection, both at 48 �C (Liao & Kanikula, 1990;

Narumi et al., 1992).
p0205 Of the commonly used antibiotics, kanamycin has the highest thermo-

stability, so Liao and colleagues selected (an early example of forced evolu-

tion) a thermostable variant of the kanamycin nucleotidyltransferase gene

(KNT-ase), conferring resistance to the bacteriocidal antibiotic kanamycin

at temperatures up to 70�C (Liao & Kanikula, 1990; Liao et al., 1986).

Using the E. coli mutD5 mutator strain to introduce mutations and

selection in G. stearothermophilus, a thermostable KNT-ase TK101 mutant

t0015 Table 2 Degradation constants (k ¼ �1/t1/2 in days�1 assuming first-order decay)

based on loss/gain of potency, assuming degradation products are inactive, for a

variety of antibiotics (Peteranderl, Shotts, & Wiegel, 1990)

Antibiotic

Average k value at

72 �C (pH 7.3) 50 �C (pH 7.3) 72 �C (pH 5.0) 50 �C (pH 5.0)

Lasalocid 0.57 ND �0.16 0
Neomycin 0.15 ND �0.15 �0.23
Monensin 0.13 ND �0.37 0.15
Cycloheximide 0.05 ND ND 1
Kanamycin 0 ND �0.55 �0.06
Trimethoprim 0 ND 0.17 ND
Erythromycin �0.31 �0.75 �1.56 �0.75
Chloramphenicol �0.59 0.22 0 ND
Novobiocin �0.9 �0.18 �0.04 �0.19
Polymyxin �0.92 0.25 0.01 0.81
Bacitracin �0.93 �0.08 �0.02 ND
Streptomycin �1.34 �0.45 0 ND
Vancomycin �1.5 �0.04 �1 �0.04
Penicillin �1.58 �0.82 �3.33 �0.43
Tetracycline �4.27 �0.3 �3.48 �0.38
Ampicillin �7.26 �1.56 �3.79 �0.41
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(D80Y, T130K) of the mesostable KNT-ase gene from pUB110 was devel-

oped, and has been shown to function as a selection marker in both Geoba-

cillus spp. and E. coli (Bartosiak-Jentys et al., 2013; Taylor et al., 2008). A

similar approach, but relying on “error-prone” G. kaustophilus, has been

used to increase the thermotolerance of the thiostrepton resistance protein

TsrR from Streptomyces½Q17� aureus by 5 �C (Suzuki, Kobayashi, Wada, Furu-

kawa, & Doi, 2015).
p0210 Antibiotic-free selection systems based on the complementation of

auxotrophy are more desirable for industrial uses. Recently, a thermophilic

version of the eukaryotic ura3eFOA (5-fluoroorotic acid) counterselection

system has been developed inGeobacillus spp. The bacterial equivalent of the

eukaryotic ura3, the gene encoding orotidine 50-phosphate decarboxylase is

pyrF. PyrF is essential for de novo synthesis and metabolism of pyrimidines

(uridine monophosphate, uridine diphosphate, and½Q18� uridine triphosphate),

and has been successfully applied for marker-free selection of uracil-

prototrophic transconjugants using the plasmid pGAM46 (Suzuki,

Murakami, & Yoshida, 2012). Like its eukaryotic counterpart, the pyrF

encoded orotidine 5’-phosphate decarboxylase converts 5-FOA into toxic

metabolites, facilitating the development of a robust pyrF-based counterse-

lection system (i.e., allowing selection for loss of pyrF) that has been demon-

strated in G. kaustophilus HTA426 (Hirokazu, 2012; Suzuki et al., 2012,;

Suzuki, Wada, et al., 2013; Suzuki, Yoshida, et al., 2013).

s0115 6.4 Allelic Replacement
p0215 Plasmid vectors serve well for studies of recombinant gene expression, but

for long-term genetic manipulation of Geobacillus spp., it is preferable to sta-

bly integrate genes into the bacterial chromosome. Furthermore, the perma-

nent silencing of chromosomal genes and regulatory components serves as a

powerful tool for manipulating metabolic fluxes and phenotypes. All current

methods of integrating genetic components into the Geobacillus spp. chro-

mosome involve the use of a transient DNA transfer system to deliver an

integration cassette that site specifically inserts into the chromosome via

homologous recombination.

s0120 6.4.1 Integration Cassettes
p0220 To facilitate site-specific integration, DNA fragments identical to the target

chromosomal locus must flank a specific genetic insert. For permanent inac-

tivation of genetic components, deletion cassettes are commonly generated

by amplification and ligation of two noncontiguous fragments (typically

22 Ali Hussein et al.

10013-AAM-9780128022498

ARTICLE IN PRESS

djl36
Cross-Out

djl36
Cross-Out



U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

�300 bp) from each end of the intended deletion site (Cripps et al., 2009).

Depending on the need to remove or reuse selection markers, the marker

may be placed between or outside these two fragments. The latter arrange-

ment facilitates selection of a second crossover event, which either removes

the integrated vector entirely or (preferably) removes the bulk of the vector

but replaces the region between the two flanking arms. An example of this

was the permanent inactivation of the ldhA gene in G. thermoglucosidasius

NCIMB 11955 by the amplification of two gene fragments from each

end of the Ldh coding sequence, replacing a 42-bp central region with a

7-bp section containing a diagnostic restriction site (Cripps et al., 2009).
p0225 Since any DNA inserted between the flanking sequences designed for

homologous recombination is cointegrated into the chromosome,

knockin/knockout plasmids containing functional or conditionally func-

tional genetic components can be constructed. For example, the knockout

of the endogenous adenylate kinase gene from G. stearothermophilus

NUB3621-R involved the introduction of a promoter-less chloramphenicol

transacetylase (cat) selectable marker, so that true recombinants could be

readily screened (Cou~nago & Shamoo, 2005).

s0125 6.4.2 Short Life-Span Vectors
p0230 Cassettes designed for homologous recombination require an efficient DNA

transfer system for delivery into the cell, but with the capacity to be selec-

tively eliminated after successful integration of the cassette. To this end, inte-

grative vectors have been constructed that either have restricted or no

replicative stability in Geobacillus spp. Once plasmid DNA is transferred

into the recipient Geobacillus strain, conditional or absolute replicative insta-

bility facilitates the elimination of these plasmids from future generations;

hence, they are commonly referred to as “suicide vectors.”
p0235 Replicative stability in Geobacillus spp. has been limited by two methods.

The first example is the plasmid pSTE12, which is very segregationally un-

stable in the absence of selective pressure (Narumi et al., 1992). Therefore,

growth under nonselective conditions leads to the loss of pSTE12 fromGeo-

bacillus spp. transformants. This method was used for chromosomal replace-

ment of the adenylate kinase gene in G. stearothermophilus NUB3621-R

using pSTE12 containing a homologous recombination cassette (Cou~nago

& Shamoo, 2005).
p0240 The high optimal growth temperature of Geobacillus spp. has also been

exploited to limit plasmid replicative stability by the construction of vectors

containing temperature-sensitive origins of replication. The mesophilic
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plasmid pUB110, isolated from S. aureus, is capable of replicating in a wide

range of Gram-positive bacteria, but is only stable in Geobacillus spp. at

temperatures <55 �C (Gryczan, Contente, & Dubnau, 1978; Imanaka

et al., 1982; Liao et al., 1986; Matsumura, Katakura, Imanaka, & Aiba,

1984). This thermolability was exploited in the construction of the condi-

tional suicide vector pTMO31, an E. colieGeobacillus shuttle vector contain-

ing the kanamycin resistance marker and replicon from pUB110 (Cripps

et al., 2009). Plasmid transformants can been selected and maintained

through antibiotic selection in Geobacillus spp. at temperatures <55 �C.

Raising the growth temperature to 65 �C leads to plasmid elimination

through failure to replicate, but any components of the vector that have in-

tegrated into a thermostable replicon, such as the chromosome are retained

(Cripps et al., 2009). This powerful temperature-mediated system has been

utilized in G. thermoglucosidasius NCIMB 11955 to eliminate the lactate de-

hydrogenase and PFL pathways by disruption of the ldh and pflB genes,

respectively (Cripps et al., 2009).
p0245 By exploiting the increased transformation efficiency achievable with

conjugative transfer of plasmid DNA into Geobacillus, integrative vectors

have recently been used that lack a replicon that functions in Geobacillus

spp. altogether. These pGAM plasmids utilize the effective pyrF counterse-

lection system described above. The uracil-auxotrophic mutant G. kausto-

philus strain MK72 (DpyrF DpyrR) is resistant to 5-FAO (Suzuki et al.,

2012). When pGAM46 is transferred into the MK72 mutant, a plasmid-

borne pyrF gene adjacent to the integration cassette complements the pyrF

knockout, rendering single-crossover mutants prototrophic for uracil. Sub-

sequent rounds of passaging leads to a second crossover event, removing the

supplemented pyrF gene, and yielded uracil-auxotrophic mutants that are

5-FOA resistant in the presence of uracil, and 5-FOA sensitive in the

absence of uracil (Boeke, LaCroute, & Fink, 1984; Suzuki et al., 2012).
p0250 Using this technology, chromosomal integration and heterologous

expression of G. stearothermophilus IAM11011 bgaB and G. stearothermophilus

CU21 amyE genes, encoding b-galactosidase and a-amylase, respectively,

were demonstrated. Although successful, the counterselection system

yielded 50% uracil-prototrophic false positives, which were 5-FOA resistant

in the presence of uracil, and 5-FOA sensitive in the absence of uracil

(Suzuki et al., 2012). Since mutations observed in the pyrF and pyrE regions

of false positives were negligible, it is hypothesized that G. kaustophilus may

potentially repress pyrimidine biosynthesis and/or incorporation under ura-

cil-rich conditions independently of pyrR (Suzuki et al., 2012).
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s0130 6.5 Reporter Genes
p0255 Fundamental physiological studies and biotechnological applications

involving single or multiple gene expression depend on investigation and

application of promoter- and ribosome-binding site operation and strength.

Recently, there has been a rapid increase in the characterization of promoters,

particularly inducible promoters that may be used for conditional expression

and easily assayable reporter genes are useful tools for characterization of these

promoters. GFP (green fluorescent protein) is a commonly used reporter in

mesophiles and a useful thermostable variant, superfolder GFP (sfGFP)

(Pédelacq, Cabantous, Tran, Terwilliger, & Waldo, 2006) has been shown

to work in Thermus spp. andGeobacillus spp. (Blanchard et al., 2014) where it

has been used for the assessment of various promoters. However, like the

majority of fluorescent proteins, the maturation of the fluorescent chromo-

phore requires molecular oxygen; therefore, sfGFP cannot be used in oxy-

gen-deprived environments (e.g., under fermentative conditions).
p0260 An alternative transcriptional reporter gene that can be used to circum-

vent this drawback is the pheB gene from G. stearothermophilus DSM 6285,

which encodes a thermostable catechol 2,3-dioxygenase. The expression

of pheB in the presence of 100 mM catechol results in the formation of

the yellow-colored 2-hydroxymuconic semialdehyde, which can be

detected at an absorbance of 375 nm (Bartosiak-Jentys, Eley, & Leak,

2012). Enzymes associated with carbohydrate metabolism have also been

exploited as expression reporters in Geobacillus spp., including a-amylase,

b-galactosidase, and a-galactosidase (Blanchard et al., 2014; Lin et al.,

2014; Suzuki et al., 2012).

s0135 6.6 Recombinant Gene Expression
p0265 A limited number of constitutive or inducible promoters have been charac-

terized as suitable for controlled heterologous protein expression in Geoba-

cillus spp. For strong constitutive expression in G. kaustophilus HTA426,

the native promoter PsigA, found immediately upstream of two house-

keeping genes (Suzuki et al., 2012), has been characterized in b-galactosidase

assays. The promoter for ribonuclease H III, PRHIII, isolated from G. stear-

othermophilus NUB3621, has �10 and �35 regions closely matching the

consensus and has been used for constitutive expression of the fluorescent

sfGFP reporter (Blanchard et al., 2014).
p0270 Due to the recent focus on engineering fermentation pathways in Geo-

bacillus spp., promoters that can be induced under anaerobic conditions are
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of interest. In particular, promoters of the lactate dehydrogenase genes, Pldh,

isolated from G. stearothermophilusNCA1503 and G. thermodenitrificans DSM

465T have been characterized and applied in the production of ethanol and

isobutanol, respectively (Cripps et al., 2009; Lin et al., 2014). However, it

has been suggested that Pldh activity is more active under oxygen-limiting

conditions than during fully anaerobic growth, and potentially induced as

a result of the transitory change in redox conditions between aerobic and

anaerobic growth (Bartosiak-Jentys et al., 2013).
p0275 A wider range of ligand-inducible promoters functional in Geobacillus

spp. have been characterized, especially carbohydrate-inducible promoters.

Inducible promoters are essential for the controlled heterologous expression

of “toxic” proteins, which may require strong transcriptional silencing to

facilitate sufficient growth of the host organism. Although several positively

regulated promoters have been shown to facilitate controlled protein

expression, many of these promoters are functional under various other

conditions (Bartosiak-Jentys et al., 2013; Suzuki, Yoshida, et al., 2013).

However, the G. kaustophilus HTA426 promoters Pgk704, Pgk1859, Pgk1894,

and Pgk2150 have been identified as being inducible by maltose, lactose,

myoinositol, and D-galactose, respectively (Suzuki, Yoshida, et al., 2013).

Notably, expression under promoter Pgk704 increased 4.5- and 12-fold by

the addition of either soluble starch or maltose to culture medium. Growth

on the pentose sugars D-xylose or L-arabinose inhibited gene expression, but

there were negligible effects on expression during growth on D-glucose,

D-galactose, sucrose, melibiose, lactose, myoinositol, cellobiose, or fructose.

The promoter Pbglu, isolated from the cellobiose-specific phosphotransfer-

ase system operon of G. thermoglucosidasius NCIMB 11955, enhanced

expression of pheB in the presence of cellobiose, but was also activated by

glucose and xylose (Bartosiak-Jentys et al., 2013). The native promoter of

the sucrose-utilization operon in G. stearothermophilus NUB3621, PsurP,

has been demonstrated to increase a-galactosidase expression fivefold in

the presence of sucrose, although characterization in the presence of other

sugars has not been reported (Blanchard et al., 2014).

s0140 6.7 Secretion
p0280 The utilization of polymeric substrates such as proteins and polysaccharides,

as well as the breakdown of oils/fats, requires secretion of the relevant hy-

drolytic enzymes into the extracellular milieu. Understanding and control

of this process should increase the potential of Geobacillus spp. as an expres-

sion host for commercial useful proteins (e.g., lipases, amylases) as secreted
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proteins are simpler to recover than intracellular proteins. It will also allow

modification of the catabolic potential of Geobacillus spp., which is particu-

larly useful for metabolic engineering. Nevertheless, there have been reports

of secretion of heterologous proteins inGeobacillus spp. Secretion is mediated

by N-terminal signal peptides, which typically are of a variable length and

amino acid sequence. Recently, the secretion of a G. stearothermophilus

a-amylase and a truncated-cellulase from Pyrococcus horikoshii has been

achieved in G. kaustophilus HTA426 using their native signal sequences

(Suzuki, Yoshida, et al., 2013). However, systematic screening of native

signal peptides for the secretion of heterologous enzymes inB. subtilis showed

that the optimal signal peptide for one protein can be inefficient for another

and vice versa, and therefore multiple signal peptides need to be tested for

efficient secretion of different recombinant proteins (Brockmeier et al.,

2006). With this in mind, Bartosiak-Jentys et al. have created a modular sys-

tem to bring various genetic component parts together, including signal

peptides, in different combinations. This was demonstrated by the heterol-

ogous expression and secretion of a glycosyl hydrolase from Thermotoga mar-

itima MSB8 using a signal peptide from a G. thermoglucosidasius xylanase

(Bartosiak-Jentys et al., 2013).

s0145 7. BIOTECHNOLOGICAL APPLICATIONS

p0285 The ability to secrete commercially useful enzymes such as hemicel-

lulases and amylases and catabolic versatility of Geobacillus spp. are being

exploited for both biocatalysis and metabolic engineering. However, a

number of½Q19� other diverse applications are also being investigated from the

production of sweeteners, production of therapeutics, and exploitation of

S-layer-based proteinaceous nanostructures.

s0150 7.1 Metabolic Engineering for Production of Fuels and
Chemicals

p0290 The most widely researched biotechnological application of Geobacillus spp.

is for fermentation to produce second-generation biofuels, an endeavor that

has focussed largely on G. thermoglucosidasius largely due to the industrial

impetus provided by companies such as Agrol Ltd and TMO Renewables.

Growth at 60e70 �C facilitates the continuous removal of volatile fermen-

tation products (e.g., the boiling point of ethanol is 78 �C) while not causing

excessive attrition of mechanical equipment (Cripps et al., 2009). Further-

more, higher growth temperatures reduce potential contamination issues
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from mesophilic contaminants (Cripps et al., 2009). However, it is the cata-

bolic promiscuity of Geobacillus spp., particularly their ability to take up and

degrade a wide range of oligomeric carbohydrates, which sets them apart in

terms of second-generation bioprocess design (Cripps et al., 2009).
p0295 Bioethanol (C2H5OH) is now a well-established biofuel that is being

commercially produced in first-generation (from cane sucrose or corn/

wheat-derived glucose) processes, with second-generation processes (from

lignocellulosic feedstocks) coming on stream. As well as its value as a high

octane fuel, it has extensive secondary applications (e.g., ethylene, higher

alcohols); ethanol itself is biodegradable and has low toxicity, causing little

environmental pollution (Hansen, Zhang, & Lyne, 2005). In the United

States, first-generation ethanol production has now saturated the demand

for inclusion at 10% of US gasoline fuel supply (Bajpai, 2013).
p0300 Ethanol is a natural, but not the main fermentation, product of faculta-

tively anaerobicGeobacillus spp. After knocking out the L-lactate dehydroge-

nase pathway, it was expected that the fermentation products would be

determined by the residual PFL pathway. However, higher yields of ethanol

were obtained than expected from the PFL pathway and it was recognized

that, as in B. subtilis, pyruvate dehydrogenase (Pdh) was still active under

anaerobic conditions. By knockout out the PFL pathway½Q20� and upregulating

expression of Pdh a novel, redox balanced homoethanol pathway was

demonstrated, which forms the basis of an industrial process (Cripps et al.,

2009). Ethanol yields from glucose of >90% of the theoretical value have

been achieved in the triple mutant (Dldh, DpflB, and pdhup) process strain

G. thermoglucosidasius TM242 (Cripps et al., 2009) with productivities as

high as 2.85 g/L h on glucose and 3.2 g/L h on cellobiose (Cripps et al.,

2009).
p0305 An alternative avenue for increasing flux to ethanol is via pyruvate decar-

boxylase (Pdc, EC 4.1.1.1), the fermentation route use by Saccharomyces cer-

evisiae and the bacteria Zymomonas mobilis and Zymobacter palmae. Pdc

catalyzes the nonoxidative decarboxylation of pyruvate to acetaldehyde,

which is then converted to ethanol by alcohol dehydrogenase (Adh, EC

1.1.1.1). Although Pdcs from plants and yeast have been widely studied,

only a few bacterial examples have been identified and characterized,

notably from Z. mobilis, Z. palmae, Acetobacter pasteurianus, and Sarcina ventri-

culi (Raj, Talarico, Ingram, & Maupin-Furlow, 2002). So far, a Pdc of ther-

mophilic origin has not been discovered, and heterologous expression of

both Z. mobilis and Z. palmae PDC in G. thermoglucosidasius does not result

in functional enzyme activity at temperatures >55 �C (Thompson,
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Studholme, Green, & Leak, 2008). However, both enzymes were reported

to show good in vitro thermostability at these temperatures, and previous

studies indicate the native (prefolded) Z. mobilis Pdc being stable up to

60 �C (Pohl, Mesch, Rodenbrock, & Kula, 1995; Thompson et al.,

2008). It has, therefore, been argued that this reflects the temperature sensi-

tivity of Pdc assembly, rather than enzyme activity per se, based on the

requirement of cofactor binding during Pdc folding (Pohl, Gr€otzinger,

Wollmer, & Kula, 1994). Recently, a Pdc fromGluconobacter oxydans, which

remains thermostable in vitro at 45 �C, was expressed in G. thermoglucosida-

sius TM89, a Dldh variant of the NCIMB 11955 strain and grown fermen-

tatively at 52 �C, resulting in yields as high as 0.35 � 0.04 g/g ethanol per

gram of glucose consumed.
p0310 Although ethanol is currently the prime renewable fuel, it has been

argued that it may not provide an optimal economic solution across the

feedstock-to-consumer value chain (Ryan, Munz, & Bevers, 2011). As a

blend fuel, isobutanol has several advantages over ethanol, including greater

energy content, lower oxygen content, lower Reid Vapor Pressure, and a

low water solubility (Ryan et al., 2011). To this end, Lin and colleagues pro-

spected and characterized enzymes required for isobutanol biosynthesis at

elevated temperatures, and demonstrated isobutanol titres of 3.3 g/L of iso-

butanol from glucose at 50 �C, although titres from cellobiose were lower at

0.6 g/L of isobutanol (Lin et al., 2014). This was achieved by overexpression

of genes encoding the native G. thermoglucosidasius DSM2542T acetohy-

droxy acid isomeroreductase, a L. lactis a-ketoisovalerate decarboxylase,

and a B. subtilis acetolactate synthase gene (Atsumi, Hanai, & Liao, 2008;

Lin et al., 2014).

s0155 7.2 Enzymes for Biocatalysis
s0160 7.2.1 Proteases
p0315 Proteases have a long history in industrial processes such as leather processing,

addition to detergents, peptide synthesis, applications in the food industry, and

various other biotechnological applications (Haki & Rakshit, 2003). Ther-

mostable proteases offer compatability with processes that function more

optimally at higher temperatures (e.g., through reduced viscosity), can

have high catalytic efficiencies, and offer resistance from mesophilic micro-

bial contamination. Thermostable proteases have been isolated and charac-

terized from a number of Geobacillus isolates, and genomic analysis

demonstrates widespread putative proteolytic capabilities across the genus

(Chen, Stabnikova, Tay,Wang, & Tay, 2004; Hawumba, Theron, & Br€ozel,
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2002; Iqbal et al., 2015; Zhu, Cha, Cheng, Peng, & Shen, 2007). This

includes the commercially produced G. stearothermophilus thermostable met-

alloendopeptidase Thermolysin, which is used for the commercial synthesis

of N-(benzyloxycarbonyl)- L-aspartyl-L-phenylalanine methyl ester, the pre-

cursor for the artificial sweetener aspartame (Sigma).
p0320 A subset of proteases finding increasing clinical applications and use as

experimental reagents are thermostable collagenolytic proteases (Watanabe,

2004). Collagen-degrading Geobacillus collagenovorans MO-1 has since been

isolated, and a range of collagenolytic enzymes have been characterized

(Itoi, Horinaka, Tsujimoto, Matsui, & Watanabe, 2006; Miyake et al.,

2005).

s0165 7.2.2 Carboxylesterases and Lipases
p0325 Although both carboxylesterases (EC 3.1.1.1) and lipases (EC 3.1.1.3)

catalyze the hydrolysis of carboxyl esters, and are both found in macroorga-

nismsand microorganisms, they exhibit some fundamental differences in

their enzyme kinetics and substrate specificities (Jaeger, Dijkstra, & Reetz,

1999).
p0330 Lipases have a preference for water-insoluble substrates, and hydrolyze

long chain triglycerides (Bornscheuer, Bessler, Srinivas, & Krishna, 2002).

Lipases are generally more enantioselective than carboxylesterases, show

greater resistance to organic solvents, and contain a hydrophobic domain

covering the active site that causes a remarkable increase in activity on inter-

action with a hydrophobic substrate (Patel, 2006). Lipases are increasingly

used in the cosmetics industry for the synthesis of emolient esters, which

improve the appearance and glide of personal care products (reviewed by

Ansorge-Schumacher and Thum (2013)). In the food industry, lipases are

heavily involved in cheese making, and the synthesis of sugar esters

(reviewed by Khanniri et al. (2015)). The excellent stereoselectivity and

enantioselectivity of lipases is exploited by the fine-chemicals industry for

the production of optically active building blocks for applications in syn-

thetic chemistry (reviewed by Pandey et al. (1999)).
p0335 To date, thermostable lipases have been isolated and characterized from

G. thermodenitrificans IBRL-nra (Balan, Ibrahim, Abdul Rahim, & Ahmad

Rashid, 2012; Balan, Magalinggam, Ibrahim, Rahim et al., 2010),G. thermo-

denitrificans AZ1 (Abdel-Fattah, Soliman, Yousef, & El-Helow, 2012),

G. stearothermophilus JC (Jiang, Zhou, & Chen, 2010), G. stearothermophilus

L1 (Kim, Park, Lee, & Oh, 1998),G. stearothermophilusDSMZ 1550 (Sheng,

Jun, Hong, & Lehe), G. stearothermophilus strain 5 and 6 (Berekaa, Zaghloul,
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Abdel-Fattah, Saeed, & Sifour, 2009; Sifour, Zaghloul, Saeed, Berekaa, &

Abdel-fattah, 2010), G. thermoleovorans CCR11 (Quintana-Castro, Díaz,

Valerio-Alfaro, García, & Oliart-Ros, 2009), G. thermoleovorans Toshki

(Abdel-Fattah & Gaballa, 2008), Geobacillus zalihae (Nurbaya, Bakar, Raja,

Chor, & Basri, 2014), and many other thermophiles attributed to the Geo-

bacillus genus (Hamid et al., 2003; Leow, Rahman, Basri, & Salleh, 2007; Li

& Zhang, 2005; Mahadevan &Neelagund, 2014; Wang, Srivastava, Shen, &

Wang, 1995; Zhu et al., 2014).
p0340 In contrast to lipases, carboxylesterases catalyze the cleavage of ester

bonds of shorter acyl chain length (less than C8), with a preference for

water-soluble substrates. Carboxylesterases generally require no cofactor

and exhibit high regiospecificity and stereospecificity due to the presence

of a unique small acyl binding pocket, which optimally fits to the acyl moiety

of their substrates (Panda & Gowrishankar, 2005). To date, thermostable car-

boxylesterases have been isolated and characterized fromG. stearothermophilus

ATCC12980 and ATCC7954 (Ewis, Abdelal, & Lu, 2004), G. thermoleovor-

ans YN (Soliman, Abdel-Fattah, Mostafa, & Gaballa, 2014),G. thermodenitri-

ficans T2 (Yang et al., 2013), G. thermodenitrificans CMB-A2 (Charbonneau,

Meddeb-Mouelhi, & Beauregard, 2010), G. kaustophilus HTA426

(Montoro-García et al., 2009), G. caldoxylosilyticus TK4 (Yildirim, Colak,

Col, & Canakci, 2009), G. thermoglucosidasius EAEC, and many other ther-

mophilic strains attributed to the Geobacillus genus (Ayna, 2013; €Ozbek,

Kolcuo�glu, Konak, Colak, & €Oz, 2014; Tekedar & Şanlı-Mohamed,

2011; Zhu et al., 2012).
p0345 Notably, studies of a G. kaustophilus HTA426 carboxylesterase, and

related carboxylesterases, revealed stark topological differences from preex-

isting families of lipolytic enzymes, and has led to the argument that theGeo-

bacillus carboxylesterases represent a new bacterial carboxylesterase family

(Montoro-García et al., 2009).
p0350 One carboxylesterase subfamily of recent interest in the second-

generation biofuel industry comprises the acetylxylan esterases (EC

3.1.1.72), which hydrolyze the ester linkages of acetyl groups at positions 2

and/or 3 of the xylose moieties in xylan. Studies have shown that the intro-

duction of acetylxylan esterases in hemicellulase mixtures enhances the acces-

sibility of xylanases to the xylan backbone (Zhang, Siika-aho, Tenkanen, &

Viikari, 2011). Based on comparisons with known acetylxylan esterase fam-

ilies in the CAZy Database, Axe2 isolated from G. stearothermophilus T6, is

thought to represent a new family of carbohydrate esterases (Alalouf et al.,

2011). This is supported by a detailed three-dimensional X-ray crystal
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structure of Axe2, which revealed that the homooctamer has a unique qua-

ternary structure built of two staggered tetrameric rings (Lansky et al., 2014).
p0355 Due to the unusual properties of these carboxylesterases and lipases, such

as their resistance to organic solvents and enantiospecificity and stereospec-

ificity, these enzymes may prove to be valuable for industrial applications in

biocatalysis.

s0170 7.2.3 L-arabinose Isomerase
p0360 Due to its low calorific content, yet being 92% as sweet as sucrose, Tagatose,

an isomer of D-galactose could be used as a novel sweetener in food prod-

ucts, as well as aiding in the amelioration of type-2 diabetes and hypergly-

cemia (Seo, 2013). It has been heralded½Q21� as a low-calorie sweetener in a

wide variety of foods, beverages, health foods, and dietary supplements, as

well as nonchronic drugs, tooth paste, and mouth wash (Oh, 2007). A

growing body of research has highlighted additional numerous health ben-

efits, including improvement of pregnancy and foetal development (Levin,

2001), antiplaque properties (Wong, 2000), antihalitosis properties (Laerke,

Jensen, & Højsgaard, 2000), and prebiotic properties (Bertelsen, Jensen, &

Buemann, 1999), as well as acting as a potent cytoprotective agent against

chemically induced cell injury during organ transplants (Paterna, Boess,

St€aubli, & Boelsterli, 1998).
p0365 To this end, there has been concerted biotechnological effort to develop

Tagatose for mass production through chemical and enzymatic isomeriza-

tion. This has focussed on enzymatic conversion using L-arabinose isomer-

ases (L-AI; EC 5.3.1.4), since chemical production of D-tagatose from

D-galactose has some disadvantages, such as complex purification steps,

chemical waste formation, and by-product formation (Fan et al., 2014).
p0370 L-arabinose isomerases have been isolated and characterized from several

Geobacillus strains, including G. stearothermophilus KCCM 12265 (Kim, Kim,

Oh, & Oh, 2006), G. stearothermophilus US100 (Rhimi & Bejar, 2006),

G. stearothermophilus IAM 11001 (Cheng, Mu, & Jiang, 2010), G. stearother-

mophilusDSM 22 (Lee et al., 2005),G. thermodenitrificans (Kim & Oh, 2005),

and G. thermoglucosidasius KCTC 1828 (Seo, 2013). Higher optimum reac-

tion temperatures (50e70 �C) change the aldoseeketose equilibrium

adding weight to the exploitation of Geobacillus in this regard. In fact, the

highest reported production level is 230 g/L D-tagatose from 500 g/L

D-galactose using immobilized G. stearothermophilus L-arabinose isomerase

in the continuous recycling mode of a packed-bed bioreactor, boasting a

tagatose productivity of 230 g /L day (Kim, Ryu, Kim, & Oh, 2003).
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Another characterized L-arabinose isomerase to note is that from G. stearo-

thermophilus US100, which does not require any metal ion as cofactor for

enzymatic activity below 65 �C, although Mn2þ and Co2þ are required

to enhance activity at its optimum temperature of 80 �C (Rhimi & Bejar,

2006). Other methods for producing D-tagatose, such as from D-fructose

via a D-psicose 3-epimerase intermediate step, have been suggested to

have little potential for commercial application (Wanarska & Kur, 2012).

As such, isomerization of D-galactose by Geobacillus L-arabinose isomerases

remains an economically attractive method for commercial D-tagatose

production.

s0175 7.2.4 Pyrimidine Nucleoside Phosphorylases
p0375 Another family of enzymes of biotechnological interest comprises pyrimidine

nucleoside phosphorylases (PyNP; EC 2.4.2.2) that, in the presence of phos-

phate ions, catalyze the reversible phosphorolytic cleavage of the glycosidic

bond of pyrimidine nucleosides or closely related derivatives. In fact, PyNP

does not discriminate between uridine and thymidine and accepts both com-

pounds as natural substrates, making PyNP a versatile biocatalyst suitable for

the enzymatic synthesis of modified nucleosides. These nucleoside analogs are

widely used in the treatment of diverse human tumours (Vander Heiden,

2011), as well as pharmaceutical agents for the treatment of viral infections

(De Clercq, 2011). PyNP have been isolated and characterized from several

Geobacillus strains, including G. stearothermophilus JTS 859 (Hori, Watanabe,

Yamazaki, & Mikami, 1990), G. stearothermophilus TH 6-2 (Hamamoto,

Noguchi, & Midorikawa, 1996), G. stearothermophilus St-10 (Saunders,

Wilson, & Saunders, 1969), and G. thermoglucosidasius NCIMB 11955

(Szeker et al., 2012).
p0380 Notably, immobilized nucleoside phosphorylases from G. stearothermo-

philus B-2194 have been demonstrated for the production of the chemo-

therapeutic drugs, fludarabine and cladribine as well as other nucleoside

analogs, to yields of >85% (Taran, Verevkina, Feofanov, & Miroshnikov,

2009). These reports illustrate the possibilities of producing organic com-

pounds of high market value and societal demand using enzymes from

Geobacillus spp.

s0180 7.3 Biomimetic Nanoscale Structures
p0385 The crystalline cell-surface layers (S-layers) of some Gram-positive bacteria

are composed of a single protein or glycoprotein species, binding to the

peptidoglycan surface layer. Based on their nonbinding functional domains,
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these S-layer proteins exhibit square, oblique, or hexagonal lattice symme-

try, suggesting a potential for exploitation as carriers for enzyme immobili-

zation. Furthermore, the pores passing through these monomolecular arrays

show identical size and morphology in the 2- to 8-nm range (Ilk, Egelseer,

& Sleytr, 2011), opening up potentially broad applications functioning as

biomimetic membranes (reviewed by Shen, Saboe, Sines, Erbakan, and

Kumar (2014)).
p0390 Currently, the most intense research is on the structural S-layer protein

½Q22�

SgsE from G. stearothermophilus NRS 2004/3a, which self-assembles into an

oblique cell-surface array (Steiner et al., 2006). Functional SgsE-based bio-

catalysts, engineered by fusion of a glucose-1-phosphate thymidylyltransfer-

ase to the cell wall-binding regions of recombinant SgsE, were shown to

self-assemble in solution and on the surface of liposomes (Sch€affer et al.,

2007). In fact, liposomes covered by the SgsE/RmlA biocatalyst were also

recyclable, retaining 61% of detectable enzymatic activity after one cycle

(Sch€affer et al., 2007).
p0395 Self-assembly of a bifluorescent SgsE tandem fusion protein

½Q23�
(ECFPe

SgsEeYFP) has been demonstrated on solid supports, such as silicon dioxide

substrates, with similar lattice symmetry to that observed with wild-type

SgsE (Kainz, Steiner, Sleytr, Pum, & Toca-Herrera, 2010). Both N- and

C-terminally incorporated fluorescent tags retained their specific fluorescent

properties, as determined by steady-state fluorimetry, flow cytometry, and

confocal microscopy (Kainz et al., 2010). Together with studies on½Q24� the

SbpA S-layer protein of Lysinibacillus sphaericus, these advances open up a

promising field in surface 2D nanofunctionalization, exploiting S-layer

matrices for the controlled immobilization of antibodies, ligands and en-

zymes as biosensors, affinity membranes and affinity microparticles as well

as for solid phase assays.

s0185 7.4 Whole-Cell Applications
s0190 7.4.1 Biorefinement of Linen Fibres
p0400 In addition to the use of engineered strains for fuel and chemical production

from lignocellulosic substrates, where the hydrolysis of hemicellulose re-

quires multiple synergistic enzyme activities, cells expressing a limited subset

of enzyme activities can also find niche applications. One such application is

the use of Geobacillus spp. for extraction of fine long linen fibres for use in

textiles (linen) and other technical applications, such as specialty papers,

composites, and insulating material (Valladares Ju�arez, Rost, Heitmann,

Heger, & M€uller, 2011). This is a promising environmentally friendly and
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reliable alternative to traditionally retting methods used for fibre extraction,

such as dew retting and water retting. The current process is mediated by

G. thermoglucosidasius PB94A (Valladares Ju�arez et al., 2009), which was iso-

lated on hemp pectin and secretes pectin lyases to facilitate degradation of

not only hemp pectin, but sugar beet, apple pectin, polygalacturonic acid,

and citrus (Valladares Ju�arez et al., 2011). Like most Geobacillus spp., the

strain does not secrete cellulases, avoiding any damage to the fibres, and fibre

quality remains equally high after seven reuses of the pectinolytic bacterial

culture. Operation of a purpose-built 200 L pilot-plant for one year has

been reported, with future plans to commercialize the enzymatic refining

of raw decorticated fibres using G. thermoglucosidasius PB94A cell culture

(Ju�arez, Rost, Heitmann, Heger, & M€uller, 2013).

s0195 7.4.2 Bioremediation of Environmental Pollutants
p0405 Due to increasing levels of environmental pollution, there has been a

concerted effort to explore the use of microorganisms to remove and

neutralize organic pollutants as an effective and economicalmeans of environ-

mental remediation (reviewed by Megharaj, Ramakrishnan, Venkateswarlu,

Sethunathan, and Naidu (2011)). In fact, bioremediation continues to be the

preferred method for household waste recycling and heavy metal, toxic

chemical, and radioactive pollutant removal (Bonaventura & Johnson,

1997). Often, synthetic environmental pollutants degrade too slowly in

the environment, requiring more intensive and directed methods for treat-

ment at source including the use of Geobacillus spp.
p0410 Phenol and phenolic compounds represent one of the largest groups of

environmental pollutants due to their broad applications as antibacterial and

antifungal agents. The ability of Geobacillus strains to metabolize aromatic

compounds has been described above and Feitkenhauer, Muller, and Markl

(2003) have studied the kinetics of phenol degradation in continuous culture

at 65 �C using G. thermoleovorans. However, most of the studies to date have

focussed on fundamental biochemistry. Similarly, studies of alkane degrada-

tion have largely focussed on fundamental enzymology although the long

chain alkane monooxygenase LadA clearly has potential in environmental

cleanup (Feng et al., 2007; Li et al., 2008;Wang et al., 2006) and has recently

been included (Brinkman et al., 2012) as an interchangeable “biobrick” part

in an alkane utilizing E. coli strain.
p0415 Synthetic organophosphonates are another example of industrial com-

pounds that pose a threat to the environment. In 2011, worldwide

sales of the organophosphonate herbicide glyphosate were worth around
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$6.5 billion, more than the combined value of all other herbicides (Sansom,

2012).
p0420 The glyphosate-degrading G. caldoxylosilyticus strain T20, isolated from a

central heating system, represents the first report of organophosphonate

degradation by a thermophilic bacterium (Obojska, Ternan, Lejczak,

Kafarski, & McMullan, 2002). The strain is capable of utilizing a number

of organophosphonates as the sole phosphorus source (Obojska et al.,

2002). Intriguingly, the isolation of this strain from a source unlikely to

have been exposed to the herbicide glyphosate, as well as isolations of glyph-

osate-degrading bacteria prior to widespread commercial introduction of the

herbicide, indicate that this pathway may have evolved for a different, nat-

ural substrate (Obojska et al., 2002; Pipke & Amrhein, 1988).
p0425 Acrylamide, the monomer widely used in the synthesis of polyacryl-

amides, is neurotoxic, genotoxic, and recently suspected to be carcinogenic

(Program, 2011). The release of acrylamide during its production process

and downstream applications has contaminated soil and water. For example,

residual acrylamide concentrations in acrylamide flocculants approved for

use in water treatment plants have been measured to range from 0.5 to

600 ppm (Program, 2011). Although there has been limited work on acryl-

amide-degrading Geobacillus isolates, the isolation and characterization of

G. thermoglucosidasius AUT-01, a strain capable of degrading acrylamide at

concentrations of 7 mM, has shown promise (Cha & Chambliss, 2013).

Although the strain grew poorly on higher concentrations of acrylamide

and was unable to degrade acrylic acid, the product of acrylamide degrada-

tion, it was regarded as a possible candidate for the treatment of acrylamide

in foods (Cha & Chambliss, 2013). Geobacillus thermoglucosidasius AUT-01

cell-free extracts were subsequently used in acrylamide degradation studies

on coffee, the primary source of acrylamide consumed in the diet (Cha,

2013). Although acrylamide was not totally degraded at higher concentra-

tions of coffee in water, complete removal of acrylamide was achieved at

concentrations of 100 mg of coffee/10 mL ddH20 (Cha, 2013). However,

the issue of acrylic acid degradation to smaller and less-toxic molecules

must be addressed before acrylamide bioremediation can be feasible as a

future bioremediation technology.

s0200 7.5 Biocontrol
p0430 One divergent biotechnological application of Geobacillus spp. is in the

manipulation of the crop rhizosphere for the biocontrol of plant pathogens,

such as Fusarium wilt (Weller, 1988). Fusarium wilt, which is the most
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widespread disease of tomato, banana, and other economically important

crops is caused by the fungal pathogens, Fusarium oxysporum or Fusarium

solani (Ploetz, 2006). To combat this disease, rhizospheric and endophytic

microorganisms that survive and compete favourably with the Fusarium

wilt pathogen have been isolated, most of which are Bacillus and Pseudomonas

species (Siddiqui, 2006, pp. 112e142). However, one study demonstrates

the use of G. thermoglucosidasius strain PMB207 as a biocontrol agent in

the commercial production of lily bulbs, with the capacity to be used alone

or in combination with the fungicide Sporgon at low concentration

(<100 mg/mL) (Chung, Wu, Hsu, Huang, & Huang, 2011). Another study

demonstrated the potential use of G. caldoxylosilyticus IRD in controlling or

protecting maize plants against high salt stress (Abdelkader & Esawy, 2011).

The field of biocontrol is currently still in its infancy, but may be exploitable

for commercial use once regulatory hurdles imposed by the International

Organization for Biological Control and REBECA (Regulation of Biolog-

ical Control) are overcome (Bale, Van Lenteren, & Bigler, 2008).
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