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THE i-GENUS OF COMPLEX HYPERSURFACES

AND COMPLETE INTERSECTIONS

ROBERT BROOKS1

Abstract. In this note, we classify the even-dimensional complex hypersurfaces and

complete intersections which carry a metric of positive scalar curvature. This is done

by computing the ,4-genus of these manifolds to eliminate all cases not known to

carry such a metric.

If M is a real 477-dimensional manifold, then Hirzebruch [1] has defined the

A -genus of M as a certain polynomial in the Pontrjagin classes of M.

By a theorem of Lichnerowicz [5], if M is a spin manifold, then the nonvanishing

of the /1-genus is an obstruction to the existence of a metric of positive scalar

curvature on M.

In this paper, we consider the case when M is a complex hypersurface, or more

generally a complete intersection. If we denote by M = V¿n Â the complete

intersection  of hypersurfaces  defined  by  homogeneous  polynomials  of degree

dx.dr in CP(2n + r), then one knows in principle how to compute the /1-genus

of M in terms of J,.dr; M is spin precisely when 2n + r + \ — 1,d, is even. Our

main observation here is that for complex hypersurfaces V¿", the formula for

Â(Vj") is somewhat simpler than one might expect:

Theorem 1.

UV2n\-,    (d/2 + n)(d/2 + (n-]))■■■ (d/2 - n)

A(V"    '~1' (277+1)!

The formula of Theorem 1 was also obtained in [4, p. 259]. Our proof given below

extends readily to give a formula for complete intersections, which is however

somewhat more cumbersome. Nonetheless, we are able to determine when A( Vj" d )

is zero, so that we can show our main result:

Theorem 2. (i) // 2n + r + 1 — 2<i, is even, then V¿" Â carries a metric of

positive scalar curvature if and only if 2c/, < 2n + r.

(ii) If 2n + r + 1 — ?,d, is odd and n > 1, then Vj" d always carries a metric of

positive scalar curvature.

Theorem 2(ii) follows immediately from a theorem of Gromov and Lawson

[3]—any simply-connected manifold of dimension s* 5 which is not spin carries a

metric of positive scalar curvature.
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In addition, one direction of Theorem 2(i) is an immediate consequence of the

Calabi conjecture, as proved by Yau [6]: if 2t/ < 2tj + r, then the first Chern class

of Vdn d is a positive scalar multiple of the Kahler class in CP(2n + r), restricted

to Vd" d. By Yau's theorem, we may then find a Kahler metric on Vd" ¿ whose

first Chern form is equal to this multiple of the Kahler form. Since the first Chern

form is essentially the Ricci tensor, we have constructed a metric of positive Ricci

curvature (and hence positive scalar curvature) on V}"   d.

The rest of the paper is devoted to a proof of the other direction of Theorem 2(i).

The plan is this: in §1 we prove Theorem 1, along the well-known general lines of

Hirzebruch [1]. One must use a little care to obtain the formula of Theorem 1. From

this, Theorem 2(i) for hypersurfaces is obvious. In §2, we then turn to the general

case of complete intersections, where the number theory involved becomes somewhat

more difficult.

1. Proof of Theorem 1. Let tj denote the Kahler class of H2(CP(2n + 1)). If we

apply the Whitney product formula to

(1) T*{Vd2n) © N(Vd2n) = T*(CP(2n + 1))

restricted to Vd" where N(M) is the normal bundle, together with the identity

(2) c]{N(Vd2"))=d-rl

(see, for instance, [2, p. 146]), we get

(3) (1 + c,(K/") + c2(Vd2") + • • • +c2„(K/"))(l + d-n) = (Í + v)2"+2.

The corresponding formula in Pontrjagin classes is then

(4) {\+P^") + ---+Pn{vl")){\+d2-r]2) = (\+r)2"+2

or, formally,

(4') (1 +/>,(*?») + ... +A(K,ta)) = (1 +772)2" + 2/(l +^-T).

We now use the formal factorization of (4') to evaluate the /î-genus of Vj", using

the fact that the A -genus is the multiplicative sequence given by the function

(Jz /2)/sinh({z /2) [1], We find that

Lemma 1.

v2n+l

.2/1 + 2
Â(VJ") =

(2sinh(dfz/2))
the coefficient of z" in-■-    .   ,, •   i/z 1

(2sinh(yz/2))

Proof. By the formula for A, applied to the factorization (4'),

(5) i(M) = ( 2^/2))       (2sinh(rfi,/2))

and it is easily seen that the coefficient of t/2" in the right-hand side of (5) is \/d

times the right-hand side of Lemma 1. On the other hand, r/2"[F/"] = d, proving

Lemma 1.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



530 ROBERT BROOKS

We now rewrite Lemma 1 in terms of residues:

(6) ¡(V2n\=J_f       _J_
T(0)Z'

(2sinh(d\fz/2))
,2n + 2

2 77/I

[(2sinh(^/2))        J

dz

I   r— \¿n-t I

(fz)        dz

r        2sinh(ti/z/2) i

r<°>(2sinh(^/2))2"+2    fi

where I/O) is any closed path which winds once about 0.

Using the substitution w = exp(Jz /2), we find

«W-kjX
u"-u-d

2-du
w>(u-irl)2"+2   "

t    ,.*._, Wd-1]

2tt7
: /"     M2n +
I Jn i i

1-d

T(l) [u2-\f
■2 du

where Y(\) is any path winding once about I, and where we have taken into account

that any path which winds once about 1 in the «-plane will wind twice about 0 in the

z-plane.

Now substituting v = u2, we find

^2,)=¿/    V"litl •'riii

-d/2. K-i]
.2n+2

dv

= —■(    ■
2m Jr{0)

(v - 1)

n + d/2 _ ¿i   _,_ ,_,\m—d/2(1 + vvT^-o + w)'
,2n + 2

¿H'

where in the last equation we substituted w = v — 1.

This last is then the coefficient of w2n+] in (1 + w)"+J/2 - (1 + w)"~d/2, which

is then easily seen to be 2 • ((d/2 + n) ■ ■ ■ (d/2 - n))/(2n + 1)!, as desired.

2. Complete intersections. We may proceed exactly as in §1 to obtain a formula

for Â(Vd2n   d\ starting from the equation for Chern classes

(1) no+ 4-1) [l+c,(K) + ...+c„(K)] =(l+r,
,2n + r+ 1

We arrive at the formula

(2)     Ak2" „) = £ (i + wy—/2-arf--'/2»n'((1tw)rf'.   '^
1      r      •'r(O) ,2n + r+ 1

Writing

(3) (1 + „)<- l = (*>)((! +w)d'~] + ••• +1)
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we can rewrite this as

/,     , mi-1/2 r
<«/,-l)/2-l(1 +w)"-]4) Â[vi:.,) = r^    n[(i + ̂ -|>/2 + (i + *)

+ ■•• + (1 +wf-"')/2} dz.

Note that under the assumption that 2n + r + ] — 2d, is even, we must have an

odd number of even d/s.

It is easy to observe from (2) that Â(VJ" dJ = 0 when 2n + r + 1 - 2d, is

positive and even, since then the numerator of the integrand in (2) is a polynomial in

w of degree n + (r — l)/2 + 2Zd,/2 < 2n + r. It remains to show that if this sum is

nonpositive, we get a nonzero number. To accomplish this, we do induction on r.

Our main inductive tool is

Lemma 2. [1/(1 + z)k] + (1 + z)k is a polynomial in (z2/(\ + z)) of degree < k,

with positive coefficients.

Proof. It is easily seen that 1/(1 + z)k' + (1 + z)A is a polynomial in (z2/(l + z)),

since it is a symmetric polynomial in 1/(1 + z) and (1 + z). and hence a polynomial

in the elementary symmetric functions of (1 + z) and 1/(1 + z), which are 1 and

z2/(l + z) + 2. It remains to check that the coefficient of (z2/(l + z))' is positive.

Let a,(k) denote the coefficient of (z2/(l + z))' in [1/(1 + z)k] + (1 + z)k. Then

by writing

T-+(1+Z)A = —i—-(\+(l+z)2k)

(1+z)* (1+*)

1

:i+*)

-(2 + 2A-z+ •-■ +z2k)

the following properties are evident:

(i) a,(k) is a polynomial of degree 2/ in /t.

(ii)a,(-k) = a,(k).

(iii) a,(Ar) = Ofork < i.

(iv)a/(/)= 1.

We now have 2/ + 1 values on which to evaluate a,(k), thus determining it

completely. We find

2k2(k+l)(k-])■■■ (k + (i- l))(k-(i- 1))°'{k)--(201-'

It follows that a,(k) is positive for k > i, and 0 for 0 < k < /.

We may now prove Theorem 2 as follows: suppose some d, is odd, we may assume

it is dr. We may then expand the factor corresponding to r in a polynomial in

z2/(l + z) of degree d, — 1, with positive coefficients. If we multiply through, we

obtain a sum of terms with positive coefficients whose value is A(Vd2m  4    ) where
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2/77 takes on the values 2« — (dr — 1).2/i. In particular, for at least one of these

terms the inequality 2n + (r + 1) — 2d, *£ 0 continues to hold. By induction, this is

a sum of positive numbers, and hence nonzero.

Now suppose all the d,'s are even. If r = 1. then we are done, by Theorem 1. If

r > 1, then r is odd, and ¡» 3. The product of the terms corresponding to dr and dr_,

is again a polynomial symmetric in the 1/(1 + z)"s and the (1 + z)"s, with positive

coefficients (the fractional powers of (1 -t- z) cancel out). Again we apply the lemma

to obtain a polynomial in z2/(l + z) of degree (dr + dr_,)/2 — 1. It follows as

above that A( K/ ¿ ) is expressible as a sum of terms, with positive coefficients, in

the A(Vd2m d ), with 2w taking on the values 2/7 — (dr + dr_, — 2),... ,2/7, so

that again this sum must be positive if 2/? + r + 1 — 2d, < 0. This concludes the

proof of Theorem 2.
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