THE GENUS OF CURVES OVER FINITE FIELDS WITH MANY RATIONAL POINTS

RAINER FUHRMANN AND FERNANDO TORRES

Abstract

We prove the following result which was conjectured by Stichtenoth and Xing: let g be the genus of a projective, non-singular, geometrically irreducible, algebraic curve defined over the finite field with q^{2} elements whose number of rational points attains the Hasse-Weil bound; then either $4 g \leq(q-1)^{2}$ or $2 g=(q-1) q$.

Throughout, let k be the finite field of order q^{2}. By a curve over k we mean a projective, non-singular, geometrically irreducible, algebraic curve defined over k. This note is concerning with the genus g of maximal curves (over k); i.e., those whose number of k-rational points attains the Hasse-Weil upper bound: $q^{2}+1+2 q g$. These curves are very useful e.g. for applications to coding theory c.f. [Sti], [Tsf-Vla]. It is known that $2 g \leq(q-1) q$ ([Sti, V.3.3]), and that the Hermitian curve, defined in (2), is the only maximal curve whose genus satisfies $2 g=(q-1) q$ ([R-Sti]). Here we prove the following result which was conjectured by Xing and Stichtenoth in [X-Sti].

Theorem 1. Let \mathcal{X} be a maximal curve over k of genus g. Then

$$
4 g \leq(q-1)^{2}, \quad \text { or } \quad 2 g=(q-1) q .
$$

We prove this theorem by using [X-Sti, Prop. 1], [R-Sti, Lemma 1] and a particular case of the approach of Stöhr and Voloch [SV] to the Hasse-Weil bound. In Remark 1 we point out another proof of the aforementioned Rück and Stichtenoth characterization of the Hermitian curve [R-Sti]. We recall that Hirschfeld, Storme, Thas and Voloch also stated a characterization of Hermitian curves by using some results from [SV] (see [HSTV]). We use ideas from the proof of [HSTV, Lemma 1]. In [FT] is considered the case of maximal curves whose genus is bounded from above by $(q-1)^{2} / 4$.

We are indebted to Professor J.F. Voloch for pointing out to us that the proof of the theorem above in the previous version of this note was incomplete.

[^0]Let \mathcal{X} be a maximal curve of genus g over k. The starting point is the fact that there exists a k-rational point $P_{0} \in \mathcal{X}$ such that q and $q+1$ are non-gaps at P_{0} ([X-Sti, Prop. 1]). Thus the linear series

$$
\mathcal{D}=\mathcal{D}_{\mathcal{X}}:=\left|(q+1) P_{0}\right|
$$

is simple and g and the dimension $N \geq 2$ of \mathcal{D} can be related to each other via Castelnuovo's genus bound for curves in projective spaces [C], [ACGH, p. 116], [Rath, Cor. 2.8]. Therefore

$$
\begin{equation*}
2 g \leq M(q-(N-1)+e), \tag{1}
\end{equation*}
$$

where M is the biggest integer $\leq q /(N-1)$ and $e=q-M(N-1)$.
Lemma 1. (cf. [X-Sti, Prop. 3]) If $N \geq 3$, then $4 g \leq(q-1)^{2}$.
Proof. From (1) we have

$$
2 g \leq(q-e)(q-(N-1)+e) /(N-1) \leq(2 q-(N-1))^{2} / 4(N-1)
$$

and the result follows.
Proof of Theorem 1. Let \mathcal{X} be a maximal curve over k with $4 g>(q-1)^{2}$. Then $N=2$ by the previous lemma. The following notation and results are from [SV].

- $0=j_{0}<j_{1}(P)<j_{2}(P)$: the (\mathcal{D}, P)-order sequence at $P \in \mathcal{X}$;
- $0=\epsilon_{0}<1=\epsilon_{1}<\epsilon_{2}$: the orders of \mathcal{D};
- R the ramification divisor of \mathcal{D}; we have $v_{P}(R) \geq j_{2}(P)-\epsilon_{2}$ and

$$
\operatorname{deg}(R)=\left(\epsilon_{0}+\epsilon_{1}+\epsilon_{2}\right)(2 g-2)+3(q+1)
$$

- $\nu_{0}=0<\nu_{1} \in\left\{1, \epsilon_{2}\right\}$ the q^{2}-Frobenius orders;
- S the q^{2}-Frobenius divisor; we have $v_{P}(S) \geq j_{1}(P)+\left(j_{2}(P)-\nu_{1}\right)$ for all $P \in \mathcal{X}(k)$ and

$$
\operatorname{deg}(S)=\nu_{1}(2 g-2)+\left(q^{2}+2\right)(q+1)
$$

We claim that $\nu_{1}=\epsilon_{2}=q$. Indeed, by [R-Sti, Lemma 1], $j_{2}(P)=q+1$ for any $P \in \mathcal{X}(k)$ and thus for such points $v_{P}(S) \geq q+1-\nu_{1}$. It follows that

$$
\operatorname{deg}(S)=\nu_{1}(2 g-2)+\left(q^{2}+2\right)(q+1) \geq\left(q+1-\nu_{1}\right)\left(q^{2}+1+2 q g\right)
$$

after some computations we get

$$
(q-1)\left(\nu_{1}(q+1)-q\right) \geq 2 g\left(q^{2}-\nu_{1}(q+1)+2 q\right)
$$

so that $\nu_{1} \geq q$ and $\nu_{1}=\epsilon_{2} \leq q+1$. We have that $\epsilon_{2}=q$ by the p-adic criterion and the claim follows.
Finally, $v_{P}(R) \geq 1$ for any $P \in \mathcal{X}(k)$ so that

$$
\operatorname{deg}(R)=(1+q)(2 g-2)+3(q+1) \geq q^{2}+1+2 q g
$$

i.e. $2 g \geq(q-1) q$ and the result follows as we already remarked that $2 g \leq(q-1) q$.

Remark 1. We close this note by proving that a maximal curve of genus $(q-1) q / 2$ is k-isomorphic to the so-called Hermitian curve:

$$
\begin{equation*}
y^{q}+y=x^{q+1} \tag{2}
\end{equation*}
$$

The proof is inspired on the example stated in [SV, p. 16]. Let $P_{0} \in \mathcal{X}(k)$ and $x, y \in k(\mathcal{X})$ such that

$$
\operatorname{div}_{\infty}(x)=q P_{0} \quad \text { and } \quad \operatorname{div}_{\infty}(y)=(q+1) P_{0}
$$

Then by the Riemann-Roch theorem the k-dimension of the Riemann-Roch space $\mathcal{L}\left(q(q+1) P_{0}\right)$ is equal to $(q+1)(q+2) / 2$. Since

$$
\#\left\{x^{i} y^{j}:(i, j) \in \mathbb{N}_{0}^{2}, i q+j(q+1) \leq q(q+1)\right\}=\frac{(q+1)(q+2)}{2}+1
$$

there exists a non-trivial k-linear relation:

$$
F=F(x, y)=\sum_{i q+j(q+1) \leq q(q+1)} a_{i, j} x^{i} y^{j}=0,
$$

where $a_{q+1,0} \neq 0$ and $a_{0, q} \neq 0$. Let us assume $a_{0, q}=1$ and hence

$$
\begin{equation*}
F=y^{q}+a_{q+1,0} x^{q+1}+G=0 \tag{3}
\end{equation*}
$$

where

$$
G=G(x, y)=\sum_{i q+j(q+1)<q(q+1)} a_{i, j} x^{i} y^{j}
$$

Thus \mathcal{X} is k-isomorphic to the plane curve defined by $F=0$. The fact that $\nu_{1}=q$ means that

$$
\begin{equation*}
y^{q^{2}}-y=D_{x} y\left(x^{q^{2}}-x\right) \tag{4}
\end{equation*}
$$

where $F_{x}+F_{y} D_{x} y=0, F_{x}$ and F_{y} being the partial derivatives with respect to the variables x and y respectively. Observe that $F_{y} \neq 0$ as \mathcal{X} is non-singular. From (3) and (4) we obtain

$$
-a_{q+1,0}^{q} x^{q^{2}+q}-G^{q}-y=D_{x} y\left(x^{q^{2}}-x\right)
$$

By taking a particular k-rational point of the curve, says $P_{1}=(a, b) \neq P_{0},-a_{q+1,0}^{q} a^{1+q}-$ $G(a, b)-b=0$. It follows from (3) that $a_{q+1,0} \in \mathbb{F}_{q}$ and thus we can assume $a_{q+1,0}=-1$ as the norm function $\mathbb{F}_{q^{2}} \rightarrow \mathbb{F}_{q}$ is surjective. So far we have the following relations:

$$
\begin{equation*}
y^{q}+G=x^{q+1}, \quad G_{x}+G_{y} D_{y} x=x^{q} . \tag{5}
\end{equation*}
$$

Let v denote the valuation associated to P_{0}. From (4) $v\left(D_{x} y\right)=-q^{2}$ and hence $v\left(x^{q}-G_{x}\right)=v\left(x^{q}\right)=q^{2}$; it follows from (5) that $v\left(G_{y}\right)=0$. We deduce that $G_{y}=$ $a_{0,1} \neq 0$. Thus once again from (4) and (5)

$$
a_{0,1} x^{q^{2}+q}-a_{0,1} G^{q}-a_{0,1} y=x^{q^{2}+q}-x^{q+1}-G_{x} x^{q^{2}}+G_{x} x,
$$

and so $a_{0,1}=1, G_{x}=0$. Finally $D_{y} x=x^{q}$ and thus $y^{q^{2}}-y=x^{q}\left(x^{q^{2}}-x\right)$ gives

$$
\left(y^{q}+y-x^{q+1}\right)^{q}=y^{q}+y-x^{q+1}
$$

and the remark follows.

References

[ACGH] E. Arbarello, M. Cornalba, P.A., Griffiths and J. Harris, "Geometry of algebraic curves", Vol. I, Springer-Verlag, New York 1985.
[C] G. Castelnuovo, Ricerche di geometria sulle curve algebriche, Atti. R. Acad. Sci. Torino 24 (1889), 196-223.
[FT] R. Furhmann and F. Torres, Curves over finite fields with the maximal number of rational points, in preparation.
[HSTV] J.W.P. Hirschfeld, L. Storme, J.A. Thas and J.F. Voloch, A characterization of Hermitian curves, J. Geom. 41 (1991), 72-78.
[Rath] J. Rathmann, The uniform position principle for curves in characteristic p, Math. Ann. 276 (1987), 565-579.
[R-Sti] H.G. Rück and H. Stichtenoth, A characterization of Hermitian function fields over finite fields, J. reine. angew. Math. 457 (1994), 185-188.
[Sti] H. Stichtenoth, "Algebraic functions fields and codes", Springer-Verlag, Berlin, 1993.
[SV] K.O. Stöhr and J.F. Voloch, Weierstrass points and curves over finite fields, Proc. London Math. Soc. (3) 52 (1986), 1-19.
[Tsf-Vla] M. Tsfasman and S.G. Vladut, "Algebraic-Geometric Codes", Kluwer Academic Publishers, Dordrecht-Boston-London 1991.
[X-Sti] C. Xing and H. Stichtenoth, The genus of maximal functions fields, Manuscripta Math. 86 (1995), 217-224.

Fachbereich 6 Mathematik und Informatik Universität Essen, W - 4300 Essen 1, FRG
E-mail address: rfuhr@de.ibm.com

Mathematics Section ICTP, P.O. Box 586-34100, Trieste-Italy
E-mail address: feto@ ictp.trieste.it

[^0]: 2000 Mathematics Subject Classification: Primary 11G20; Secondary 14G05, 14G15.
 Key words and phrases: finite field, the Hasse-Weil bound, curves over finite fields with many points.

 The second author was supported by a grant from the International Atomic Energy Agency and UNESCO.

 Manuscripta Math. 89 (1996), 103-106.
 Revised version: October 2009.

