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Abstract. We prove the following result which was conjectured by Stichtenoth and

Xing: let g be the genus of a projective, non-singular, geometrically irreducible,

algebraic curve defined over the finite field with q
2 elements whose number of rational

points attains the Hasse-Weil bound; then either 4g ≤ (q − 1)2 or 2g = (q − 1)q.

Throughout, let k be the finite field of order q2. By a curve over k we mean a projective,

non-singular, geometrically irreducible, algebraic curve defined over k. This note is

concerning with the genus g of maximal curves (over k); i.e., those whose number of

k-rational points attains the Hasse-Weil upper bound: q2 + 1 + 2qg. These curves are

very useful e.g. for applications to coding theory c.f. [Sti], [Tsf-Vla]. It is known

that 2g ≤ (q − 1)q ([Sti, V.3.3]), and that the Hermitian curve, defined in (2), is the

only maximal curve whose genus satisfies 2g = (q − 1)q ([R-Sti]). Here we prove the

following result which was conjectured by Xing and Stichtenoth in [X-Sti].

Theorem 1. Let X be a maximal curve over k of genus g. Then

4g ≤ (q − 1)2 , or 2g = (q − 1)q .

We prove this theorem by using [X-Sti, Prop. 1], [R-Sti, Lemma 1] and a particular case

of the approach of Stöhr and Voloch [SV] to the Hasse-Weil bound. In Remark 1 we

point out another proof of the aforementioned Rück and Stichtenoth characterization

of the Hermitian curve [R-Sti]. We recall that Hirschfeld, Storme, Thas and Voloch

also stated a characterization of Hermitian curves by using some results from [SV] (see

[HSTV]). We use ideas from the proof of [HSTV, Lemma 1]. In [FT] is considered the

case of maximal curves whose genus is bounded from above by (q − 1)2/4.

We are indebted to Professor J.F. Voloch for pointing out to us that the proof of the

theorem above in the previous version of this note was incomplete.
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Let X be a maximal curve of genus g over k. The starting point is the fact that there

exists a k-rational point P0 ∈ X such that q and q+1 are non-gaps at P0 ([X-Sti, Prop.

1]). Thus the linear series

D = DX := |(q + 1)P0|

is simple and g and the dimension N ≥ 2 of D can be related to each other via

Castelnuovo’s genus bound for curves in projective spaces [C], [ACGH, p. 116], [Rath,

Cor. 2.8]. Therefore

(1) 2g ≤ M(q − (N − 1) + e) ,

where M is the biggest integer ≤ q/(N − 1) and e = q −M(N − 1).

Lemma 1. (cf. [X-Sti, Prop. 3]) If N ≥ 3, then 4g ≤ (q − 1)2.

Proof. From (1) we have

2g ≤ (q − e)(q − (N − 1) + e)/(N − 1) ≤ (2q − (N − 1))2/4(N − 1) ,

and the result follows. �

Proof of Theorem 1. Let X be a maximal curve over k with 4g > (q − 1)2. Then

N = 2 by the previous lemma. The following notation and results are from [SV].

• 0 = j0 < j1(P ) < j2(P ): the (D, P )-order sequence at P ∈ X ;

• 0 = ǫ0 < 1 = ǫ1 < ǫ2: the orders of D;

• R the ramification divisor of D; we have vP (R) ≥ j2(P )− ǫ2 and

deg(R) = (ǫ0 + ǫ1 + ǫ2)(2g − 2) + 3(q + 1) ;

• ν0 = 0 < ν1 ∈ {1, ǫ2} the q2-Frobenius orders;

• S the q2-Frobenius divisor; we have vP (S) ≥ j1(P )+(j2(P )−ν1) for all P ∈ X (k)

and

deg(S) = ν1(2g − 2) + (q2 + 2)(q + 1) .

We claim that ν1 = ǫ2 = q. Indeed, by [R-Sti, Lemma 1], j2(P ) = q + 1 for any

P ∈ X (k) and thus for such points vP (S) ≥ q + 1− ν1. It follows that

deg(S) = ν1(2g − 2) + (q2 + 2)(q + 1) ≥ (q + 1− ν1)(q
2 + 1 + 2qg) ;

after some computations we get

(q − 1)(ν1(q + 1)− q) ≥ 2g(q2 − ν1(q + 1) + 2q)

so that ν1 ≥ q and ν1 = ǫ2 ≤ q + 1. We have that ǫ2 = q by the p-adic criterion and

the claim follows.

Finally, vP (R) ≥ 1 for any P ∈ X (k) so that

deg(R) = (1 + q)(2g − 2) + 3(q + 1) ≥ q2 + 1 + 2qg

i.e. 2g ≥ (q − 1)q and the result follows as we already remarked that 2g ≤ (q − 1)q.
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Remark 1. We close this note by proving that a maximal curve of genus (q − 1)q/2 is

k-isomorphic to the so-called Hermitian curve:

(2) yq + y = xq+1 .

The proof is inspired on the example stated in [SV, p. 16]. Let P0 ∈ X (k) and

x, y ∈ k(X ) such that

div∞(x) = qP0 and div∞(y) = (q + 1)P0 .

Then by the Riemann-Roch theorem the k-dimension of the Riemann-Roch space

L(q(q + 1)P0) is equal to (q + 1)(q + 2)/2. Since

#{xiyj : (i, j) ∈ N
2
0, iq + j(q + 1) ≤ q(q + 1)} =

(q + 1)(q + 2)

2
+ 1 ,

there exists a non-trivial k-linear relation:

F = F (x, y) =
∑

iq+j(q+1)≤q(q+1)

ai,jx
iyj = 0 ,

where aq+1,0 6= 0 and a0,q 6= 0. Let us assume a0,q = 1 and hence

(3) F = yq + aq+1,0x
q+1 +G = 0 ,

where

G = G(x, y) =
∑

iq+j(q+1)<q(q+1)

ai,jx
iyj .

Thus X is k-isomorphic to the plane curve defined by F = 0. The fact that ν1 = q

means that

(4) yq
2

− y = Dxy(x
q2 − x)

where Fx + FyDxy = 0, Fx and Fy being the partial derivatives with respect to the

variables x and y respectively. Observe that Fy 6= 0 as X is non-singular. From (3)

and (4) we obtain

−aqq+1,0x
q2+q −Gq − y = Dxy(x

q2 − x) .

By taking a particular k-rational point of the curve, says P1 = (a, b) 6= P0, −aqq+1,0a
1+q−

G(a, b)−b = 0. It follows from (3) that aq+1,0 ∈ Fq and thus we can assume aq+1,0 = −1

as the norm function Fq2 → Fq is surjective. So far we have the following relations:

(5) yq +G = xq+1 , Gx +GyDyx = xq .

Let v denote the valuation associated to P0. From (4) v(Dxy) = −q2 and hence

v(xq − Gx) = v(xq) = q2; it follows from (5) that v(Gy) = 0. We deduce that Gy =

a0,1 6= 0. Thus once again from (4) and (5)

a0,1x
q2+q − a0,1G

q − a0,1y = xq2+q − xq+1 −Gxx
q2 +Gxx ,

and so a0,1 = 1, Gx = 0. Finally Dyx = xq and thus yq
2

− y = xq(xq2 − x) gives

(yq + y − xq+1)q = yq + y − xq+1
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and the remark follows.
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