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Abstract This paper studies the geodesic diameter of polygonal domains having A
holes and n corners. For simple polygons (i.e., h = 0), the geodesic diameter is
determined by a pair of corners of a given polygon and can be computed in linear
time, as shown by Hershberger and Suri. For general polygonal domains with # > 1,
however, no algorithm for computing the geodesic diameter was known prior to this
paper. In this paper, we present the first algorithms that compute the geodesic diameter
of a given polygonal domain in worst-case time 0’ or O’ (logn + h)). The
main difficulty unlike the simple polygon case relies on the following observation
revealed in this paper: two interior points can determine the geodesic diameter and in
that case there exist at least five distinct shortest paths between the two.
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1 Introduction

A polygonal domain P with h holes and n corners is a connected and closed subset of
R? having /& holes whose boundary consists of 4 + 1 simple closed polygonal chains
of n total line segments. Given a polygonal domain P, the geodesic distance d(p, q)
between two points p and g of P is defined as the length of a shortest path that connects
p and g and stays within P.

This paper addresses the geodesic diameter problem in polygonal domains having
one or more holes. The geodesic diameter diam(P) of domain P is defined as the
largest possible geodesic distance between any two points of P, that is, diam(P) =
max; ep d(s, 1).

For simple polygons (i.e., domains with no hole), the geodesic diameter has been
extensively studied. Chazelle [7] provided the first O (n?)-time algorithm comput-
ing the geodesic diameter of a simple polygon. Afterwards, Suri [20] presented an
O (nlogn)-time algorithm that solves the all-geodesic-farthest neighbors problem,
computing the farthest neighbor of every corner and thus finding the geodesic diam-
eter. At last, Hershberger and Suri [12] showed that the diameter can be computed in
linear time using fast matrix search techniques.

On the other hand, the geodesic diameter of a domain having one or more holes
is less understood. Mitchell [16] has posed an open problem asking an algorithm
for computing the geodesic diameter of a polygonal domain. However, even for the
corner-to-corner diameter max, ycy d(u, v), where V denotes the set of corners of
‘P, we know nothing better than a brute-force algorithm that takes 0 (n? logn) time,
checking all the geodesic distances between every pair of corners.! Prior to our results,
there was no known algorithm for computing the geodesic diameter in domains with
holes. We should also mention that Koivisto and Polishchuk [14] had claimed an
improved algorithm after a preliminary report of our work [6], but it was shown to be
a failed trial through conversations with the authors.?

This fairly wide gap between simple polygons and polygonal domains with holes
is seemingly due to the uniqueness of the shortest path between any two points. When
a domain P has no hole, it is well known that there is a unique shortest path between
any two points [10]. Using this uniqueness, one can show that the diameter diam(P)
is realized by a pair of corners [12,20]. For general polygonal domains, however,
this is not the case. In this paper, we exhibit several examples where the diameters
are realized by non-corner points on P or even by interior points of P (see Fig. 1).
Such examples were constructed based on the multiplicity of shortest paths and, to
our best knowledge, never known prior to this work. This observation also shows an
immediate difficulty in devising any exhaustive algorithm since one sees no intuitive
discretization of the search space.

The status of the geodesic center problem is also similar. A point in P is defined as
a geodesic center if it minimizes the maximum geodesic distance from it to any other
point of P. Asano and Toussaint [3] introduced the first O (n* log n)-time algorithm

I' Personal communication with Joseph S. B. Mitchell.

2 Personal communication with Valentin Polishchuk.
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Fig.1 Three polygonal domains where the geodesic diameter is determined by a pair (s*, *) of non-corner
points; gray-shaded regions depict the interior of the holes and dark gray segments depict the boundary
9P. Recall that P, as a set, contains its boundary 7P. a Both s* and r* lie on 37P. There are three shortest
paths between s* and 7*. In this domain, there are two (symmetric) diametral pairs (only one is depicted for
clarity). b s* € 9P and t* € int P. Three triangular holes are placed in a symmetric way, obtaining four
shortest paths between s* and 7*. ¢ Both s™ and ¢* lie in the interior int . Here, the five holes are packed
like jigsaw puzzle pieces, forming narrow corridors (dark gray paths) and two empty, regular triangles.
Observe that d(u, v1) = d(uy, vp) = d(uz, vo) = d(uy, v3) = d(u3, v3) = d(u3, vy). The points s* and
t* lie at the centers of the triangles formed by the u; and the v;, respectively. There are six shortest paths
between s* and r*.

for computing the geodesic center of a simple polygon (i.e., when 2 = 0), and Pollack
et al. [19] improved it to O (nlogn) time. As with the diameter problem, there is no
known algorithm for domains with holes. See O’Rourke and Suri [18] and Mitchell [16]
for more references on the geodesic diameter/center problem.

Since the geodesic diameter/center of a simple polygon is determined by its corners,
one can exploit the geodesic farthest-site Voronoi diagram of the set V of corners to
compute the diameter/center, which can be built in O(nlogn) time [2]. Recently,
Bae and Chwa [4] presented an O (nk log?(n + k))-time algorithm for computing the
geodesic farthest-site Voronoi diagram of k sites in polygonal domains with holes.
This result can be used to compute the geodesic diameter max, 4es d(p, ¢) of a finite
set S of points in P. However, this approach cannot be directly used for computing
diam(P) without any characterization of the diameter. Moreover, when S = V/, this
approach is no better than the brute-force O (n* log n)-time algorithm for computing
the corner-to-corner diameter max,, yecv d(u, v).

In this paper, we present the first algorithms that compute the geodesic diameter
of a given polygonal domain in O (n”73) or O (n” (logn + h)) time in the worst case.
Our new geometric results underlying the algorithms show that the existence of any
diametral pair consisting of non-corner points implies multiple shortest paths between
the pair; among other results, we show that if (s, t) is a diametral pair and both s and
t lie in the interior of P, then there are at least five shortest paths between s and t.

Some analogies between polygonal domains and convex polytopes in R3 can be
seen. O’Rourke and Schevon [17] proved that if the geodesic diameter on a con-
vex 3-polytope is realized by two non-corner points, then at least five shortest paths
exist between the two; see also Zalgaller [21] for simpler arguments. Based on this
observation, they presented an O (n'* log n)-time algorithm for computing the geo-
desic diameter on a convex 3-polytope. Afterwards, the time bound was improved
to O(n®logn) by Agarwal et al. [1] and recently to O(n’ logn) by Cook IV and
Wenk [9].
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The rest of the paper is organized as follows: after introducing preliminary defin-
itions and concepts in Sect. 2, we investigate local maxima of the lower envelope of
convex functions in Sect. 3, resulting in Theorem 1. Section 4 extensively exploits the
intermediate result to show lower bounds on the number of shortest paths between a
diametral pair for every possible case, and then Sect. 5 describes our algorithms for
the geodesic diameter. We finally conclude the paper with a summary, some remarks,
and open issues in Sect. 6. Also, we exhibit several examples that cover all possible
combinatorial cases in Appendix 1.

2 Preliminaries

Throughout the paper, we frequently use several topological concepts such as open
and closed subsets, neighborhoods, and the boundary d A and the interior int A of a
set A; unless stated otherwise, all of them are supposed to be derived with respect to
the standard topology on R4 with the Euclidean norm || - || for fixed d > 1. We also
denote the straight line segment joining two points a, b by ab.

A polygonal domain P with h holes and n corners is a connected and closed subset
of R? with & holes whose boundary 37 consists of / + 1 simple closed polygonal
chains of n total line segments. The boundary 0P of a polygonal domain P is regarded
as a series of obstacles so that any feasible path in P is not allowed to cross 0P. The
geodesic distance d(p, gq) between any two points p, ¢ in a polygonal domain P is
defined as the length of a shortest feasible path between p and g, where the length
of a path is the sum of the Euclidean lengths of its segments. It is well known from
earlier work [15] that there always exists a shortest feasible path between any two
points p, g € P, and thus the geodesic distance function d(-, -) is well defined. The
geodesic diameter diam(P) of a polygonal domain P is defined as the largest geodesic
distance between any two points of P, that is,

diam(P) = max d(s, 7).
s,teP

A pair (s, t) of points in P that realizes the geodesic diameter diam(P) is called a
diametral pair.

Shortest Path Map. Let V be the set of all corners of P and 7 (s, ) be a shortest
path between s € P and t € P. Such a path 7 (s, t) is represented as a sequence
(s, t) =(s,vq,..., v, t)forsomevy, ..., vy € V;thatis,apolygonal chain through
a sequence of corners [15]. Note that we can have k = 0 when d(s,t) = ||s — 7]
If two paths (with possibly different endpoints) have the same sequence of corners
(v1, ..., V), then they are said to have the same combinatorial structure.

The shortest path map SPM(s) for a fixed s € P is a decomposition of P into cells
such that every point in a common cell can be reached from s by shortest paths of the
same combinatorial structure. Each cell o (v) of SPM(s) is associated with a corner
v € V which is the last corner of 7 (s, ¢) for any ¢ in the cell o (v). We also define the
cell o (s) as the set of points ¢ € P such that (s, t) passes through no corner of P, so

3 We reserve the term “vertex” for O-dimensional faces of subdivisions of a certain space.
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7 (s, ) = st. Each edge of SPM(s) either belongs to 9P or is an arc on the boundary
of two incident cells o (v1) and o (v2) determined by two corners vy, v € V U {s}.
Similarly, each vertex of SPM(s) is a vertex of P or is determined by at least three
distinct corners vy, vy, v3 € V U {s}.

Note that, for fixed s € P, a point farthest from s lies at either (1) a vertex of
SPM(s), (2) an intersection between the boundary 9P and an edge of SPM(s), or (3) a
corner in V. The shortest path map SPM(s) has O (r) total number of cells, edges, and
vertices and can be computed in O (n log n) time using O (n log n) working space [13].
For more details on shortest path maps, see [13,15,16].

Path-Length Function. If 7 (s, t) # st, then there are two corners u, v € V such that
u and v are the first and last corners along 7 (s, ¢) from s to t, respectively. Here, the
path 7 (s, t) is formed as the union of su, vf and a shortest path 7 (u, v) from u to v.
Note that # and v are not necessarily distinct. In order to realize such a path, we assert
that s is visible from u and ¢ is visible from v. That is, s € VR(u) and r € VR(v),
where VR(p) for any p € P is defined to be the set of all points g € P such that
Pq C P, also called the visibility region of p € P.

We now define the path-length function len, , : VR(u#) x VR(v) — R for any fixed
pair of corners u, v € V to be

leny (s, t) = |ls —u|l +d(u, v) + v —1].

That is, len, (s, t) represents the length of paths from s to ¢ that have a common
combinatorial structure; going straight from s to u, following a shortest path from u
to v, and going straight to 7. Also, unless d(s, t) = ||s — ¢|| (equivalently, s € VR(?)),
the geodesic distance d(s, t) can be expressed as the pointwise minimum of some
path-length functions:

d(s, 1) = min len, (s, 1).
ueVR(s), veVR(1)

Consequently, we have two possibilities for a diametral pair (s*, 7*); either we have
d(s*, t*) = ||s* — t*|| or the pair (s*, t*) is a local maximum of the lower envelope
of several path-length functions. In the following, we will mainly study the latter case,
since the former can be easily handled.

3 Local Maxima of the Lower Envelope of Convex Functions

In this section, we give a property of the lower envelope of a family of convex functions
which will afterwards be used in our geodesic diameter environment. We start with
a basic observation on the intersection of hemispheres on a unit hypersphere in the
d-dimensional space R?. For any fixed positive integer d, let S~ ! := {x € R? |
x|l = 1} be the unit hypersphere in R? centered at the origin. A closed (or open)
hemisphere on S9! is defined to be the intersection of S?~! and a closed (open,
respectively) half-space of RY bounded by a hyperplane that contains the origin.

@ Springer
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We call a k-dimensional affine subspace of RY a k-flaz. Note that a hyperplane in
R? is a (d — 1)-flat and a line in R is a 1-flat. Also, the intersection of S¢~! and a
k-flat through the origin in R¢ is called a great (k — 1)-sphere on S~!. Note that a
great 1-sphere is called a great circle and a great O-sphere consists of two antipodal
points.

Lemma 1 For any two positive integers d and m < d, a set of any m closed hemi-
spheres on SV has a nonempty common intersection. Moreover, if the intersection
has an empty interior relative to S%~', then it includes a great (d — m)-sphere on
§d=1,

Proof We only give a proof for the second statement, which implies the first. The
case of d = 1 is trivial, so we assume d > 1. Let Hy,..., H, be any m closed
hemispheres on S9!, and h; be the hyperplane through the origin in R such that

H; lies in a closed half-space supported by #;. In this proof, we denote by ﬁi the
open hemisphere, defined to be I?,- = H; \ h;. Also, let H; := ﬂliifj H; and

Hj =<, Hi
Suppose that ’I/j(m = (). Let k be the smallest integer such that 7/-\[/{ = (). By definition,

k > 2 and 7/%;{_1 # ). Note that the intersection of any & — 1 non-parallel hyperplanes
of R? includes a (d — k + 1)-flat and each h; contains the origin. Hence, (;;-;_; /i
includes a (d — k + 1)-flat through the origin and thus Hj_1 includes a greaf (d —k)-
sphere G on S?~!. Since x € G implies —x € G for any x € S9~!, we must have

G C hy, in order to have an empty intersection Hk This implies that () 1<i<k hi also
includes a (d — k + 1)-flat through the origin, and further that ﬂ1<l<m h; includes
a (d — m + 1)-flat through the origin. We hence conclude that H,, = (<, Hi

includes a great (d — m)-sphere on S9!, O
Using Lemma 1 we prove the following theorem.

Theorem 1 For any fixed positive integer d, let F be a finite family of real-valued
convex functions defined on a convex subset C C R? and g(x) := minser f(x) be
their pointwise minimum. Suppose that g attains a local maximum at x* € C and
there are exactly m < d functions fi, ..., fm € F suchthat f;(x*) = g(x*) for each
i =1,...,m. Then there exists a (d + 1 —m)-flat ¢ C R? through x* such that g is
constant on ¢ N U for some neighborhood U C R¢ of x* with U C C.

Proof First, we give an overview of our proof for the theorem. All functions f € F
other than f1, ..., f;;, must satisfy f(x) > g(x) in a small neighborhood of x*. In
particular, the function g is the lower envelope of the m convex functions f; in a small
neighborhood of x*. By convexity, we will show that for each i, there is a hemisphere
H; of directions in S~ in which f; does not decrease. (Note that the sphere S¢~!
represents the space of all directions in R?.) This result combined with Lemma 1 gives
that the intersection of hemispheres will be a (d 4+ 1 —m)-flat in which neither of the m
functions (nor g) can decrease. Since x* is a local maximum of g, the only possibility
is that g remains constant near x* along the flat.
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A more detailed proof is given as follows. Let x* € C and f1, ..., f;, € F beasin
the statement. For each i, consider the sublevel set L; := {x € C | fi(x) < fi(x™)}.
Here, we consider two cases: (i) x* lies in the interior of L; or (ii) on its boundary
dL;. Note that L; C C is convex since f; is a convex function. For the latter case (ii),
there exists a supporting hyperplane 4; to L; at x* since L; is convex and x* € 9L;.
Denote by hl@ the closed half-space that is bounded by /; and does not contain L;.
For the former case (i), we choose %; to be any hyperplane of R? through x* and
th to be any closed half-space supported by 4;. Then we have that f; (x*) < fi(x)
for any x € th N C, regardless of the cases; in particular for Case (i), observe that
fi(x) = fi(x*) for any x € L; by convexity so that we can choose any hyperplane
as h;.

Now, we let

Hi=f{x —x* | x € h®, |x —x*[ = 1)

be a closed hemisphere of the unit sphere S~ ! centered at the origin. Note that f; does
not decrease if we move from x* locally in any direction in H;. Since g(x*) = f; (x*)
foranyi € {1,..., m} and x™* is a local maximum of g, the intersection ﬂ;"zl H; has
an empty interior relative to §9=1: otherwise, there exists y € int ﬂ;"zl H; such that
fikx* 4+ ry) > fi(x*) foranyi € {1,...,m} and any A > O with x* + Ay € C.

Hence, by Lemma 1, (’_, H; has a nonempty intersection including a great
(d — m)-sphere G on 9=l Let ¢ be the corresponding (d — m + 1)-flat in R4
through x* defined as

¢ ={x"+1yeR?|yeGandrecR).

Consider the restriction f;|ync of f; on @ NC. Since f; is convex and ¢ is an affine
subspace (thus, convex), fi|ync is also convex and their pointwise minimum g|ync
attains a local maximum at x* € ¢ N C. On the other hand, each f;|,nc attains a local
minimum at x*; since ¢ C th, we have f; (x*) < fi(x) forany pointx € ¢NC.Hence,
glenc also attains alocal minimum at x* since g(x*) = f; (x*) foranyi € {1, ..., m}.
Consequently, g is locally constant at x* on ¢; more precisely, there is a sufficiently
small neighborhood U C R? of x* with U C C such that g is constant on U N ¢,
completing the proof. O

4 Properties of Geodesic-Maximal Pairs

We call a pair (s*,t*) € P x P maximal if (s*,t*) is a local maximum of the
geodesic distance function d. That is, (s*, t*) is maximal if and only if there are two
neighborhoods Uy, U; C R2 of s* and of 1*, respectively, such that for any s € U; NP
andany t € U;NP wehaved(s*, t*) > d(s, ). Clearly, any diametral pair is maximal.

Consider any maximal pair (s*, #*) in P. Let T1(s*, t*) be the set of all shortest
paths from s* to #*. Then each path 7 € TI(s*, t*) is associated with a pair of corners
(u, v) that are its first and last corners as discussed in Sect. 2. Note that such a pair
(u, v) of corners always exists for any 7w € I1(s*, t*); even if d(s*, t*) = ||s* — ¢*||,
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then both endpoints s* and * must be corners in V by its maximality. We now focus
on the set of such pairs of the first and last corners, defined to be

V(s*, t*) == {(u,v) | A € TI(s*, ¥)

s.t. u, v € V are the first and last corners along w, resp.}.

We set V(s*, t*) = {(u1, v1), - - ., (Um, Um)}, where m is the cardinality of V(s*, *),
and the pairs of vertices are sorted in no particular order. Also, we let

‘/S* = {ulv"'5um}a Vl‘* = {v15"'7vm}'

Some immediate bounds are |IT(s*, r*)| > m, |Vs+| < m, and |V;+| < m. Observe
that it is not true that we always have the equality |T1(s*, r*)| = m; in some cases,
there can be multiple shortest paths between a pair of corners. In the following, we
show a tight bound on the cardinality m of the set V(s*, t*), provided that (s*, t*) is
maximal.

Let E be the set of all sides of P without their endpoints and 5 be their union. Note
that B = 9P\ V is the boundary of P except the corners V. The goal of this section is
to prove the following theorem, which is the main combinatorial result of this paper.

Theorem 2 Suppose that (s*, t*) is a maximal pair in P, and that V(s*, t*), Vg, and
Vi« are defined as above. Then we have the following implications.

(V-V) s*eV, t*eV implies  |V(s*,t*)| > 1, |Vg| > 1, | Vx| > 1;
(V-B) s*eV, t*eB implies |V (s*,t*)| > 2, |Vex| > 1, | Vx| > 2;
V) s*eV, t* € intP  implies |V(s*, t*)] > 3, | V| > 1, | Vx| > 3;
(B-B) s*eB, t*eB  implies |[V(s*,t%)] >3, |Ves| > 2, |Vis| > 2;
B-I) s*ebh t* €int'’P  implies |V(s*,t*)| >4, | V| > 2, | Vx| > 3;
I-I) s*eimtP, t*eimtP implies |V(s*, t*)| > 5, |Vsx| >3, Vx| > 3.

Moreover, each of the above bounds is tight.

Together with the bound |TT(s*, )| > |V(s*, t*)|, Theorem 2 immediately implies
tight lower bounds on the number of shortest paths between any maximal pair.

Corollary 1 Forany p € P, let§(p) :=0ifpe V;8(p) :=1ifp e B;5(p):=2
if p € intP. If (s*, t*) is a maximal pair in P, then we have

ITI(s™, 1%)] = 8(s™) +8(t™) + 1.

Moreover, the above bound is tight.

To see the tightness of the bounds, we present examples with remarks in Fig. 1 and
Appendix 1. In particular, one can easily see the tightness of the bounds on | V| and
| V=] from shortest path maps SPM(s*) and SPM(¢*), when V U {s*, t*} is in general
position.

We first give an overview of the proof. The general reasoning is roughly the same for
all the different scenarios, and we thus focus on the case in which (s*, #*) is a maximal
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pair and both s* and #* are interior points (Case (I-I)). Regard the geodesic distance
function d as a four-variate function in a small convex neighborhood of (s*, t*). As
mentioned in Sect. 2, the geodesic distance is the pointwise minimum of a finite
number of path-length functions. Since the pair (s*, t*) is maximal, we will apply
Theorem 1 and obtain that the geodesic distance is constant in a flat of dimension
d+1—m =5—m,where m = |V(s*, r*)|. On the other hand, we will also show that
the geodesic distance function can only remain constant in a zero-dimensional flat (i.e.,
at a point), hence m > 5. In the other cases (boundary—interior, boundary—boundary,
etc.) the boundary of P introduces additional constraints that reduce the degrees of
freedom of the geodesic distance function. Hence, fewer paths are enough to pin the
solution.

The main technical difficulty of the proof is the fact that the path-length functions
len,, , are not globally defined. Thus, we must properly extend them in a way that all
conditions of Theorem 1 are satisfied.

4.1 Proof of Theorem 2

We start with several basic observations. The proof of Theorem 2 will be done sepa-
rately for each case.
The following lemma proves the bounds on |Vi+| and | V;+| of Theorem 2.

Lemma 2 Let (s*, t*) be a maximal pair.

1. If t* € B, then |Vix| > 2. Moreover, if t* € e € E, then there exists v € V= such
that v is off the line supporting e.
2. Ift* € intP, then |V;x| > 3 and t* lies in the interior of the convex hull of Vix.

Proof Since (s*, t*) is a maximal pair, the function dg+(¢) := d(s*, t) is maximized
att = t* on a sufficiently small subset U C P with t* € U. As discussed in Sect. 2,
if t* ¢ V, then t* must be either a vertex of SPM(s*) or an intersection point between
an edge of SPM(s*) and dP. If t* € int P, then ¢t* should fall into the former case
and hence we have at least three corners vy, vy, vz € V determining the vertex ¢* of
SPM(s*). If r* € B, then t* may also occur at the latter case. In that case, t* lies on
an edge of SPM(s*) and thus we have at least two corners vy, v2 € V determining an
edge of SPM(s™).

The other claims of the lemma can be shown as follows. If t* € intP but t* lies
out of the interior of the convex hull of V;«, then we can find another point ¢t € P
arbitrarily close to t* such that ||t — v;|| > ||t* — v;|| for every v; € V;«. This implies
that d(s*, r) > d(s*, t*), contradicting the maximality of (s*, t*). If t* € ¢ € E
but every v; € V= lies on the supporting line £ of e, then we obtain a strictly larger
distance than d(s*, *), as moving #* in a perpendicular direction to £. (Notice that a
similar argument can be also found in [17, Lemma 2.2]). O

Lemma 2 immediately implies the lower bound on |V(s*, t*)| when s* € V or

t* € V since |V(s*, t*)| > max{|Vi+|, |Vs=|}. This completes Cases (V-*). Note that
the bounds for Case (V-V) are trivial.
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From now on, we assume that neither s* nor t* is a corner of . This assumption,

together with Lemma 2, implies multiple shortest paths between s* and #*, and thus
d(s*, t*) > ||s* — t*||. Hence, as discussed in Sect. 2, any maximal pair falling into
one of Cases (B-B), (B-I), and (I-I) appears as a local maximum of the lower envelope
of some path-length functions.
Case (I-I): When both s* and t* lie in int’P. We will apply Theorem 1 to prove
Theorem 2 for Case (I-1). Recall the definition of V(s*, r*) = {(u1, v1), ..., (Um, Vm)}
andm = |V(s*, t*)|. Foreach (u;, v;) € V(s*, t*), we have the corresponding shortest
path 7; between s* and t* and len,; ,, (s*, t*) = d(s*, t*). Thus, we have at least m
functions f amongflen, , | u, v € V} such that f(s*, t*) = d(s*, t*). If the number
of such path-length functions are exactly m, we can apply Theorem 1 directly.

Unfortunately, this is not always the case. A single shortest path 7; € TI(s*, t*)
may give additional pairs (u, v) of corners with u, v € m; such that (4, v) # (u;i, v;)
and len,, , (s*, t*) = d(s*, t*). This situation can occur even when the corners of P
are in general position. Observe that this happens only when u, u;, s* or v, v;, t* are
collinear. In order to resolve this problem, we define the merged path-length functions
that satisfy all the requirements of Theorem 1 even in degenerate cases.

Recall that the combinatorial structure of each shortest path 7r; can be represented
by a sequence (#; = u; 1, ..., u;x = v;) of corners in V. We define u; to be one of
the u; ; as follows. If s* does not lie on the line ¢ through u; and u; >, then u; = u;;
otherwise, if s* € £, then uf = u;,j, where j is the largest index such that for any open
neighborhood U C R? of s* there exists a point s € (U NVR(u; ;)) \ £. Intuitively
speaking, u is the last corner of 7 that sees a neighborhood of s* (although it need
not see s*). Note that such u; always exists, and if no three of V are collinear, then
we always have either u; = u; or u; = u;>. Figure 2a illustrates how to determine
u;. Also, we define v/ in an analogous way. Let o;: VR(u;) U VR(x;) — R and
w; : VR(v)) UVR(v;) — R be two functions defined as

wis) = |18 il if s € VR(u)),
i = .
s —uill 4+ llu; — il if s € VR(u;) \ VR(u});
t—v; if 1 € VR(v)),
w;(t) == I = vill ! (vp)

It = vill + llvi —villif ¢ € VR(v;) \ VR(v)).

ST

(a) (b)

Fig. 2 a How to determine u}. (left 10 right) u] = u;1,u;2,u;3, and u; 2; Observe that in the last
two examples we have three collinear points. b For points in a small disk B centered at s* with B C
VR(u;) U VR(u;), the function «; measures the length of the shortest path from u; to the depicted points
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This allows us to define the merged path-length function f;: D; — R as
fils, 1) i= i (s) + d(u, v;) + w; (1),

where D; := (VR(u;) U VR(u;)) x (VR(v)) UVR(v;)) € P x P (see Fig. 2b). We
consider P x P as a subset of R* and each pair (s, 1) € P x P as a point in R*. Also,
we denote by (sy, sy) the coordinates of a point s € P and we write s = (s, §y) or
(s, 1) = (sx, Sy, tx, ty) by an abuse of notation. Observe that

fi(s,t) = min{len,, ,, (s, 1), lenuf,u,- (s, 1), lenui)vl( (s, 1), lenul{,v; (s, 1)}

for any (s, t) € D; if we define len, (s, #) = oo when s &€ VR(u) or t € VR(v).

Lemma 3 The following properties hold for the functions f;.

) fi(s*, t*) =d(s*, t*) foranyi € {1,...,m}.

(i1) There exists a convex neighborhood C C R* of (s*, t*) with C C ﬂlr-"zl D; such
that d(s,t) = min;e(1,.. my fi(s,t) forany (s, t) € C.

(iii) Each of the functions f; fori € {1, ..., m} is convex on C.

(iv) Foranyi € {1, ..., m}, there exists a unique line ¢; C R* through (s*, t*) € R*
such that f; is constant on £; N\ C. Moreover, there exists at most one index j # i
such that £; = (.

(v) Foranyi, j € {l,...,m},any(s,t) € C, and any neighborhoodU C C of (s, t),
there exists (s',t") € U such that fi(s,t) < fi(s',t") and fi(s,t) < f;(s', ).

Proof (i) This immediately follows from the fact that f;(s*, t*) = leny; ,, (s*, t¥).
(ii) In this proof, we extend len, , to any (s, ) € P x P where len, (s, t) = oo if
s ¢ VR(u) or t ¢ VR(v). By the definition of f;, there exists a small neighborhood
U; C D; of (s*, t*) such that f; (s, t) = min{leny, v, (s, 1), len,; ,, (s, 1), len,, (s, 1),
lenu;’vl( (s, 1)} = miny yexnv len, (s, t) forall (s, t) € U;. We claim that there exists
an open convex neighborhood C C (); U; such that for any (s, 1) € C

d(s, t) = 13}Tmﬂ(s’ 1).

To prove our claim, assume to the contrary that for every open convex neighborhood
C c R* of (s*, 1*) € R* there exist a pair (1, v) of corners and (s, ) € C such that
d(s,?) = len, ,(s,t) < min; f;(s, ). Note that none of the shortest paths m; €
I1(s*, t*) between s* and ¢* can have u and v as the first and last corners along 7;
(since, otherwise, we must have (u,v) € V(s*,¢*) and thus (u,v) = (uj, v;) for
some 1 < j < m). This implies that d(s, t) = lenu_/,vj (s,t) < min; fi(s,t) =d(s, 1),
a contradiction.

Consider a sequence C1, C3, . .. of neighborhoods of (s*, t*) € R* that converges
to the singleton {(s*, #*)}. Since there are only n? pairs of corners, there exist a fixed
pair (g, vo) of corners and a subsequence Cy,, Cy,, . .. converging to the singleton
{(s*, t*)} such that none of the s; pass through both u( and v, and for any integer
J > 0 there exists (s, 7j) € Ck; with
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d(Sj,tj) = lenL,O,UO(sj,tj) < m_in f,'(Sj,tj).
1<i<m

Since lim;_, oo (sj, ;) = (s¥,¢%), it holds that lim;_, o, d(s;, ;) = lim;_, o min;
fi(sj, t;) = d(s*, t*) by Property (i). By the sandwich theorem, we have

im leny v, (sj, 1;) = lenyg v (s™, %) = d(s™, 17).

J—>00

This implies the existence of the (;m+1)-st shortest path between s* and #* since none
of the r; € TI(s*, t*) contains both ug and vg, a contradiction.

(iii) Since the sum of convex functions is a convex function, it suffices to show that «;
and w; are convex. More precisely, for any (s1, 1), (s2,72) € Cand 0 < X < 1, we
have

fiO(s1, 1) + (1 = M) (52, 2)) = e (hsy + (1 — A)s2) + d(uj, v))
+w; (At + (1 — A)12)
< A (s1) + (1 — Vi (s2) 4 d(uf, v)) + rew; (11)
+( = Vw;(t2)
< Afilsi, 1) + (1 = 4) fi(s2, 12)

if o; and w; are convex.

We now show the convexity of «; on any convex subset C C VR(u;) U VR(u;).
Note that the convexity of w; can be shown in the same way. There are two cases:
u; = u; or u; # u;. For the former case, «; is convex on C since it measures the
Euclidean distance between u; and a given point in C. For the latter case, let £( be the
line through u;, u}, and also s*. Then C may be partitioned by £ into two regions A1
and A, where Ay =CN VR(ug) and A = C \ Aj. Note that ¢; is convex on A and
on A,. Thus, we are done by checking every point on £o N C.

Pick any s € £y N C and any line £ C R? through s. Let 6 be the angle between £

and £. If we restrict the domain of «; on £ N C, then one can check with elementary
calculus that both the derivatives of ||s — u; || + [lu; — u}|| and of ||s — u; || are equal
to c cos @ at s for some constant c. Hence, «; is smooth and convex along £. Since we
have taken any line ¢ through any point on £y N C, this suffices to prove the convexity
of o; on C.
(iv) Fix any i € {1,...,m}. Any ray y C R* with endpoint (s*, r*) € R* can be
determined by three parameters (6gx, 6y+, A) with 0 < O+, 0+ < m and A > 0 as
follows: Let y+ and y;+ be the projections of y onto the (s, sy)-plane and the (z,, 1,)-
plane, respectively. Note that yy+ is a ray in the (s, sy)-plane with endpoint s* and
v+ is a ray in the (tx, t,)-plane with endpoint ¢*. Let 6+ be the smaller angle at s*
made by y,+ and another ray starting from s* in the direction away from u;. Define 6;+
analogously with y;«, t*, and v;. The derivative of f; at (s*, t*) along y is represented
as c(cos B¢+ + A cos 6;+) for some constants A > 0 and ¢ > 0 depending only on i.
Note that the second derivative of f; at (s*, t*) along y is derived as
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Fig. 3 Tllustration to Lemma 3(iv); for any (s, ) € D; and any sufficiently small § if we pick (s', ')
such that s” is § closer to u; than s and ¢ is 8 farther from v; than ¢, then we have f;(s’,t) = fi(s,t).
Symmetrically, f; (s”,t") = f; (s, t) with ||s” —u;|| = ||s —u;|| + 8 and ||t/ — v;|| = ||t —v;|| — &

sin? G sin? O,
c " + A " .
lls* — u;l 7% — vl

Suppose that f; is constant along y locally around (s*, *). Then, its first and second
derivatives along y should be zero in a small neighborhood U C R* of (s*, t*) with
U C D;. First, we observe that A should be positive; if A = 0, then ¢t = ¢* is fixed
while s moves from s* along y,+, and hence f; does not stay constant. Since every
term of the second derivative is nonnegative and A > 0, we only obtain two solutions
(bg%, 0,+) = (0, ) or (r, 0). Consequently, we have two such rays y = (0, 7, 1) or
(r, 0, 1) such that f; remains constant along y. These two rays form a unique line
¢ C R? through (s, ¢) such that f; is constant on £; N U . See Fig. 3 for a more intuitive
and geometric description of ¢;.

The projections of ¢; onto the (sy, sy)-plane and the (z, 7,)-plane appear the lines
through s* and u; and through #* and v;, respectively. Hence, one can easily check
that f; remains constant on ¢; N D;, which completes the proof of the first part of the
claim.

We now show the second part of the claim. As observed above, we have that the
projection of £; onto the (sy, sy)-plane is the line through s* and u; . Also, the projection
of ¢; onto the (zy, t,)-plane is the line through #* and v;. Hence, £; = £; implies that
uj, uj, s* are collinear and v;, v;, t* are collinear. First, since the pairs (u;, v;) are
all distinct, we have u; # u; or v; # v;. If u; = u; and v; # v;, then one can easily
check that ¢; # £; from the geometric interpretation of £; as shown in Fig. 3. We
hence have u; # u; and v; # v;. Moreover, s* must lie in between u; and u; and
t* must lie in between v; and v; by definition; if u; lies in between u; and s*, then
the first corner of ; from s* becomes u ; since the three are collinear. Therefore, for

eachi € {1, ..., m}, there is at most one index j € {1, ..., m} such thati # j and
L =1,
(v) Pick any i, j € {1,...,m} and consider the sublevel sets L; = {(5,7) € R* |

fiG, D) < fits,t)yand L; = {(5,1) € R* | £;(5,7) < fj(s,1)}. Since f; and f; are
convex and non-constant functions, L; and L ; are closed convex sets that have (s, t)
on their boundaries. Therefore, there exist hyperplanes /; and & ; tangent to L; and
L, respectively, at (s, t). Let h,‘@ be a closed half-space bounded by #; that avoids L;
and H] == {(s',1') € th [ I¢s”,t") — (s, )|| = 1} be a closed hemisphere on the unit
sphere centered at (s, ¢). Define H J’ analogously for /.

Since H/ and H j/ are closed hemispheres with a common center, H/ N H j/ # (.

By construction, we have f;(s,t) < fi(s',¢') for any (s',¢') € H/, and f;(s,1) <
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fi(s', 1) for any (s',1') € H ]’ On the other hand, by Property (iv) of the lemma,
the equality holds only when (s’, ') lies on line £; or £ j» respectively. Therefore, for
any (s', 1) € (H/ N H]f) \ (¢; U £;), the claimed inequalities f;(s, 1) < fi(s’,¢’) and
fi(s,t) < fj(s', 1) holdstrictly. Thelasttaskistocheckthat(Hi’ﬂH]f)\(ZiUEj) # 0,
which follows by Lemma 1. O

Returning to the proof of Theorem 2, we take a convex neighborhood C of (s*, 1)
satisfying Property (ii) of Lemma 3 and apply Theorem 1. Note that Properties (i)—(iii)
of Lemma 3 ensure that the preconditions of Theorem 1 are satisfied.

Suppose that m < 5. Then, by Theorem 1, there exists at least one line £ € R*
through (s*, t*) such that d is constant on £ N C. Since (s*, t*) is a local maximum,
there exists a small neighborhood U C C of (s*, t*) such that d(s, t) < d(s*, t*) for
all (s, 7) € U. By Property (iv) of Lemma 3, at most two functions f; are constant on
£ N U. Without loss of generality, we can assume that functions f3, ..., f,, are not
constant. Since the geodesic distance function d is constant on £ N U and d(s, t) =
min;e1,....m) fi (s, 1), anyof f3, ..., f, muststrictly increase in both directions along
£. That is, for any (s',¢") € £ N U with (s',1') # (s*,t*) and for all i > 3, we
have min{ f1(s’, '), fo(s’, )} < fi(s’,t"). Thus, there exists a small neighborhood
U' C U of (s/,t) such that d(s, ) = min{fi(s, 1), fa(s, 1)} for all (s,1) € U’.
However, by Property (v) of Lemma 3, there exists a pair (s”,¢”) € U’ such that
f16', 1) < fis”, ") and fo(s', 1)) < fa(s”, "), contradicting the maximality of
(s*, t*) (see Fig. 4). Hence, we achieve a bound m = |V(s*, t*)| > 5, as claimed in
Case (I-I) of Theorem 2.

Case (B-B): When Both s* and t* Lie on B. In this case, we assume that s* € ¢, € E
and t* € ¢, € E. The outline of the proof is analogous to the above discussion for
Case (I-); the only difference is that the search space has a lower dimension.

Let p be an endpoint of e and /; be the length of ;. We denote by s(¢;) the unique
point on e such that ||s(¢s) — pll = ¢ forany 0 < & < . Thus, s: (0,1;) — e
establishes a bijection between the open interval (0, /;) C R and the segment e; C R2
except its endpoints. We also define 7(¢;), analogously. Then, we let f;: D; — R be
a function defined as the composition of f; and the two bijections:

U
Uz

(s,t) (s%t)

.(3”, t”)

Fig. 4 Proof of Theorem 2 for the (I-I) case; If d(s, ¢) is constant on £, we can find pairs of points (s”, t"")
arbitrarily close to (s*, t*) whose geodesic distance is larger than d(s*, £*)
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Fi(Cs, &) = ai(s(&)) + d(u}, v)) + @i (1(8)),

where the domain of f; is D; := s~'((VR(u}) U VR(u;)) N e) x 1~ ((VR(v)) U
VR(v;)) Ne;). We consider D; as a subset of R? and each pair (&, &) € D; as a point
inR?. Let ¢ and ¢;* be real numbers such that s* = s(¢¥) and ¢* = #(¢;*). We obtain
the analogue of Lemma 3.

Lemma 4 The following properties hold for the functions f;.

0) Fi(cr &) = d(s@0). 167 foranyi € (1,...,m).

(i1) There exists a convex neighborhood_C c R? of (¢F, ¢y with C < ﬂlm:] D; such
that d(s(8s), 1(¢)) = minjeq1,...my fi (s, &) for any (&5, &) € C.

(iii) Each of the functions f; fori € {1, ..., m} is convex on C.

(iv) If there exists a line £; C R? such that fi is constant on £; N C, then u; lies on
the line supporting es and v; lies on the line supporting e;.

(v) Foranyi € {1,...,m}, any (§, &) € C, and any neighborhood U < C of
(&5, &), there exists ({S, /) € U such that f, &, &) < f,(g“s, ).

Note that the above claims are almost identical to those of Lemma 3. The results
have been adapted taking into account that f; is the composition of f; and both ¢;
and ¢&;. Proofs follow verbatim, thus we omit them. Property (v) is the only exception:
since the degrees of freedom have decreased, we cannot certify the existence of points
arbitrarily close that increase two functions f;. Instead, we will use the second property
of Lemma 2 to lead to a contradiction.

Recall that by the first claim of Lemma 2 we have m > 2. Thus, we are done by
showing that the case m = 2 is not possible. Suppose that m = 2. Then, by Theorem 1,
there exists a line ¢ C R? through (¢, ¢) € R? such that d is constant on £ N C. By
the second claim of Lemma 2, there exists a vertex v € Vg« off the line supporting
es. Without loss of generality, we assume that v = v;. By Property (iv) of Lemma 4,
function f, cannot remain constant in any line.

Now, we proceed as in Case (I-I). Consider any small neighborhood U < C of
(¢¥, ). Any point (¢, ¢)) € €N C with (¢, &) # ({Y , ) satisfies the strict
inequality d(s (), 1(g))) = f1 ¢, ¢ < fg({s, ¢)), since f> cannot remain constant
and d is a local maximum. Thus, there exists a sufficiently small neighborhood U’ € U
of (¢4, ¢/) such that d(s(¢y), 1(8)) = f1(&s, &) forall (¢, &) € U

Now, we apply Property (v) of Lemma 4 to obtain a point (g, ¢/) arbitrarily

close to (£, ;) with strict inequality d(s(¢)), £(¢/")) > d(s(&), t () = d(s*, %),
contradicting the maximality of (s*, r*). We hence conclude that m = |V (s*, t*)| > 3
for Case (B-B) when both s* and ¢* lie on B.
Case (B-I): When s* € B and t* € intP. This case is a mixture of the two previous
cases. Without loss of generality, we can also assume that s* € ¢; € E and t* € int P.
We define s (¢5) asin Case (B-B) with s (¢;*) = s*. We now define function JA‘, :D; > R
as fl(gs’ L, by) = a;i(s(¢)) + d(”,v z) + wi(tx, ty), where D; = S_l((VR(”;) U
VR(u;)) Ney) X (VR(vl) U VR(v;)) is a subset of R3.

We obtain another analogue of Lemmas 3 and 4.
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Lemma 5 The following properties hold for the functions fl

1) fi@gr, ) =d(s(H). 1) foranyi € {1,...,m}.

(ii) There exists a convex neighborhood C C R> of (¢ *, ¥y with C € (/L D; such
that d(s(gs), 1) = minie{l,..‘,m} fi(Cs, 1) forany (&5,1) € C.

(iii) Each of the functions f, fori e {l,...,m}is convex on C.

(iv) Foranyi € {1, ..., m}, there exists a unique line £; C R> through &r 1" e R3
such that fl is constant on €; N C. Moreover; there is at most one index j # i
such that £; = Ej.

(v) Forany i, j € {1,...,m}, any (&, t) € C, and any neighborhood U C C of
(&5, 1), there exists (¢],t") € U such that Files, 1) < f,-({s/, t") and fj (&, 1) <
1igg, ).

We proceed as in Case (B-B). Suppose m < 3 and apply Theorem 1. Then we
obtain a line £ such that the geodesic distance (composed with ) is constant on
£ N C. However, since at most two functions f; can remain constant on £ by Property
(iv) of Lemma 5, there must exist a point arbitrarily close to (¢, t*) with strictly
larger function value. Details are almost identical to the previous cases, and we get
the claimed bound m = |V(s*, t*)| > 4 for Case (B-]).

The claimed bounds on |V«| and |V;«| are shown by Lemma 2, which completes
the proof of Theorem 2. O

5 Computing the Geodesic Diameter

Since a diametral pair is in fact maximal, it falls into one of the cases shown in Theo-
rem 2. In order to find a diametral pair we examine all possible scenarios accordingly.

Cases (V-*), where at least one point is a corner in V, can be handled in O (n? log n)
time by computing SPM(v) for every v € V and traversing it to find the farthest point
from v, as discussed in Sect. 2. We thus focus on Cases (B-B), (B-I), and (I-I), where
a diametral pair consists of two non-corner points.

From the computational point of view, the most difficult case corresponds to Case
(I-I) of Theorem 2. In particular, if |V«| = | V| = 5, ten corners of V are involved
and thus any exhaustive method would check O(n'?) possibilities to find maximal
pairs of this case. Observe that such a case can happen even under a general position
assumption as shown in Appendix 1(c). By Theorem 2, in Case (I-]), it is guaranteed

that there are at least five distinct pairs (u1, v1), ..., (45, vs) of corners in V such
that len,, ,, (s*, t*) = d(s*, ¢*) for any i € {1,...,5} and the system of equations
leny, v, (s, 1) = - - = len,s s (s, t) determines a O-dimensional zero set, correspond-

ing to a constant number of candidate pairs in intP x int P. On the other hand, each
path-length function len, , is an algebraic function of degree at most 4. Thus, given
five distinct pairs (u;, v;) of corners, we can compute all candidate pairs (s, ) in
O(1) time by solving the system.* For each candidate pair we compute the geodesic
distance between the pair to check its validity. Since the geodesic distance between

4 Here, we assume that fundamental operations on a constant number of polynomials of constant degree
with a constant number of variables can be performed in constant time.
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any two points s, ¢t € P can be computed in O (nlogn) time [13], we obtain a brute-
force O (n'!logn)-time algorithm, checking O(n'?) candidate pairs obtained from
all possible combinations of 10 corners in V.

As a different approach, one can exploit the SPM-equivalence decomposition of
‘P, which subdivides P into regions such that the shortest path map of any two points
in a common region are topologically equivalent [8]. It is not difficult to see that if
(s, t) is a pair of points that equalizes any five path-length functions, then both s and
t appear as vertices of the decomposition. However, the current best upper bound on
the complexity of the SPM-equivalence decomposition is O (n'°) [8], and thus this
approach hardly leads to a remarkable improvement.

Instead, we do the following for Case (I-I) with |Vs«| = 5. We choose any five
corners ui,...,u5 € V (as a candidate for the set Vi«) and overlay their shortest
path maps SPM(u;). Since each SPM(u;) has O (n) complexity, the overlay consists
of O(n?) cells. Any cell of the overlay is the intersection of five cells associated
with vy, ..., vs € V in SPM(u1), ..., SPM(us), respectively. Choosing a cell of the

overlay, we get five (possibly, not distinct) corners vy, ..., v5 and a constant number
of candidate pairs by solving the system len,, ,,(s,1) = -+ = leny, »s(s, 7). We
iterate this process for all possible tuples of five corners u, .. ., us, to obtain a total of

O (n’) candidate pairs, spending O (n’ logn) time. Note that the other subcases with
|Vg=| < 4 can be handled similarly, resulting in 0 (n®) candidate pairs.

The validity of each candidate pair (s, #) is examined by checking if the paths from
s through u; and v; to ¢ are indeed shortest. For the purpose, we evaluate its geodesic
distance d(s, t) using a two-point query structure of Chiang and Mitchell [8]. For a
fixed parameter 0 < § < 1 and any fixed ¢ > 0, one can construct, in 0(n5+10‘3+8 )
time, a data structure that supports O (n' =% log )-time two-point shortest path queries.
The total running time is O (n” logn) + O > T1%+8) + 0(n7) x O(n'~%logn). We
set § = 2 to optimize the running time to O (1),

Also, we can use an alternative two-point query data structure whose performance
is sensitive to the number / of holes [8]: after O (n°) preprocessing time using O (1°)
storage, two-point queries can be answered in O (log n+h) time.> Using this alternative
structure, the total running time of our algorithm amounts to O (n’ (logn + h)). Note
that this method gives a better bound than the previous one when 7 = O(n% ).

The other cases can be handled analogously with strictly better time bound. For Case
(B-I), by Theorem 2, we have |V (s*, t*)| > 4 and thus there are at least four distinct
pairs (u;, v;) of corners with len,, ,, (s*, t*) = d(s*, t*). Here, we handle only the
case of | V;+| = 3 or 4. For the subcase with | Vx| = 4, we choose any four corners from

V as vy, ..., vs as a candidate for V;+ and overlay their shortest path maps SPM(v;).
The overlay, together with V, decomposes 9P into O (n) intervals. Each such interval
determines u1, ..., u4 as above, and the side e, € E on which s* should lie. Now,

we have a system of four equations in four variables: three from the corresponding
path-length functions len,, ,, with I < i < 4 which should be equalized at (s*, *),

STIfhis relatively small, one could use the structure of Guo et al. [11] which answers a two-point query in
O (hlogn) time after 0(n? log n) preprocessing time using 0n?) storage, or another structure by Chiang
and Mitchell [8] that supports a two-point query in O (& logn) time, spending O (n + 1) preprocessing
time and storage.
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and the fourth from the supporting line of e;. Solving the system, we get a constant
number of candidate maximal pairs, again by Theorem 2. In total, we obtain O (n°)
candidate pairs. The other subcase with | V;«| = 3 can be handled similarly, resulting in
O (n*) candidate pairs. As above, we can exploit two different structures for two-point
queries. Consequently, we can handle Case (B-I) in 0(n5+%+8) or O(n’ (logn + h))
time.

In Case (B-B) when s*,t* € B, we have |Vs«| = 2 or 3. For the subcase with
|Vi=| = 3, we choose three corners as a candidate of Vi+ and take the overlay of their
shortest path maps SPM(u; ). It decomposes 9P into O (n) intervals. Each such interval
determines three corners vy, vy, v3 forming V;« and a side ¢; € E on which ¢* should
lie. Note that we have only three equations so far; two from the three path-length
functions and the third from the line supporting to e;. Since s* also should lie on a side
es € E with e; # e;, we need to fix such a side e, that ﬂ1<i<3 VR(u;) intersects ey. In
the worst case, the number of such sides e, is @ (n). Thus, we have O (n°) candidate
pairs for Case (B-B); again, the other subcase with |V«| = 2 contributes to a smaller
number O (n*) of candidate pairs. Testing each candidate pair can be done as above,
resulting in O(n5+%+€) or O(n’(logn + h)) total running time.

Alternatively, one can exploit a two-point query structure only for boundary points
on 9P for Case (B-B). The two-point query structure by Bae and Okamato [5] builds an
explicit representation of the graph of the lower envelope of the path-length functions
len,, , restricted on P x 9P in O (n’ lognlog* n) time.% Since |V(s*, t*)| > 3 in
Case (B-B), such a pair appears as a vertex on the lower envelope. Hence, we are done
by traversing all the vertices of the lower envelope.

The following table summarizes the discussion so far.

Case Independent of i Dependent on &
(V-%) 0 (n?logn)

(B-B) O (n° log nlog* n) 0> (logn + h))
(B-I) 0(n5+%+6) O (n’ (logn + h))
(I-D) 0w’ 07 (logn + h))

As Case (I-]) is the bottleneck, we conclude the following.
Theorem 3 Given a polygonal domain having n corners and h holes, the geodesic

8
diameter and a diametral pair can be computed in 0(n7+ﬁ+8) or O(n’ (logn + h))
time in the worst case, where ¢ is any fixed positive number.

6 Concluding Remarks

We have presented the first algorithms that compute the geodesic diameter of a given
polygonal domain. As mentioned in the introduction, a similar result for convex

6 More precisely, in O(n4k65 (n) log n) time, where A, (n) stands for the maximum length of a Davenport-
Schinzel sequence of order m on n symbols.
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3-polytopes was shown in [17]. We note that, although the main result of this paper is
similar, the techniques used in the proof are quite different. Indeed, the key require-
ment for our proof is the fact that shortest paths in our environment are polygonal
chains whose vertices are in V, a claim that does not hold in higher dimensions (even
in 2.5-D surfaces). It would be interesting to find other environments in which a similar
result holds.

Another interesting question would be finding out how many maximal pairs a
polygonal domain can have. The analysis of Sect. 5 gives an O (n”) upper bound. On
the other hand, one can easily construct a simple polygon in which the number of
maximal pairs is Q(n%). Any improvement on the O (n”) upper bound would lead to
an improvement in the running time of our algorithm.

Though in this paper we have focused on exact geodesic diameters only, an efficient
algorithm for finding an approximate geodesic diameter would be also interesting.
Notice that any point s € P and its farthest point t € P yield a 2-approximate
diameter; that is, diam(P) < 2max,cp d(s,?) for any s € P. Also, based on a
standard technique using a rectangular grid with a specified parameter 0 < ¢ < 1, one

can obtain a (14 ¢)-approximate diameter in O ((:_2 + é) log n) time as follows. Scale

P so that P can fit into a unit square, and partition 7 with a grid of size e 7! x e ~!. We
define the set D as the point set that has the center of grid squares (that are inside P)
and intersection points between boundary edges and grid segments. It is easy to see
that the distance between any two points s and ¢ in P is within a (1 + ¢) factor of the
distance between two points of D. Hence, for each point of D we compute its furthest
neighbor (in O (nlog n) time), and keep the pair of points of largest distance.” Since
D= O(SL2 + %) we obtain the aforementioned bound.

Breaking the quadratic bound in n for the (1 + ¢)-approximate diameter seems a
challenge at this stage. We conclude by posing the following problem: for any or some
0 < & < 1, is there any algorithm that finds a (1 4 ¢)-approximate diametral pair in
O (>3 . poly(1/¢)) time for some positive 8§ > 0?
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Appendix: 1 More Examples and Remarks

In this section, we show more constructions of polygonal domains and their diametral
pairs with remarks. In the figures, we keep the following rules: the boundary 9P
is depicted by dark gray segments and the interior of holes by light gray region. A

7 The idea of this approximation algorithm is due to Hee-Kap Ahn.
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(d) (e) ®) (€]

Fig.5 a-c Polygonal domains whose geodesic diameter is determined by a corner s* and (d-g) variations
of the construction (¢). a When both s* and r* are corners; b when ¢* is a point on 3P; ¢ when r* € int P.
This polygonal domain consists of two holes, forming a narrow corridor and three shortest paths between
s* and r*. Here, we have d(s*, v]) = d(s*, vp) = d(s*, v3) and r* is indeed the vertex of SPM(s*)
defined by vy, vy, v3; d variation of (c) with all convex holes; e three shortest paths are not enough to
determine a boundary-interior diametral pair; f if we add one more hole, then the diameter is determined
by s* € B and r* € int P with four shortest paths; g a polygonal domain made by attaching two copies of
(e) and modifying it to have d(u1, vi) = d(up, v2) = d(uz, v3). Observe that, in this polygonal domain,
the diameter is determined by two boundary points with three shortest paths.

diametral pair is given as (s*, #*) and shortest paths between s* and #* are described
as black dashed polygonal chains.

1(a) Examples Where at Least One Point of a Diametral Pair Lies on 9P

Note that, as expected, every example in Fig. 5 obeys Theorem 2. An interesting
construction is Fig. 5g, where neither of the two centers of Aujusu3 and of Avivovs
appears in any diametral pair. Also note that Fig. 5d consists of convex holes only.
We think that any complicated construction can be “convexified” in a similar fashion.
This would suggest that computing the diameter in polygonal domains with convex
holes only might be as difficult as the general case.

1(b) A Proof for Fig. 1c: Case (I-I) with 6 Shortest Paths

Claim 1 In the polygonal domain described in Fig. (1)c, (s*, t*) is the unique diame-
tral pair.

Proof of Claim Recall that by construction of the problem instance, the triangles
Auupusz and Avivpvs areregularand d(uy, vy) = d(ug, v2) = d(uz, v2) = d(usz, v3)
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Fig. 6 A schematic diagram corresponding to the polygonal domain shown in Fig. lc.

= d(u3, v3) = d(usz, v;) = L, for some arbitrarily large value L > 0. Also, s* and ¢*
are the centers of Aujuouz and Avjvpvs, respectively.

We assume that both triangles Aujuyu3 and Avjvyvs are inscribed in a unit circle
(and thus d(s*, t*) = 2 + L). For any point s on any shortest path between u; and v;,
itis easy to see that d(s, 1) < V3I+L < d(s*, t*) for every point ¢ € P. In particular,
no point on those paths can contribute to the diameter (see Fig. 6).

(1) First, observe that max;c Ay, vyv; d(s*, 1) = MaXsepAu uous d(s, t¥) = d(s*, t%).

(2) For any s € Aujuous, its farthest point t € Avjvovs is on the angle bisector
of some v;. Consider any s € Aujupus. Without loss of generality we assume
that ||s — u1]| < min;{||s — u;||}. Both shortest paths to v; and to v, from s pass
through u;. We have d(s, v1) = d(s, v2) by construction and its farthest point
t € Avjvpvz must be in the angle bisector of v3. By symmetry, the same property
holds when the closest corner from s* is either u» or us.

Conversely, for any ¢, its farthest point s € Awujurusz must be on a bisector of
some u;. In any diametral pair (s, #), we have that 7 is the farthest point of s (and
vice versa), so both must be on one of the angle bisectors.

(3) If (s, 1) is a diametral pair, then s € u;s* and 7 € v;1* for some i and j. Suppose
that s lies on the bisector of u; but not in between u; and s*. We then have
Is—uzll = lls—u3ll < |s—uillandd(s, vi) = d(s, v2) = d(s, v3) = [|s—uz[|+L
by construction. This implies that #* is the farthest point of such s. Since ||s —us || <
lLand d(s,t*) <2+ L, (s,t*) is not a diametral pair.

(4) Now, pick any point s € u1s* with s # s*. Suppose that € Avjvavs is the
farthest point from s. We know that ¢ € v3¢* by above discussions. In this case,
we have four shortest paths between s and ¢ through (u1, vy), (41, v2), (42, v3),
and (u3, v3); the other two are strictly longer unless s = s*. By Theorem 2, such
s € ups* with s % s* and its farthest point # cannot form a maximal pair. By
symmetry, the other cases where s € u;s* can be handled.

Hence, (s*, t*) is a unique diametral pair and the geodesic diameter is 2 + L.
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Fig.7 A schematic diagram of a polygonal domain in which |Vix| = |V;+| = 3 and [T1(s™*, t*)| = 5.

1(c) Diametral Pair of Case (I-I) with Exactly 5 Shortest Paths

Here, we present a polygonal domain in which the diameter is determined by two
interior points and exactly five shortest paths between them. This proves the tightness
of Case (I-I) in Theorem 2.

Figure 7 shows a schematic description of a polygonal domain 7. We assume that
only the position of the vertices u; and the v; are geometrically precise. We construct
the problem instance such that we have u; = up = u3, vi = vs, and v3 = v4, and
the convex hulls of the u; and of the v; form isosceles triangles A, and A,. Each of
A, and A, is inscribed in a unit circle centered at ¢, and c,. Moreover, the bases of
both triangles are horizontal and the angles opposite to the bases are 18° and 112°,
respectively. Note that the side lengths of the triangles A, and A, are as follows:
llug — ugll = 1.97537--- and ||ug — us|| = 0.61803---; |lva — vy = 1.11833 ...
and |[v; — v3|| = 1.85436- - -.

In this configuration, we set the constants as follows: letting L := d(u1, v;) =
d(u3, v3) be some sufficiently large number, we set d(up, v2) = L + 0.5 and
d(ua, v4) = d(us, vs) = L + 0.2. Note that this configuration can be realized with
four obstacles in a similar way as Fig. lc.

Since we have fixed all necessary parameters, we have a fully explicit description of
the leny; ,,. Due to the difficulty of finding an exact analytical solution, we used numer-
ical methods to solve the system of equations leny, (s, 1) = --- = len, »s(s, 1).
We have found that there is a unique solution (s*,¢*) such that s* € A, and
t* € A,; we obtained s* = ¢, + (0, —0.102795--.), t* = ¢, + (0, 0.555361 ---)
and d(s*, t*) = 2.047433734 - - - + L (see Fig. 7).

We first checked that (s*, t*) is a maximal pair based on the following lemma,
which can be shown using elementary linear algebra together with the convexity of
the path-length functions.

Lemma 6 Suppose that (s, t) is a solution to the system leny, y,(s,t) = -+ =
leny vs(s, t). If any four of the five gradients Vlen,, ., at (s,t) are linearly inde-
pendent (as vectors in a 4-dimensional space) and one of them is represented as a
linear combination of the other four with all “negative” coefficients, then (s, t) is a
local maximum of the pointwise minimum of the five functions len,,; ;.
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Next, to see that (s*, t*) is a diametral pair, we have run our algorithm for each
of Cases (B-B), (B-I), and (I-); as a result, there are 44 candidate pairs, including
(s*, t*), falling into those cases among which at most 11 are maximal and only (s*, *)
is diametral. Note that the pair (s*, t*) is the only candidate pair of Case (I-I). Also,
observe that any point on the shortest path between u; and v; cannot belong to a
diametral pair. This implies that none of the u; and the v; belongs to a diametral pair.
In particular, we have that none of the Cases (V-*) can happen. In addition, we also
sampled about 350,000 points uniformly from each of A, and A,, and evaluated the
geodesic distances of the 350,000 pairs.

Note that one can modify the construction to have | Vx| = | Vx| = |T1(s*, t*)| = 5.
For the purpose, we can split u1, u;, u3 into three close corners (analogously for cor-
ners, v1, vs and v3, v4). The splitting process should preserve the differences between
the distances d(u;, v;) foralli = 1,...,5 (and increase other distances). We have
tested such an example in the same way as above and concluded that a solution equal-
izing the five path-length functions is indeed a diametral pair.
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