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THE GEODESIC FLOW GENERATES A FAST DYNAMO:

AN ELEMENTARY PROOF

C. CHICONE AND Y. LATUSHKIN

(Communicated by Jeffrey B. Rauch)

Abstract. We give elementary and explicit arguments to show that the geo-
desic flow on the unit tangent bundle of a two dimensional Riemannian mani-
fold with constant negative curvature provides an example of a “fast” dynamo
for the magnetic kinematic dynamo equation.

1. Introduction

Consider a steady state solution v of Euler’s equation for an ideal fluid with
pressure p on a three dimensional space X :

dv

dt
+ (v,5)v = − gradp, div v = 0.(1)

The kinematic dynamo equation for the induction of a magnetic field u by the fluid
velocity field v is given by

u̇ = ε4u + curl (v × u), div u = 0,(2)

where ε = R−1
m , and Rm is the magnetic Reynolds number.

Let Dε denote the linear operator defined by (2) in L2(X,µ) for a volume µ on
X invariant with respect to the flow ϕt induced by v:

Dεu := ε4u + curl (v × u).(3)

Also, note that Dε depends on the choice of the volume and the metric on X .
Define the spectral bound for Dε by sε := sup{Reλ : λ ∈ σ(Dε)}. If sε > 0 for all
sufficiently small positive ε, then v is called a kinematic dynamo. The dynamo is
called “fast” if, in addition, lim supε→0 sε > 0.

There exist several examples of fast dynamos; see [3, 5, 11, 14, 16] and the lit-
erature cited therein. In particular, by a deep result of M. M. Vishik [15], every
Anosov flow with smooth foliations on a compact three dimensional manifold pro-
duces a fast dynamo. The proof of this result uses the full range of hyperbolic
theory together with the theory of asymptotic expansions for pseudo differential
operators. These general methods do not seem to provide explicit formulas for the
eigenvalues of Dε.
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In the present note we give an elementary and explicit example of an Anosov flow
that is a steady state solution of Euler’s equation and that produces fast dynamo
action. In fact, let M denote a smooth two dimensional compact Riemannian
manifold without boundary that has constant negative Gauss curvature k and let
X denote the total space of its unit tangent bundle. The set X is a compact three
dimensional manifold. For the appropriate natural choice of Riemannian metric
(Sasaki metric) and volume element on X , the geodesic vector field v, the vector
field on X that generates the geodesic flow, is a steady state solution of Euler’s
equation with gradp = 0. This vector field produces the fast dynamo. In fact, we
will prove the following theorem:

Theorem 1.1. If v generates the geodesic flow on the total space of the unit tan-
gent bundle X of a two dimensional compact Riemannian manifold M with constant
negative curvature k and if Dε denotes the associated dynamo operator defined with
respect to the Sasaki metric and volume on X, then, for each magnetic Reynolds
number Rm >

√
−k, the dynamo operator Dε has the positive eigenvalue

λε :=
1

2

[
−ε(1 + k2) +

√
ε2(1− k2)2 − 4k

]
,(4)

and lim supε→0 sε ≥ limε→0 λε =
√
−k > 0. In particular, v is a steady state

solution of Euler’s equation that induces a fast kinematic dynamo.

It is, of course, well known that the geodesic flow on the unit tangent bundle of a
two-dimensional Riemanian manifold with constant negative curvature provides an
example of a fast dynamo. More general results appear in the papers by M. Vishik,
[15] and [16, Section 9]. Also, we suspect that the authors of [3] were aware of this
fact. However, the purpose of this paper is to provide a simple elementary proof
of this result and, especially, to obtain the explicit formula (4) for the positive
eigenvalue of Dε. Our proof of Theorem 1.1 uses only elementary formulas from
vector calculus and certain commutation relations for Lie brackets obtained by
L. Green in [12]; see also the related papers [6, 7, 8, 9, 13].

2. Proof of the theorem

We recall the construction of the parallelization of X . Let g be the Riemannian
metric on M and let TmM denote the tangent plane at m ∈ M with the scalar
product gm(·, ·) induced by g. The total space of the unit tangent bundle of M is
the set X ,

X := {(m,w) : m ∈M, w ∈ TmM, gm(w,w) = 1}.
This set has the natural structure of a three dimensional compact manifold.

For γ : R → M , a curve in M , we let γ̇(t) ∈ Tγ(t)M denote the tangent vector
to γ at γ(t). If x = (m,w) ∈ X , then there is a unique geodesic γ : R → M , such
that γ(0) = m and γ̇(0) = w. The geodesic flow ϕt in X is defined as follows: If
x = (m,w) ∈ X and γ denotes the geodesic starting at m with tangent vector w,
then ϕtx = (γ(t), γ̇(t)).

The geodesic vector field v is defined to be the generator of the flow ϕt. We note
that v has no zeros on X . There are two additional nonvanishing vector fields on X ,
that we denote by y and z, such that for each x ∈ X the set {v(x),y(x), z(x)} is a
basis for the tangent space TxX . These vector fields are defined as follows. Since M
is orientable, there is a well-defined notion of positive rotation through a right angle.
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That is, there is a well-defined map (m,w) 7→ (m,w⊥) such that gm(m,w⊥) = 0
and gm(w⊥,w⊥) = gm(w,w). We define y as the generator of the flow (m,w) 7→
ϕt(m,w⊥) on X . Also, let rm(t)w = eitw give the unit speed rotation of the unit
circle in the positive sense relative to the orientation in TmM . Define z as the
generator of the fiber rotation flow on X given by (m,w) 7→ (m, rm(t)w).

We use the notation [u,v] = uv−vu for the Lie bracket of the vector fields u,v
on X and we let k denote the lift of the Gauss curvature of M to X . The following
bracket relations, as reported in [12], are valid:

[v,y] = kz, [v, z] = −y, [y, z] = v.(5)

There is a unique Riemannian metric on X defined by declaring, for each x ∈ X ,
the set {v(x),y(x), z(x)} to be an orthonormal basis for TxX . We will denote the
induced scalar product in TxX by 〈·, ·〉. It can be shown that this Riemannian
metric coincides with the Sasaki metric (see [8] for a definition), but this fact will
not be needed here.

Let µ denote the volume element on X chosen so that µ(v,y, z) = 1 and let
ωu(ξ) = 〈ξ,u〉. Using the standard (see, e.g., [1, 2]) notations d and i for the
exterior and the interior derivative, we recall that the maps u 7→ ωu and u 7→ iu µ
are isomorphisms and that the operations of vector analysis on X correspond to the
exterior differential calculus applied to the target differential forms. For example,
the operators curl and div are defined by

dωu = icurlu µ, d iu µ = div uµ.(6)

Lemma 2.1. For the vector fields v,y, z on X one has:

curlv = −v, curly = −y, curl z = −kz,
div v = 0, div y = 0, div z = 0.(7)

Proof. Let Lξ denote Lie differentiation in the direction ξ and recall the formula
(see, e.g., [1, n◦6.4.11(ii)])

dωu(ξ,η) = Lξ(ωu(η))− Lη(ωu(ξ))− ωu([ξ,η]).(8)

Since {v,y, z} is an orthonormal basis, an application of this formula gives:

dωv(y, z) = Ly(ωv(z)) − Lz(ωv(y)) − ωv([y, z]) = −ωv(v) = −‖v‖2 = −1.

On the other hand, by (6), dωv(y, z) = icurlv µ(y, z) = µ(curlv,y, z), and, as a
result, µ(curlv,y, z) = −1.

We conclude from the last formula that curlv = −v. Indeed, since v,y, z are
of unit length and mutually orthogonal with respect to the scalar product 〈·, ·〉, a
similar application of formula (8) yields: dωv(v, z) = 0 and dωv(v,y) = 0. There
are functions α, β and δ such that curlv = αv + βy + δz. Using the identities

−1 = dωv(y, z) = µ(curlv,y, z) = αµ(v,y, z) + βµ(y,y, z) + δµ(z,y, z),

0 = dωv(v, z) = µ(curlv,v, z) = αµ(v,v, z) + βµ(y,v, z) + δµ(z,v, z),

0 = dωv(v,y) = µ(curlv,v,y) = αµ(v,v,y) + βµ(y,v,y) + δµ(z,v,y)

we have α = −1, β = 0 and δ = 0, as required.
To prove div v = 0, we use (6) and the formula curlv = −v:

div vµ = d iv µ = d i− curlv µ = d dωv = 0.
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The remaining formulas in (7) are proved similarly. For example, to prove
curl z = −kz we compute

dωz(v,y) = Lv(ωz(y)) − Ly(ωz(v)) − ωz([v,y]) = −k‖z‖2 = −k.
If curl z = αv + βy + δz, then, using the identities

−k = dωz(v,y) = µ(curl z,v,y) = αµ(v,v,y) + βµ(y,v,y) + δµ(z,v,y),

0 = dωz(z,y) = µ(curl z, z,y) = αµ(v, z,y) + βµ(y, z,y) + δµ(z, z,y),

0 = dωz(z,v) = µ(curl z, z,v) = αµ(v, z,v) + βµ(y, z,v) + δµ(z, z,v).

we conclude α = 0, β = 0 and δ = −k.

A coordinate free interpretation of the Euler equation (1) that depends on the
Riemannian metric and Riemannian volume on X , namely

dv

dt
− v × curlv + grad

‖v‖2

2
= − gradp, div v = 0,(9)

is obtained from the identity

(ξ,5)ξ = grad
ξ2

2
− ξ × curl ξ.

Since, for the geodesic vector field, we have ‖v‖2 = 1, div v = 0 and curlv = −v,
we see that v is a solution of (9) with gradp = 0.

The Laplacian in the kinematic dynamo equation (2) must also be defined on
X . Using standard formulas (see e.g., [1, p. 605]), the Laplace-Beltrami-deRham
operator ∆ that appears in (2) may be defined as a differential operator on a
divergence free vector field ξ by ∆ξ = − curl curl ξ. This operator depends on the
choice of the volume and the Riemannian metric. However, the operator defined
in this manner on Euclidean three dimensional space with its usual volume agrees
with the definition of ∆ as componentwise application of the usual Laplacian. At
any rate, using this definition and Lemma 2.1, we have

∆v = −v, ∆y = −y, ∆z = −k2z.(10)

If div ξ = 0 and div η = 0, then a computation shows curl (ξ × η) = −[ξ,η].
Thus, the kinematic dynamo operator (3) is given by Dεu = ε∆u − [v,u]. Using
this representation together with the formulas (10) and (5), we compute

Dεy = −kz− εy, Dεz = y − εk2z.

Observe that Dε preserves the two dimensional subspace

L := {ay + bz : a ∈ R, b ∈ R}
of divergence free vector fields in L2(X,µ) spanned by y and z and that the operator
Dε on L is represented by the matrix

D =

[
−ε 1
−k −εk2

]
.

Each eigenvalue λε of D is an eigenvalues of Dε. Hence, the spectral bound sε of
Dε must satisfy the estimate

sε ≥ λε :=
1

2

[
−ε(1 + k2) +

√
ε2(1− k2)2 − 4k

]
.

A corresponding eigenfunction uε for Dε is given by uε = y + (ε + λε)z. If, in
particular, k = −1, then λε = −ε+

√
−k and uε = y +

√
−k z.
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If k < 0 and ε ∈ (0, 1/
√
−k), then λε > 0, and v induces a kinematic dynamo.

Moreover, since

lim sup
ε→0

sε ≥
√
−k > 0,(11)

the dynamo action is fast.
It can be shown that σ(D0) on L2(X,µ) lies between the vertical lines: Reλ =

±
√
−k. Then, in accordance with [10], the spectrum of D0 on the space of diver-

gence free vector fields is the strip {λ : | Re λ| ≤
√
−k}. By a result in [15] (see

also the discussion in [10]), one has lim supε→0 sε ≤ s0 for every, not necessarily
geodesic, “fluid velocity” vector field v. Formula (11) confirms a conjecture from
[10] that, in fact, for every such vector field lim supε→0 sε = s0.

For the case of negative nonconstant curvature k(x) ≤ k0 < 0 and sufficiently
small ε > 0, one can construct an explicit uε ∈ L2(X,µ) with ‖uε‖ = 1 such that

Re〈Dεuε , uε〉L2 > 0, and lim sup
ε→0

Re〈Dεuε , uε〉L2 > 0,

where 〈· , ·〉L2 denotes the scalar product in L2(X,µ), induced by 〈· , ·〉.
Indeed, by an elementary calculation, as above, we find

Dεv = −εv, Dεy = −εy− kz, Dεz = εk2v + (1− εk1)y − εk2z,

where k1 = k1(x) and k2 = k2(x) are defined such that gradk = k1v + k2y. Hence,
the operator Dε acts on a vector field u = av + by + cz in the three dimensional
subspace

M := {av + by + cz : a ∈ R, b ∈ R, c ∈ R}
by Dεu = a′v + b′y + c′z. Here, the vector-function q′(x) = (a′(x), b′(x), c′(x)) is
obtained from the vector q = (a, b, c) by the formula q′(x) = D(x)q, where

D(x) = [Dij(x)]
3
i,j=1 :=

 −ε 0 0
0 −ε −k
εk2 1− εk1 −εk2

 .
Consider the following matrix:

dε = [dij ]
3
i,j=1 , where dij :=

1

µ(X)

∫
X

Dij(x) dµ(x).

One can easily compute the eigenvalues of dε. This computation and the inequality
k(x) ≤ k0 < 0 show that, for sufficiently small ε > 0, the matrix dε has a positive
eigenvalue νε. Moreover, for this νε one has lim supε→0 νε > 0. If q = (a, b, c) is an
eigenvector, with unit norm in R3, that corresponds to the eigenvalue νε, then, for
uε := (µ(X))−1/2(av + by + cz), we have ‖uε‖ = 1 and

Re〈Dεuε, uε〉L2 = Re(dεq , q)R3 = νε.

References

1. R. Abraham, J. Marsden. T. Ratiu, Manifolds, Tensor Analysis, and Applications, Appl.
Math. Sci. v. 75, Springer-Verlag, 1983. MR 84h:58001

2. V. I. Arnold, Mathematical Methods of Classical Mechanics, Grad. Texts Math. 60, Springer-
Verlag, 1978. MR 57:14033b

3. V. I. Arnold, Ya. B. Zel′dovich, A. A. Rasumaikin, and D. D. Sokolov, Magnetic field in a
stationary flow with stretching in Riemannian space, Sov. Phys. JETP, 54 (6) (1981) 1083–
1086.

4. B. Bayly, Fast magnetic dynamos in chaotic flows, Phys. Rev. Lett. 57 (22) (1986) 2800.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3396 C. CHICONE AND Y. LATUSHKIN

5. B. J. Bayly and S. Childress, Fast-dynamo action in unsteady flows and maps in three di-
mensions, Phys. Rev. Let. 59 (14) (1987) 1573–1576. MR 88h:76056

6. J. Beem, C. Chicone, and P. Ehrlich, The geodesic flow and sectional curvature of pseudo-
Riemannian manifolds, Geometriae Dedicata 12 (1982) 111–118. MR 83k:53036

7. C. Chicone, The topology of stationary curl parallel solutions of Euler’s equations, Israel J.
Math., 39 (1981) 161–166. MR 82i:58055

8. C. Chicone, Tangent bundle connections and the geodesic flow, Rocky Mountain J. Math. 11
(2) (1981) 305–317. MR 83b:58064

9. C. Chicone, and P. Ehrlich, Line integration of Ricci curvature and conjugate points in
Lorentzian and Riemannian manifolds, Manuscr. Math. 31 (1980) 297–316. MR 81g:53049

10. C. Chicone, Y. Latushkin, and S. Montgomery-Smith, The spectrum of the kinematic dynamo
operator for an ideally conducting fluid, Commun. Math. Phys. 173 (1995) 379–400. MR
96k:76118

11. J.M. Finn, and E. Ott, Chaotic flows and magnetic dynamos, Phys. Rev. Lett. 60 (9) (1988)

760–763.
12. L. Green, Geodesic Flows, Lecture Notes in Math., 200 (1971) 25–27.
13. L. Green, When is an Anosov flow geodesic? Ergod. Theor. and Dynam. Syst. 12 (1992)

227–232. MR 93g:58111
14. A.M. Soward, Fast dynamo actions in a steady flow, Journ. Fluid Mech. 180 (1987) 267–295.
15. M. M. Vishik, Magnetic field generation by the motion of a highly conducting fluid, Geo-

phys. Astrophys. Fluid Dynamics, 48 (1989) 151–167. MR 90k:76101
16. M. M. Vishik, On a system of equations arising in magnetohydrodynamics, Soviet Math.

Dokl., 29 (2) (1984) 372–376. MR 86d:76041

Department of Mathematics, University of Missouri, Columbia, Missouri 65211
E-mail address: carmen@chicone.math.missouri.edu

E-mail address: yuri@math.missouri.edu

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


