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THE GEODESIC X-RAY TRANSFORM WITH FOLD CAUSTICS

PLAMEN STEFANOV AND GUNTHER UHLMANN

We give a detailed microlocal study of X-ray transforms over geodesic-like families of curves with con-

jugate points of fold type. We show that the normal operator is the sum of a pseudodifferential operator

and a Fourier integral operator. We compute the principal symbol of both operators and the canonical

relation associated to the Fourier integral operator. In two dimensions, for the geodesic transform, we

show that there is always a cancellation of singularities to some order, and we give an example where

that order is infinite; therefore the normal operator is not microlocally invertible in that case. In the case

of three dimensions or higher if the canonical relation is a local canonical graph we show microlocal

invertibility of the normal operator. Several examples are also studied.

1. Introduction

In this paper we study the X-ray type of transforms over geodesic-like families of curves with caustics

(conjugate points). We concentrate on the most common type of caustics — those of fold type. Let γ0

be a fixed geodesic segment on a Riemannian manifold, and let f be a function whose support does not

contain the endpoints of γ0. The queston we are trying to answer is the following: What information

about the wave front set WF( f ) of f can be obtained from the assumption that (possibly weighted)

integrals

X f (γ ) =
∫

γ

f ds (1-1)

of f along all geodesics γ close enough to γ0 vanish (or depend smoothly on γ )? We actually study more

general geodesic-like curves. Since X has a Schwartz kernel with singularities of conormal type, X f

could only provide information for WF( f ) near the conormal bundle N
∗γ0 of γ0. If there are no conjugate

points along γ0, then we know that WF( f ) ∩ N
∗γ0 = ∅. This has been shown, among the other results,

in [Frigyik et al. 2008; Stefanov and Uhlmann 2008] in this context. It also follows from the microlocal

approach to Radon transforms initiated by Guillemin [1985] when the Bolker condition (in our case that

means no conjugate points) is satisfied. Then the localized normal operator Nχ := X∗χ X , where χ is a

standard cut-off near γ0 is a pseudodifferential operator (9DO), elliptic at conormal directions to γ0. If

there are conjugate points along γ0, then Nχ is no longer a 9DO. One goal of this work is to study the

microlocal structure of Nχ in presence of fold conjugate points, and then use it to see what singularities

can be recovered. That would also allow us to tell whether the problem of inverting X is Fredholm or
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not, and would help us to determine the size of the kernel, and to analyze the stability and the possible

instability of this problem.

In some applications like geophysics, recovery of singularities is actually the primary goal. The effect

of possible conjugate points is treated there as “artifacts” in the reconstruction, creating multiple images

of the same object. Our analysis provides in particular a microlocal way to understand those artifacts,

and in same cases, to shed light on the possibility of resolving the singularities. We are also motivated by

the nonlinear boundary and lens rigidity problems and their applications to seismology, where the X-ray

transform appears as a linearization; see e.g., [Michel 1981/82; Croke 1991; Croke et al. 2000; Stefanov

and Uhlmann 2005; Stefanov 2008; Stefanov and Uhlmann 2009].

The simplest possible X-ray transform is that over lines in R
n:

X f (x, θ) =
∫

f (x + tθ) dt,

where θ ∈ Sn−1. Parametrization by x ∈ R
n is overdetermined, of course, and we need to think of (x, θ)

as a way to parametrize a line. It is well known to be injective, on L1
comp(R

n), for example. It is easy

to see, for example by the Fourier slice theorem, that X f , known for a fixed θ0 and all x , determines

the Fourier transform f̂ (ξ) for ξ ⊥ θ0. We refer to [Helgason 1980; Natterer 1986] for more details

about Euclidean X-ray and Radon transforms. Using relatively simple microlocal techniques, one can

show that X f , known in a neighborhood of some line ℓ, determines WF( f ) near N
∗ℓ. A positive smooth

weight in the definition of X would not change that. Those facts are well known and serve as a basis for

local tomography methods; see e.g., [Faridani et al. 1992a; 1992b], where the microlocal point of view

is implicit.

Geodesic X-ray transforms have a long history, generalizing the Radon type X-ray transform in the

Euclidean space; see, e.g., [Helgason 1980]. When the weight is constant and (M, g) is a simple

manifold with boundary, uniqueness and nonsharp stability estimates have been proven in [Muhometov

1981; Muhometov and Romanov 1978; Bernšteı̆n and Gerver 1978], using the energy method. Simple

manifolds are compact manifolds diffeomorphic to a ball with convex boundary and no conjugate points.

The uniqueness result has been extended to not necessarily convex manifolds under the no-conjugate-

points assumption in [Dairbekov 2006]. The authors used microlocal methods to prove a sharp stability

estimate in [Stefanov and Uhlmann 2004] for simple manifolds, and uniqueness and stability estimates

for more general weighted geodesic-like transforms without conjugate points in [Frigyik et al. 2008].

The X-ray transform over magnetic geodesics with the simplicity assumption was studied in [Dairbekov

et al. 2007]. Many of those and other works study integrals of tensors as well, but the results for tensors

of order two or higher are less complete. For an overview of the microlocal approach to the geodesic

X-ray transform, see [Stefanov 2008].

We considered in [Stefanov and Uhlmann 2008] the X-ray transform of functions and tensors on

manifolds with possible conjugate points. Using the overdeterminacy of the problem in dimensions

n ≥ 3, we showed that if there exists a family of geodesics without conjugate points with a conormal

bundle covering T ∗M , then we still have generic uniqueness and stability. In dimension two, however,
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that family has to be the set of all geodesics, and even in higher dimensions, we did not determine the

contribution of the conjugate points to X f .

We first show in Theorem 2.1 that the normal operator Nχ can be represented as a sum of a 9DO

and a Fourier integral operator (FIO). The FIO part comes from the conjugate point and represents the

“artifact”. An essential part of the proof of Theorem 2.1 is to understand well the geometry of the

conjugate locus 6 of pairs (p, q) ∈ M × M conjugate to each other. We show that the Lagrangian of

the FIO is N ∗6. To prove Theorem 2.1, we analyze the singularities of the Schwartz kernel of Nχ in

Theorem 6.1, which is interesting by itself.

In Section 9, we study whether we can invert Nχ microlocally when the curves are geodesics. We find

that in some cases we can and in others we cannot. In two dimensions, some cancellation of singularities

always occurs, at least to a finite order; see Theorem 9.2. In dimensions three and higher, there are

examples (not all geodesic though) where we cannot resolve singularities, and others where we can. We

can if the canonical relation of the FIO part is a local graph, but that is not always the case.

In Section 10, we present a few examples, some of them mentioned above. Most of them are based

on the transform of integrating a function over circles of a fixed radius in R
2. Those circles are actually

geodesics of a magnetic system with a Euclidean metric and a constant magnetic field. This example has

the advantage that we can compute explicitly the kernel of X∗X , and we can get an explicit full expansion

of the latter as an FIO, etc. In this case, the singularities cancel to infinite order. We can construct more or

less explicit singular distributions f with the property that their singularities are invisible for X localized

near a single circle, that is, X f ∈ C∞ locally.

2. Formulation of the problem

Let (M, g) be an n-dimensional Riemannian manifold. Let expp(v), where (p, v) ∈ T M , be a regular

exponential map; see Section 3, where we recall the definition given in [Warner 1965]. The main example

is the exponential map of g or that of another metric on M or other geodesic-like curves, for example

magnetic geodesics; see also [Dairbekov et al. 2007]. Let κ be a smooth function on T M \0. We define

the weighted X-ray transform X f by

X f (p, θ) =
∫

κ(expp(tθ), ˙expp(tθ)) f (expp(tθ)) dt for (p, θ) ∈ SM, (2-1)

where we used the notation ˙exp(tv) = d exp(tv)/dt . The t integral above is carried over the maximal

interval, including t = 0, where exp(tθ) is defined. The assumptions that we make below guarantee that

this interval remains bounded.

Let (p0, v0) ∈ T M be such that v = v0 is a critical point for expp0
(v) (which we call a conjugate

vector) of fold type; see the definition below. Let q0 = expp0
(v0). Then our goal is to study X f for p

close to p0 and θ close to θ0 := v0/|v0| under the assumption that the support of f is such that v0 is the

only conjugate vector v at p0 such that expp0
(v) ∈ supp f . Note that v0 can be written in two different

ways as tθ0, where |θ0| = 1 and ±t > 0, and we choose the first one. The contribution of the second one

can be easily derived from our results by replacing θ0 by −θ0.
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Instead of studying X directly, we study the operator

N f (p) =
∫

Sp M

κ♯(p, θ)X f (p, θ) dσp(θ)

=
∫

Sp M

∫

κ♯(p, θ)κ
(

expp(tθ), ˙expp(tθ)
)

f (expp(tθ)) dt dσp(θ)

(2-2)

for some smooth κ♯ localized in a neighborhood of (p0, θ0). Here dσp(θ) is the induced Riemannian

surface measure on Sp(M). When exp is the geodesic exponential map, there is a natural way to give a

structure of a manifold to all nontrapping geodesics with a natural choice of a measure; see Section 5.

The operator X can be viewed as a map from functions or distributions on M to functions or distributions

on the geodesics manifold. Then one can define the adjoint X∗ with respect to that measure. Then the

operator X∗X is of the form (2-2) with κ♯ = κ̄; see (5-1). The condition that supp κ♯ should be contained

in a small enough neighborhood of (p0, θ0) can be easily satisfied by localizing p near p0 and choosing

supp κ to be near (γp0,θ0
, γ̇p0,θ0

). For general regular exponential maps, N is not necessarily X∗X .

A direct calculation — see [Stefanov and Uhlmann 2004] and Theorem 5.1 — shows that the Schwartz

kernel of X∗X in the geodesic case (see also [Frigyik et al. 2008] for general families of curves), is

singular at the diagonal, as can be expected, and that singularity defines a 9DO of order −1 similarly to

the integral geometry problem for geodesics without conjugate points. See Section 5 for more details.

Next, singularities away from the diagonal exist at pairs (p, q) such that q = expp(v) for some v, and

dv expp is not an isomorphism (p and q are conjugate points). The main goal of this paper is to study the

contribution of those conjugate points to the structure of X∗X and the consequences of that. We actually

study a localized version of this; for a global version on a larger open set, under the assumption that all

conjugate points are of fold type, one can use a partition of unity.

Let U be a small enough neighborhood of (p0, θ0) in SM . Let U be a small neighborhood of p0

such that U ⊂ π(U), where π is the natural projection on the base. Fix κ♯ ∈ C∞
0 (U). Let N f be as

in (2-2), related to κ♯, where κ is a smooth weight. We will apply X to functions f supported in an

open set V ∋ p0 satisfying the conjugacy assumption of the theorem below; see Figure 1. Our goal is

to study the contribution of a single fold type of singularity. Let 6 ⊂ M × M be the conjugate locus in

a neighborhood of (p0, q0); see Section 3. Finally, let γ0 = γp0,θ0
(t) for t ∈ I be the geodesic through

(p0, θ0) defined in the interval I ∋ 0, with endpoints outside V .

Figure 1
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The first main result of this paper is the following.

Theorem 2.1. Let v0 = |v0|θ0 be a fold conjugate vector at p0, and let N be as in (2-2). Let v0 be the

only singularity of expp0
(v) on the ray {expp(tθ0), t ∈ I } ∩ V . Then if U (and therefore, U ) is small

enough, the operator N : C∞
0 (V ) → C∞

0 (U ) admits the decomposition

N = A + F, (2-3)

where A is a 9DO of order −1 with principal symbol

σp(A)(x, ξ) = 2π

∫

Sx M

δ(ξ(θ)) (κ♯κ)(x, θ) dσx(θ) (2-4)

and F is an FIO of order −n/2 associated to the Lagrangian N
∗6. In particular, the canonical relation

C of F in local coordinates is given by

C =
{

(p, ξ, q, η), (p, q) ∈ 6, ξ = −ηi∂ expi
p(v)/∂p, η ∈ Coker dv expp(v), det dv expp(v) = 0

}

. (2-5)

If exp is the exponential map of g, then C can also be characterized as N
∗6′, where N6 is as in (4-17)

and the prime means that we replace η by −η.

It is easy to check that C above is invariantly defined.

In Section 9 we show in dimension 3 or higher that the operator N is microlocally invertible if C is

a local canonical graph. In two dimensions, we show in the geodesic case that there is always a loss of

some derivatives at least when the curves are geodesics. We study in detail the case of the circular Radon

transform in two dimensions in Section 10, and show that then N is not microlocally invertible.

3. Regular exponential maps and their generic singularities

3a. Regular exponential maps. Let M be a fixed n-dimensional manifold. We will recall the definition

of Warner [1965] of a regular exponential map at p ∈ M . We think of it as a generalization of the

exponential map on a Riemannian manifold, by requiring only those properties that are really necessary

for what follows. For that reason, we use the notation expp(v). In addition to the requirements of Warner,

we will require expp(v) to be smooth in p. Let Np(v) ⊂ TvTp M denote the kernel of d expp. Unless

specifically indicated, d is the differential with respect to v. The radial tangent space at v will be denoted

by rv. It can be identified with {sv, s ∈ R}, where v is considered as an element of TvTp M .

Definition 3.1. A map expp(v) that maps v ∋ Tp M into M for each p ∈ M is called a regular exponential

map if the following hold.

(R1) exp is smooth in both variables, except possibly at v = 0. Next, d expp(tv)/ dt 6= 0 when v 6= 0.

(R2) The Hessian d2 expp(v) isomorphically maps rv × Np(v) onto Texpp(v)M/ d expp(TvTp M) for any

v 6= 0 in Tp M for which expp(v) is defined.

(R3) For each v ∈ Tp M \0, there is a convex neighborhood U of v such that the number of singularities

of expp, counted with multiplicities, on the ray tv for t ∈ R in U , for each such ray that intersects U ,

is constant and equal to the order of v as a singularity of expp.
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An example is the exponential map on a Riemannian (or more generally on a Finsler manifold); see

[Warner 1965]. Then (R1) is clearly true. Next, (R2) follows from the following well-known property.

Fix p and a geodesic through it. Consider all Jacobi fields vanishing at p. Then at any q on that geodesic,

the values of those Jacobi fields that do not vanish at q and the covariant derivatives of those that vanish at

q span Tq M . Also, those two spaces are orthogonal. Finally, (R3) represents the well-known continuity

property of the conjugate points, counted with their multiplicities that follows from the Morse index

theorem; see, e.g., [Jost 1998, Theorem 4.3.2].

We will need also an assumption about the behavior of the exponential map at v = 0.

(R4) expp(tv) is smooth in p, t, v for all p ∈ M , |t | ≪ 1, and v 6= 0. Moreover,

expp(0) = p, and
d

dt
expp(tv) = v for t = 0.

Given a regular exponential map, we define the “geodesic” γp,v(t), with v 6= 0, by γp,v(t) = expp(tv).

We will often use the notation

q = expp(v) = γp,v(1), w = − ˙expp(v) := −γ̇p,v(1), θ = v/|v|. (3-1)

Note that the “geodesic flow” does not necessarily obey the group property. We will assume that

(R5) For q and w as in (3-1), we have expq(w) = p and ˙expq(w) = −v.

This implies that in particular, (p, v) 7→ (q, w) is a diffeomorphism. If exp is the exponential map

of a Riemannian metric, then (R5) is automatically true and that map is actually a symplectomorphism

(on T ∗M).

Remark 3.1. In case of magnetic geodesics, or more general Hamiltonian flows, (R5) is equivalent to

time reversibility of the “geodesics”. This is not true in general. On the other hand, one could define

the reverse exponential map exp−
q (w) = γq,−w(−1) in that case (see e.g., [Dairbekov et al. 2007]) near

(q0, w0), and replace exp by exp− in that neighborhood. Then (R5) would hold. In other words, (R5)

really says that (p, v) 7→ (q, w) is assumed to be a local diffeomorphism with an inverse satisfying

(R1)–(R4).

3b. Generic properties of the conjugate locus. We recall here the main result by Warner [1965] about

the regular points of the conjugate locus of a fixed point p. The tangent conjugate locus S(p) of p is the

set of all vectors v ∈ Tp M such that d expp(v) (the differential of expp(v) with respect to v) is not an

isomorphism. We call such vectors conjugate vectors at p (called conjugate points in [Warner 1965]).

The kernel of d expp(v) is denoted by Np(v). It is a part of TvTp M , which we identify with Tp M . In

the Riemannian case, Np(v) is orthogonal to v by the Gauss lemma. In the general case, it is always

transversal to v by (R1). The images of the conjugate vectors under the exponential map expp will be

called the conjugate points of p. The image of S(p) under the exponential map expp will be denoted by

6(p) and called the conjugate locus of p. Note that S(p) ⊂ Tp M , while 6(p) ⊂ M . We always work

with p near a fixed p0 and with v near a fixed v0. Set q0 = expp0
(v0). Then we are interested in S(p)

restricted to a small neighborhood of v0, and in 6(p) near q0. Note that 6(p) may not contain all points
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near q0 conjugate to p along some “geodesic”; and may not contain even all of those along expp0
(tv0) if

the later self-intersects — it contains only those that are of the form expp(v) with v close enough to v0.

Normally, d expp(v) stands for the differential of expp(v) with respect to v. When we need to take

the differential with respect to p, we will use the notation dp for it. We write dv for the differential with

respect to v when we want to distinguish between the two.

We denote by 6 the set of all conjugate pairs (p, q) localized as above. In other words, 6 = {(p, q) :
q ∈ 6(p)}, where p runs over a small neighborhood of p0. Also, we denote by S the set (p, v), where

v ∈ S(p).

A regular conjugate vector v is defined by the requirement that there exists a neighborhood of v such

that any radial ray of Tp M contains at most one conjugate point there. The regular conjugate locus then

is an everywhere-dense open subset of the conjugate locus that has a natural structure of an (n−1)-

dimensional manifold. The order of a conjugate vector as a singularity of expp (the dimension of the

kernel of the differential) is called an order of the conjugate vector.

In [1965, Theorem 3.3], Warner characterized the conjugate vectors at a fixed p0 of order at least 2,

and some of those of order 1, as described below. Note that in B1, one needs to postulate that Np0
(v)

remains tangent to S(p0) at points v close to v0 since the latter is not guaranteed by just assuming that

it holds at v0 only.

(F) Fold conjugate vectors: Let v0 be a regular conjugate vector at p0, and let Np0
(v0) be one-

dimensional and transversal to S(p0). Such singularities are known as fold singularities. Then

one can find local coordinates ξ near v0 and y near q0 such that in those coordinates, expp0
is given

by

y′ = ξ ′ yn = (ξ n)2. (3-2)

Then

S(p0) = {ξ n = 0}, Np0
(v0) = span{∂/∂ξ n}, 6(p0) = {yn = 0}. (3-3)

Since the fold condition is stable under small C∞ perturbations, as follows directly from the defi-

nition, those properties are preserved under a small perturbation of p0.

(B1) Blowdown of order 1: Let v0 be a regular conjugate vector at p0 and let Np0
(v) be one-dimen-

sional. Assume also that Np0
(v) is tangent to S(p0) for all regular conjugate v near v0. We call

such singularities blowdown of order 1. Then locally, expp0
is represented in suitable coordinates

by

y′ = ξ ′, yn = ξ 1ξ n. (3-4)

Then

S(p0) = {ξ 1 = 0}, Np0
(v0) = span{∂/∂ξ n}, 6(p0) = {y1 = yn = 0}. (3-5)

Even though we postulated that the tangency condition is stable under perturbations of v0, it is not

stable under a small perturbation of p0, and the type of the singularity may change then. In some

symmetric cases, one can check directly that the type is locally preserved.
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(Bk) Blowdown of higher order: Those are regular conjugate vectors in the case where Np0
(v0) is

k-dimensional, with 2 ≤ k ≤ n − 1. Then in some coordinates, expp0
is represented as

yi =
{

ξ i if i = 1, . . . , n − k,

ξ 1ξ i if i = n − k + 1, . . . , n.
(3-6)

Then
S(p0) = {ξ 1 = 0}, Np0

(v0) = span{∂/∂ξ n−k+1, . . . , ∂/∂ξ n},
6(p0) = {y1 = yn−k+1 = · · · = yn = 0}.

(3-7)

In particular, Np0
(v0) must be tangent to S(p0); see also [Warner 1965, Theorem 3.2]. This singu-

larity is also unstable under perturbations of p0. A typical example is the antipodal points on Sn for

n ≥ 3; then k = n − 1.

The purpose of this paper is to study the effect of fold conjugate points of X .

4. Geometry of the fold conjugate locus

In this section, we study the geometry of the tangent conjugate loci S(p) and S, and the conjugate

loci 6(p) and 6, respectively. Recall that we work locally, and everywhere below, even if not stated

explicitly, (p, v) belongs to a small enough neighborhood of (p0, v0), and (q, v) is near (q0, w0). We

assume throughout the section that v0 is conjugate vector at p0 of fold type. We also fix a nonzero

covector η0 at q0 as in (2-5), and let ξ0 be the corresponding ξ as in (2-5). We will see later that ξ0 6= 0.

We refer to Figure 2, where w is not shown, and the zero subscripts are omitted.

Lemma 4.1. (a) Let v ∈ S(p) be a fold conjugate vector. Then, 6(p) near q = expp(v) is a smooth

surface of codimension one, tangent to w := −γ̇p,v(1).

(b) The locus S is a smooth (2n−1)-dimensional surface in T M that can be considered as the bundle

{S(p) : p ∈ M} with fibers S(p).

Figure 2. A typical fold conjugate locus.
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Proof. Consider (a) first. The representation (3-2) implies that locally 6(p) = expp(S(p)) is a smooth

surface of codimension one (given by yn = 0). Next, for v ∈ S(p), the differential d expp sends any

vector to a vector tangent to S(p), which follows from (3-2) again. In particular, this is true for the radial

vector v (considered as a vector in TvTp M). This proves that w is tangent to 6(p).

The statement (b) follows from the fact that S is defined by det d expp(v) = 0, and that det d expp(v)

has a nonvanishing differential with respect to v. �

Remark 4.1. It is easy to show that in (a), γp,v is tangent to 6(p) of order 1 only.

We define “Jacobi fields” along γp,v vanishing at p as follows. For any α ∈ TvTp M , set

J (t) = d(expp(tv))(α) = αk ∂

∂vk
expp(tv).

Then J (0) = 0 and J̇ (0) = α, where J̇ (T ) = dJ (t)/ dt . If J (1) = 0, then a direct computation shows

that

J̇ (1) = d2 expp(v)(α × v). (4-1)

When exp is the exponential map of a Riemannian metric, it is natural to work with the covariant

derivative Dt J (t) =: J ′(1) instead of J̇ (t). While they are different in general, they coincide at points

where J (t) = 0.

The next lemma shows that the fold/blowdown conditions are symmetric with respect to p and q .

Lemma 4.2. The vector v0 is a conjugate vector at p0 of fold type if and only if w0 is a conjugate vector

at q0 of fold type.

Proof. Set w0 = −γ̇p0,v0
(1) as in (3-1). Then p0 = expq0

(w0). Assume now that α ∈ Np0
(v0). In some

local coordinates, differentiate p = expq(w) with respect to v in the direction of α; here q and w are

viewed as functions of p and v. Then, using the Jacobi field notation introduced above in (4-1), we get

0 = d expq0
(w0)

(

αk ∂w

∂vk
(p0, v0)

)

= d expq0
(w0) J̇ (1)

because

αk ∂w

∂vk
(p0, v0) = αk ∂

∂vk

d

dt

∣

∣

∣

t=1
expp(tv)(p0, v0) = J̇ (1).

By (R2), J̇ (1) 6= 0, so in particular, this shows that w0 is conjugate at q0, and J̇ (1) ∈ Nq0
(w0). Moreover,

by (R2), the linear map

Np(v) ∋ α = J̇ (0) 7→ J̇ (1) := β ∈ Nq(w), with J (0) = J (1) = 0, (4-2)

defines an isomorphism between Np(v) and Nq(w). Then (4-2) shows that w0 is conjugate at q0 of

multiplicity one. By (R3), applied to w0, it is also regular.

We will prove now that w0 is of fold type. Since it is regular and of multiplicity one, S(q0) near w0

is a smooth (n−1)-dimensional surface either of type F , as in (3-3) or of type B1, as in (3-5). Assume

the latter case first; then 6(q0) is of codimension two, as follows from (3-5). In particular, using the

normal form (3-4), we see that in this case, one can find a nontrivial one-parameter family of vectors
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w(s) such that w(0) = w0 and expq0
(w(s)) = p0. Then the corresponding tangent vectors at p0 would

form a nontrivial one-parameter family of vectors v(s) such that expp0
(v(s)) = q0. That cannot happen,

if v0 is of type F (see (3-2)), since the equation expp0
(v) = q0 has (near v0) at most two solutions. �

For (p, v) ∈ S, let α = α(p, v) ∈ Np(v) be a unit vector. To fix the direction, assume that the

derivative of det d expp(v) in the direction of α is positive for v a conjugate vector. Here we identify

TvTp M and Tp M . In the fold case, Np(v) is clearly a smooth vector bundle on T M near (p0, v0), and

α is a smooth vector field.

Lemma 4.3. For any fixed p near p0, the map

S(p) ∋ v 7→ α(p, v) ∈ Np(v) (4-3)

is a local diffeomorphism, smoothly depending on p if and only if

d2 expp0
(v0)(Np0

(v0) \ 0 × · )
∣

∣

Tv0
S(p0)

is of full rank. (4-4)

Proof. In local coordinates, we want to find a condition such that the equation

αi∂vi expp(v) = 0

can be solved for v so that v=v0 for (p, α)= (p0, α0), where α0 =α(p0, v0). Then v would automatically

be in S(p). By the implicit function theorem, this is equivalent to

det(∂vα
i
0∂vi expp0

(v)) 6= 0 at v = v0.

Choose a coordinate system near v0 such that ∂/∂vn spans Np0
(v0), and {∂/∂v1, . . . , ∂/∂vn−1} span

Tv0
S(p0). Let F(v) = expp0

(v) and denote by Fi and Fi j the corresponding partial derivatives. Greek

indices below run from 1 to n − 1. We have

∂n F(v0) = 0 because ∂/∂vn ∈ Np0
(v0), (4-5)

∂α det(∂ F)(v0) = 0 because ∂/∂vα is tangent to S(p0) at v0, (4-6)

∂n det(∂ F)(v0) 6= 0 by the fold condition, (4-7)

cα∂α F(v0) 6= 0 for all c 6= 0 because cα∂/∂vα 6∈ Np0
(v0). (4-8)

We want to prove that det(∂n∂ F)(v0) 6= 0 if and only if (4-4) holds. That determinant equals

det(F1n, F2n, . . . , Fnn)(v0). (4-9)

Perform the differentiation in (4-6). By (4-5) and (4-8),

det(F1, . . . , Fn−1, Fnα)(v0) = 0 for all α implies Fnα(v0) ∈ span(F1(v0), . . . , Fn−1(v0)).

Similarly, (4-7) shows that

det(F1, . . . , Fn−1, Fnn)(v0) 6= 0 implies 0 6= Fnn(v0) 6∈ span(F1(v0), . . . , Fn−1(v0)). (4-10)
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Those two relations show that (4-9) vanishes if and only if (Fn1(v0), . . . Fn,n−1(v0)) form a linearly

dependent system that is equivalent to (4-4). �

We study the structure of the conjugate loci 6(p), 6(q) and 6 next. Recall again that we work locally

near p0, v0 and q0.

Theorem 4.1. Let v0 be a fold conjugate vector at p0.

(a) For any p near p0, 6(p) is a smooth hypersurface of dimension n − 1 smoothly depending on p.

Moreover for any q = expp(v) ∈ 6(p), Tq M is a direct sum of the linearly independent spaces

Tq M = Tq6(p) ⊕ Nq(w), (4-11)

and

Tq6(p) = Im d expp(v) and N ∗
q 6(p) = Coker dv expp(v).

Next, those statements remain true with p and q exchanged.

(b) 6 is a smooth (2n−1)-dimensional hypersurface in M × M near (p0, q0) that is also a fiber bundle

6 = {6(p) : p ∈ M} with fibers 6(p) (and also 6 = {6(q) : q ∈ M}). Moreover, the conormal

bundle N
∗6 is given by

N
∗6 =

{

(p, q, ξ, η) : (p, q) ∈ 6, ξ = ηi∂ expi
p(v)/∂p, η ∈ Coker dv expp(v),

where v = exp−1
p (q) with expp restricted to S(p)

}

. (4-12)

Proof. We start with (a). By the normal form (3-2), also clear from the fold condition, the image of S(p)

under d expp(v) coincides with Tq6(p). In particular, d expp(v), restricted to S(p) is a diffeomorphism

to its image. Relation (4-11) follows from (4-2) and (R2).

Consider (b). We have (p, q) ∈ 6 if and only if there exists v (near v0) such that

q = expp(v) and det dv expp(v) = 0. (4-13)

In some local coordinates, we view this as n + 1 equations for the 3n-dimensional variable (p, q, v)

near (p0, q0, v0). We show first that the solution, which we denote by L , is a (2n−1)-dimensional

submanifold. To this end, we need to show that the following differential has rank n +1 at (p0, q0, v0):

(

dp expp(v) − Id dv expp(v)

dp det dv expp(v) 0 dv det dv expp(v)

)

. (4-14)

The elements of the first row are n × n matrices, while the second row consists of three n-vectors. That

the rank of the differential above is full follows from the fact that dv det dv expp(v) 6= 0 at (p0, v0),

guaranteed by the fold condition.

Set π(p, q, v) = (p, q). We show next that π(L) is a (2n−1)-dimensional submanifold too. To this

end, we need to show that dπ is injective on T L . The tangent space to L is given by the orthogonal

complement to the rows of (4-14). Denote any vector in T L by ρ = (ρp, ρq , ρv). Then dπ(ρ)= (ρp, ρq).
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Our goal is therefore to show that ρp = ρq = 0 implies ρv = 0. Then (0, 0, ρv) is orthogonal to the rows

of (4-14), and therefore

ρi
v∂vi expk

p(v) = 0 for k = 1, . . . , n, and ρi
v∂vi det dv expp(v) = 0.

The latter identity shows that ρv ∈ Np(v), while the first one shows that ρv ∈ Ker dv expp(v). By the fold

condition, ρv = 0.

This analysis also shows that the covectors ν orthogonal to 6 are of the form ν = (νp, νq) with

the property that (νp, νq , 0) is conormal to L . Since the conormals to L are spanned by the rows of

(4-14), to get the third component to vanish, we have to take a linear combination with coefficients ai

for i = 1, . . . , n and b such that

ai

∂q i

∂v j
+ b

∂ det dv expp(v)

∂v j
= 0 for all j, (4-15)

where q = expp(v). Let 0 6= α ∈ Np(v). Multiply by α j and sum over j above to get that the v-derivative

of b det dv expp(v) in the direction of Np(v) vanishes. According to the fold assumption, this is only

possible if b = 0. Then we get that a ∈ Coker dv expp(v). Therefore the covectors normal to 6 are of

the form

ν =
({

ai

∂q i

∂p j

}

, −a

)

for a ∈ Coker dv expp(v), (4-16)

which proves (4-12). �

Theorem 4.2. Let v0 be a fold conjugate vector at p0. Let expp be the exponential map of a Riemannian

metric.

(a) The sum in (4-11) is an orthogonal one, that is,

Nq6(p) = Nq(w).

(b) Next, (4-17) also admits the representation

N6 =
{

(p, q, α, β); (p, q) ∈ 6, α = J ′(0), β = −J ′(1), where J is any Jacobi field

along the locally unique geodesic connecting p and q with J (0) = J (1) = 0
}

. (4-17)

(c) N6 is a graph of a smooth map (p, α) 7→ (q, β) if and only if condition (4-4) is fulfilled. Then that

map is a local diffeomorphism.

Remark 4.2. Note that for (p, q) ∈ 6, the geodesic connecting p and q is unique, as follows from the

normal form (3-2), only among the geodesics with γ̇ (0) close to v0. Also, J is determined uniquely up

to a multiplicative constant. Next, once we prove that 6 is smooth, then α ∈ Np(v) and β ∈ Nq(w) by (a)

(see also (3-2)), but (4-17) gives something more than that — it restricts (α, β) to an one-dimensional

space.

Remark 4.3. It natural to ask whether |J ′(0)| = |J ′(1)|. One can show that generically this is not so.



THE GEODESIC X-RAY TRANSFORM WITH FOLD CAUSTICS 231

Proof. By [Lang 1995, Lemma IX.3.5], the conjugate of d expp(v) with respect to the metric form is

given by

(d expp(v))∗ = d expq(w), (4-18)

where we use the notation of (3-1). The normal to 6(p) at q is in the orthogonal complement to the

image of d expp(v), which by (4-18) is Ker d expq(w) = Nq(w). This proves (a).

Then we get by (4-18) and (4-15) (where b = 0) that a ∈ Nq(w), where we identify the covector a

with a vector by the metric.

We will use now [Lang 1995, Lemma IX.3.4]: For any two Jacobi fields J1 and J2 along a fixed

geodesic, the Wronskian 〈J ′
1, J2〉−〈J1, J ′

2〉 is constant. Along the geodesic connecting p and q , in fixed

coordinates near p, let J̃ be determined by J̃ (0) = e j and J̃ ′(0) = 0. Here e j has components δi
j . If p

and q are conjugate to each other, then J̃ (1) is the equal to the variation ∂q/∂p j , and this is independent

of the choice of local coordinates as long as e j is considered as a fixed vector at p. Define another Jacobi

field by J (1) = 0 and J ′(1) = a, where a is as in (4-16) but considered as a vector. Denote the field in

the brackets in (4-16) by X j . Then

X j = 〈a, J̃ (1)〉 = 〈J ′(1), J̃ (1)〉
= 〈J ′(1), J̃ (1)〉 − 〈J (1), J̃ ′(1)〉
= 〈J ′(0), J̃ (0)〉 − 〈J (0), J̃ ′(0)〉 = J ′

j (0).

This proves (4-17).

The proof of (c) follows directly from Lemma 4.3. �

5. The Schwartz kernel of N near the diagonal and mapping properties of X and N

5a. The geodesic case. Let exp be the exponential map of the metric g. Then X is the weighted geo-

desic ray transform. One way to parametrize the geodesics is the following. Let H be any orientable

hypersurface with the property that it intersects transversally, at one point only, any geodesic in M issued

from a point in U. For our local analysis, H can be an arbitrarily small surface intersecting transversally

γp0,v0
, so let us fix that choice. Let dVolH be the induced measure in H , and let ν be a smooth unit

normal vector field on H consistent with the orientation of H . Let H consist of all (p, θ) ∈ SM with

the property that p ∈ H and θ is not tangent to H , and positively oriented, that is, 〈ν, θ〉 > 0. Introduce

the measure dµ = 〈n, θ〉 dVolH (p) dσp(θ) on H. Then one can parametrize all geodesics intersecting H

transversally by their intersection p with H and the corresponding direction, that is, by elements in H.

An important property of dµ is that it introduces by Liouville’s theorem a measure on that geodesics set

that is invariant under a different choice of H ; see e.g., [Stefanov and Uhlmann 2004].

The weighted geodesic transform X can be defined as in (2-1) for (p, θ) ∈ H instead of (p, θ) ∈ U

because transporting (p, v) along the geodesic flow does not change the integral. Since we assumed

originally that κ is localized near a small enough neighborhood of γp0,v0
, we get that κ is supported in a
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small neighborhood of (p0, θ0) in H. We view X as the map

X : L2(M) → L2(H, dµ)

restricted to a neighborhood of (p0, θ0). This map is bounded [Sharafutdinov 1994], and this also follows

from our analysis of N . By the proof of [Stefanov and Uhlmann 2004, Proposition 1], X∗X is given by

X∗X f (p) = 1√
det g(p)

∫

Sp M

∫

κ̄(p, θ)κ(expp(tθ), ˙expp(tθ)) f (expp(tθ)) dt dσp(θ). (5-1)

We therefore proved the following.

Proposition 5.1. Let exp be the geodesic exponential map. Let X be the weighted geodesic ray trans-

form (2-1), and let N be as in (2-2), depending on κ♯. Then

X∗X = N with κ♯ = κ̄ .

Split the t integral in (5-1) into the regions t > 0 and t < 0, and make a change of variables (t, θ) 7→
(−t, −θ) in the second one to get

X∗X f (p) = 1√
det g(p)

∫

Tp M

W (p, v) f (expp(v)) dVol(v), (5-2)

where

W = |v|−n+1
(

κ̄(p, v/|v|)κ(expp(v), ˙expp(v)/|v|) + κ̄(p, −v/|v|)κ(expp(v), − ˙expp(v)/|v|)
)

. (5-3)

Note that | ˙expp(v)| = |v| in this case.

Next we recall a result in [Stefanov and Uhlmann 2004]. Part (a) is based on formula (5-2) after a

change of variables. We denote by ρ the distance in the metric g.

Theorem 5.1. Let exp be the exponential map of M. Assume that expp : exp−1
p (M) → M is a diffeo-

morphism for p near p0.

(a) For p in the same neighborhood of p0,

X∗X f (p) = 1√
det g(p)

∫

A(p, q)
f (q)

ρ(p, q)n−1

∣

∣

∣
det

∂2(ρ2/2)

∂p∂q

∣

∣

∣
dq, (5-4)

where

A(p, q) = κ̄(p, − gradp ρ)κ(q, gradq ρ) + κ̄(p, gradp ρ)κ(q, − gradq ρ).

(b) X∗X is a classical 9DO of order −1 with principal symbol

σp(X∗X)(x, ξ) = 2π

∫

Sx M

δ(ξ(θ))|κ(x, θ)|2 dσx(θ), (5-5)

where ξ(θ) = ξiθ
i and δ is the Dirac delta function.
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The integral (5-4) is not written in an invariant form but one can easily check by writing it with respect

to the volume form that the kernel is invariant. We also note that in the proof of Theorem 2.1, we apply the

theorem above by restricting supp f and the region where we study N f to a small enough neighborhood

of p0, where there will be no conjugate points. This gives the 9DO part A of N in Theorem 2.1. Finally,

note that Theorem 5.2 provides a proof of part (b) even in the context of general exponential maps.

5b. Mapping properties of X. Let (x ′, xn) be semigeodesic coordinates on H near x0. Then (x ′, ξ ′)
parametrize the vectors near (x0, θ0). We define the Sobolev space H 1(H) of functions constant along

the flow, supported near the flow-out of (x0, θ0) as the H s norm in those coordinates with respect to

the measure dµ. We can choose another such surface H near q0 with some fixed coordinates on it; the

resulting norm will be equivalent to that on H.

Proposition 5.2. With the notation and the assumptions above, for any s ≥ 0, the operators

X : H s
0 (V ) → H s+1/2(H), (5-6)

X∗X : H s
0 (V ) → H s+1(V ) (5-7)

are bounded.

Proof. Recall first that the weight κ localizes in a small neighborhood of (γ0, γ̇0). Let first f have small

enough support in a set that we will call M0. Then M0 will be a simple manifold if small enough. Then

we can replace H by another surface H0 that lies in M0, and we denote by H0 the corresponding H. This

changes the original parametrization to a new one, which will give us an equivalent norm.

Then, if s is a half-integer,

‖X f ‖2
H s+1/2(H0)

≤ C
∑

|α|≤2s+1

∣

∣(∂α
x ′,ξ ′ X f, X f )L2(H0)

∣

∣ = C
∑

|α|≤2s+1

∣

∣(X∗∂α
x ′,ξ ′ X f, f )L2(H0)

∣

∣.

The term ∂α
x ′,ξ ′ X f is a sum of weighted ray transforms of derivatives of f up to order |α|. Then X∗∂α

x ′,ξ ′ X

is a 9DO of order |α| − 1 because M0 is a simple manifold. That easily implies

‖X f ‖H s+1/2(H0)
≤ C‖ f ‖H s .

The case of general s ≥ 0 follows by interpolation; see, e.g., [Taylor 1996, Section 4.2].

To finish that proof, we cover γ0 with open sets so that the closure of each one is a simple manifold.

Choose a finite subset and a partition of unity 1 =∑

χ j related to that. Then we apply the estimate above

to each Xχ j f on the corresponding H j . We then have finitely many Sobolev norms that are equivalent,

and in particular equivalent to the one on H. This proves (5-6).

To prove the continuity of X∗X , we need to estimate the derivatives of X∗X . We have that ∂α X∗X f

is sum of operators Xκα
of the same kind but with possibly different weights applied to derivatives of

X f up to order |α|; see (5-1). Let first s = 0. For f , h in C∞
0 (V ) and |β| = 1, we have

∣

∣( f, X∗
κβ

∂
β

x ′,ξ ′ Xh)L2(V )

∣

∣ ≤ C‖Xκβ
f ‖H1/2‖Xh‖H1/2 ≤ C‖ f ‖L2(V )‖h‖L2(V ).

In the last inequality, we used (5-6), which we proved already. This proves (5-7) for s = 0.
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For s ≥ 1, integer, we can “commute” the derivative in ∂α X∗X with X∗X by writing it as a finite sum

of operators of the type X∗
β̃

Xβ Pβ f , with |β| ≤ |α|, where Pβ are differential operators of order β. To

this end, we first commute it with X∗, as above, and then with X . Then we apply (5-7) with s = 0. The

case of general s ≥ 0 follows by interpolation. �

Remark 5.1. We did not use the fold condition here. In fact, Proposition 5.2 holds without any assump-

tions on the type of the conjugate points as long as V is contained in a small enough neighborhood of a

fixed geodesic segment that extends to a larger one with both endpoints outside V . Proving the mapping

properties of X∗X based on its FIO characterization is not straightforward, and we would get the same

conclusion only under some assumptions, for example that the canonical relation is a canonical graph;

that is not always true.

Remark 5.2. A global version of Proposition 5.2 can easily be derived by a partition of unity in the

phase space. Let (M, g) be a compact nontrapping Riemannian manifold with boundary, that is, one in

which all maximal geodesics in M have a uniform finite bound on their length. Let M1 be another such

manifold whose interior includes M , and assume that ∂ M1 is strictly convex. Such M1 always exists if

∂ M is strictly convex. Let ∂−SM1 denote the vectors with base point on ∂ M pointing into M1. Then we

can parametrize all (directed) geodesics with points in ∂−SM1, which plays the role of H above. Then

for s ≥ 0,

X : H s
0 (M) → H s+1/2(∂−SM1), X∗X : H s

0 (M) → H s+1(M1)

are bounded.

5c. General regular exponential maps. Let now exp be a regular exponential map. As above, we split

the t-integral in the second line below into two parts to get

N f (p) =
∫

κ♯(p, θ)X f (p, θ) dσp(θ)

=
∫

Sp M

∫

κ♯(p, θ)κ(expp(tθ), ˙expp(tθ)) f (expp(tθ)) dt dσp(θ)

=
∫

Tp M

W (p, v) f (expp(v)) dVol(v),

(5-8)

where

W = |v|−n+1
(

κ♯(p, v/|v|)κ(expp(v), ˙expp(v)/|v|) + κ♯(p, −v/|v|)κ(expp(v), − ˙expp(v)/|v|)
)

. (5-9)

Theorem 5.2. Let expp(v) satisfy (R1) and (R4) and assume for any (p, θ) ∈ supp κ♯ that tθ is not a

conjugate vector at p for t such that expp(tθ) ∈ supp f . Then N is a classical 9DO of order −1 with

principal symbol

σp(N )(x, ξ) = 2π

∫

Sx M

δ(ξ(θ))(κ♯κ)(x, θ) dσx(θ), (5-10)

where ξ(θ) = ξiθ
j and δ is the Dirac delta function.
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Proof. The theorem is essentially proved in [Frigyik et al. 2008, Section 4], where the exponential map

is related to a geodesic like family of curves. We will repeat the arguments there in this more general

situation.

Notice first that it is enough to study small enough |t |. Fix local coordinates x near p0. By (R4),

expx(tθ) = x + tm(t, θ; x), where m(0, θ; x) = θ,

with a smooth function m near (0, θ0, p0). Introduce new variables (r, ω) ∈ R × Sx M by

r = t |m(t, θ; x)| and ω = m(t, θ; x)/|m(t, θ; x)|,

where | · | is the norm in the metric g(x). Then (r, ω) are polar coordinates for expx(tθ) − x = rω with

r that can be negative as well, that is,

expx(tθ) = x + rω.

The functions (r, ω) are clearly smooth for |t | ≪ 1 and x close to p0. Let

J (t, θ; x) = det dt,v(r, ω)

be the Jacobi determinant of the map (t, v) 7→ (r, ω). By (R4), J |t=0 = 1; therefore that map is a local

diffeomorphism from (−ε, ε)× Sx M to its image for 0 < ε ≪ 1. It is not hard to see that for 0 < ε ≪ 1

it is also a global diffeomorphism because it is clearly injective. Let t = t (x, r, ω) and θ = θ(x, r, ω) be

the inverse functions defined by that map. Then

t = r + O(|r |), θ = ω + O(|r |), ˙exp(tθ) = ω + O(|r |).

Assume that the weight κ in (2-2) vanishes for p outside some small neighborhood of p0. Then after a

change of variables, we get

N f (x) =
∫

Sx M

∫

A(x, r, ω) f (x + rω) dr dσx(ω),

where

A(x, r, ω) = κ♯(x, θ(x, r, ω))κ(x + rω, ω + r O(1))J−1(x, r, ω)

with J as before, but written in the variables (x, r, ω). By [Frigyik et al. 2008, Lemma 4.2], N is a

classical 9DO of order −1 with principal symbol

2π

∫

Sx M

δ(ξ(ω))A(x, 0, ω) dσx(ω) = 2π

∫

Sx M

δ(ξ(ω))κ♯(x, ω)κ(x, ω) dσx(ω). (5-11)

The proof in [Frigyik et al. 2008] starts with the change of variables y = x + rω. Then we write

the Schwartz kernel of N as a singular one with leading part 2Aeven(x, 0, ω)|x − y|−1, where ω =
(y − x)/|y − x | and Aeven is the even part of A with respect to ω. It then follows that N is a 9DO of

order −1 with a principal symbol as claimed. �
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Remark 5.3. Formulas (5-2) and (5-8) are valid regardless of possible conjugate points. In our setup,

the supports of κ and κ♯ guarantee that expp(tθ) for (p, θ) close to (p0, θ0) reaches a conjugate point

for t > 0 but not for t < 0. Therefore, near the conjugate point q of p, the second term on the right sides

of (5-3), and (5-9), respectively, vanishes.

6. The Schwartz kernel of N near the conjugate locus 6

We will introduce first three invariants. Let F : M → N be a smooth orientation-preserving map between

two orientable Riemannian manifolds (M, g) and (N , h). Then one defines det dF invariantly by

F∗(dVolN ) = (det dF) dVolM ; (6-1)

see also [Lang 1995, X.3]. In local coordinates,

det dF(x) =
√

det h(F(x))

det g(x)
det

∂ F(x)

∂x
. (6-2)

We choose an orientation of S(p0) near v0, as a surface in Tp0
M , by choosing a unit normal field

so that the derivative of det d expp0
(v) along it is positive on S(p). Then we extend this orientation to

S(p) for p close to p0 by continuity. In Figure 2, the positive side is the one below S(p) if v is the first

conjugate vector along the geodesic through (p, v). Then we choose an orientation of 6(p) such that

the positive side is that in the range of expp. In Figure 2, the positive side is to the left of 6(p). The so

chosen orientations conform with the signs of ξ n and yn in the normal form (3-2).

Next we synchronize the orientations of Tp M and M near q by postulating that expp is an orientation-

preserving map from the positive side of S(p), as described above, to the positive side of 6(p).

For each p ∈ M , the transformation laws in T Tp M under coordinate changes on the base show that

Tp M has the natural structure of a Riemannian manifold with the constant metric g(p). Then one can

define det d expp invariantly as above. Let dVolp be the volume form in Tp M , and let dVol be the volume

form in M . Then det d expp is defined invariantly by

exp∗
p dVol = (det d expp) dVolp. (6-3)

In local coordinates,

det d expp =
√

det g(expp v)

det g(p)
det

∂

∂v
expp(v),

where, with some abuse of notation, g(p) is the metric g in fixed coordinates near a fixed p0, and

g(expp v) is the metric g in a possibly different system of fixed coordinates near q0 = expp0
v0. Set

A(p, v) := |d det d expp(v)|. (6-4)

Since det d expp(v) is a defining function for S(p), its differential is conormal to it. By the fold condition,

A 6= 0. One can check directly that A is invariantly defined on 6.
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By (3-3), for (p, v) ∈ S, the differential of expp maps isomorphically Tv S(p) (equipped with the

metric on that plane induced by g(p)) into Tq6, with the induced metric. Let D be the determinant of

expp|S(p), that is,

D := det(d expp|Tv S(p)), (6-5)

defined invariantly by (6-1). We synchronize the orientations of S(p) and 6(p) so that D > 0.

We express next the weight W (p, v) restricted to S in terms of the variables (p, q). For (p, q) ∈ 6,

v = exp−1
p (q), where we inverted expp restricted to S. Let w = w(p, q) be defined as in (3-1) with v as

above. Then we set (see also (5-9), and Remark 5.3)

W6(p, q) := W (p, exp−1
p (q))|6 = |v|1−nκ♯(p, v/|v|)κ(q, −w/|v|). (6-6)

For p close to p0, 6(p) divides M in a neighborhood of q0 into two parts: One of them is in the range

of expp(v) for v near v0 (this is the positive one with respect to the chosen orientation); the other is not.

Let z′(p, q) be the distance from q to 6(p) with a positive sign in the first region, and with a negative

sign in the second. Then z′ = z′(p, q), for fixed p, is a normal coordinate to 6(p) depending smoothly

on p, and 6 is given locally by z′ = 0. Then z′ is a defining function for 6, that is, 6 = {z′ = 0} and

dp,q z′ 6= 0 because dq z′ 6= 0. Let z′′ = z′′(p, q) ∈ R
2n−1 be such that its differential restricted to T 6

is an isomorphism at (p0, q0). Since dz′′ and dz′ are linearly independent, z = z(z′, z′′) are coordinates

near (p0, q0). One way to construct z′′ is the following. Choose (zn+1, . . . , z2n), depending on p only,

to be local coordinates for p, and to choose (z′, z2, . . . , zn), depending on p and q , to be semigeodesic

coordinates of q near 6(p).

The next theorem shows that near 6, the operator N has a singular but integrable kernel with a

conormal singularity of the type 1/
√

z′.

Theorem 6.1. Near 6(p), the Schwartz kernel N (p, q) of N (with respect to the volume measure) near

(p0, q0) is of the form

N = W6

√
2√

ADz′ (1 +
√

z′ R(
√

z′, z′′)), (6-7)

where W6 = W6(z′′), A = A(z′′), D = D(z′′), and R is a smooth function.

Proof. We start with the representation (5-8). We will make the change of variables y = expp(v) for

(p, v) close to (p0, v0) as always. Then y will be on the positive side of 6(p), and the exponential map

is 2-to-1 there. We split the integration in (5-8) in two parts: One, where v is on the positive side of S(p),

that we call N+ f , and the other one we denote by N− f . Then

N± f (p) =
∫

Sp M

∫

W f (y)(det d exp±
p (v))−1 dVol(y), (6-8)

where W is as in (6-6) but not restricted to 6, and (exp±
p )−1 there is the corresponding inverse in each

of the two cases.

To prove the theorem, we need to analyze the singularity of the Jacobian determinant det d expp(v)

near 6(p). It is enough to do this at (p0, v0).
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Let y = (y′, yn) be semigeodesic coordinates near 6(q0), with q0 = expp0
(v0), and let y0 correspond

to q0. We assume that yn > 0 on the positive side of 6(p). In other words, yn = z′(p0, q).

We have

dVol(y) = det(dv expp(v)) dVol(v).

The form on the left can be written as dVol6(p)(y′) dyn , while the one on the right, restricted to S(p),

equals dVolS(p)(v
′) dvn in boundary normal coordinates to S(p), where vn > 0 gives the positive side

of S(p). On the other hand, by (6-5),

dVol6(p)(y′) = D dVolS(p)(v
′).

We therefore get

D dyn = det
(

d expp(v)
)

dvn.

By the definition of A, we have

det dv expp(v) = Avn(1 + O(vn)). (6-9)

Therefore,

D dyn = A(1 + O(vn)) vn dvn.

Since yn = 0 for vn = 0, we get

yn = (vn)2 A

2D
(1 + O(vn)).

Solve this for vn and plug into (6-9) to get

det d expp(v) = ±
√

2ADyn
(

1 + O±(
√

yn)
)

. (6-10)

Here O±(
√

yn) denotes a smooth function of
√

yn near the origin with coefficients smooth in y′, which

vanishes at yn = 0. The positive/negative sign corresponds to v belonging to the positive/negative side

of S(p). By (6-8),

N± f (p) =
∫

W f (y)
1√

2ADyn

(

1 + O±(
√

yn)
)

dVol(y). (6-11)

We replace A0 and D0 in (6-11) by their values at yn = 0; the error will then just replace the remainder

term above by another one of the same type. Similarly, W = W (p, v), where expp(v) = q . Solving the

latter for v = v(p, q) provides a function having a finite Taylor expansion in powers of
√

yn of any order,

with smooth coefficients. The leading term is what we denoted by W6 , a smooth function on 6.

With the aid of (6-2), it is easy to see that (6-11) is a coordinate representation of the formula (6-7) at

the so fixed p. When p varies near p0, it is enough to notice that since we already wrote the integral in

invariant form, yn then becomes the function z′(p, q) introduced above. For z′′ we then have z′′(p, q) =
(x(p), y′(p, q)). Finally, we note that another choice of z′′ such that (z′, z′′) are coordinates would

preserve (6-7) with a possibly different R. �
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7. N as a Fourier integral operator: Proof of Theorem 2.1

We are ready to finish the proof of Theorem 2.1. By Theorem 6.1, near 6, the Schwartz kernel of N has

a conormal singularity at 6, supported on one side of it, that admits a singular expansion in powers of
√

z′
+, with leading singularity 1/

√

z′
+. The Fourier transform of the latter is

√
πe−iπ/4(ζ

−1/2
+ + iζ

−1/2
− ), (7-1)

where ζ+ = max(ζ, 0) and ζ− = (−ζ )+. The singularity near ζ = 0 can be cut off, and we then get a

symbol of order −1/2, depending smoothly on the other 2n −1 variables. Therefore, near 6, the kernel

of N belongs to the conformal class I −n/2(M×M, 6; C); see e.g., [Hörmander 1985a, 18.2]. It is elliptic

when κ♯(p0, θ0)κ
♯(q0, −w0) 6= 0 by (5-9) and (6-6). Therefore, the kernel of N near 6 is a kernel of an

FIO associated to the Lagrangian T ∗6. Moreover, the amplitude of the conormal singularity at 6 is in

the class S
−1/2,1/2

phg (polyhomogeneous of order −1/2, having an asymptotic expansion in integer powers

of |ζ |1/2); see also (9-12) and (9-13).

8. The two-dimensional case

Theorem 8.1. Let dim M = 2. Assume that (R1)–(R5) are fulfilled. Then N
∗6 \ 0, near (p0, ξ0, q0, η0),

is the graph of a local diffeomorphism T ∗M \0 ∈ (p, ξ) 7→ (q, η) ∈ T ∗M \0, homogeneous of order one

in its second variable (a canonical graph).

Proof. For (p, ξ) near (p0, ξ0), there are exactly two smooth maps that map ξ to a unit normal vector. We

choose the one that maps ξ0 to v0/|v0|. Then we map the latter to v ∈ S(p). Since the radial ray through

v is transversal to S(p), that map is smooth. Knowing v, then we can express q = expp(v) ∈ 6(p) and

w = − ˙expp(v) as smooth functions of (p, ξ) as well. Then in local coordinates, η = ξi∂ expi
q(w)/∂q

(see (4-12)), which in particular proves the homogeneity.

By (R5), this map is invertible. �

Figure 3. The 2D case.
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The principal symbol of X∗X in the geodesics case (see Theorem 5.1, and (5-5)) is given by

σp(X∗X)(x, ξ) = 2π |κ(x, ξ⊥/|ξ⊥|)|2, (8-1)

where ξ⊥ is a continuous choice of a vector field normal to ξ and of the same length such that ξ⊥
0 /|ξ⊥

0 |=θ0

and −ξ⊥
0 /|−ξ⊥

0 | = θ0 at p = p0; therefore, the sign of the angle of rotation is different near ξ0 and

near −ξ0. Notice that (5-5) in the two-dimensional case is a sum of two terms but we assumed that κ is

supported near (p0, θ0); therefore only one of the terms is nontrivial. A similar remark applies to (5-10).

Theorem 6.1 takes the following form in two dimensions, in the Riemannian case.

Corollary 8.1. Let n = 2 and let exp be the exponential map of a Riemannian metric. With the notation

of Theorem 6.1, we then have

N = W6

√
2√

Bz′ (1 +
√

z′ R(
√

z′, z′′)), (8-2)

where

B =
∣

∣

∣

d

dN
det d expp(v)

∣

∣

∣

is evaluated at v ∈ S(p) such that q = expp(v), and d/ dN stands for the derivative in the direction

of Np(v).

Proof. Note first that B 6= 0 by the fold condition. Let φ be the (acute) angle between S(p) and Np(v)

at v. Since Np(v) is orthogonal to the radial ray at v, we can introduce an orthonormal coordinate system

at v with the first coordinate vector being v/|v|, and the second one the positively oriented unit vector

along Np(v), which we call ξ . Let us parallel transport this frame along the geodesic γp,v and invert the

direction of the tangent vector to conform with our choice of w at q . In particular, this introduces a similar

coordinate system near the corresponding vector w at q in the conjugate locus. In these coordinates then

d expp(v) =
(−1 0

0 j/|v|

)

, (8-3)

where j is uniquely determined by J (t) = j (t)4(t), where J (t) is the Jacobi field with J (0) = 0,

J ′(0) = ξ , and 4(t) is the parallel transport of ξ ; compare that with (4-1). The extra factor 1/|v| comes

from the fact that we normalize v now in our basis, so that the result would be the Jacobian determinant.

Then the Jacobi determinant det d expp(v) is given by − j/|v|. In particular, for (p, v) ∈ S we have

d expp(v) = diag(−1, 0). Note that j depends on v as well; therefore its differential, which essentially

gives d det d expp(v), depends on the properties of the Jacobi field under a variation of the geodesic.

Now, it easily follows from the definition (6-5) of D that D = sin φ. On the other hand, d det d expp(v)

is conormal to S(p); therefore, the derivative of det d expp(v) in the direction of Np(v) satisfies

∣

∣

∣

d

dN
det d expp(v)

∣

∣

∣
= |d det d expp(v)| sin φ = A sin φ = AD. �
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9. Resolving the singularities in the geodesic case

As before, let (p0, q0) be a pair of fold conjugate points along γ0, and X be the ray transform with a

weight that localizes near γ0. We want to see whether we can resolve the singularities of f near p0 and

near q0 knowing that X f ∈ C∞, and more generally, whether we can invert X microlocally. Assume for

simplicity that p0 6= q0.

We will restrict ourselves to the geodesic case only but the same analysis holds without changes to

the case of magnetic geodesics as well. We avoid the formal introduction of magnetic geodesics for

simplicity of the exposition. Assume also that

κ(p, θ)κ(q, −w/|w|) 6= 0 for (p, θ) ∈ U0, (9-1)

where (q, w) are given by (3-1), and U ⋑ U0 ∋ (p0, θ0). This guarantees the microlocal ellipticity of the

9DO A near N
∗(p0, v0) and N

∗(q0, w0) in Theorem 2.1; see Theorem 5.1.

9a. Sketch of the results. We explain the results before first in an informal way. As we pointed out

in the introduction, X f (γ ) for geodesics near γ0 can only provide information for WF( f ) near N
∗γ0,

and does not “see” the other singularities. The analysis below, based on Theorem 2.1, shows that on a

principal symbol level, the operator |D|1/2 F behaves as a Radon type of transform on the curves (when

n = 2) or the surfaces (when n ≥ 3) 6(p). Similarly, its adjoint behaves as a Radon transform on

the curves/surfaces 6(q). Therefore, there are two geometric objects that can detect singularities at p0

conormal to v0: the geodesic γ0 = γp0,v0
(and those close to it) and the conjugate locus 6(q0) through

p0 (and those corresponding to perturbations of v0). We refer to Figure 4.

When n = 2, the information coming from integrals along the two curves (and their neighborhoods)

may in principle cancel; and we show in Theorem 9.2 that this actually happens, at least to order one.

When n ≥ 3, the Radon transform over 6(q) ∋ p competes with the geodesic transform over geodesics

through p. Depending on the properties of that Radon transform, the information that we get for ±ξ0

Figure 4. Two geometric objects can detect singularities at p0 in the geodesic case:

a geodesic γ0 through p0, and the conjugate locus 6(q0) of q0 conjugate to p0. By

Theorem 4.2, γ0 is parallel to 6(q0).
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may or may not cancel because ξ0 is conormal both to γ0 and 6(q0). On the other hand, for any other

ξ1 conormal to v0 but not parallel to ξ0, the geodesic γ0 (and those close to it) can detect whether it is

in WF( f ) but the Radon transform restricted to small perturbations of v0 (and therefore of q0) will not.

Thus, we can invert N microlocally at such (p0, ξ1).

Now, when n ≥ 3, we may try to invert N even at ξ0 by choosing v’s close to v0 but normal to ξ0. If

ξ0 happens not to be conormal to the corresponding conjugate locus 6(q(p0, v)) at p0, we can just use

the argument above with the new v. In particular, if the map (4-3) is a local diffeomorphism, this can be

done.

This suggests the following sufficient condition for inverting N at (p0, ξ1):

There is some θ1 ∈ Sp0
M such that κ(p0, θ1) 6= 0, ξ1(θ1) = 0,

and ξ1 is not conormal to 6(q(p0, θ1)) at p0. (9-2)

Above, 6(q(p0, θ1)) is the conjugate locus to the point q that is conjugate to p0 along γp0,θ1
. We normally

denote that point by q(p0, v1), where v1 ∈ S(p0) has the same direction as θ1.

In case of the geodesic transform, one could formulate (9-2) in terms of the map (4-3) as follows:

There exists v1 ∈ S(p0) such that κ(p0, v1/|v1|) 6= 0, ξ1(v1) = 0,

and ξ1 is not the image of v1 under the map (4-3) at p0. (9-3)

In Section 10c, we present an example where (4-3) is a local diffeomorphism, and therefore (9-2)

holds. In Section 10d we present another example where (9-2) fails.

9b. Recovery of singularities in all dimensions. We proceed next with analysis of the recovery of sin-

gularities.

Let χ1,2 be smooth functions on M that localize near p0, and q0, respectively, that is, supp χ1 ⊂ U1

and supp χ2 ⊂ U2, where U1,2 are small enough neighborhoods of p and q , respectively. Assume that

χ1, χ2 equal 1 in smaller neighborhoods of p0, q0, where f1, f2 are supported. Then f := f1 + f2 is

supported in U1 ∪ U2 and we can write

χ1 N f = A1 f1 + F12 f2, (9-4)

where A1 = χ1 Nχ1 is a 9DO by Theorem 5.2, while F12 = χ1 Nχ2 is the FIO that we denoted by F in

Theorem 2.1. By (R5), we can do the same thing near q0 to get

χ2 N f = A2 f2 + F21 f1, (9-5)

where A2 = χ2 Nχ2, F21 = χ2 Nχ1. It follows immediately that F21 = F∗
12. Recall that F12 = F in the

notation of Theorem 2.1. Assuming X∗X f ∈ C∞, we get

A1 f1 + F f2 ∈ C∞ and A2 f2 + F∗ f1 ∈ C∞. (9-6)

Solve the first equation for f2, and plug into the second one to get

(Id −A−1
2 F∗ A−1

1 F) f2 ∈ C∞ near (q0, ±η0) , (9-7)
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where A−1
1 and A−1

2 , denote parametrices of A1 and A2 near (p0, ±ξ0) and (q0, ±η0), respectively. The

operator in the parentheses is a 9DO of order 0 if the canonical relation is a graph, which is true in

particular when n = 2, by Theorem 8.1. In that case, if Id −A−1
2 F∗ A−1

1 F is an elliptic (as a 9DO of

order 0) near (q0, ±η0), then we can recover the singularities. Without the canonical graph assumption,

if it is hypoelliptic, then we still can.

Another way to express the arguments above is the following. Since χ1,2 together with κ restrict to

conic neighborhoods of (p0 ± ξ0) and (q0 ± η0), respectively, and A1,2, F , F∗ have canonical relations

of graph type that preserve the union of those neighborhoods, we may think of f = f1 + f2 as a vector

f = ( f1, f2), and then

F =
(

A1 F

F∗ A2

)

. (9-8)

The operator Id −A−1
2 F∗ A−1

1 F can be considered then as the “determinant” of F , up to elliptic factors.

Theorem 9.1. Let the canonical relation of F be a canonical graph. With the assumptions and the

notation above, if the zeroth order 9DO

Id −A−1
2 F∗ A−1

1 F (9-9)

is elliptic in a conic neighborhood of (q0, ±η0), then X f ∈ C∞ near (p0, θ0) (or more generally,

N f ∈ C∞ near p0 and q0) implies f ∈ C∞.

In the geodesic case in two dimensions, the principal symbol of A−1
2 F∗ A−1

1 F is always 1; see

Proposition 9.1 below.

When n ≥ 3 and F is of graph type, then A−1
2 F∗ A−1

1 F is of negative order; therefore we can resolve

the singularities.

Corollary 9.1. Let n ≥ 3 and assume that the canonical relation of F is a canonical graph. Then the

conclusions of Theorem 9.1 hold, that is, X f ∈ C∞ near (p0, θ0) (or more generally, N f ∈ C∞ near p0

and q0) implies f ∈ C∞.

Proof. In this case, A−1
1 F is an FIO of order 1 − n/2 with the same canonical relation as F . Similarly

A−1
2 F∗ is an FIO of order 1−n/2 with a canonical relation that is a graph of the inverse canonical map.

Their composition is therefore a 9DO of order 2 − n < 0. Its principal symbol as a 9DO of order 0 is

zero. The corollary now follows from Theorem 9.1. �

In Section 10c, we give an example where the assumptions of the corollary hold. Note that those

assumptions are stable under small perturbations of the dynamical system.

When the graph condition does not hold, the analysis is harder. Then (4-3) is not a local diffeomor-

phism. If its range is a lower dimension submanifold, for example, we can at least recover the conormal

singularities to θ0 away from it, as the corollary below implies. Note that below, (b) implies (a). Also,

(9-1) is not needed; only ellipticity of κ at (p0, θ0) suffices.

Corollary 9.2. Let X f ∈ C∞ for γ near γ0.
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(a) If ξ1 ∈ Tp0
M \ 0 is conormal to v0 but not conormal to 6(q0) (not parallel to ξ0), then

(p0, ξ1) 6∈ WF( f ).

(b) The same conclusion holds if condition (9-2) or the equivalent (9-3) is fulfilled.

Proof. Note first that A1 is elliptic at (p0, ζ ) by (9-1) and Theorem 5.1(b). By the first relation in (9-6),

(p0, ξ1) ∈ WF( f1) if and only if (p0, ξ1) ∈ WF(F f2). To analyze the latter, we will use the relation

WF(F f2) ⊂ WF′(F) ◦ WF( f2); see [Hörmander 1983, Theorem 8.5.5], noting that in the notation

there, WF(F)X is empty. By Theorem 6.1, WF′(F) consists of those points in the canonical relation

C; see (2-5), for which the conormal singularity in (6-7) is not canceled by a zero weight.

Now, let ξ1 be as in (a). Since ξ1 is separated by ±ξ0 by a conic neighborhood, one can choose a

weight χ on SM that is constant along the geodesic flow, nonzero at (p0, θ0) and supported in a flow-out

of a neighborhood V of it small enough such that the conormals to the corresponding conjugate loci at p0

stay away from a neighborhood of ξ1. In the geodesics case, the condition is that the map (4-3) restricted

to V does not intersect a chosen small enough conic neighborhood of ±ξ0. This can always be done by

continuity arguments. Then left projection of WF′(F) will not be singular at (p0, ξ1), and therefore, F f2

will have the same property regardless of the singularities of f2.

Statement (b) follows from (a) by varying v near v0 in directions normal to ξ1. �

9c. Calculating the principal symbol of (9-9) in case of Riemannian surfaces. Let exp be the expo-

nential map of g, and let n ≥ 2. We will take n = 2 later. Recall that the leading singularity of the kernel

of N near 6 is of the type (z′
+)−1/2, by Theorem 6.1. We will compose F with a certain 9DO R so that

this singularity becomes of the type δ(z′). Then modulo lower order terms, F R f (p) will be a weighted

Radon transform over the surface 6(p). In 2D, that will be an X-ray type of transform. We are only

interested in this composition acting on distributions with wave front sets in a small conic neighborhood

W of (q0, ±η0).

The Fourier transform of (z′
+)−1/2 is given by (7-1). Its reciprocal is

π−1/2eiπ/4
(

h(ζ )ζ 1/2 − ih(−ζ )(−ζ )1/2
)

= π−1/2eiπ/4
(

h(ζ ) − ih(−ζ )
)

|ζ |1/2,

where h is the Heaviside function and |ζ | is the norm in T ∗
y M . We fix p near p0 and local coordinates

x = x(p) there, and we work in semigeodesic coordinates y = y(p, q) near q0 normal to 6(p) oriented

as in Section 6. Let x denote local coordinates near q0. Let R be a properly supported 9DO of order

1/2 with principal symbol equal to

r(y, η) = π−1/2eiπ/4
(

h(ηn) − ih(−ηn)
)

|η|1/2r0(y, η) (9-10)

in W, outside some neighborhood of the zero section, where r0 is a homogeneous symbol of order 0, an

even function of η. Note that

|r |2 = π−1|η|r2
0 . (9-11)
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The appearance of the Heaviside function here can be explained by the fact that N ∗6 has two connected

components: near (p0, q0, −ξ0, η0) and near (p0, q0, ξ0, −η0); the constants need to be chosen differently

in each component.

We start with computing the composition F R.

Since the kernel of F R is the transpose of that of RF ′, we will compute the latter; and we only

need those singularities that belong to W. Denote by F(p, q) the Schwartz kernel of F . Then the

kernel F ′(q, p) = F(p, q) of F ′ (with the notation F ′ f (q) =
∫

F ′(q, p) f (p) dVol(p)) can be written

as F ′(q(x, y), p(x)), which with some abuse of notation we denote again by F ′(y, x). Then

F ′(y, x) := (2π)−1

∫

eiynηn F̃ ′(y′, ηn, x) dηn, (9-12)

where F̃ ′ is the partial Fourier transform of F with respect to yn , and there is no summation in ynηn . By

Theorem 6.1 and (7-1),

F̃ ′(y′, ηn, x) = π1/2e−iπ/4
(

h(ηn) + ih(−ηn)
)

|ηn|−1/2G(x, y′, ηn), (9-13)

where G is a symbol with respect to ηn , smoothly depending on (x, y′) with principal part

G0 := W6

√
2√

AD
.

Moreover, by Theorem 6.1, G has an expansion it terms of positive powers of |ηn|−1/2. In particular,

G − G0 is an amplitude of order −1/2 that contributes a conormal distribution in the class

I −n/2−1/2(M × M, 6; C);

see e.g., [Hörmander 1985a, Theorem 18.2.8]. By the calculus of conormal singularities, e.g., [ibid.,

Theorem 18.2.12], the kernel of F R is of conormal type at yn = 0 as well, with a principal symbol

given by that of F multiplied by r |yn=0,η′=0. That principal symbol coincides with the full one modulo

conormal kernels of order 1 less that the former; see the expansions in [ibid.] preceding Theorem 18.2.12.

Since we assumed that r0 is an even homogeneous function of η of order 0, r0(y′, 0, 0, ηn) is a function

of y′ only for η in a conic neighborhood of (0, ±1), equal to r(y, 0, 0, 1). Therefore, the principal part

of r(y, Dy)F ′( · , x) is

(2π)−1

∫

eiynηn G0(x, η′)r0(y′, 0, 0, 1) dηn = W6

√
2√

AD
r0(y′, 0, 0, 1)δ(yn), (9-14)

and the latter is in I −n/2+1/2(M × M, 6; C). The “error” is determined by the next term of the principal

symbol of the composition F R with G replaced by G0, which is of order 1 lower, and by the contri-

bution of G = G0, which is of order −1/2 lower. Since the coordinates (y′, yn) depend on p as well,

r0(y′, 0, 0, 1) is actually the restriction of r0 to N
∗6(p). So we proved the following.
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Lemma 9.1. Let r0 be as in (9-10). Then F R ∈ I 1/2−n/2(M × M, 6; C), modulo I −n/2(M × M, 6; C),

reduces to the Radon transform

F R f (p) ≃
∫

6(p)

a f dS, where a := r0|N∗6(p)W6

√
2√

AD
,

where dS is the Riemannian surface measure on 6(p) that we previously denoted by dVol6(p).

In two dimensions, this is an X-ray type of transform. In higher dimensions, this is a Radon type of

transform on the family of codimension one surfaces 6(p).

In what follows, n = 2.

We will compute RF∗F R next. We have
∫

F R f F Rh dVol ≃
∫

M

∫

6(p)

(a f )(z′) dS(z′)
∫

6(p)

(āh̄)(q) dS(q) dVol(p) (9-15)

modulo terms of the kind (P f, h), where P is a 9DO of order −3/2 or less.

In the latter integral, p parametrizes the curve 6(p), while q ∈ 6(p) parametrizes a point on it.

Another parametrization is by p and ξ ∈ S∗
p M with ξ oriented positively; then q = expp(v), where

v ∈ 6(p) and ξ(v) = 0. For the Jacobian of that change we have

dS(q) dVol(p) = D dVolS(p)(v) dVol(p) = |v|D
cos φ

dσp(ξ) dVol(p), (9-16)

and we recall that dσp denotes the surface measure on Sp M , which in this case is a circle. The canonical

map (p, ξ) → (q, η) is symplectic and therefore preserves the volume form dp dξ . Set

K := |η(p, ξ)|/|ξ |. (9-17)

Then this map takes S∗M into {(q, η) ∈ T ∗M : |η| = K }. Project that bundle to the unit circle one, and

set η̂ = η/|η|. Then we have the map (p, ξ) → (q, η̂), and dVol(p) dσp(ξ) = K 2 dVol(q) dσq(η̂).

When we perform those changes of variables in (9-15), we will have

dS(q) dVol(p) = |w|DK 2

cos φ
dVol(q) dσq(η), (9-18)

where p ∈ M , q ∈ 6(p), (q, η) ∈ S∗M , and we removed the hat over η. Let w be the corresponding

vector in S(q) normal to η. That parametrizes the curves 6(p) over which we integrate by initial points

q and unit conormal vectors η. The latter can be replaced by unit tangent vectors ŵ = w/|w|; then

dVol(q) dσq(η) = dVol(q) dσq(ŵ). Let us denote the so parametrized curves by cq,ŵ(s), where s is an

arc-length parameter.

It remains to notice that the integral with respect to z′ ∈ 6(p) is an integral with respect to the arc-

length measure on 6(p), which we denote by s. Then performing the change of the variables (p, q, z′) 7→
(q, ŵ, z′) in (9-15), we get

∫

F R f F Rh dVol ≃
∫

R×Sq M×M

(a f )(cq,ŵ(s))ā(q, −ŵ)h̄(q) ds
|w|DK 2

cos φ
dσq(ŵ) dVol(q). (9-19)
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Therefore, we get as in (5-2), (5-4),

R∗F∗F R f (q) ≃ 1√
det(g(q))

∫

aā
|w|DK 2

cos φ

f (q ′)
ρ(q, q ′)

dVol(q ′)

≃ 1√
det(g(q))

∫

∣

∣r0|N∗6(p)

∣

∣

2|W6|2 2|w|K 2

A cos φ

f (q ′)
ρ(q, q ′)

dVol(q ′).

(9-20)

For the directional derivatives of det d expp(v) = −J ′/|v| (see (8-3)), the derivative along the radial ray

is |J ′(1)|/|v| by absolute value, while the derivative in the direction of S(p) vanishes. That implies

A cos φ = |J ′(1)|/|w| = K/|w|.

Therefore,

R∗F∗F R f (q) ≃ 1√
det(g(q))

∫

2K
∣

∣r0|N∗6(p)

∣

∣

2|W6|2|w|2 f (q ′)
ρ(q, q ′)

dVol(q ′). (9-21)

Here (p, v) is defined as follows. It is the point in SM that lies on the continuation of the geodesic

through q, q ′ to its conjugate point near p0, The weight κ restricts q ′ to a small neighborhood of γ0.

Next, A2 restricts q ′ near q0.

We compare (9-21) with (5-4) and (5-5). Notice that the Jacobian term in (5-4) at the diagonal equals√
det g and therefore cancels the factor in front of the integral in the calculation of the principal symbol.

We therefore proved the following.

Lemma 9.2. Let n = 2. Then R∗F∗F R is a 9DO of order −1 with principal symbol modulo S−3/2 at

(q, η) near (q0, η0) given by

4π K |η|−1
∣

∣r0|N∗6(p)

∣

∣

2|κ(p, v/|v|)|2|κ(q, −w/|w|)|2.

Here w/|w| is a continuous choice of a unit vector normal to η at q , so that (q, w/|w|) = (q0, w0/|w0|)
when (q, η) = (q0, η0), and v/|v| is a parallel transport of −w/|w| from q to its conjugate point p along

the geodesic γq,w.

Later we use the notation w = η⊥/|η⊥|, and v = ξ⊥/|ξ⊥|.

Proposition 9.1. Let n = 2. Then

Id −A−1
2 F∗ A−1

1 F

is a 9DO of order −1/2.

Proof. We apply Lemma 9.2 with π−1/2eiπ/4|η|1/2r0 being the principal symbol of A
−1/2

2 (see (9-10)),

where A
−1/2

2 is a parametrix of A
1/2

2 near (q0, ±η0). To this end, choose

π−1/2eiπ/4(2π)−1/2r0(q, η) = (2π)−1/2|κ(q, η⊥/|η⊥|)|−1;

see (8-1). Note that κ(q, w/|w|) = κ(p, −v/|v|) = 0 because of the assumption on supp κ . Then
∣

∣r0|N∗6(p)

∣

∣ = 2−1/2|κ(q, −w/|w|)|−1, where w is as in (3-1). The choice of r0 yields R R∗ = A
−1/2

2 mod
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9−1. So Lemma 9.2 implies that R∗F∗F R, and therefore R R∗F∗F and A−1
2 F∗F have principal symbol

σp(A−1
2 F∗F)(q, η) = 2π K |κ(p, ξ⊥/|ξ⊥|)|2/|η|

We only need to insert A−1
1 between F∗ and F . By [Hörmander 1985b, Theorem 25.3.5], modulo 9DOs

of order 1 lower, the principal symbol of A−1
2 F∗ A−1

1 F is given by that of A−1
2 F∗F multiplied by the

principal symbol (2π |κ(p, v)|2/|ξ |)−1 of A−1
1 pushed forward by the canonical map of F . In other

words,

σp(A−1
2 F∗ A−1

1 F)(q, η) = 2π |κ(p, ξ⊥/|ξ⊥|)|2
|η| K

[

2π |κ((p, ξ⊥/|ξ⊥|)|2/|ξ(q, η)|)
]−1 = 1. �

The following lemma is needed below for the proof of Theorem 9.2.

Lemma 9.3. Let κ1 and κ both satisfy the assumptions for κ in the introduction, and let κ(p0, θ0) 6=0. Let

χ ∈ 90 have essential support near (p0, ±ξ0)∪(q0, ±η0) and Schwartz kernel in (U1 ×U1)∪(U2 ×U2).

Then there exists a zero order classical 9DO Q with the same support properties such that

Q X∗
κ Xκχ = X∗

κ1
Xκχ mod I −3/2(M × M, 1 ∪ N

∗6, C),

where 1 is the diagonal. In particular, Q X∗
κ Xκχ − X∗

κ1
Xκχ : H s → H s+3/2 is bounded for any s.

Proof. We define Q = Q1 + Q2 where Q1,2 have Schwartz kernels in U1 ×U1 and U2 ×U2, respectively.

Following the notational convention in (9-8), Q = diag(Q1, Q2).

Then we choose Q1 to have principal symbol

κ̄1(p, ξ⊥/|ξ⊥|)/κ̄(p, ξ⊥/|ξ⊥|) (9-22)

in a conic neighborhood of (p0, ±ξ0) with the same choice of ξ⊥ as in (8-1). Next, we choose Q2 with

a principal symbol

κ̄1(q, η⊥/|η⊥|)/κ̄(q, η⊥/|η⊥|) (9-23)

in a conic neighborhood of (q0, ±η0). Then

Q X∗
κ Xκ =

(

Q1 A1 Q1 F

Q2 F∗ Q2 A2

)

.

Then (see (8-1))

σp(Q1 A1) = 2π(κ̄1κ)(p, ξ⊥/|ξ⊥|) and σp(Q2 A2) = 2π(κ̄1κ)(q, η⊥/|η⊥|).

For Q1 F and Q2 F∗, we use the arguments used in the proof of Lemma 9.1. A representation of the

Schwartz kernel of F ′ as a conormal distribution is given by (9-12). The composition Q2 F∗ then is of

the same conormal type with a principal symbol equal to the complex conjugate of that of F ′ multiplied

by the symbol (9-23) restricted to N
∗6. This replaces κ♯ = κ̄ in (6-6) by κ̄1. Since κ♯ = κ̄ in (6-6), we

get that Q2 F∗ is of the same conormal type with leading singularity as in Theorem 6.1, with

W6 = |v|−1κ̄(p, v/|v|)κ1(q, −w/|w|).
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This is however the leading singularity of χ2 X∗
κ1

Xκχ1.

The proof for Q1 F is the same with the roles of p and q replaced. �

9d. Cancellation of singularities on Riemannian surfaces. Assume in all dimensions that there are no

conjugate points on the geodesics in M , and that ∂ M is strictly convex. Let M1 ⊃ M be an extension of

M such that the interior of M1 contains M be as in Remark 5.2. Then if κ 6= 0,

‖ f ‖L2(M) ≤ C‖X∗X f ‖H1(M1)
+ Ck‖ f ‖H−k(M) for all f ∈ L2(M), (9-24)

for all k ≥ 0; see [Stefanov and Uhlmann 2004; Frigyik et al. 2008], and [Stefanov and Uhlmann 2008]

for a class of manifolds with conjugate points. When we know that X is injective, for example when the

weight is constant; then we can remove the H−k term. The same arguments there show that for any s ≥ 0,

‖ f ‖H s(M) ≤ C‖X∗X f ‖H s+1(M1)
+ Ck‖ f ‖H−k(M) for all f ∈ H s

0 (M). (9-25)

Consider X f parametrized by points in ∂+SM1, which defines Sobolev spaces for X f as in Section 5b.

Then

‖ f ‖H s(M) ≤ C‖X f ‖H s+1/2(∂+SM1)
+ Ck‖ f ‖H−k(M) for all f ∈ H s

0 (M) and s ≥ 0. (9-26)

Indeed, in Proposition 5.2, one can complete M1 and H to closed manifolds, and then we would get

that X∗ : H s → H s+1/2 is bounded. Then (9-26) follows by (9-25). Estimate (9-26) is sharp in view of

Proposition 5.2. In the following theorem, we show that (9-24) and (9-26) fail in the 2D case, with a loss

at least of one derivative in the first one, and 1/2 derivative in the second.

Theorem 9.2. Let n = 2, and let γ0 be a geodesic of g with conjugate points satisfying the assumptions

in Section 2. Then for each f2 ∈ H s(M), with s ≥ 0, with WF( f2) in a small neighborhood of (q0, ±η0),

there exists f1 ∈ H s(M) with WF( f1) in a some neighborhood of (p0, ±ξ 0) such that

X f ∈ H s+3/4 and X∗X f ∈ H s+3/2, where f := f1 + f2.

In particular, if (M, g) is a nontrapping Riemannian surface with boundary with fold type of conjugate

points on some geodesics, neither of the inequalities (9-24) and (9-26) can hold.

Remark 9.1. It is an open problem whether we can replace H s+3/4 and H s+3/2 above with C∞. See

Section 10a for an example where this can be done.

Remark 9.2. If there are no conjugate points, one has X f ∈ H s+1/2, X∗X f ∈ H s+1. Therefore, the

conjugate points are responsible for a 1/4 derivative smoothing for X f , and a 1/2 derivative smoothing

for X∗X f

Proof. Let f2 be as in the theorem. Set

f1 = −A−1
1 F f2,

where, as before, A−1
1 and A−1

2 are parametrices of A1,2 in conic neighborhoods of (p0, ±ξ0) and

(q0, ±η0), respectively. Then f1 belongs to H s and has a wave front set in small neighborhood of
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(p0±, ξ0), by Theorem 2.1. By construction and by (9-4),

χ1 X∗X f ∈ C∞. (9-27)

Next, by (9-27),

A2 f2 + F∗ f1 = A2 f2 − F∗ A−1
1 F f2 = (A2 − F∗ A−1

1 F) f2.

The operator in the parentheses is a 9DO of order −3/2 by Proposition 9.1. Therefore (see (9-5))

χ2 X∗X f = A2 f2 + F∗ f1 ∈ H s+3/2.

We therefore get X∗X f ∈ H s+3/2(U1 ∪ U2).

To prove X f ∈ H s+3/4, note first that above we actually proved that

X∗X (Id −A−1
1 F)χ : H s(U2) → H s+3/2(U1 ∪ U2) (9-28)

is bounded, being a 9DO of order −3/2, where χ denotes a zero order 9DO with essential support in

a small neighborhood of (p0, ±η0) and Schwartz kernel supported in U2 × U2.

Our goal is to show that

X (Id −A−1
1 F)χ : H s(U2) → H

s+3/4

0 (H)

is bounded. It is enough to prove that

χ∗(Id −A−1
1 F)∗X∗ P2s+3/2 X (Id −A−1

1 F)χ : H s(U2) → H−s(U2) (9-29)

for any 9DO P2s+3/2 of order 2s + 3/2 on H. All adjoints here are in the corresponding L2 spaces.

By (9-28),

Q2s+3/2 X∗X (Id −A−1
1 F)χ : H s(U2) → H−s(U2) (9-30)

is bounded for any 9DO Q2s+3/2 of order 2s + 3/2.

To deduce (9-29) from (9-30), it is enough to “commute” X∗ with P2s+3/2 in (9-29). Let 2s + 3/2

be a nonnegative integer first. As in the proof of Proposition 5.2, we use the fact that X∗ P2s+3/2 =
(P∗

2s+3/2 X)∗, and P∗
2s+2 X f is a finite sum of X-ray transforms with various weights of derivatives of f

of order not exceeding 2s + 2. Thus we can write

X∗ P2s+2 =
∑

Q̃ j X∗
j , (9-31)

where Q j are differential operators on H of degree 2s + 3/2 or less, and X j are like X in (2-1) but

with different weights still supported where κ is supported. By Lemma 9.3, Q̃ j X∗
j X = R j X∗X , where

R j is a 9DO of the same order as Q̃ j . The proof of (9-29) is then completed by the observation that

χ∗(Id −A−1
1 F)∗ maps continuously H s into itself, since the canonical relation of F is canonical graph.

�
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10. Examples

In this section, we present a few examples. We start in Section 10a with the fixed radius circular transform

in the plane, where we can have cancellation of singularities similarly to Theorem 9.2 but we show that

this happens to any order. Then we consider in Section 10b the geodesic X-ray transform on the sphere,

where the conjugacy is not of fold type, but a similar result holds. Next, in Section 10c, we study an

example of magnetic geodesics in the Euclidean space R
3 with a constant magnetic field. We show that

then the canonical relation of F is a canonical graph, and therefore, one can resolve the singularities.

Finally, in Section 10d, we present an example of a Riemannian manifold of product type where the

graph condition is violated.

10a. The fixed radius circular transform in the plane. Let R be the integral transform in R
2 of inte-

grating functions over circles of radius 1. We fix the negative orientation on those circles; then for each

(x, ξ) ∈ SR
2, there is a unique unit circle passing through x in the direction of θ . It is very easy to

see (below) that the first conjugate point appears at “time” π . The next one is at 2π , which equals the

period of the curve. If one originally chooses f supported near, say (0, 0) and (2, 0); and chooses γ0

to be the arc of the circle that is a small extension of {|x1 − 1|2 + x2
2 = 1, x2 ≥ 0}, then we are in the

situation studied above. On the other hand, if we do not impose any assumptions on supp f , we will get

contributions that are smoothing operators only. Therefore, we do not need to restrict supp f .

Those circles are also magnetic geodesics with respect to the Euclidean metric and a constant nonzero

magnetic field; see e.g., [Dairbekov et al. 2007]. Let us use the following parametrization first. We

temporarily denote vectors θ by Eθ := (sin θ, cos θ) to reserve θ for their (nonstandard) polar angles. The

circle through x in the direction of Eθ is given by

γx,θ (t) = x + (cos θ − cos(θ + t), − sin θ + sin(θ + t)). (10-1)

Then γx,θ (0) = x , γ̇x,θ (0) = Eθ . Let J1 be the Jacobi matrix ∂γx,θ (t)/∂(t, θ). We have

J1 =
(

sin(θ + t) − sin θ + sin(θ + t)

cos(θ + t) − cos θ + cos(θ + t)

)

. (10-2)

Then det J1 = − sin(θ + t) cos θ + sin θ cos(θ + t) = − sin t . It vanishes when t = π (see the remarks

above why the other zeros do not matter). Therefore, in the (t, θ) coordinates, the tangent conjugate

locus S(x) is given by {t = π} for any x . The conjugate locus of x then is the circle 6(x) = {γx,θ (π)} =
{x + 2(cos θ, − sin θ); θ ∈ R}, that is,

6(x) = {y : |y − x | = 2},

which is the envelope of all circles of radius 1 passing through x ; see Figure 5. Next,

J1|t=π =
(− sin θ −2 sin θ

− cos θ −2 cos θ

)

. (10-3)

The null space consist of multiples of 2∂/∂t −∂/∂θ . That null space is transversal to {t = π}; therefore,

we have a fold conjugate locus.
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To write this in the Cartesian coordinates x = (x1, x2), set

v = t (sin θ, cos θ),

that is, v = t Eθ . Set also expx(v) = γx,θ (t), that is, the endpoint of the magnetic geodesic originating at

x in the direction v/|v|, of length |v|. Then

S(x) = {v : |v| = π}.

We compute next Nx(v) for v = (0, π). By the rotational symmetry, this would determine Nx(v) for any

v ∈ Sx(v) in a trivial way. For the Jacobi matrix J2 := ∂v/∂(t, θ) we get

J2 =
(

sin θ t cos θ

cos θ −t sin θ

)

. (10-4)

To find the Jacobi matrix J := ∂ expx(v)/∂v = ∂γx,θ (t)/∂v at v = (0, π), we write J = J1 J−1
2 at θ = 0,

t = π , to get

J |v=(0,π) =
(

0 0

−2/π −1

)

. (10-5)

The null space is spanned by (−1, 2/π). For general θ it follows immediately that

Nx(v) = Re−iθ (−1, 2/π),

where we used complex identification to denote rotation by the angle −θ . We could have obtained this

as J = J1 J−1
2 for t = π , and general θ ’s, of course. In particular, for θ = 0, that is, for v = (0, π), we

get Nx(v) = R(−1/2, π). We see again that S is a fold conjugate locus. The other assumptions of the

dynamical system are easy to check.

It is much more natural to parametrize those circles by their centers; we use the notation C(x). Then

the circular integral transform is defined by

X f (y) =
∫

C(y)

f dℓ =
∫

|ω|=1

f (y + ω) dℓω =
∫ 2π

0

f (z + eiα) dα. (10-6)

The connection to the natural parametrization by x and θ that we used above is as follows. As in

[Dairbekov et al. 2007], for all circles in neighborhood of a given one, for example the one with x = 0

and θ = 0, we choose a curve S through x = 0, transversal to that circle. Let z be the point of intersection

of those circles with S, close to 0. Then we use z and θ as parameters, and the natural measure is

dµ = |θ · ν(z)| dℓz dθ , where dℓz is the Euclidean length measure on S, and ν(z) is the unit normal at z.

This measure is independent of the choice of S. Choose S = {x2 = 0}. Then the natural measure on

those circles is dµ = cos θ dz1 dθ , near z1 = 0 and θ = 0. The center of each such circle is given by

y := (z1 + cos θ, − sin θ); see (10-1). Using y as a new parameter, and computing the Jacobian of the

map (z1, θ) 7→ y, we see that dµ = dy in the new variables. Therefore, with the parametrization by its

center as in (10-6), X is unitarily equivalent to its previous definition, and X∗X will not change if we

define X∗ with respect to the inner product L2(R2, dy).
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10a1. X as a convolution. It is well known and easy to see that X is a convolution with the delta function

δS1 of the unit circle

X f = δS1 ∗ f.

Fourier transforming, we get

X = 2πF
−1 J0(|ξ |)F, (10-7)

where J0 is the Bessel function of order 0. This shows that

X∗X = (2π)2
F

−1 J 2
0 (|ξ |)F. (10-8)

Note that J 2
0 (|ξ |) is not a symbol because it oscillates. In principle, one can use this representation to

analyze X∗X but this is not so convenient when we want to analyze X locally.

10a2. Integral representation. We write

(X f, Xh) =
∫ ∫

|ω|=1

f (x + ω) dℓω

∫

|θ |=1

h̄(x + θ) dℓθ dx

=
∫ ∫

|ω|=1

∫

|θ |=1

f (y + ω − θ)h̄(y) dℓω dℓθ dy.

(10-9)

Therefore,

X∗X f (x) =
∫

|ω|=1

∫

|θ |=1

f (x + ω + θ) dℓω dℓθ ; (10-10)

compare with (5-1).

We will make the change of variables z = ω + θ . For 0 < |z| < 2, there are exactly two ways z can

be represented this way. Write ω = eiα and θ = eiβ . Since dℓω = dα, dℓθ = dβ, and dz1 ∧ dz2 =
(−2i)−1 dz ∧ dz̄, we get

dz1 ∧ dz2 = 1

−2i
(ieiα dα + ieiβ dβ) ∧ (−ie−iα dα − ie−iβ dβ) = sin(β − α) dα ∧ dβ

= sin(β − α) dℓω ∧ dℓθ .

It is easy to see that |β − α| equals twice the angle between z = ω + θ and θ . Let r = |z|. Then

r/2 = cos 1
2
|α − β|. Elementary calculations then lead to

sin|α − β| = r

2

√

4 − r2.

Therefore, (10-10) yields the following.

Proposition 10.1. Let X be the circular transform defined above. Then

X∗X f (x) =
∫

r<2

4

r
√

4−r2
f (y) dy, where r := |x − y|. (10-11)
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10a3. X∗X as an FIO. The kernel has singularities near the diagonal x = y, and also near

6 = {|x − y| = 2}.

That singularity is of the type (2 − |x − y|)−1/2, and for a fixed x the expression 2 − |x − y| measures

the distance from the circle 6(x) to the point y inside that circle. We therefore get the same singularity

as in Theorem 6.1. Note also that

N
∗6 = {(x, x ± 2ξ/|ξ |, ξ,−ξ) : ξ ∈ R

2 \ 0}. (10-12)

Based on Proposition 10.1, and Theorem 2.1, we conclude that X∗X is an FIO of order −1 with a

canonical relation C of the following type. We have (x, ξ, y, η) ∈ C if and only if (y, η) = (x, ξ) (that

gives us the 9DO part), or (y, η) = (x ± 2ξ/|ξ |, ξ).

This can also be formulated also in the following form.

Theorem 10.1. Let X be the circular transform defined above. Then, modulo 9−∞,

X∗X = A0 + F+ + F−, (10-13)

where A0, F+ and F− are Fourier multipliers with the properties

(a) A0 = 4π |D|−1 mod 9−2;

(b) F± are elliptic FIOs of order −1 with canonical relations of a graph type given by

F± : (x, ξ) 7→ (x ± 2ξ/|ξ |, ξ); (10-14)

(c) F− = F∗
+.

Proof. We start with the Fourier multiplier representation (10-7). The leading term of (2π)2 J 2
0 (|ξ |) is

8π

|ξ | cos2(|ξ | −π/4) = 8π

|ξ | (1 + sin(2|ξ |) = 2π
(

2

|ξ | + e2i|ξ |

i|ξ | − e−2i|ξ |

i|ξ |
)

. (10-15)

Those three terms are the principal parts of the operators in (10-13). The first one gives 4π |D|−1, while

the second and the third one are FIOs with phase functions φ± = (x − y) · ξ ± 2|ξ |. A direct calculation

show that the canonical relations of F± are given by (10-14), indeed. For the complete proof of the

theorem, we need the full asymptotic expansion of J0.

We recall the well-known expansion of J0(z) for z → ∞:

J0(z) ∼
√

2/(π z)(P(z) cos(z − π/4) − Q(z) sin(z − π/4)),

where

P(z) ∼
∞

∑

k=0

pkz−2k and Q(z) ∼
∞

∑

k=0

qkz−2k−1,
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Figure 5

with some (explicit) coefficients pk and qk . In particular, p1 = 1 and q1 = −1/8. Then

(2π)2 J 2
0 (z) ∼ 2π

z

(

(P + iQ)ei(z−π/4) + (P − iQ)e−i(z−π/4)
)2

∼ 2π

z

(

−i(P + iQ)2e2iz + i(P − iQ)2e−2iz + 2P2 + 2Q2
)

.

We set

A0 = 4π |D|−1
(

P2(|D|) + Q2(|D|)
)

and F± = ∓2π i|D|−1
(

P(|D|) ± iQ(|D|)
)2

e±2i|D|. (10-16)

This completes the proof. �

We will now connect this to Theorem 2.1. Let p0 = (0, 0), q0 = (2, 0), v0 = (0, π), w0 = (0, π).

Then v0 ∈ S(p0). Choose ξ0 = (1, 0), conormal to the conjugate locus 6(q0) = {|x − q0| = 2} at p0;

choose η0 = (1, 0), conormal to the conjugate locus 6(p0) = {|x − p0| = 2} at q0. The directions of ξ0

and η0 reflect the choice of the orientation we made earlier. We refer to Figure 5.

If we localize X near v = v0, then the pseudodifferential part of X∗χ X is (1/2)A0, see (5-10). There-

fore, in the notation of Theorem 2.1,

A = 1
2

A0 and F = F+ + F−.

The canonical relation of F+ maps (p0, ξ0) into (q0, η0), (see Figure 5), while that of F− maps (p0, −ξ0)

into (q0, −η0). This is consistent with the results in Theorem 2.1, where the Lagrangian has two discon-

nected components located near (p0, q0, ±ξ0, ∓η0).

To analyze the operator (9-9), note first that A1 = A2 = A0/2. Let us first analyze this operator applied

to distributions with wave front set near (q0, η0) but not near (q0, −η0). Then F reduces to F+ only, and

we have, modulo 9−∞,

A−1
2 F∗ A−1

1 F = 1
4

A−2 F∗
+F+ = Id;
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see (10-16). The analysis near (q0, −η0) is similar. Therefore, we have a stronger version of Theorem 9.2

in this case: Singularities can cancel to any order.

Theorem 10.2. Let f1 be any distribution with WF( f1) supported in a small conic neighborhood of some

(x0, ξ
0) ∈ T ∗

R
2\0. Then there exists a distribution f2 with WF( f2) supported in a small conic neighbor-

hood of (x0 ±2ξ 0/|ξ 0|, ξ 0), which is an image of WF( f1) under the map F±, such that X ( f1 + f2) ∈ C∞

for all unit circles in a neighborhood of the unit circle C(x0 ± ξ 0).

In other words, for a fixed circle C0 of radius 1, there is a rich set of distributions f , with any order of

singularity at N
∗C0, such that those singularities are invisible by X localized near C0, that is, X f ∈ C∞.

Explicit examples can be constructed by choosing f2(x) = δ(x −q0). Then F f2 near p0 is just given by

the Schwartz kernel of X∗X ; see (10-11). To obtain f1, we apply 2A−1
0 to the result.

We emphasize that the theorem provides an example of cancellation of singularities for the localized

transform only. As we will see below, X f ∈ C∞ (globally) for f ∈ E
′ implies f ∈ C∞. On the other

hand, without the compact support assumption, one can construct singular distributions in the kernel

of X , using the Fourier transform.

10a4. The wave front set of a distribution in Ker X. Now, if X f = 0 or, more generally, if X f ∈ C∞,

one easily gets that

For all f ∈ Ker X , WF( f ) is invariant under the action of the group {Fm
+ for m ∈ Z}. (10-17)

Then, if f is compactly supported (or more generally, smooth outside some compact set), we get that

WF( f ) must be empty, that is, f ∈ C∞(R2). In other words, even though recovery of WF( f ) is impossi-

ble by knowing X f locally, as we saw above, the condition X f ∈ C∞ globally, together with the compact

support assumption, yielded a global recovery of singularities. Here an important role is played by the

fact that X is translation invariant, and in particular, our assumptions are valid for any (p0, θ0) ∈ T SR
2

that cannot be guaranteed in the general case. Also, the dynamics is not time reversible; therefore for

each (x0, ξ
0) ∈ T ∗M \ 0 there are two different curves through x0 in our family. The latter is true for

general magnetic systems with a nonzero magnetic field; see [Dairbekov et al. 2007].

Remark 10.1. One can see that X is invertible on L2(M) by using Fourier transform; see (10-7). The

formal inverse is 1/J0(|ξ |), and conjugating a compactly supported χ with the Fourier transform, one

gets a convolution in the ξ variable that will smoothen out the zeros of J0(|ξ |), thus producing a Fourier

multiplier with asymptotic ∼ |ξ |1/2. However, in L p(R2) with p > 4 it is not invertible, and elements

of the kernel include functions with Fourier transforms supported on the circles J0(|ξ |) = 0; see also

[Thangavelu 1994; Agranovsky and Kuchment 2011].

Finally, we remark that in this case, one can study X directly, instead of X∗X = X2, with the same

methods. Our goal however is to connect the analysis of this transform with our general results.

10b. The X-ray transform on the sphere. Consider the geodesic ray transform on the sphere Sn . The

conjugate points are not of fold type; instead they are of blow-down type. Let J be the antipodal map.
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Without going into details, we will just mention that then (2-3) still holds with

C N = |D|−1 − |D|−1 J,

with some constant C , where the canonical relation of F is the graph of the antipodal map, lifted to T ∗S2.

Then C N |D| = Id −J . The canonical graph is an involution, however (its square is identity), so argu-

ments similar to that in the previous example do not apply. That means that singularities may cancel. In

fact, it is known that X has an infinite-dimensional kernel — all odd functions with respect to J .

In this case 6 consists of all antipodal pairs (x, y), and has dimension 2 (and codimension 2), unlike

the case above (dimension 3 and codimension 1). On the other hand, N
∗6 still has the same dimension

(that is 2n = 4, and this is always the case as long as 6 is smooth submanifold). One can see that the

Lagrangian in this case is still N
∗6.

10c. Magnetic geodesics in R
3. Consider the magnetic geodesic system in the Euclidean space R

3 with

a constant magnetic potential (0, 0, α), α > 0. The geodesic equation is then given by

γ̈ = γ̇ × (0, 0, α), (10-18)

where × denotes the vector product in R
3. The right hand side above is the Lorentz force, which is

always normal to the trajectory and therefore does not affect the speed. We restrict to trajectories on

energy level 1, which is preserved under the flow. Then we get

γ̈ 1 = αγ̇ 2, γ̈ 2 = −αγ̇ 1, γ̈ 3 = 0.

The magnetic geodesics are then given by

γ (t) = γ (0) +
(

r

α
(sin(αt + θ) − sin θ),

r

α
(− cos(αt + θ) + cos θ), t z

)

,

where (r, θ, z) are the cylindrical coordinates of γ̇ (0). The unit speed requirement means that

r2 + z2 = 1.

The geodesics are then spirals; when z = 0 then they reduce to closed circles, and when r = 0 they are

vertical lines.

The parametrization by cylindrical coordinates is singular when r = 0. Away from that we can use θ

and z to parametrize unit speeds. Then in expp(v), we use the coordinates (t, θ, z) to parametrize v, that

is,

v = t
(

√

1 − z2(cos θ, sin θ), z
)

.

At t = 0 we may have an additional singularity but this is irrelevant for our analysis since we know

that the exponential map has an injective differential near v = 0. An easy computation yields that the

conjugate locus is given by the condition αt = π , that is,

Sp(v) = {v : |v| = π/α},
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and this is true for any p ∈ R
3. This is a sphere in T R

3. For 6(p) we then get

γ (π/α) = p + α−1(−2r sin θ, 2r cos θ, π z) (10-19)

with p = γ (0). This shows that 6(p) is an ellipsoid

6 =
{

(p, q) : 1
4
(q1 − p1)

2 + 1
4
(q2 − p2)

2 + π−2(q3 − p3)
2 = α−2

}

.

Then

N
∗6 =

{

(p, q, ξ, η) : (p, q)∈6, ξ = c(p1−q1, p2−q2, 4π−2(p3−q3)), η =−ξ, 0 6= c ∈ R
}

. (10-20)

Therefore, given p, ξ , we can immediately get q as a smooth function of (p, ξ), and we can obtain v

such that expp(v) = q by (10-19), where the left hand side is q. Therefore, (p, ξ) 7→ v is a smooth map,

and therefore so is (p, ξ) 7→ (q, η). The later also directly follows from (10-20), since η = −ξ .

We therefore get that F is an FIO of order −3/2 with a canonical relation

(p, ξ) 7→ (q, ξ), (10-21)

where q can be determined as described above. A geometric description of q is the following: q is one of

the two points on the ellipsoid 6, where the normal is given by ξ . The choice of one out of the two points

is determined by the choice of the initial velocity v0 near which we localize; changing v0 to −v0 would

alter that choice. Since (10-21) is a diffeomorphism, F is of canonical graph type and therefore maps

H s to H s+3/2. In contrast, A1,2 are elliptic of order −1; thus they dominate over F . By Corollary 9.1,

X can be inverted microlocally in the setup described in Section 2.

10d. Fold caustics on product manifolds. Let (M, g) = (M ′, g′) × (M ′′, g′′) be a product of two Rie-

mannian manifolds. The geodesics on M then have the form

γp,v(t) = (γ ′
p′,v′(t), γ

′′
p′′,v′′(t)).

Consequently,

expp(v) = (exp′
p′(v

′), exp′′
p′′(v

′′)).

Assume that in (M ′, g′), v′
0 is conjugate at p0 of fold type, and assume that v′′

0 is not conjugate at p′′
0 in

(M ′′, g′′). Then

d expp(v) = diag(d exp′
p′(v

′), d expp′′(v
′′)).

The kernel of d expp(v) then consists of Np(v) = Np′(v′) × 0. Next, S(p) = S(p′) × Tp′′ M ′′, and

6(p) = 6′(p′)× M ′′. Then Np(v0) is transversal to S(p) at v = v0; therefore (v′, v′′) is a fold conjugate

vector for v′ ∈ S′(p) close to v0 and for any v′′. Then the left projection πL of the Lagrangian N
∗6

consists of (p, ξ) with (p′, ξ ′) ∈ πL(6′) and ξ ′′ = 0. Thus the rank drops at least by n′′ = dim(M ′′). We

get the same conclusion for πR(N∗6). Therefore, N
∗6 is not a canonical graph in this case.

Let n′ = dim(M ′) = 2. Then the canonical relation in (M ′, g′) is a canonical graph, and we get that

πL,R(N∗6) have rank 2n′ + n′′ = 4 + n′′ instead of the maximal possible 2n = 4 + 2n′′; that is, the loss

is exactly n′′.
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Assume now that n′ = 2, that n′′ = 1, and that the metric in M is given by

2
∑

α,β=1

gαβ(x1, x2) dxα dxβ + (dx3)2.

Assume also that in M ′, we have a fold conjugate vector v0 = (0, 1) at x1 = x2 = 0. Then all possible

conormals to the conjugate loci at (0, 0) corresponding to small perturbations of v0 will lie in the plane

v3 = 0. This is an example where Corollary 9.2 can be applied. We can recover singularities of the kind

ξ = (ξ1, ξ2, ξ3) at p0 = (0, 0, 0) with ξ3 6= 0 and (ξ1, ξ2) in a conic neighborhood of (1, 0). The ones

with ξ3 = 0 are the problematic ones.
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