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[1] Geodynamic models commonly assume equations of state as a function of pressure and temperature.
This form is legitimate for homogenous materials, but it is impossible to formulate a general equation of
state for a polyphase aggregate, e.g., a rock, as a function of pressure and temperature because these
variables cannot distinguish all possible states of the aggregate. In consequence, the governing equations of
a geodynamic model based on a pressure-temperature equation of state are singular at the conditions of
low-order phase transformations. An equation of state as a function of specific entropy, specific volume,
and chemical composition eliminates this difficulty and, additionally, leads to a robust formulation of the
energy and mass conservation equations. In this formulation, energy and mass conservation furnish
evolution equations for entropy and volume and the equation of state serves as an update rule for
temperature and pressure. Although this formulation is straightforward, the computation of phase equilibria
as a function of entropy and volume is challenging because the equations of state for individual phases are
usually expressed as a function of temperature and pressure. This challenge can be met by an algorithm in
which continuous equations of state are approximated by a series of discrete states: a representation that
reduces the phase equilibrium problem to a linear optimization problem that is independent of the
functional form used for the equations of state of individual phases. Because the efficiency of the
optimization decays as an exponential function of the dimension of the function to be optimized, direct
solution of the linearized optimization problem is impractical. Successive linear programming alleviates
this difficulty. A pragmatic alternative to optimization as an explicit function of entropy and volume is to
calculate phase relations over the range of pressure-temperature conditions of interest. Numerical
interpolation can then be used to generate tables for any thermodynamic property as a function of any
choice of independent variables. Regardless of the independent variables of the governing equations, a
consistent definition of pressure, and the coupling of equilibrium kinetics to deformation, is only possible
if the continuity equation accounts for dilational strain.
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1. Introduction

[2] For decades phase equilibria have been accounted
for in geodynamic models by parameterizations that
permit separation of chemical and nonchemical ener-
getic effects [e.g., Richter, 1973; Christensen and
Yuen, 1985; Connolly and Thompson, 1989; Tackley
et al., 1993; Podladchikov et al., 1994]. This artificial
separation has led to formulations of the energy and
continuity equations that are not well suited to models
in which equilibria are evaluated from continuous
equations of state [e.g., Petrini et al., 2001; Gerya et
al., 2001; Rupke et al., 2002], a possibility that has
become practical with advances in computational
methods [e.g., Saxena and Eriksson, 1983; Wood
and Holloway, 1984] and the availability of thermo-
dynamic data [e.g., Holland and Powell, 1998;
Stixrude and Lithgow-Bertelloni, 2005; Xu et al.,
2008]. In particular, geodynamic models commonly
presume an equation of state as a function of
temperature (T), pressure (P), and chemical compo-
sition (m1,. . ., mk�1). This assumption is legitimate
in homogeneous systems, but in heterogeneous sys-
tems, the T–P coordinates of coexisting phases
degenerate during discontinuous phase transforma-
tions. This degeneracy gives rise to a singularity
known as the Stefan problem, which can only be
resolved exactly by the introduction of cumbersome
internal boundary conditions [e.g.,Oezisik, 1993]. In
practice this solution is rarely implemented; instead,
the energy consumption and dilational strain due to
phase transformations are accounted for by ad hoc
approximations [Richter, 1973] or costly iterative
techniques [Connolly, 1997; Tirone et al., 2009]. An
equation of state as a function of the relative pro-
portions of extensive properties, i.e., specific entropy
(s) and volume (v), and chemical composition,
eliminates these difficulties because all phase trans-
formations are continuous in terms of these varia-
bles. These concepts are reviewed here with the goal
of persuading geodynamicists that the s–v–m for-
mulation is not only practical, but more efficient than
the T–P–m formulation.

[3] There seem to be no examples of an s–v–m
equation of state being used to close the governing
equations of a geodynamic model, but s–P–m
formulations in which energy conservation is refor-
mulated as an entropy advection equation are not
uncommon [e.g., Glatzmaier, 1988]. A recent exam-
ple [Hebert et al., 2009], couples the geodynamic
governing equations to computed multicomponent
phase equilibria to evaluate mantle dynamics with
mass transfer under the assumptions that mass trans-
fer is reversible and isochoric, the latter assumption

requiring that pressure be equated to load. Although
the phase equilibrium solver [Ghiorso and Kelemen,
1987] used by Hebert et al. [2009] computes equi-
libria as a function of s–P–m coordinates, it does so
by iterative solution of a T–P–m formulation that
cannot be used to characterize low-variance phase
fields in which pressure and temperature partial
derivatives are not defined. The s–P–m formulation
is essentially the enthalpy method of chemical engi-
neering [Oezisik, 1993], which has been applied to
geodynamic models with parameterized phase equi-
libria [Katz, 2008].

[4] The equation of state of a heterogeneous sys-
tem provides a map of the systems thermodynamic
properties as a function of its independent state
variables. This map is obtained by finding the
combination of the phases that optimize the appro-
priate thermodynamic energy function. The opti-
mized energy is thus the desired equation of state
and in the geodynamic case is the specific internal
energy u(s, v, m1,. . ., mk�1). Such an optimization
is more complicated than typical phase equilibrium
problems, wherein the specific Gibbs energy
g(m1,. . ., mk�1) is optimized at constant tempera-
ture and pressure, because of the increased dimen-
sion of the problem and because conventional
compilations of thermodynamic data do not pro-
vide explicit functions for u(s, v, m1,. . ., mk�1).
Thus, although the geodynamic implementation of
the s–v–m formulation is more efficient than the
conventional T–P–m formulation, the optimiza-
tion necessary to construct the requisite equation of
state poses technical difficulties. A secondary goal
of this paper is to address these difficulties.

[5] The phase equilibrium problem is generic, but
the type of problem to be attacked makes distinctly
different demands on its solver. Geochemical and
petrological problems often require resolution of
components present in concentrations that span
many orders of magnitude, but because the results
are of primary interest, human expertise can be
invoked to steer the solver to the correct result. In
contrast, geodynamical and geophysical applica-
tions typically require resolution of only major
chemical components, but because the results are
often used within computationally intensive mod-
els, it is desirable to avoid solvers that require
human interaction. In view of this distinction,
Connolly [2005] advocates an algorithm proposed
by White et al. [1958] that solves a linearized
formulation of the phase equilibrium problem for
geodynamic applications. A unique virtue of the
linearization, which is of particular relevance here,
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is that it can be used to extract u(s, v, m1,. . ., mk�1)
for a heterogeneous system even if the equations of
state for the individual phases are expressed as a
function of a different set of state variables [Con-
nolly, 1990]. The weakness of the linearized for-
mulation is that its cost increases exponentially
with the dimension of the optimization problem.
An iterative linearized optimization strategy that
results in orders of magnitude increases in speed
and accuracy is introduced here as a means of
reducing this cost. This strategy was implemented
in the Perple_X computer program [Connolly,
2005] in late 2006, in the interim it has been
applied in numerous geodynamic studies that make
use of the T–P–m formulation. The description of
the strategy here serves the additional purpose of
documenting the algorithm.

[6] Section 2 of this paper is a review of elemen-
tary thermodynamic principles that is intended to
clarify the concept of an equation of state for a
heterogeneous system as well as the nature and
choice of state variables. Section 3 outlines the
optimization problem that must be solved to obtain
the equation of state and the algorithm advocated
for this purpose, and sections 4 and 5 address the
manner in which the equation of state can be
implemented in geodynamic models.

2. What: Equations of State

[7] The complete differential of the internal energy
of a hydrostatic system in the reversible limit is
usually written

dU ¼ TdS � PdV þ
Xk
i

midMi ð1Þ

where T, S, P and V are temperature, entropy,
pressure and volume, respectively, and mi and Mi

are the chemical potential and mass of the k
independently variable kinds of mass in the system
of interest (see Table 1 for a summary of notation).
Equation (1) may be expressed more succinctly
[e.g., Callen, 1960; Hillert, 1985] as

dU ¼
Xkþ2
i

qidYi ð2Þ

where the intensive differential coefficients are
defined in terms of the independent extensive
variables by the relation

qi �
@U

@Yi

: ð3Þ

As the properties q1,. . ., qk+2 are gradients in
energy with respect to properties Y1,. . ., Yk+2 they
are referred to here as potentials [Hillert, 1985];
thus, T, �P, and mi are the potentials for the transfer
of S, V, and Mi, respectively. For any real process,
the second law of thermodynamics requires

dU <
Xkþ2
i

qidYi: ð4Þ

It follows that a system must be in a state of stable
equilibrium, i.e., a state in which no macroscopic
processes are possible, if all its variables have
extremal values. Gibbs exploited this requirement
with his minimum energy stability criterion

dUY1 ;...;Ykþ2 > 0; ð5Þ

which, if true for all variations in state at constant
Y1,. . ., Yk+2, is sufficient to demonstrate stability.
An unfortunate consequence of this logic is that it
appears to suggest, in violation of energy con-
servation, that if a system is unstable it may lower
its energy at constant Y1,. . ., Yk+2. For this reason,
the maximum entropy criterion is preferable from a
didactic perspective. Despite this advantage, en-
ergy criteria are used here because they allow a
more compact formulation.

[8] When the independent variables of the Gibbs
differential (equation (3)) are inconvenient, the
Legendre transform

W � U �
Xkþ2
i¼nþ1

Yiqi ð6Þ

combined with the Gibbs differential yields a free
energy function in the variables Y1,. . ., Yn,

qn+1,. . ., qk+2,

dW ¼
Xn
i¼1

qidYi �
Xkþ2
i¼nþ1

Yidqi ð7Þ

that measures the maximum amount of energy that
can be extracted from a system at constant qn+1,. . .,
qk+2. The common forms of W are the Helmholtz
energy A(T, V, M1,. . ., Mk), the enthalpy H(S, P,
M1,. . ., Mk), and the Gibbs energy G(T, P, M1,. . .,
Mk); and the internal energy U(S, V, M1,. . ., Mk) is
recovered from equation (7) if n = k + 2. Given
W(Y1,. . ., Yn, qn+1,. . ., qk+2), the properties corre-
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sponding to the dependent differential coefficients
of equation (7) are obtained as

qi ¼
@W
@Yi

; i ¼ 1; . . . ; n ð8Þ

and

Yi ¼ �
@W
@qi

; i ¼ nþ 1; . . . ; k þ 2 ð9Þ

By the same logic used to obtain Gibbs’ stability
criterion (equation (5)), it follows from equations (4)
and (7) that a system is in stable equilibrium if

dWY1;...;Yn;qnþ1 ...qkþ2 > 0 ð10Þ

is true for all variations in state. Although it is
possible to express W as a function of any arbitrary
choice of k + 2 state variables, with the caveat that at
least one variable must be extensive, equation (10)
provides a stability criterion only at constant values
for the independent variables of equation (7). For
this reason the independent variables of equation (7)
are considered to be the natural variables of the
function W [Callen, 1960].

[9] A state of matter is distinguished by the relative
proportions of its k + 2 extensive attributes. These
proportions define the thermodynamic composition
of the matter and are designated specific variables

[de Groot and Mazur, 1984]. Specific variables are
defined as

y i �
Yi

a
; u � U

a
; w � W

a
ð11Þ

where a is an arbitrarily chosen extensive property
or linear combination of extensive properties (e.g.,
total mass). From equation (11), the total variation
in energy may be expressed as the sum of
variations due to changes in state and amount

dU ¼ aduþ uda ð12Þ

thus, the specific energy is formally an equation of
state. At constant amount, from equations (2), (11),
and (12), the variation in the specific energy due to
a reversible change in state is

du ¼
Xkþ2
i¼1

qidy i: ð13Þ

Although the right-hand side of equation (13) has
k + 2 differentials, only k + 1 of the differentials
are independent; as only k + 1 independent
proportions can be formed from the k + 2
independent extensive properties of equation (2).
Thus, u is a function of k + 1 specific properties, i.e.,
u(y1,. . ., yk+1). The specific free energy function

dw ¼
Xn
i¼1

qidy i �
Xkþ2
i¼nþ1

y idqi ð14Þ

is the Legendre transform of equation (13). As in the
case of u, for a variation in state at constant amount,
only k + 1 of the differentials on the right-hand side
of equation (14) are independent, i.e., w(y1,. . .,
yn�1, qn+1,. . ., qk+2). With the proviso that the
amount a is defined as a function ofY1,. . .,Yn, or a
subset of these properties, and that n > 0, then from
equations (10) and (11)

dwy1 ;...;yn�1 ;qnþ1...qkþ2 > 0 ð15Þ

for all variations from a stable state at constant
amount.

2.1. State of a Heterogeneous System

[10] The parts of an equilibrium system may differ
in state. All parts in the same state constitute a
phase of the system. Gibbs [1957] demonstrated
that in an equilibrium system the potential qi must
be the same in all phases where Yi is a possible
attribute. Thus, in contrast to specific variables, the

Table 1. Frequently Used Notation

Symbol Meaning

A, a extensive and specific Helmholtz energy
c number of independent conservative

extensive properties
eY unit quantity of property Y
G, g extensive and specific Gibbs energy
H, h extensive and specific enthalpy
k number of independent kinds of mass
M, m extensive and specific mass
n number of independent extensive properties
P pressure
S, s extensive and specific entropy
T Temperature
U, u extensive and specific internal energy
V, v extensive and specific volume
x j relative amount of phase j, a j/asystem

a amount, defined by equation (22) or (26)
m chemical potential
q thermodynamic potential for property Y
Y an extensive property
y the specific property Y/a
y specific property with a as defined in equation (26)
W extensive free energy, equation (7)
w specific free energy, equation (14) or (25)
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potentials qi cannot distinguish equilibrium phases
and are only characteristic of the entirety of an
equilibrium system. Gibbs’ argumentation not only
demonstrated the necessity for the uniformity of
the potentials, but also requires that the number of
phase states in an equilibrium system is

p � k þ 2 ð16Þ

a condition known as the Gibbs phase rule. From
equation (15), the relative amounts of the phases of
a stable system minimize

wsystem ¼
Xp
j¼1

xjwj ð17Þ

at constant qn+1,. . ., qk+2 subject to the imposed
constraints

y system
i ¼

Xp
j¼1

x jy i
j; i ¼ 1; . . . ; n ð18Þ

where the relative amounts of the phases x j =
a j/asystem sum to unity and are subject to the
physical constraint

1 � x j � 0; j ¼ 1; . . . ; p: ð19Þ

Thus, the equilibrium properties and phase rela-
tions of a system can be mapped by finding the
phase assemblage that minimizes w as a function of
the variables y1,. . ., yn�1, qn+1,. . ., qk+2. From
equations (17) and (18), such a map is an indirect
representation of w(y1,. . ., yn�1, qn+1,. . ., qk+2) in
that this function can be recovered given knowledge
of the relative amounts and state of a systems

constituent phases. For a system in which all phases
have the same chemical composition (i.e., k = 1),
and defining specific properties such that a � M,
there are four suchmaps corresponding to the natural
variables of the specific internal energy (n = 3, u(s, v)),
enthalpy (n = 2, h(s, P)), Helmholtz (n = 2, a(T, v))
and Gibbs (n = 1, g(T, P)) free energy functions
(Figure 1). The resulting k + 1 dimensional map is
composed of phase fields that identify the stable
phase assemblage of the system as a function of the
map variables. As the state of a system is defined via
equations (17) and (18), if the relative amounts and

Figure 1. Schematic phase relations (A, andalusite;
K, kyanite; S, sillimanite) of the Al2SiO5 (k = 1) system,
with specific variables defined by a � MAl2SiO5

, as a
function of the natural variables of the internal energy
(n = 3, u(s, v)) and the enthalpy (n = 2, h(s, P)),
Helmholtz (n = 2, a(T, v)) and Gibbs (n = 1, g(T, P)) free
energy functions. Because the P–T–m coordinates of
coexisting phases are identical, phase fields of p > n
phases become geometrically degenerate (heavy red
lines) if mapped as a function of one or more potentials.
In these phase fields the state of the system is not
defined because the relative amounts of the phases
cannot be established from the map (or the correspond-
ing energy function). In the case that a degenerate field
involves n + 1 phases, the field is said to represent a first-
order, or discontinuous, phase transformation. If a first-
order phase transformation occurs at constantY1,. . .,Yn,
then the proportions of the phases are constrained to
vary according to a unique reaction equation that
balances the quantities Y1,. . ., Yn and W among the
coexisting phases. In the T–P map there are three first-
order transformations corresponding to reactions that
balance mass and Gibbs energy, whereas in the s–P and
T–v maps there is only one first-order transformation
which corresponds to the degenerate 3-phase field of
the P–T map. In the s–P map, the corresponding
reaction (A = K + S) balances mass, entropy, and
enthalpy and in the T–v map the reaction (K = A + S)
balances mass, volume, and Helmholtz energy. Such
singularities cannot occur in the s–v map because the
coordinates are sufficient to resolve the maximum
number (k + 2) of phases that may coexist in an
equilibrium system; for this reason u(s, v,m1,. . .,mk�1) is
the only equation of state for heterogeneous systems.
This example demonstrates that the classification of
phase transformations as discontinuous or continuous is
not based on any intrinsic attribute of the transformation,
but rather is dependent on the boundary conditions (i.e.,
whether Yi or qi is independently controlled) assumed
for a given thermodynamic system. Thus, if discontin-
uous phase transformations give rise to difficulties in
solving the governing equations of a geodynamic model,
then the simplest solution is to adopt a thermodynamic
formulation that eliminates them, i.e., by mapping phase
relations as a function of the internal energy.

5 of 19

Geochemistry
Geophysics
Geosystems G3G3

connolly: geodynamic equation of state—what and how 10.1029/2009GC002540



state of its constituent phases are known, the state of
the system is defined in fields where p � n phase
coexist as the amounts of the phases must satisfy
equation (18), i.e.,

y1
1 . . . yp

1

..

. . .
. ..

.

y1
n . . . yp

n

�������
�������
x1

..

.

xp

������
������ ¼

ysystem
1

..

.

ysystem
n

�������
�������: ð20Þ

However, fields of p > n phases are geometrically
degenerate, with dimension k + n + 1 � p; thus, the
amounts of the phases are not defined by the map and
the state of the system is indeterminate. That this
condition reflects a degeneracy in the underlying free
energy function follows from the observation that
if p > n phases coexist then a phase transformation
may occur at constant q1,. . ., qk+2 such that

dysystem
i ¼

Xp
j

y i
jdxj ¼ 0; i ¼ 1; . . . ; n

and as

dwsystem ¼
Xn
i

qidy
system
i ¼ 0; ð21Þ

w cannot distinguish the possible states of the
system and the dependent specific properties cannot
be defined by differentiation of equation (14). Thus,
while w is an equation of state for a homogeneous
system, it is only an equation of state for
heterogeneous systems consisting of p � n phases.
In many geodynamic models such degeneracies are
problematic because the mathematical formulations
presume any specific property can be expressed via
an equation of state as a continuous function of its
conjugate potential, e.g., s(T) or v(P). The equation
of state is then used to eliminate the specific
property from the phenomenological equations with
the result that the reformulated governing equation
itself becomes singular at the conditions of a phase
transformation involving p > n phases. This
problem, known as the Stefan problem [Oezisik,
1993], can be resolved approximately by iteration or
exactly by the introduction of internal boundary
conditions, but in cases where the phase transforma-
tions cannot be anticipated these methods are
tedious. Because u(y1,. . ., yk+1) is continuous for
all possible states, a simpler approach is to employ
the sole legitimate equation of state, u, and to leave
the phenomenological equations in their original
form. The key obstacle to this approach is to find an
effective strategy for establishing u(y1,. . ., yk+1).

2.2. Amount

[11] The only constraint on the definition of
amount is that it must be an extensive property,
i.e., a first-order homogeneous function; thus,
amount is most easily defined by taking a � Yn.
However, the nondimensional definition

a �
Xn
i

Yi=eYi
ð22Þ

where eYi
is a unit quantity of Yi and

Xn
i

y i=ey i
¼ 1 ð23Þ

has the advantage that it is possible to choose the
independent properties Y1,. . ., Yn so that all the
states of a system at constant qn+1,. . ., qk+2 can be
represented on a n � 1 dimensional simplex with
vertices at y1/ey1

,. . ., yn/eyn
[Connolly, 1990].

Such representations define the physical composi-
tion of matter in a way that is directly analogous to
the triangular and tetragonal diagrams used in
petrology to describe the composition of ternary
and quaternary chemical systems. When amount is
defined as in equation (22), the dependent
differential in equation (14) is

dyn ¼ �eYn

Xn�1
i

dy i=eYi
ð24Þ

and equation (14) may be rearranged as

dw ¼
Xn�1
i¼1

qi �
eYi

eYn

qn

� �
dy i �

Xkþ2
i¼nþ1

y idqi ð25Þ

From equation (25), it follows that if w(y1,. . .,
yn�1) is plotted as above its simplicial coordi-
nates y1/ey1

,. . ., yn�1/eyn�1
, then the w coordinate

of a tangent to w(y1,. . ., yn�1) at y i/ey i
= 1 is

equal to qiey i
(Figure 2).

[12] Because the definition of amount provided by
equation (22) is symmetrical with respect to the
independent specific variables it is convenient for
discussion of the optimization problem. However,
in practice it is preferable to define amount

a �
Xc
i

Yi=eYi
ð26Þ

in terms of the c conservative material properties of
the representative element of a physicochemical
system. For example, it is common that the
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representative elements of geodynamic models are
isochemical, i.e., closed with respect to mass, but
open with respect to entropy and volume, in which
case the c conservative properties are the k
chemically distinct kinds of mass. The advantage
of this form is that the specific internal energy is

du ¼
Xc�1
i¼1

qi �
eYi

eYc

qc

� �
dy i þ

Xkþ2
i¼cþ1

qidy i ð27Þ

where the bar superscript distinguishes specific
properties defined by equations (11) and (26), and
the potentials of primary geodynamic interest are

@u

@y i

¼ qi; i ¼ cþ 1; . . . ; k þ 2: ð28Þ

In the context of the geodynamic application dy1 =
. . . = dyc = 0; therefore, the functional form of the
equation of state may be abbreviated as u(yc+1,. . .,

yk+2), e.g., u(s, v) for an isochemical representative
element.

2.3. Pressure and Nonhydrostatic Systems

[13] An inconsistency between chemical thermo-
dynamics and geodynamics is that the former
typically assumes hydrostatic conditions, whereas
the primary concern of the latter is the understand-
ing of a nonhydrostatic process, i.e., shear defor-
mation. In principle, this inconsistency can be
resolved by formulating an equation of state in
terms of the elastic deviatoric strain tensor in
addition to the specific volume, which is used to
characterize mechanical state in the hydrostatic case
[Callen, 1960; Stixrude and Lithgow-Bertelloni,
2005]. If thermodynamic equilibrium prevails,
then the dilational deformation is effectively time-
independent because the time scale for chemical
equilibration is much greater than that for molec-
ular relaxation [Batchelor, 2005], i.e., bulk viscos-

Figure 2. The phase equilibrium problem at constant pressure and specific entropy ssys for an isochemical system
(k = 1) in which the possible states of matter are described by three equations of state hA(s), hB(s), and hMelt(s).
For specific entropy defined by equations (11) and (22), the third law of thermodynamics requires that all states
degenerate at s = 0 (i.e., T = 0 K); the illustration is otherwise generic to problems with n = 2 at constant qn+1,. . .,

qk+2 assuming the identities w = h, y1 = s. The minimum enthalpy surface of the system (heavy curves) is the
isobaric equation of state for the system and coincides with hA(s) for s � s1; thus, for these conditions the stable
state consists of one phase described by hA(s). Likewise, as the surface coincides with hMelt(s) for s � s2 the
system is composed entirely of melt. For s1 < s < s2, the minimum h surface is simultaneously tangent to hA(s) and
hMelt(s) and corresponds to states in which phases described by hA(s) and hMelt(s) with entropies of s1 and s2,
respectively, stably coexist. For these states, ssys = xAs1 + (1 � xA)s2 and hsys = xAh1 + (1 � xA)h2, where h1 and
h2 are the h coordinates of the minimum h surface at s1 and s2, xA is the relative amount of phase A, and xMelt =
1 � xA. From equation (25), if a tangent to any point along the minimum enthalpy surface is extrapolated to s = 1,
then the value of its h coordinate is the temperature of the state; likewise, the value of the h coordinate at s = 0 is the
chemical potential of the state. This construction illustrates the origin of the Stefan problem in that if the stable system
is heated (isobarically), its temperature and chemical potential will remain constant between s1 and s2; it follows that
the isobaric isothermal free energy function g(T, P) = m cannot discriminate between these states. An equivalent
formulation of the phase equilibrium problem is to maximize s at specified h.
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ity is effectively infinite. Thus, for viscoelastic
rheologies dilation must be elastic, whereas dila-
tion resulting from nonassociated plasticity (e.g.,
pressure dependent yielding) is more complex
because it occurs as a consequence of shear defor-
mation [Hill, 1950]. Regardless of the details of the
irreversible rheology, mean stress can only be
affected via the dependence of the equation of state
on elastic deviatoric strain, thus, if this strain has
no significant effect on phase relations, the mean
stress and compressibility of a system is only a
function of the state variables used to define the
hydrostatic equation of state. For a Hookean elastic
equation of state, the deviatoric strain energy of an
isotropic system is

dustrain ¼ v0

 
8GS

3
� KS

� �

� e211 þ e233 þ e11e33
� �

þ GS e212 þ e213 þ e223
� �!

ð29Þ

where v0 is the volume of the unstrained state, KS

and GS are the adiabatic bulk and shear moduli,
respectively, and the eij are the independent
components of the deviatoric elastic strain tensor.
Approximating GS as KS/3, if elastic strain is small
compared to irreversible strain, and the indepen-
dent components of the stress tensor are of the
order of Ds, then equation (29) is

dustrain � 15v0

4KS

Ds2 ð30Þ

Taking parameters for forsterite for purposes of
illustration (KS = 128 GPa, v0 = 43 J/MPa [Xu et
al., 2008]), demonstrates that deviatoric stresses of
�1 GPa are necessary to generate elastic strain
energies comparable to error in the reference
energy of forsterite (�3 kJ/mol [Xu et al., 2008]),
an unusually well characterized phase. Thus, it is
reasonable to conclude that under ordinary geody-
namic conditions strain energy is insignificant and
the pressure or mean stress can be computed from a
hydrostatic equation of state.

[14] The foregoing analysis presumes that the
representative element of geodynamic models is
appropriate for the resolution of the grain-scale
processes of thermodynamic equilibration. This
presumption is the most tractable basis for incor-
porating phase equilibria in many geodynamic
problems. Exceptions to this generalization are
porous media problems in which kinetic effects
result in distinct pressure fields for the solid matrix
and low-viscosity interstitial fluid. Dahlen [1992]
notes that in this case, the most reasonable model is

to assume that phase equilibria involving the fluid
are governed by the pressure of the fluid. Rigorous
treatment of such problems would entail the use of
a separate equation of state for the fluid and solid
matrix. Dahlen’s [1992] logic can be used to justify
approximating the pressure used for purposes of
computing phase equilibria to the vertical load in
systems where a hydrostatic interstitial fluid is
connected to the Earth’s surface. This assumption
is reasonable at to depths within the Earth of
�10 km, but at greater depths the pressure of a
hydrostatic interstitial fluid may take on any value
between those of the principal tectonic stresses
[Connolly and Podladchikov, 2004]. Failing addi-
tional information in such circumstances, the most
plausible model for the phase equilibrium pressure
is the mean stress, i.e., the mechanical pressure.

[15] The density effects of phase transformations
are often accounted for in geodynamic problems by
the Boussinesq approximation [Batchelor, 2005]
because many geodynamic codes for large-scale
deformation presume incompressible flow. A con-
sequence of this approximation is that the effect of
phase transformations on pressure cannot be eval-
uated and the pressure for phase equilibrium com-
putations is taken as the mean stress or, more
commonly, the vertical load. While such approx-
imations may be adequate for certain geodynamic
purposes, they are thermodynamically inconsistent.
This inconsistency can only be resolved by for-
mulations that rigorously account for dilational
deformation.

3. How: The Optimization Problem

[16] The phase equilibrium problem, summarized
by equations (17)–(19), is to find the relative
amounts and states of the phases that minimize
the energy of a system at constant y1,. . ., yn�1,
qn+1,. . ., qk+2 given equations of state that describe
all potentially stable phases of the system. This
problem is nonlinear because a single equation of
state may describe as many as k + 2 phases, and
neither the identity nor the states of the stable
phases are known at the outset. While numerous
nonlinear optimization strategies have been imple-
mented for geoscientific problems (for a brief
review, see Connolly [2005]), nonlinear strategies
tend to be costly, numerically unstable and require
starting guesses to assure convergence to the cor-
rect result. For these reasons, these methods are not
well suited for computationally intensive geody-
namic models. Additionally, nonlinear strategies
require that the equations of state are functions of
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y1,. . ., yn�1, qn+1,. . ., qk+2. This requirement cre-
ates a practical difficulty in that equation of state
parameterizations provided in thermodynamic
databases are almost invariably for the natural
variables of the specific Gibbs energy g(T, P,
m1,. . ., mk�1); and while a Legendre transform of
g(T, P, m1,. . ., mk�1) yields any desired state
function, it does so in terms of the natural variables
of g, e.g., from g(T, P) and equation (6)

u T ;P;m1; . . . ;mk�1ð Þ ¼ g � T
@g

@T
� P

@g

@P
: ð31Þ

Provided the partial derivatives in equation (31) are
unique, it is possible to obtain u(s, v, m1,. . ., mk�1)
by iteratively optimizing a function of g(T, P,
m1,. . ., mk�1) [Ghiorso and Kelemen, 1987].
However, such a strategy fails for low-variance
phase equilibria where the partial derivatives are
undefined, e.g., the two- and three-phase fields of
the aluminosilicate phase diagram (Figure 1).

[17] Linearization of the phase equilibrium prob-
lem offers a means of circumventing the difficulties
endemic to nonlinear solvers. In the linearized
formulation the continuous spectrum of states
defined by each equation of state is approximated
by a finite number of discrete phase states. The
approximated problem is thereby reduced to the
linear optimization problem of finding the amount
of matter in each discrete state that minimizes

wsystem ¼
XP
j¼1

x jw j

at constant qn+1,. . ., qk+2 subject to the constraints

y system
i ¼

XP
j¼1

x jy j
i ; i ¼ 1; . . . ; n

1 � x j � 0; j ¼ 1; . . . ;P;

where P is the total number of phase states
generated by discretization and, for an arbitrarily
specified state of the system, the amounts of n
discrete phase states are nonzero. If more than one
discrete state of a phase described by the same
continuous equation of state is stable, then within
the resolution of the discretization the states that
are adjacent in the y1,. . ., yn�1 parameter space
correspond to a single phase state in the real
problem; whereas discrete states that are separated
by unstable states of the same phase represent
distinct states of the same phase in the real problem
(e.g., immiscible states).

[18] The primary virtues of the linearized formu-
lation, which has been implemented in various
incarnations of the Perple_X computer program,
are its extraordinary simplicity and that an opti-
mization algorithm (Simplex [White et al., 1958])
can be selected that assures convergence to a
global extremum. A cryptic virtue of linearization
that is of relevance here is that the discretization
of phase states can be done as a function of any
choice of independent variables (Figure 3); thus, it
is possible to obtain the equation of state u(s, v,
m1,. . ., mk�1) for a system even if the equations
of state of the individual phases are expressed as
u(T, P, m1,. . ., mk�1).

3.1. Iterative Refinement of the Linearized
Problem

[19] The disadvantage of the linearized formulation
is that discretization of the states of a phase with
many compositional degrees of freedom generates
a large number of potential phase states. To illus-
trate the magnitude of this problem, it is helpful

Figure 3. The linearized approximation of the phase
equilibrium problem illustrated in Figure 2. Equations of
state hA(s), hB(s), and hMelt(s) are represented by finite
sets of states generated by incrementing s by ds. For a
system with specified s, the stable state is obtained by
finding the set of discrete states that minimizes the
enthalpy. If the set of discrete states include two or more
states corresponding to a single equation of state, the
spacing of the states can be used to establish whether the
states represent more than one real phase. For example,
for s intermediate between A2 and A3 the fact that these
states differ by the increment ds can be used to infer that
within the resolution of the approximation the true state
of the system would be a homogeneous phase described
by hA(s). The discretization need not be done at constant
ds; thus, if the equations of state are known only as
analytic functions of temperature, hA(T), hB(T), and
hMelt(T) may be discretized as a function of temperature.
Regardless of the variable used for discretization, the
optimization returns the equation of state hsystem(s).
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to define amount as in equation (22) in which
case it is possible to define an n � 1 dimensional
simplicial compositional space that includes all
possible states of a given phase. Discretization of
this space on a uniform Cartesian grid with
spacing d generates

p � 1

2

Xn�1
i¼n�2

ðl=d þ 1Þi

ði� 1Þ! þ n� 1þ
Xn�1
i¼1

ðl=d � 1Þiðn� 1Þ!
ði!Þ2ðn� 1� iÞ!

 !
:

ð32Þ

phase states, where l is the length of the orthogonal
axes. Thus, discretization of the entire composition
space (i.e., l = 1) of a phase with eight variable
chemical components resolved at d = 10�2

would generate �1011 states, well beyond the limit
of �106 imposed by present-day computational
standards (i.e., �2 Gb of addressable memory).
In previous applications [Connolly, 2005], this
obstacle was circumvented by relying on expertise
to restrict the range of the composition space
considered for complex phases. The innovation
introduced here is a strategy in which iterative
refinement of the linearization is used to achieve
resolution that is limited by machine precision
rather than memory [White et al., 1958].

[20] The refinement strategy begins with the solu-
tion of a low-precision linearization (Figure 4). In
successive iterations, phase states that are highly
unstable are eliminated and the precision of the
linearization is increased in the vicinity of phase
states that are stable or nearly stable. The necessity
for refining nearly stable states is that phases
initially identified as being metastable may become
stable in subsequent iterations (Figure 4). In detail,
if the initial precision is d0, then in the mth
iteration phase states are generated with precision

dm ¼
2d0

1þ e0

1þ e0
1þ i0

� �m

ð33Þ

on a grid with orthogonal axes of length

lm ¼ i0dm ð34Þ

about each phase state retained from the previous
iteration. The relative resolution of the grid lm/dm in
each iteration is constant and specified by the integer
parameter i0. Algebraically, the real parameter e0
must be <i0 and i0 must be >1 for iteration to
increase resolution. Assuming that the precision of
the linearization at any level is ±d, setting e0 = 0 is
adequate to assure that iteration converges to stable
phase states. Despite this expectation, e0 is retained
as a free parameter, of the order of the value for d
required to obtain the maximum desired resolution,
to eliminate degneracies that may arise by the

Figure 4. The strategy for the iterative refinement of a
linearized problem in which w is to be optimized at y1 =
y1
sys at constant q3. . . qk+2. In the exact solution, the

stable phases of the system are wB(y1) at y1 = y1
B and

wC(y1) at y1 = y1
C. The problem is initially linearized

by representing the continuous equations of state
wA(y1), w

B(y1), and wC(y1) by a finite set of states
generated at increments of d0 = 1/5 in y1. Because the
initial resolution is poor, the solution for the initial
approximation incorrectly identifies a phase described
by wA(y1) as stable. With iteration parameters i0 = 2,
i2 = 1, and e = 0, new states are generated in successive
iterations with twice the resolution of the previous
approximation around each stable state. Additionally,
resolution is increased about the i2 metastable states
closest to the approximate solution; thus, refinement of
the metastable discrete state of wB(y1) identified in the
initial resolution leads to the identification of the correct
phases after one iteration. Successive iterations progres-
sively improve the accuracy of the estimate for y1

B, but
the estimate for y1

C does not change because the initial
estimate is accurate within the resolution of the iteration
scheme.
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refinement of adjacent phase states. In the imple-
mentation of this scheme phase states are discretized
on a regular Cartesian grid over the composition
space or, if desired, on a conformal transformation
[Roberts, 1970] of the composition space. Provi-
sion is made for the conformal transformation to
permit accurate resolution of highly nonlinear
equations of state; when such transformations are
used, equation (32) gives the resolution of the
conformal Cartesian grid and not the variable
resolution of the true compositional variables.

[21] Discounting the minor influence of the e0
parameter, four parameters characterize the iteration
scheme: d0, the initial spacing for discretization; i0,
the relative resolution in each iteration; i1, the
maximum number of iterations; and i2, the number
of metastable phase states to be refined in each
iteration. For any desired final precision, these
parameters may be chosen to optimize either speed
or accuracy. Accuracy improves with precision and
is limited by memory. To illustrate the choice of
parameters in this case, consider the calculation of
phase relations for an isobaric-isothermal closed
chemical system with eight chemical components
(i.e., n = 8) with P � 100 possible phases all but
one (e.g., a melt) of which are stoichiometric.
Further, suppose memory limits the number of
phase states that can be treated to p � 106 and the
desired final precision is 10�5. As there is only one
phase state for each stoichiometric phase, the num-
ber of phase states under consideration is approx-
imately the number of phase states used to represent
the melt. Solving equation (31) with p = 106, n = 8,
the initial precision is then d0 = 0.05. In each
iteration n + i2 phase states are retained and in the
worst case every one of these states may correspond
to the nonstoichiometric phase. Thus, the number of
phase states that can be used for the refinement of
an individual phase state from the previous iteration
is pi = p/(n + i2), where i2 is the number of
metastable phase states to be refined. This result
implies that refining metastable states (i2 > 0)
reduces the attainable relative precision for memo-
ry-limited problems. The negative consequences of
this reduction must be weighed against the possi-
bility that retaining these states may eliminate
discretization errors (Figure 4). Thus, in practice
i2 is found by experiment, i.e., the parameter is
increased until a threshold is reached beyond
which the optimization results are not signifi-
cantly affected. Such experimentation typically
gives i2 < 10; for the present example i2 = 2 is
assumed so that pi = 105 and solving equation (32)
for the relative resolution l/d (i0) yields i0 = 13. For

d0 = 0.05, i0 = 13, and i2 = 2, from equation (32) the
integral number of iterations necessary to achieve a
final precision of d < 10�5 is 4, i.e., i1 = 4.

[22] Because operation counts for linear program-
ming algorithms are strongly dependent on the
number of variables, for a given value of d0, speed
is optimized by minimizing the relative resolution
of the iterative refinement (i.e., setting parameter
i0 = 2). Thus, for the example discussed above it
would be faster to achieve the desired final preci-
sion with i1 = 9 iterations with a relative resolution
i0 = lm/dm = 2, than i1 = 4 iterations with a
relative precision i0 = lm/dm = 14. There is no
algorithmic constraint on the resolution of the
initial discretization (1/d0); therefore, as with
parameter i2, the optimal value must be determined
by experiment. In this regard, because the initial
discretization is static, the high cost of initializing
the solver for the initial discretization can be
eliminated by storing the data for the initial and
the iteratively refined discretizations in separate
arrays.

[23] The quantitative phase relations calculated
by the algorithm for the Al2SiO5 system (Figure 5)
are essentially those previously illustrated schemat-
ically (Figure 1), but extended to include melting.
The Al2SiO5 system was chosen as an example
because discontinuous phase transitions are preva-
lent in simple chemical systems; thus, paradoxi-
cally, simple chemical models, as often assumed in
parameterizations of phase equilibria, are the most
likely to lead to ill-conditioned geodynamic prob-
lems. The calculated phase relations provide a
quantitative demonstration of the profound ener-
getic and density effects of phase transformations,
in that the variations in entropy and volume caused
by the five 2-phase transformations are much
greater than the variations within the three subsoli-
dus 1-phase fields. Because the s � r coordinates
of the representative elements of a geodynamic
model vary continuously in response to heat flow
and deformation, these effects imply that a T � P
phase equilibrium solver, or a solver that relies on
T � P partial derivatives, would fail more often
than it would succeed for the subsolidus alumino-
silicate system, i.e., such a solver would fail for the

s� r conditions of any phase field for k > p phases.

4. How: Putting Phase Equilibria Into
Geodynamic Governing Equations

[24] To illustrate a closed geodynamic formulation
based on the internal energy equation of state,
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Figure 5. (a) Phase relations computed by minimizing u(s, v) for the Al2SiO5 (k = 1) system as a function of density
(r = 1/v) and specific entropy (s). The s � r coordinates of geodynamic systems vary continuously in response to
heat flow and deformation; therefore, if phase equilibria are calculated dynamically within a thermomechanical code,
it is essential that the phase equilibrium solver function for any arbitrary s � r coordinate. A solver that minimizes
u(s, v) meets this requirement, but solvers that rely on a P–T–m formulation fail for phase equilibria involving p > k
phases. Such equilibria dominate the Al2SiO5 phase diagram; thus, for this system a P–T–m dependent solver would
be likely to fail more often than it would succeed. This difficulty is endemic to dynamic implementations of P–T–m
solvers but can be circumvented in static implementations wherein phase equilibria are calculated and summarized in
look-up tables prior to the thermomechanical calculation (Figure 7). Thermodynamic data from Holland and Powell
[1998, revised 2002], phase notation: andalusite (A), sillimanite (S), and kyanite (K). The white region in the bottom
left corner represents physical conditions at which pressure is negative given the possible phases. From a practical
perspective these conditions are indicative of geologically unrealistic s � r conditions, but from a thermodynamic
perspective the negative pressures reflect the absence of a vapor phase in the model. (b) Isotherms and (c) isobars
obtained by differentiation of the optimized function u(s, v). (d) The phase relations as a function of pressure and
temperature. The P–T conditions correspond roughly to the conditions for the s � r calculation. The melting phase
relations are an approximation in that sillimanite is metastable, at least at low pressure, with respect to mullite [Pask,
1996]. The files for these calculations are accessible from perplex.ethz.ch/perplex_usv.html.
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consider a thermomechanical model for viscoelas-
tic deformation without mass transfer, i.e., the
representative elements are isochemical and char-
acterized by the equation of state u(s, v). If the
internal energy of a representative element associ-
ated with a material point varies only through heat
conduction, irreversible shear deformation, and
reversible dilation, then conservation of energy
requires [de Groot and Mazur, 1984]

du

dt
¼ v s : _e�r � qð Þ � P

dv

dt
ð35Þ

where q is the heat flux, s and _e are the deviatoric
stress and strain rate tensors, and t is time.
Equation (35) describes the conversion of dissipa-
tive power (s : _e) to heat or dilational or chemical
work; however, energy may also be dissipated by
microscopic elastic strain, i.e., damage. The neglect
of this damage, as consistent with the assumption
that u(s, v) is the complete equation of state,
implies that equation (35) describes the maximum

effect of mechanical dissipation on the state of the
system [Regenauer-Lieb et al., 2009].

[25] Equating equation (35) to the time derivative
of the equation of state

du

dt
¼ T

ds

dt
� P

dv

dt

and, making use Fourier’s law to express heat flux
as a function of thermal conductivity (K) and
temperature, the result is rearranged to obtain an
evolution equation for entropy

ds

dt
¼ v
r � ðKrTÞ þ s : _e

T
: ð36Þ

Equation (36) is readily solved numerically by
using the right-hand side to estimate the spatial
distribution of entropy and using the equation of
state as an update rule for temperature (i.e., T =
@u/@s). The strain rate tensor _e in equation (36) is a
function of the velocity field and, by making use of
constitutive relations, the stress tensor s can be
expressed as a function of state variables and _e.
Therefore, solution of equation (36) requires
governing equations for the components (wx, wy,
wz) of the velocity (w) and v. The former are
provided by the Stokes equation [Batchelor, 2005]
with effective viscosity h

r � ðhrwÞ ¼ rP; ð37Þ

where gravitational body forces have been omitted
for simplicity, and continuity

dv

dt
¼ vr � w ð38Þ

closes the system of equations in s, v, wx, wy, wz in
conjunction with the equation of state u(s, v) and
constitutive relations (Figure 6). In this formula-
tion, just as conservation of energy provides an
evolution equation for entropy, continuity provides
the evolution equation for volume; and pressure
and any state variables required by the constitutive
relations are updated from u(s, v).

[26] The restriction to an isochemical thermome-
chanical model in the foregoing is not essential. In
general, if mass transfer occurs among representa-
tive elements, the equation of state is u(s, v, m1,. . .,
mk�1) and an additional k � 1 governing equations
must be introduced to assure conservation of the
independently variable kinds of mass [e.g., de
Groot and Mazur, 1984]. Mass transfer is accom-
plished by advection of a low-viscosity fluid

Figure 6. Iterative cycle for an implicit numerical
solution of the governing equations for an isochemical
geodynamic model. The governing equations are closed
by constitutive relations (rheology) and the equation of
state (EoS). The variables updated by each equation, or
set of equations, are indicated for the clockwise cycle.
Constitutive relations usually describe rheology as a
function of thermodynamic potentials; therefore, if the
deviatoric stress tensor or effective viscosity is required
by a governing equation, both the equation of state and
the constitutive relations are employed if a governing
equation modifies a state variable. For a nonisochemical
geodynamic system, i.e., a system in which the transfer
of k–c kinds of mass is possible, the governing
equations would be augmented by conservation equa-
tions for the k–c–1 independent specific masses
mk�c�1,. . ., mk�1 [e.g., Katz, 2008; Tirone et al., 2009].
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through a more viscous solid is a problem of
particular geodynamic relevance. Most commonly,
the migration of the fluid is kinematically pre-
scribed [Gerya et al., 2004] or tracked by marker
techniques [Gorczyk et al., 2007; Hebert et al.,
2009]; however, some recent treatments [Katz,
2008; Tirone et al., 2009] solve such problems
rigorously by introducing a complete set of gov-
erning equations for the ‘‘fluid’’ and ‘‘solid’’
phases, either of which may in fact be an aggregate
of thermodynamic phases.

[27] The conventional T � P formulation for the
heat flow equation is obtained from equation (35)
by expanding the entropy differential as

ds ¼ @s

@T
dT þ @s

@P
dP

and making use of the identities

@s

@T
¼ cP

T
;
@s

@P
¼ �aPv

Equation (35) rearranges to

dT

dt
¼ v r � ðKrTÞ þ s : _e½ 	 þ aPT

dP

dt

� �,
cP: ð39Þ

Likewise, from the identity

KT ¼ �v
@P

@v

� �
T

;

continuity (equation (38)) is

dP

dt
¼ �KTr � w: ð40Þ

Absent first-order phase transitions, the governing
equations (39), (40) and (37) are closed in P,
T, wx, wy, wz by rheology and the equation of
state g(T, P) via

cP ¼ �T @2g
@T2 ; v ¼ @g

@P ;aP ¼ @2g
@T@P

,
@g
@P ;

KT ¼ � @g
@P

,
@2g
@P2 :

ð41Þ

The s � v (equations (35) and (38)) and T � P
(equations (39) and (40)) formulations of the energy
and continuity equations are mathematically
equivalent, but the T � P formulation is ill
conditioned because g(T, P) is not a function of
the state of a system undergoing a discontinuous
phase transformation (equation (21)). To illustrate
this ill condition, consider the description of an
isobaric transformation of andalusite to sillimanite
(Figure 5) by equation (39). At the transformation

temperature gandalusite = gsillimanite, yet the internal
energy and other first-order properties of the system
vary linearly with the amount of sillimanite
generated by heating. It follows that the coefficients
cP and aP (equation (41)) of the heat flow equation
are infinite and therefore that the equation is
singular. Moreover, at the transformation tempera-
ture g(T, P) cannot be differentiated to yield v or the
latent heat of the transformation required for ad hoc
resolution of the singularity. The same problem
emerges with the KT coefficient of the continuity
equation (equation 40) if a discontinuous phase
transformation is induced by isothermal compres-
sion. In contrast, numerous engineering studies
have demonstrated that the enthalpy method, the
solution of the isostatic equivalent of equation (35),
is well conditioned [Oezisik, 1993]. From an
operational perspective, the s–v formulation re-
quires only two first-order derivatives of u(s, v) for
T and P, whereas the T� P formulation requires the
evaluation of six first- and second-order derivatives
of g(T, P) for cP, v, aP, and KT. Thus, even in
systems where first-order phase transitions can be
precluded, there is no prima facie ground to prefer
the T � P formulation.

5. Dynamic Versus Static Phase
Equilibrium Implementations

[28] It is natural to ask how there can have been so
many successful geodynamic applications of the
T � P formulation if it is ill conditioned? The
answer to this question lies in the way in which
equations of state are implemented in geodynamic
models. This can be done in two ways distin-
guished here as static and dynamic methods. In
the dynamic method the equation of state is eval-
uated during the application, whereas by the static
method the equation of state is evaluated prior to
the application and summarized in a table as a
function of the desired state variables. In the static
method, discontinuities associated with first-order
phase transformations are smoothed by the finite
resolution of the table. Consequently, there are no
singularities in the T � P formulation if finite
difference approximations are used to evaluate
the effective cP, v, aP, and KT from g(T, P), as in
equation (41), and the formulation is generally well
conditioned. Thus, the use of static methods
explains the numerical stability of the vast majority
of geodynamic applications that have incorporated
phase equilibria computed by free energy minimi-
zation over the last decade. Paradoxically, the
unlimited resolution of phase relations provided
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by dynamic methods is a source of numerical
instability, both because of the aforementioned
singularities and because the thermodynamic opti-
mization as a function of pressure and temperature
is numerically unstable at the conditions of first-
order phase transformations. The feasibility of
recent applications [Hebert et al., 2009; Tirone et
al., 2009] that have employed dynamic methods is
because first-order transformations are uncommon
in complex chemical systems.

[29] Given the high cost of phase equilibrium
calculations, from a computational perspective a
dynamic strategy only makes sense if the cost of
memory required for the static method is prohibi-
tive. For example, in the reactive melt flow prob-
lem considered by Tirone et al. [2009] the state of
the system is defined by pressure, temperature and
the five chemical compositions. Resolution of each
state variable at a percent of its range would require
a table with 1007 entries and is clearly impractical.

In contrast, the problem involving only pressure,
temperature and water transport treated by Hebert
et al. [2009] requires a table with only 1003 entries,
which is tractable by the static method given
current computational standards. Given that con-
servative interpolation between table entries is
feasible, the ‘‘percent level’’ resolution used here
for the sake of argument is likely to vastly exceed
the requirements of most geodynamic models.

[30] An additional advantage of the static method
is that the equation of state for a system can be
mapped as a function of the variables that are most
convenient for the phase equilibrium calculation
and then converted post hoc to tables as a function
of the variables for the geodynamic calculation
(Figure 7). For example, optimization as function
of pressure and temperature yields

gðT ;PÞ; sðT ;PÞ ¼ � @g
@T

; vðT ;PÞ ¼ @g

@P
:

Figure 7. (a) Phase relations and physical properties mapped as a function of pressure and temperature, by
optimizing g(T, P), transformed to (b) a map of phase relations and physical properties as a function of entropy and
density. The transformation is accomplished by using numerical interpolation of s(T, P) and r(T, P), the red and blue
curves in the P–T map, to obtain T(s, r), and P(s, r), the red and blue curves in the s–r map. These latter functions
can be summarized in look-up tables and used to close the s–v formulation of geodynamic governing equations (e.g.,
equations (36)–(38); Figure 6). This transformation offers a pragmatic alternative to the direct optimization of u(s, v)
(Figure 5), from which T(s, r) and P(s, r) are obtained by numeric differentiation (i.e., T = @u/@s, P = �@u/@v). The
phase relations are for a simplified version of the LOSIMAG [Hart and Zindler, 1986] mantle composition (molar
composition: 0.707 SiO2, 0.037 Al2O3, 0.0971 FeO, 0.867 MgO, 0.053 CaO, 0.005 Na2O). Phase notation and
solution model sources: olivine and garnet (O and Gt) [Holland and Powell, 1998], plagioclase (Pl) [Fuhrman and
Lindsley, 1988], orthopyroxene and clinopyroxene (Opx and Cpx) [Holland and Powell, 1996], melt [Ghiorso et al.,
2002]; end-member thermodynamic data for the melt model (‘‘pMELTS’’) modified to be consistent with the data of
Holland and Powell [1998] (revised 2002) used for all other phases. The files for this calculation are accessible at
perplex.ethz.ch/perplex_usv.html.
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Given these functions, g(s, v), T(s, v), and P(s, v)
are obtained by numerical interpolation (a script for
this purpose is at www.perplex.ethz.ch/perplex_
usv.html) onto a regular s–v coordinate frame and
the equation of state u(s, v) is constructed from the
Legendre transformation (equation (6); compare to
equation (31))

uðs; vÞ ¼ gðs; vÞ þ Tðs; vÞs� Pðs; vÞv:

This latter step is superfluous from a geodynamic
perspective, as the s–v formulation of the geody-
namic governing equations requires only T(s, v)
and P(s, v) (Figures 6 and 7b).

6. Summary and Discussion

[31] This paper has outlined a consequence of
assuming local equilibrium for the phase relations
of geodynamic systems, an assumption that is
equivalent to assuming the existence of an equation
of state for a heterogeneous system. The conven-
tional notion of an equation of state stems from
homogeneous systems. The state of a homogenous
system with N independent extensive material
attributes can be specified by any choice of N–1
independent state variables and because pressure
and temperature are easily controlled in experi-
mental systems, these variables are commonly
chosen to specify thermal and mechanical state.
This notion of an equation of state does not apply
to heterogeneous systems such as rocks for both
theoretical and practical reasons. As a heteroge-
neous system may consist of as many as N phases,
its equation of state must be capable of distinguish-
ing N phases; this is only possible if coexisting
phases have unique coordinates in the representa-
tive space defined by the independent variables of
the equation of state. A representative space defined
by thermodynamic potentials, such as pressure
and temperature, does not meet this requirement
because the potentials are equal in coexisting
phases; therefore, the independent equation of state
variables must correspond to the N � 1 specific
properties that define the relative proportions of the
N material attributes. For most geodynamic prob-
lems, the N attributes are the k kinds of mass,
entropy, volume and five components of the elastic
strain tensor. Elementary considerations reviewed
here show that the contribution of elastic deviatoric
strain to the total energy of geodynamic systems is
unlikely to be significant; thus, from a practical
perspective the N attributes for geodynamic sys-
tems are the k kinds of mass, entropy, volume and
the equation of state is u(s, v, m1,. . ., mk�1) [cf.
Tantserev et al., 2009]. An implication of this

model is that the dilational rheology must be
elastic. If the additional, and common, assumption
that the representative elements of a geodynamic
model conserve mass, then the equation of state
simplifies to u(s, v) and temperature and pressure
are functions of the specific entropy and volume.
For this configuration, the equation of state, con-
stitutive relations, and governing equations for
energy, mass (continuity) and momentum provide
a closed system of equations in s, v and velocity.
The energy and continuity equations are evolution
equations for s and v, and u(s, v) furnishes the
update rule for pressure and temperature.

6.1. Optimization Method and Its
Implementation

[32] The equation of state of a heterogeneous system
is computed by finding the phase states that opti-
mize the systems energy as a function of its inde-
pendently variable properties; as such the equation
of state is not amenable to analytic expression, in
contrast to the equations of state for individual
phases. Thus, in practice the equation of state of a
heterogeneous system is a numeric function. The
manner in which phase equilibria are implemented
in a geodynamic model dictates the numerical
method by which the equation of state is most
efficiently computed. In static implementations,
the equation of state is tabulated as a function of
its independent variables. In this case, the choice of
independent variables for the phase equilibrium
calculation is irrelevant as the table can be reformu-
lated in terms of whatever variables are optimal for
the geodynamic model (Figure 7). For geodymamic
models that treat multicomponent mass transfer
[e.g., Tirone et al., 2009] it may be desirable to
dynamically optimize phase relations as an explicit
function of the desired geodynamic variables. An
obstacle to such optimizations is that the equations
of state for the potential phases of geological sys-
tems are known invariably as functions of temper-
ature rather than entropy and usually as functions of
pressure rather than volume. Discretization provides
a means of representing a functional form for the
equation of state of a phase in terms of any choice of
independent state variables. Thus, given u(T, P,
m1,. . ., mk�1), the discrete function u(s, v, m1,. . .,
mk�1) is easily obtained. The combination of these
discretized functions is then optimized by linear
programming. Compared to conventional isobaric-
isothermal optimization problems, the increased
dimension of the isentropic-isochoric problem poses
numerical difficulties. This paper has detailed a
successive linear programming strategy that directly
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optimizes the total energy of a system to overcome
these difficulties. Aside from numerical issues, the
advantage of a direct optimization strategy is that no
user expertise is required to resolve situations, e.g.,
immiscibility or boiling, in which distinct phases are
represented by a single equation of state. The
weakness of direct energy optimization strategies
is they cannot resolve variations in specific variables
that do not significantly affect the total energy of the
system. Thus, they are poorly suited for the solution
of problems in which it is necessary to resolve trace
element geochemistry.

6.2. Looking for Something New?

[33] In emphasizing the formal definition of an
equation of state, the case made here has been
legalistic rather than demonstrative. Specifically, it
is argued that the s–v–m formulation is preferable
because it is better conditioned and more efficient
from an operational perspective. While these issues
can also have a significant impact on computational
results [Schneider and Beckermann, 1991; Oezisik,
1993], the scale of geodynamic models is such that a
P–T–m formulation based on effective thermody-
namic properties will recover the same physical
behavior. Given that accounting for the thermal
effects of phase equilibria is now routine in geo-
dynamic models, the only suggestion made here
that offers the prospect of revealing new physical
behavior is to account for the coupling of ther-
modynamic and mechanical pressure. The artifi-
cial decoupling of these measures of pressure is
an inescapable consequence of the almost univer-
sal neglect of dilational strain in the continuity
equation (equation (38) or (40)), as implicit in
Boussinesq models. In lieu of a more rigorous
relation, thermodynamic pressure is usually related
to depth or load, an approximation that yields
kinetics appropriate for inviscid materials, the
antithesis of geodynamic systems. Such approxi-
mations have their greatest dynamic consequence
for large strain phase transitions, e.g., melting or
devolatilization [Connolly, 1997] or phase trans-
formations at extreme pressure. In regard to the
latter, the recent discovery of a postperovskite lower
mantle phase is of particular interest [Oganov and
Ono, 2004]; e.g., if the postperovskite transition
has a Clapeyron slope of �10 MPa/K, then the
mechanical work done during this transformation
at 2500 K and 125 GPa is five times its heat effect.
The neglect of dilational strain in the continuity
equation also violates conservation of mass; thus,
the approximation may have significant conse-

quences for modeling of the dynamics of the geoid
[Hetenyi et al., 2007; Afonso et al., 2008].

6.3. Are Phase Equilibria Worth the Effort?

[34] Given the focus of this paper, it is relevant to
conclude with thoughts on the value of incorpo-
rating phase equilibria computed from thermody-
namic data in geodynamic modeling. A common
pro argument is that phase transformations induce
new types of behavior, whereas the contra argu-
ment is that the large number of parameters re-
quired for phase equilibrium computations
increases the uncertainty of, and complicates, geo-
dynamic modeling. These arguments cannot be
refuted objectively, but there are points of weak-
ness in both. Geodynamic models evolved from a
stage in which phase transformations were entirely
neglected to the current stage in which it is possible
to account for continuous phase transformations
via an intermediate stage in which natural phase
transformations were simulated as discontinuous
processes and represented by parameterizations.
When compared to such parameterizations, more
realistic phase equilibrium models sometimes do
reveal new behavior, but the larger number of
degrees of freedom associated phase equilibrium
models tends to dampen the overall geodynamic
consequences of phase transformations [Petrini et
al., 2001; Kaus et al., 2005; Simon and Podlad-
chikov, 2008; Nakagawa et al., 2009]. Thus, sim-
ple parameterizations are useful for identifying
extremal geodynamic scenarios. However, the con-
struction of more elaborate parameterizations, even
if only for a few phase transformations, rapidly
leads to a parameter space that is too complex to
explore thoroughly. Although such a parameter
space may seem miniscule compared to that of a
thermodynamic database, the case for the use of a
thermodynamic model is less bleak than might be
expected for two reasons. The zeroth and first-order
parameters of thermodynamic databases are strongly
correlated [Holland and Powell, 1998]; thus, errors
on individual parameters provide a pessimistic basis
for assessing uncertainties. These autocorrelations
combined with the nonlinear phase equilibrium
problem to make statistical error assessment a
practical impossibility. Paradoxically this impossi-
bility makes the case that, from a geodynamic
perspective, individual thermodynamic databases
should be regarded as a single parameter; as the
only practical means for error assessment is com-
parison of computations done with alternative data-
bases. The recognition that thermodynamic
databases are a distillation of a complex body of
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knowledge supports this view. As such, databases
may not reproduce any individual observations
perfectly; rather they are an attempt to minimize
the compromises necessary to reconcile disparate
observations. Thus, while the temptation to make
post hoc adjustments to databases to improve agree-
ment with new, or favored, individual observations
is strong, such adjustments tend to damage the
integrity of the database.
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