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We report our findings comparing the geometric factor (GF) as determined from simulations and
laboratory measurements of the new Dual Electron Spectrometer (DES) being developed at NASA
Goddard Space Flight Center as part of the Fast Plasma Investigation on NASA’s Magnetospheric
Multiscale mission. Particle simulations are increasingly playing an essential role in the design and
calibration of electrostatic analyzers, facilitating the identification and mitigation of the many sources
of systematic error present in laboratory calibration. While equations for laboratory measurement of
the GF have been described in the literature, these are not directly applicable to simulation since the
two are carried out under substantially different assumptions and conditions, making direct compari-
son very challenging. Starting from first principles, we derive generalized expressions for the determi-
nation of the GF in simulation and laboratory, and discuss how we have estimated errors in both cases.
Finally, we apply these equations to the new DES instrument and show that the results agree within
errors. Thus we show that the techniques presented here will produce consistent results between labo-
ratory and simulation, and present the first description of the performance of the new DES instrument
in the literature. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3687021]

I. INTRODUCTION

The geometric factor (GF) of an electrostatic plasma an-
alyzer (ESA) facilitates the conversion of the number of parti-
cles detected by the analyzer during an integration time to the
ambient plasma differential energy flux (from which an equiv-
alent phase space density may be estimated).1 Reliable and
accurate determination of the GF, however, is a non-trivial
exercise, since there are many sources of random and sys-
tematic experimental error to take into account. Simulations
of the particle trajectories as they pass through the optics to
the detector thus play an essential part in the identification
and mitigation of systematic experimental errors—e.g., op-
tics misalignment,2 electronic noise, variations in detector ef-
ficiencies, etc.—that are often specific to the particular lab-
oratory setup and difficult to track down. However, particle
simulations are often run under conditions that differ substan-
tially from those in the laboratory and can introduce errors of
their own.3

While techniques and equations for laboratory measure-
ment of the GF have been described in the literature,4–6 these

a)Electronic mail: glyn.a.collinson@nasa.gov.
b)G. A. Collinson and J. C. Dorelli contributed equally to this work.

are not readily applicable to simulation due to the often sig-
nificant differences between the setup in the laboratory and
the assumptions made for simulation. However, for direct
comparison between laboratory and simulation there must
be complete confidence that the equations used to calculate
the GF are mathematically equivalent. Otherwise, it is not
possible to ensure that any discrepancies or agreements are
genuine. While many previous groups have made use of sim-
ulations to calculate or verify their GF measurements,7–11 to
our knowledge, the details of these comparisons have not been
presented in the literature in a general and systematic way.

The purpose of this paper is two-fold. First to describe a
general formalism for comparing simulated and measured ge-
ometric factors of top hat analyzers. Second, to describe our
application of this formalism to the GF determined from com-
puter simulations and laboratory measurements of the new
Dual Electron Spectrometer (DES) (shown in Figure 1) be-
ing developed at NASA Goddard Space Flight Center (GSFC)
as part of the Fast Plasma Investigation (FPI) to be flown
on NASA’s upcoming Magnetospheric Multiscale (MMS)
mission. Starting from first principles, we derive generalized
expressions for the determination of the GF in simulation and
laboratory, and discuss how we have estimated errors in both

0034-6748/2012/83(3)/033303/10/$30.00 © 2012 American Institute of Physics83, 033303-1
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FIG. 1. (Color Online) The engineering test unit (ETU) of the new
Dual Electron Spectrometer (DES) for NASA’s Magnetospheric Multiscale
(MMS) Mission.

cases. We then apply these equations to example data from
the new DES, and thus demonstrate that the results agree to
within identified errors.

The paper is organized as follows:

1. In Sec. II, we present the derivation of a generalized GF

equation.
2. In Sec. III, we outline a suggested methodology for

the computer simulation of ESAs. Then we derive an
equation for GF specifically for computer simulation
and discuss how we have estimated the error in its
measurement.

3. In Sec. IV, we derive an equation for the determination
of the GF from laboratory calibration, and again discuss
how we have estimated the error.

4. Finally, in Sec. V, we show an example of how these
equations have been used to calculate the GF of the en-
gineering test unit (ETU) of the new DES.

Thus we show that the techniques presented here will
produce consistent results between laboratory and simulation,
and present the first description of the performance of the
DES in the literature.

II. THE GEOMETRIC FACTOR

The “geometric factor” is a historical phrase that is used
to denote something that is not entirely based on instrument
geometry. In reality, it is used as a catch-all term that allows
conversion between counts on the detector to phase space den-
sity, and as such also includes other elements not related to
the geometry of the instrument such as the efficiency of the
detector (to be discussed later).5, 8, 10, 12, 13

A. Mathematical definition

We will now derive a generalized equation for the GF

from first principles. To begin, following Johnstone et al.,5

we introduce the concept of an “instrument response func-
tion” (R). This is a notional mathematical construct that re-
lates how the instrument responds when a flux of particles
is incident upon it. It describes the effects of the ESA op-
tics as well as any non-optical elements (such as detection
efficiency). These additional factors may be dependent on the
energy of the particle, and will later be referred to as “q(E)”.

At the time of writing, the most commonly used method
of particle detection is by using a micro-channel plate
(MCP)14 as a charge amplifier, resulting in an electron shower
that is detected as a charge deposition on an anode by read-out
electronics.15 The anode is often sub-divided into segments,
giving the instrument angular sensitivity. A plasma analyzer
therefore accumulates counts on each anode or other such an-
gular pixel (i) and in each energy bin (j). Some types of ESA
use electrostatic deflector plates,16–18 to sweep the field of
view of the instrument over a range of angles. In this case,
the plasma analyzer also accumulates counts at each deflec-
tion state (k).

We thus begin by defining the instrument response func-
tion Ri jk(v, v0, x, t) such that the number of particles detected
(for a given mass to charge ratio), Cijk is given by Eq. (1), as
first defined by Johnstone et al.,5

Ci jk ≡ −
∫ τ

0
dt

∫
dA ·

∫
v−

dv v Ri jk(v, v0, x, t) f (v, x, t),

(1)

where Ri jk(v, v0, x, t), and the particle distribution function,
f(v, x, t) are integrated over the particle velocities into the
aperture, the area of the aperture, and the period of accumu-
lation (τ ). In general, for a plasma containing multiple ion
species, f(v, x, t) might be a sum over all of those species
with charge to mass ratio selected by Ri jk . However, the ex-
periments we describe in this paper do not suffer form this
ambiguity because we are measuring only electrons. The in-
dependent variable is the single-particle velocity space coor-
dinate (v), and dA is a differential area element of the detector
aperture (with direction parallel to the local outward normal
to the aperture). v − indicates that integration is over that re-
gion of velocity space (v · dA < 0). v0 is a vector parameter
which describes the shape of the instrument response function
with a global maximum at v = v0.

Measurements of the response of a space plasma analyzer
are made in terms of energy and angle, rather than velocity
and position. It is therefore convenient to introduce the co-
ordinate system depicted in Figure 2. The velocity space is
represented by spherical-polar coordinates (E, θ , φ), where E
is the single-particle energy, E = mv 2/2, θ is the particle ele-
vation, and φ is the particle azimuth. To proceed further, the
following assumptions are made:

1. The aperture area can be approximated as a rectangle
with area Aij ≡ �Y�Z whose normal is in the −X
direction.

2. The integration time is small enough so that the incident
particle phase space density is constant over the integra-
tion time.
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FIG. 2. (Color Online) Space co-ordinate system with respect to an analyzer
(panel a) and spherical-polar single-particle velocity space coordinate system
(panel b). The rectangle in panel a (coloured red online) shows the detector
aperture, here approximated as a rectangle with area Aij, whose centroid is
located at (XD, 0, 0). The right panel shows the coordinate system used to
describe the single-particle velocity distribution function, f(E, θ , φ), at an
arbitrary location on the instrument.

3. Aij is small enough so that the incident particle phase
space density is constant over the detector aperture.

When the above conditions are satisfied, Eq. (1) becomes:

Ci jk ≡ 2τ Ai j

m2

∫ ∞

0
d E E

∫ π
2

− π
2

dθ cos2 θ

∫ π
2

− π
2

dφ cos φ

× R̄i jk(E, θ, φ; E0, θ0, φ0) f (E, θ, φ), (2)

where

dv = v2dvdθ cos θdφ

dv = d E√
2m E

v =
√

2E

m

dA · v = d Av cos θ cos φ

= dY d Zv cos θ cos φ.

Next we define the following space–time averaged detector
response, R̄i jk :

R̄i jk(E, θ, φ; E0, θ0, φ0)

≡ 1

Ai jτ

∫ τ

0
dt

∫ �Y/2

−�Y/2
dY

∫ �Z/2

−�Z/2
d Z

× Ri jk((E, θ, φ; E0, θ0, φ0), Y, Z , t), (3)

where E0, θ0, and φ0 are the spherical polar coordinates cor-
responding to vector v0 in Eq. (1) (the location of the global
maximum of the response function). Now we may define the
generalized definition of the geometric factor, GFi jk used in
this paper as

GFi jk ≡ Ai j

E2
0

∫ ∞

0
d E E

∫ π
2

− π
2

dθ cos2 θ

∫ π
2

− π
2

dφ cos φ R̄i jk

× (E, θ, φ; E0, θ0, φ0). (4)

Note that there exist some phase space structures on
scales comparable or smaller to the response function, e.g.,
the Solar Wind Strahl.19 In such cases, one needs to de-

convolve the integral in Eq. (1) in order to compute the phase
space density from the measured count rate. If the phase space
density f(E, θ , φ) is approximately constant over the detector
response, then Eq. (2) can be written as follows:

Ci jk ≡ 2τ Ai j

m2
f (E, θ, φ)

∫ ∞

0
d E E

∫ π
2

− π
2

dθ cos2 θ

×
∫ π

2

− π
2

dφ cos φ R̄i jk(E, θ, φ; E0, θ0, φ0), (5)

Then we may substitute the definition of the GF (4) into
Eq. (5) to approximate GF as below as

Ci jk ≈ 2τ Ai j

m2
f (E, θ, φ) GFi jk

E2
0

Ai j
. (6)

With some minor re-arrangement and cancellation, we arrive
at Eq. (7).

Ci jk ≈ 2E2
0

m2
GFi jk τ f (E0, θ0, φ0) (7)

This in turn allows conversion between Cijk and the differen-
tial energy flux, J (E, θ, φ, x), as in Eq. (8).

Ci jk ≈ GFi jk τ J (E, θ, φ, x). (8)

The units of GF are cm2 sr eV/eV, where eV/eV is included
to indicate that it is a function of both the range of energies of
the particles and a central energy of the instrument transmis-
sion bandpass.

B. Speed based definition of the Geometric Factor

While we have chosen to work in energy, and many
studies6, 10, 16, 20 of ESAs also cite the GF in terms of en-
ergy (as in Eq. (8)), others (including the afore mentioned
Johnstone et al.,5) calculate it in terms of speed12, 21

(see Eq. (9)).

GF(s) i jk ≡ Ai j

v4
0

∫ ∞

0
dv v3

∫ π
2

− π
2

dθ cos2 θ

∫ π
2

− π
2

dφ cos φ

× R̄i jk (v, θ, φ). (9)

This leads to the following speed-based definition of the
Geometric Factor (GF(s) i jk),

Ci jk ≈ GF(s) i jk f (v, θ, φ) v4τ. (10)

It is important to note that this speed-based definition of the
of the Geometric Factor (GF(s) i jk) is exactly half that of the
energy-based definition GFi jk , leading to a factor of two
discrepancy, as in Eq. (11). We emphasize this because both
of these definitions occur prevalently in the literature,13

GFi jk = 2 GF(s) i jk . (11)

This is a result of the conversion between energy (Eq. (2))
and speed (Eq. (9)) using the following:

E0 = mv2
0/2,

d E = mv dv . (12)

Thus there is no single and unified definition of the GF

in the literature, and the choice of which is used comes down
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to personal preference. However, since the conflicting defini-
tions give conflicting results, it is important to clarify which
definition has been used when comparing laboratory and sim-
ulation, or when reporting the response of an instrument.

III. DETERMINATION OF GEOMETRIC FACTOR
THROUGH COMPUTER SIMULATION

In this section, we use our generalized GF Eq. (4) to de-
rive an equation for the calculation of the GF through com-
puter simulations. We then discuss how we have estimated the
error in our simulations of GF for the MMS-DES.

Computer simulation reveals the idealized properties of
an ESA, and is now used ubiquitously throughout the commu-
nity for the purposes of instrument design,22–25 modification
and optimization,10 and to aid in post-launch calibration.8, 20

There is, therefore, a strong need for a generalized descrip-
tion of how to determine the GF of any ESA using com-
puter simulation so that the answer will be consistent with
that determined through laboratory calibration. In this section,
we present such a description, including a derivation of an
equation for the computational determination of the GF from
simulation.

A. Description of Monte Carlo simulation method

When performing computer modelling of an ESA, a par-
ticle “beam” is launched at some position upstream of the
detector aperture. An effective approach is to draw parti-
cle energies and elevation angles from a uniform random
number generator with ranges �EB ≡ Emax − Emin and �θB

≡ θmax − θmin (see Figure 3). The particles are uniformly dis-
tributed over a source rectangle in the Y − Z plane with area
�YB × �ZB; the centroid of the rectangle is located at (XB, 0,
ZB). All of the particles are launched with φ = 0.

FIG. 3. (Color Online) Schematic showing our suggested methodology for
flying particles in a computer simulation.

The values of Emax, Emin, θmax, θmin must be selected to
ensure that the entire energy and angular bandpass of the in-
strument is covered. Similarly, the position and area of the
source of particles (blue rectangle, Figure 3) should be se-
lected to cover the whole area of the simulated instrument
over which particles may be transmitted to the detector (green
rectangle, Figure 3). This may or may not require covering
the whole aperture, depending on the type and design of ESA.
The rectangular source should be large enough to ensure that
particles fired from the top (ymax) with angle θmin and from
the bottom (ymin) with angle θmax will cover the limits of the
aperture. Therefore, the closer the source of the particles to
the aperture, the smaller the area that the source of particles
will have to be in order to cover it.

We use a commercially available software package to cal-
culate the electric potential distribution inside the instrument
and perform ray-tracing calculations, although some groups
choose to use their own software. The randomly generated
charged particles traverse the ESA, with a certain number
striking the simulated “detector”. Charged particles are flown
one at a time. The state of each particle is recorded twice; the
first time upon its creation, and the second time when it ei-
ther hits an electrode or leaves the simulation space. On these
two occasions (start and stop), the following information is
recorded: Position (x, y, z), direction of movement (Azimuth—
φ, Elevation—θ ), and Kinetic Energy (KE).

The main source of error in a simulation should be the
statistics of the number of particles fired. To estimate the er-
ror attributed to this, we run each simulation multiple times.
The GF (and all other instrument parameters such as energy
resolution, analyzer constant, etc.10) calculated independently
for each simulation, so that a mean and standard deviation can
be taken. We have found that the easiest way to achieve this is
by running a single long simulation and subdividing the data
set. The data set should be “sieved” so that only those par-
ticles that have struck the simulated detector are considered.
The total number of particles flown (Nin) and the number that
strike the detector (Cijk) are recorded. The peak of the energy
acceptance bandpass (E0) of the ESA is then calculated as part
of our data analysis.

B. An equation for determining GF through
computer simulation

We now show how the measured values of Nin, Cijk,
and E0 (along with the variables shown in Figure 3) may
be used to determine the GF of any ESA through computer
simulation.

We can write the phase space density describing the sim-
ulated particle distribution as follows:

f (E, θ, φ) =

⎧⎪⎪⎨
⎪⎪⎩

f0 δ(φ) if

(
Emin < E < Emax

θmin < θ < θmax

)

0 otherwise,
(13)

where f0 is a constant, and δ(φ) is the Dirac delta function. Let
Nin be the total number of simulated particles launched during
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FIG. 4. (Color Online) This figure illustrates the geometry of the simulated
particle source projected into the X − Z plane. The line labeled “Source of
Particles” (coloured blue online) represents the particle source, which is a
rectangle with area ZB × YB over which the particles’ initial positions are
uniformly distributed. The arrows leading from it (red online) show two
particle trajectories which intersect a point on the detector aperture (green
online). Note that only particles with elevations in the range θ ′

min(YD) ≤ θ

≤ θ ′
max(YD) intersect the detector aperture at location YD.

accumulation time τ :

Nin = 2τ�YB�Z B

m2

∫ Emax

Emin

d E E
∫ θmax

θmin

dθ cos2 θ

×
∫ π

2

− π
2

dφ cos φ f (E, θ, φ). (14)

To compute the number of simulated particles which strike
the MCP in time τ , we must map the phase space density
(13) from the source rectangle (blue line in Figure 4) to the
detector aperture (green line in Figure 4). Using Liouville’s
theorem, which states that the phase space density is constant
along particle trajectories, and by assuming the particle trajec-
tories are straight lines, the phase space density at the detector
aperture can be given by Eq. (15),

f A(E, θ, φ) =

⎧⎪⎪⎨
⎪⎪⎩

f0 δ(φ) if

(
Emin < E < Emax

θ ′
min(YD) < θ < θ ′

max(YD)

)

0 otherwise.
(15)

Note that the incident phase space density varies, in general,
over the surface of the aperture, since the particle elevation
limits, θ ′

min(YD) and θ ′
max(YD), depend on the YD coordinate on

the aperture. However, so long as the particle elevation limits
of the source distribution (13) are chosen so that θ ′

min(YD) and
θ ′

max(YD) are well outside the detector response for all YD, we
may replace the θ ′ limits by the constant (independent of YD)
limits given in Eq. (13) and use Eq. (2) to compute the number
of particles which strike the simulated detector. Thus, substi-
tuting Eq. (13) into Eq. (2), Eq. (16) may be derived,

Ci jk = 2Ai j

m2

∫ Emax

Emin

d E E
∫ θmax

θmin

dθ cos2 θ

× R̄i jk(E, θ, φ; E0, θ0, φ0) f0. (16)

The number of particles launched in the simulation, Nin,
is given by

Nin = 2�YB�Z B

m2

∫ Emax

Emin

d E E
∫ θmax

θmin

dθ cos2 θ f0

= 2�YB�Z B ĒB cos2 θ̄B�EB�θB f0

m2
, (17)

where ĒB ≡ (Emin + Emax)/2, and θ̄ ≡ (θmin + θmax)/2, and
we have assumed that �θB and �φ are small enough so that
sin �θB ≈ �θB and sin �φ ≈ �φ. Dividing Eq. (16) by
Eq. (17), we arrive at the following:

Ci jk

Nin
= Ai j

�YB�Z B ĒB cos2 θ̄B�EB�θB

×
∫ Emax

Emin

d E E
∫ θmax

θmin

dθ cos2 θ

× R̄i jk(E, θ, φ; E0, θ0, φ0). (18)

If we assume that the detector response has the following
phi dependence:

R̄i jk(E, θ, φ; E0, θ0, φ0)

=

⎧⎪⎨
⎪⎩

R̄i jk

(
E, θ, 0; . . .

. . . E0, θ0, φ0

)
if (φmin < φ < φmax)

0 otherwise ,

(19)

where �φ ≡ φmax − φmin is the instrument azimuthal pixel
width, then Eq. (18) can be written as follows:

Ci jk

Nin
= Ai j

�YB�Z B ĒB cos2 θ̄B�EB�θB�φ

×
∫ Emax

Emin

d E E
∫ θmax

θmin

dθ cos2 θ

∫ φmax

φmin

dφ cos φ

× R̄i jk(E, θ, φ; E0, θ0, φ0). (20)

Thus, if the incident simulated particle beam is broad enough
to cover the full detector response, we can use the generalized
equation for GF (4) to rewrite Eq. (20),

Ci jk

Nin
= E2

0GFi jk

�YB�Z B ĒB cos2 θ̄B�EB�θB�φ
. (21)

We thus finally arrive at an expression for the geometric factor
from computer simulation (22). Note that only Cijk and E0 are
products of the simulation and all other variables are known
inputs,

GF
′
i jk = Ci jk�YB�Z B ĒB cos2 θ̄B�EB�θB�φ

Nin E2
0

. (22)

The number of incident particles is given by Nin, the num-
ber that strike the simulated detector is Cijk, ĒB is the average
incident particle energy, �EB and �θB are the energy and an-
gular widths of the incident “beam”, and �YB�ZB is the area
of the rectangle over which particles are launched. Since sim-
ulated particles are “fired” from a single azimuthal angle, �φ

is dependent on the goal of the study. If the subject of interest
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is the GF per anode, then �φ is defined to be the azimuthal
angle covered by each anode. If the goal is to determine the
total GF for a 360◦ azimuthal field of view of the whole ana-
lyzer, then �φ is defined to be 2π .

It is imperative to note that while Eq. (22) gives the ide-
alized geometrical response of an ESA, this will not take into
account any non-geometrical instrument effects mentioned
previously (such as detection efficiency, etc.). These will be
dependent on the type and design of the specific instrument
(type of detector used, transparency of any grids, etc). To ac-
count for this, we define q(E), being the ratio at a given en-
ergy (E) between the number of particles detected in an ideal-
ized case (Nideal) and the number of particles actually detected
(Nactual) owing to these effects,

q(E) = Nactual (E)

Nideal (E)
. (23)

We will shortly address how q(E) may be estimated. Thus, we
refer to the idealized best-case geometric response (Eq. (22))
as GF

′
i jk , and define the true Geometric Factor, allowing di-

rect conversion between particles detected and particles inci-
dent as GFi jk below in Eq. (24),

GFi jk = Ci jk�YB�Z B ĒB cos2 θ̄B�EB�θB�φ q(E)

Nin E2
0

.

(24)

When reporting any GF derived through computer simula-
tion, it is therefore important to indicate whether or not an
estimated q(E) has been included, and what value has been
used.8, 26

C. Main sources of error in the computer simulation
of ESAs

1. Estimation of percentage of particles
detected—q(E)

In this section, we show an example of how we have esti-
mated q(E) for the MMS DES-ETU. There are two contribut-
ing components.

First, the instrument has three grids through which par-
ticles must travel; two on the outside of the aperture (seen
in Figure 1), and one separating the optics from the MCP so
that a pre-acceleration voltage may be applied to the electrons.
These grids are each 90% transparent, and thus the total par-
ticle throughput will be reduced to ∼73% (∼0.93) of what it
would have been had the grids been absent.

The second component is the efficiency of the detector.
The method used by the DES to detect particles is through the
use of an MCP charge amplifier, and the detection of the re-
sulting electron shower on an anode by read-out electronics.
As a rough first approximation, the efficiency of an MCP can
be taken to be ≈60 → 65%. For a more thorough estimation,
it must be considered that the efficiency of an MCP varies
with the incident particle energy.27, 28 The dashed line on
Figure 5 shows how MCP efficiency varies with energy for
a typical MCP stack.14 We have estimated a maximum effi-
ciency of 80% for the DES-ETU based on laboratory mea-
surement. The variation with energy in Figure 5 is according

Estimated q(E) for DES-ETU
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FIG. 5. Plot of MCP efficiency (dashed line) and total percentage of particles
detected (q(E) – solid line) vs. energy of electron for the MMS DES-ETU.

to the secondary electron emission properties of lead glass
as described by Goruganthu and Wilson.29 Note that the effi-
ciency of an MCP for electrons falls off below 200 eV. How-
ever, the DES uses a pre-acceleration voltage of 200 V to
negate this, and as such there is no such drop in Figure 5.
The solid line on Figure 5 shows how the total percentage of
particles detected q(E) is expected to vary with energy, taking
into account the aforementioned effect of the grids.

For an even more thorough estimation of the efficiency of
the MCP, one can take into account that the efficiency is also a
function of the angle between the incoming particle trajectory
and the channel axis direction.30 There are several ESA stud-
ies which also discuss this in greater detail.20, 26 Additionally,
the gain of an MCP decreases over its lifetime,14, 31 which will
reduce q(E). We have assumed that the MCP is not saturated,
or else an increase in particle flux would not result in an in-
crease in counts.

2. Miscellaneous simulation effects

When simulating an ESA, there are several possible
sources of inaccuracy, which include:

1. The number of total particles flown (described previ-
ously).

2. The spatial resolution and accuracy of the geometry un-
der study.3

3. The resolution and accuracy of the calculation of the
fields.

4. The spatial resolution of the particle trajectory integra-
tions.

Since a balance must always be struck between the accuracy
of a simulation and the time required for it to run, we have
used convergent studies to optimize the four above cases. For
example, for spatial resolution (case 2), we performed several
simulations at increasing resolution and confirmed that the so-
lutions converged towards a single answer. It should also be
noted that our method does not at present simulate secondary
electron emission32 or primary electron scattering.33, 34 These
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effects can generate unwanted signal noise, the degree of
which is dependent on the design of the instrument.23, 24

IV. DETERMINATION OF GF THROUGH LABORATORY
MEASUREMENT

In this section, we use our generalized GF Eq. (4) to
derive an equation for the calculation of the GF in the
laboratory.5, 12 We then discuss potential sources of error, and
present an example of how we have estimated the error in our
measurements of the GF for the MMS-DES.

A. Calculation of Geometric Factor

Recall that in Sec. II, Eq. (2), we derived a general-
ized equation describing the number of counts detected (Cijk)
in terms of the space–time averaged detector response func-
tion (R̄i jk) and the particle distribution function, f(E, θ , φ).
We were then able to derive a generalized equation for GF

(Eq. (4)) through the integration of R̄i jk . We shall now use this
same method to derive an equation for the laboratory based
determination of GF.

Our first step is to define a particle distribution function,
f(E, θ , φ), so that this may be substituted into Eq. (2). Then
it will be possible to describe R̄i jk , a notional mathematical
construct, in terms of Cijk, a physical measurable quantity, and
thus find GF.

The laboratory determination of the geometric factor
therefore begins with a direct measurement of the detector
response function, obtained by probing the instrument with

a collimated quazi-monoenergetic particle beam at various
beam energies and angles. In an idealized experiment, the ve-
locity distribution of the beam particles would be a delta func-
tion, as below in Eq. (25),

f (v) = nB δ(v − vB), (25)

where nB is the beam density. However, in order to substitute
this into Eq. (2), we must now convert this in terms of (E, θ ,
φ) (spherical polar energy coordinates), as below in Eq. (26),

f (E, θ, φ) = nBm3/2 E1/2
B√

2

δ(E − EB)δ(θ − θB)δ(φ − φB)

E cos θ
,

(26)
where m is the mass of the particle, EB is the energy of the
beam. Now, by substituting Eq. (26) into Eq. (2), we can de-
scribe the ratio of counts detected by the MCP (Cijk) to the
magnitude of the incident particle flux, �:

Ci jk

�
≡ Ai j cos θBR̄i jk(EB, θB, 0; E0, θ0, φ0), (27)

where Aij is the aperture area and � is given below in Eq. (28).

� = nB

(
2EB

m

)1/2

. (28)

Thus, by scanning the particle beam across energy and an-
gle, and by normalizing the resulting MCP count rates by the
magnitude of the incident beam flux, it is possible to construct
a high resolution image of R̄i jk . Figure 6 shows an example
of an instrument response function as measured by the DES-
ETU. This shows the variation of normalized counts (Cijk/�)

FIG. 6. (Color Online) The response function measured by the Dual Electron Spectrometer engineering test unit (DES-ETU) showing the variation of (Cijk/�)
over the energy and elevation range for the five deflection states of the instrument.
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over the energy and elevation range for the five deflection
states of the instrument.

If we again assume that the detector response has the fol-
lowing φ dependence (as we did for simulations in Eq. (19)):

R̄i jk(E, θ, φ; E0, θ0, φ0)

=

⎧⎪⎨
⎪⎩

R̄i jk

(
E, θ, 0; . . .
. . . E0, θ0, φ0

)
if (φmin < φ < φmax)

0 otherwise,

(29)

where, again, �φ ≡ φmax − φmin is the instrument azimuthal
pixel width, then the geometric factor (see idealized GF

Eq. (4)) is obtained by numerically integrating the measured
response function (27), assuming the form (29) for the φ de-
pendence of the response function:

GFi jk ≈ �φ

E2
0

∑
m

∑
n

Ci jk

�
Em cos θn�Em�θn, (30)

where Em and θn are the energies and elevations in the energy-
angle scan, �Em is the energy resolution of the scan, �θn

is the elevation resolution of the scan, and E0 is the energy
corresponding to the global response maximum in energy-
elevation space. Equation (30) should be directly comparable
to the simulated geometric factor (24).

B. Error in the laboratory determination of GF

1. Mechanical differences

One potential source of discrepancies between simula-
tion and laboratory determined values of GF is that of ac-
tual physical differences in geometry between the simulation
model and the real instrument. The most likely cause of this is
either due to incorrect assembly or the accumulation of errors
owing to finite tolerances in the engineered assembly. Several
studies in the literature have discussed the use of computer
simulation to determine how mechanical tolerances affect the
performance of an ESA.1, 2, 8 The methods used to determine
the GF were different in each study, and vary in degrees of
rigor.

2. Determination of the error in GF

Here we give an example of how we have estimated the
error in the laboratory determined GF (�GF), during our
characterization of the DES for the MMS mission. Our two
main sources of error in the laboratory were the variability in
the flux (��), and the poisson statistical error in the count
rate (�C). We treat these as independent of one another and
combine them as given in Eq. (31),

�GF =
√(

δGF

δ�
.��

)2

+
(

δGF

δC
.�C

)2

, (31)

where the partial differential of �GF with respect to � is
given by Eq. (32), and with respect to C by Eq. (33),

δGF

δ�
= −GF

�
, (32)

δGF

δC
= GF

C
. (33)

Thus the error in the GF of our lab measurements is given by
Eq. (34),

�GF = GF

√(
��

�

)2

+
(

�C

C

)2

. (34)

V. EXAMPLE RESULTS: THE MMS DUAL
ELECTRON SPECTROMETER

In Sec. II, we derived a generalized equation for the GF

of an ESA. In Secs. III and IV, we showed how it can be ap-
plied to determine the GF through simulation and laboratory
calibration. In this section, we apply these equations to exam-
ple results from both simulation and laboratory and show that
they provide consistent answers.

The instrument for which we give example results is the
aforementioned DES-ETU (shown in Figure 1). MMS will
consist of four spacecraft flying in close formation to study
the physics of magnetic reconnection. DES will be make ob-
servations of the critical electron diffusion region, the site
where magnetic reconnection occurs. Each spacecraft will
carry four DES instruments, each containing two top hat
ESAs. Therefore, an unprecedented thirty two identical elec-
tron analyzers will be built for MMS, with eight per space-
craft. Together these eight will deliver full-sky (4π ), high-
resolution (11◦) electron plasma velocity distributions every
30ms.

The ETU is a high fidelity non-flight DES unit recently
tested at the MMS-DES calibration facility at NASA God-
dard Space Flight Center. It was built to be identical to a flight
model in every way, apart from the substitution of some com-
mercial parts for radiation-hardened flight-quality electronic
components. We present two case studies here, the variation
of the GF with energy, and with deflection angle.

Panel A of Figure 7 shows our first case study: The vari-
ation of GF with energy for the undeflected DES-ETU. The
result of the simulation is denoted by a diamond and solid
line. This is the idealized geometrical response of the analyzer
(GF

′ – Eq. (22)). We have assumed that the pure electron-
optical response of the instrument will not vary significantly
with energy (one of the many advantages of a top-hat ESA),
and thus the values of GF

′ in Panel A come from a single
∼1 keV simulation. To determine GF (which may be directly
compared with laboratory), we have multiplied GF

′ (deter-
mined through computer simulation) by our value of q(E) (de-
termined in Sec. III C 1, and shown in Figure 5). This simu-
lated value of the GF is given by the diamonds and dotted
line of Figure 7. The results from laboratory calibration are
denoted by the stars, with errors calculated using Eq. (34).

This case study shows a variation of GF that is caused
by the detector, and not part of the intrinsic geometrical

Downloaded 22 May 2013 to 128.154.130.135. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://rsi.aip.org/about/rights_and_permissions



033303-9 Collinson et al. Rev. Sci. Instrum. 83, 033303 (2012)
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FIG. 7. Showing the variation in geometric factor per pixel for the Dual Electron Spectrometer engineering test unit (DES-ETU) with Energy (panel a) and for
each of the five deflection states at 3000 eV (panel b). Raw computer simulation is shown by diamonds and a solid line, computer simulation with estimated
q(E) by diamonds and a dashed line, and laboratory results by stars (panel a) and stars and a dashed and dotted line (panel b). Errors are 1σ .

response. Now that we have confidence that the methods used
to calculate GF in simulation and laboratory are mathemati-
cally equivalent, it is possible to fully decouple these effects
so that they may be studied separately. It also demonstrates
the importance of q(E). The good agreement between labo-
ratory and simulation within errors supports the methods and
equations described in this paper.

For our second example, we present a case where the
variation in GF is entirely due to the design of the ESA,
and not the detector. DES will use electrostatic deflector
plates17, 18 to rapidly scan the sky, allowing the FPI instrument
suite to fully sample the whole sky much faster than the spin-
rate of the spacecraft. Panel B of Figure 7 shows the variation
of GF over the range of deflection angles used on the DES, at
a fixed energy of 3 keV, with errors calculated using Eq. (34).

Five sets of simulations were run with different voltages
on the deflector plates, covering the whole range of eleva-
tions required for DES. The results of the simulation, GF

′, are
shown by the solid black line in panel B. This was multiplied
by the expected value of q(E) at this energy (see Figure 5),
and the resulting GF is denoted by the diamonds and dashed
line. Again, laboratory and simulation show agreement within
the errors of each. A comparison allows us to confirm that the
slight decrease in GF at the extremes of deflection is an intrin-
sic property of the electron optics of the ESA. This gives us
confidence that we have a good understanding of the electron
optical properties of the DES, and in the mechanical fidelity to
which the DES-ETU was constructed, giving us a firm foun-
dation for moving into construction of the flight units.

VI. CONCLUSIONS

Increasingly, particle simulations are playing an essen-
tial role in the design and calibration of electrostatic analyz-
ers, facilitating the identification, and mitigation of the many
sources of systematic error present in laboratory calibration.

Of particular interest is the geometric factor, a vital parame-
ter that allows counts on the detector to be related to incident
differential particle flux. Often, however, simulations and cal-
ibration experiments are carried out under substantially differ-
ent assumptions and conditions, making comparisons of sim-
ulated and measured detector characteristics very challenging.

In this paper, we derived expressions from first princi-
ples for the simulated and measured geometric factors and
discussed how errors may be estimated in both cases. Then
we gave examples of how these were applied as part of the
design and calibration of the new Dual Electron Spectrome-
ter (DES) being developed at NASA Goddard Space Flight
Center for NASA’s Fast Plasma Investigation (FPI) of the up-
coming Magnetospheric Multiscale (MMS) mission.

Our laboratory measurements show that the GF per pixel
decreases with energy between ≈5.6 × 10−4 cm2 sr (eV/eV)
at 50 eV to ≈2.3 × 10−4 cm2 sr (eV/eV) at 25 keV due to
the change in efficiency of the MCP. Our error (1σ ) in
the measurement of the GF per pixel also decreases with
energy from ±3.9 × 10−4 cm2 sr (eV/eV) at 50 eV to ±1.0
× 10−4 cm2 sr (eV/eV) at 25 keV due to the flux of the elec-
tron gun being more stable (lower ��) at higher energies.
The GF of the DES decreases at the ±16.875◦ deflection an-
gles due to obscuration of field of view by the DES deflector
plates themselves. We wish to note that this will not be the
first instrument to fly with this feature,16 and since the de-
crease is small (especially when compared to the error of the
measurement), we do not expect it to hamper scientific return.

The overall agreement of GF independently determined
through both laboratory and simulation give us confidence
that the techniques presented in this study are mathematically
rigorous and will give consistent results in comparing simu-
lations and measurements. This provides clarity on a matter
for which there was clear and pressing need and offers a firm
foundation for all future investigations of space plasmas. We
have been applying this formalism to the DES flight model
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(currently under construction) and these results will be pre-
sented in a future DES instrument paper.

ACKNOWLEDGMENTS

This work was supported by an appointment to the NASA
Postdoctoral Program at NASA Goddard Space Flight Center,
administered by Oak Ridge Associated Universities through
a contract with NASA. We also wish to thank the following
members of the DES-ETU team who contributed to this pa-
per through mechanical design, electronics design and testing,
test software development, and assembly and testing of the
ETU: Craig Auletti, Victor Bigio, Will Burrows, Nga Cao,
Kent Christian, Nick Galassi, Kelvin Garcia, Jacob Haseman,
Art Jaques, Joe Kajowski, Carol Lilly, Jim Lobell, Quang
Nguyen, Lillian Reichenthal, Traci Rosnack, Alan Rucker,
Chad Salo, Darrell Smith, David Steinfeld, Kimathi Tull, and
Mike Zeuch.

1M. Wuest, D. Evans, and R. V. Steiger, ISSI Scientific Report SR-007,
2007.

2J. H. Vilppola, J. T. Keisala, P. J. Tanskanen, and H. Huomo, Rev. Sci.
Instrum. 64, 2190 (1993).

3T. J. M. Zouros, O. Sinse, F. M. Spiegelhalder, and D. J. Manura, Int. J.
Mass. Spectrom 261, 115 (2007).

4D. J. Knudsen et al., Rev. Sci. Instrum. 74, 202 (2003).
5A. D. Johnstone et al., J. Phys. E 20, 795 (1987).
6L. M. Chase, Rev. Sci. Instrum. 44, 998 (1973).
7C. W. Carlson, D. W. Curtis, G. Paschmann, and W. Michel, Adv. Space
Res. 2, 67 (1982).

8G. A. Collinson et al., Meas. Sci. Technol. 20, 055204 (2009).
9R. D. Woodliffe and A. D. Johnstone, Measurement Techniques in Space
Plasmas – Particles, edited by R. F. Pfaff, J. E. Borovsky, and D. T. Young,
1998, p. 263.

10G. A. Collinson and D. O. Kataria, Meas. Sci. Technol. 21, 105903 (2010).

11U. Rohner et al., Meas. Sci. Technol. 23, 025901 (2012).
12R. L. Kessel, A. D. Johnstone, A. J. Coates, and R. A. Gowen, Rev. Sci.

Instrum. 60, 3750 (1989).
13C. W. Carlson and J. P. McFadden, Measurement Techniques in Space Plas-

mas – Particles, edited by R. F. Pfaff, J. E. Borovsky, and D. T. Young,
1998, pp. 125–+.

14J. L. Wiza, Nucl. Instrum. Methods 162, 587 (1979).
15A. D. Johnstone et al., Space Sci. Rev. 79, 351 (1997).
16J. Sauvaud et al., Space Sci. Rev. 136, 227 (2008).
17D. T. Young et al., Space Sci. Rev. 129, 327 (2007).
18O. L. Vaisberg et al., Complex Plasma Analyzer SCA-1 (RKA-IKI-CESR-

CNES, 1995), pp. 170–177.
19K. W. Ogilvie et al., Space Sci. Rev. 71, 55 (1995).
20G. R. Lewis et al., Planet. Space Sci. 58 (2010).
21A. N. Fazakerley, S. J. Schwartz, and G. P. Paschmann, Analysis Methods

for Multi-Spacecraft Data 1, 91 (2000).
22J. P. McFadden and C. W. Carlson, Measurement Techniques in Space Plas-

mas – Particles, edited by R. F. Pfaff, J. E. Borovsky, and D. T. Young,
1998, pp. 249–+.

23R. D. Woodliffe, “Design of space borne plasma analysers by com-
puter simulation,” Ph.D. dissertation (Mullard Space Science Laboratory,
Department of Physics and Astronomy, University College London, 1991).

24G. A. Collinson, “The computer simulated design of an improved plasma
analyser towards an electron spectrometer for solar orbiter,” Ph.D. dis-
sertation (Mullard Space Science Laboratory, Department of Physics and
Astronomy, University College London, 2010).

25F. Allegrini et al., Rev. Sci. Instrum. 80, 104502 (2009).
26J. P. McFadden et al., Space Sci. Rev. 141, 277 (2008).
27F. Bordoni, Nucl. Instrum. Methods 97, 405 (1971).
28H. C. Straub, M. A. Mangan, B. G. Lindsay, K. A. Smith, and R. F. Steb-

bings, Rev. Sci. Instrum. 70, 4238 (1999).
29R. R. Goruganthu and W. G. Wilson, Rev. Sci. Instrum. 55, 2030 (1984).
30R. S. Gao, P. S. Gibner, J. H. Newman, K. A. Smith, and R. F. Stebbings,

Rev. Sci. Instrum. 55, 1756 (1984).
31N. Kishimoto, M. Nagamine, K. Inami, Y. Enari, and T. Ohshima, Nucl.

Instrum. Methods Phys. Res. A 564, 204 (2006).
32L. Austin and H. Starke, Ann. Phys. Lpz. 9, 271 (1902).
33E. Rudberg, Proc. R. Soc. London A127, 111 (1930).
34H. Bruining, Physics and Applications of Secondary Electron Emission

(Pergamon, New York, 1954).

Downloaded 22 May 2013 to 128.154.130.135. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://rsi.aip.org/about/rights_and_permissions


