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Although Hamiltonian Monte Carlo has proven an empirical success, the lack of a rigorous theoretical

understanding of the algorithm has in many ways impeded both principled developments of the method and

use of the algorithm in practice. In this paper, we develop the formal foundations of the algorithm through

the construction of measures on smooth manifolds, and demonstrate how the theory naturally identifies

efficient implementations and motivates promising generalizations.
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The frontier of Bayesian inference requires algorithms capable of fitting complex models with

hundreds, if not thousands of parameters, intricately bound together with nonlinear and often hi-

erarchical correlations. Hamiltonian Monte Carlo [20,52] has proven tremendously successful at

extracting inferences from these models, with applications spanning computer science [69,70],

ecology [63,71], epidemiology [16], linguistics [37], pharmacokinetics [76], physics [39,58,62,

74], and political science [28], to name a few. Despite such widespread empirical success, how-

ever, there remains an air of mystery concerning the efficacy of the algorithm.

This lack of understanding not only limits the adoption of Hamiltonian Monte Carlo but may

also foster fragile implementations that restrict the scalability of the algorithm. Consider, for

example, the Compressible Generalized Hybrid Monte Carlo scheme of [21] and the particular

implementation in Lagrangian Dynamical Monte Carlo [43]. In an effort to reduce the compu-

tational burden of the algorithm, the authors sacrifice the costly volume-preserving numerical

integrators typical of Hamiltonian Monte Carlo. Although this leads to improved performance

in some low-dimensional models, the performance rapidly diminishes with increasing model

dimension [43] in sharp contrast to standard Hamiltonian Monte Carlo. Clearly, the volume-

preserving numerical integrator is somehow critical to scalable performance; but why?

In this paper, we develop the theoretical foundation of Hamiltonian Monte Carlo in order to

answer questions like these. We demonstrate how a formal understanding naturally identifies the

properties critical to the success of the algorithm, hence immediately providing a framework for

robust implementations. Moreover, we discuss how the theory motivates several generalizations

that may extend the success of Hamiltonian Monte Carlo to an even broader array of applications.

We begin by considering the properties of efficient Markov kernels and possible strategies for

constructing those kernels. This construction motivates the use of tools in differential geometry,

and we continue by curating a coherent theory of probabilistic measures on smooth manifolds.
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In the penultimate section, we show how that theory provides a skeleton for the development,
implementation, and formal analysis of Hamiltonian Monte Carlo. Finally, we discuss how this
formal perspective directs generalizations of the algorithm.

Without a familiarity with differential geometry a complete understanding of this work will
be a challenge, and we recommend that readers without a background in the subject only scan
through Section 2 to develop some intuition for the probabilistic interpretation of forms, fiber
bundles, Riemannian metrics, and symplectic forms, as well as the utility of Hamiltonian flows.
For those readers interested in developing new implementations of Hamiltonian Monte Carlo, we
recommend a more careful reading of these sections and suggest introductory literature on the
mathematics necessary to do so in the introduction of Section 2.

1. Constructing efficient Markov kernels

Bayesian inference is conceptually straightforward: the information about a system is first mod-
eled with the construction of a posterior distribution, and then statistical questions can be an-
swered by computing expectations with respect to that distribution. Many of the limitations of
Bayesian inference arise not in the modeling of a posterior distribution but rather in computing
the subsequent expectations. Because it provides a generic means of estimating these expecta-
tions, Markov chain Monte Carlo has been critical to the success of the Bayesian methodology
in practice.

In this section, we first review the Markov kernels intrinsic to Markov chain Monte Carlo and
then consider the dynamic systems perspective to motivate a strategy for constructing Markov
kernels that yield computationally efficient inferences.

1.1. Markov kernels

Consider a probability space,
(
Q,B(Q),π

)
,

with an n-dimensional sample space, Q, the Borel σ -algebra over Q, B(Q), and a distinguished
probability measure, π . In a Bayesian application, for example, the distinguished measure would
be the posterior distribution and our ultimate goal would be the estimation of expectations with
respect to the posterior, Eπ [f ].

A Markov kernel, τ , is a map from an element of the sample space and the σ -algebra to a
probability,

τ : Q ×B(Q) → [0,1],

such that the kernel is a measurable function in the first argument,

τ(·,A) : Q → [0,1] ∀A ∈ B(Q),

and a probability measure in the second argument,

τ(q, ·) : B(Q) → [0,1] ∀q ∈ Q.
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By construction the kernel defines a map,

τ : Q →P(Q),

where P(Q) is the space of probability measures over Q; intuitively, at each point in the sample

space the kernel defines a probability measure describing how to sample a new point.

By averaging the Markov kernel over all initial points in the state space, we can construct a

Markov transition from probability measures to probability measures,

T :P(Q) → P(Q),

by

π ′(A) = πT (A) =

∫
τ(q,A)π(dq) ∀q ∈ Q,A ∈ B(Q).

When the transition is aperiodic, irreducible, Harris recurrent, and preserves the target measure,

πT = π , its repeated application generates a Markov chain that will eventually explore the en-

tirety of π . Any realization, (q0, q1, . . . , qN ), of the Markov chain yields Markov chain Monte

Carlo estimators of any expectation [50,61]. Formally, for any integrable function f ∈ L1(Q,π)

we can construct estimators,

f̂N (q0) =
1

N

N∑

n=0

f (qn),

that are consistent for any initial q0 ∈ Q,

lim
N→∞

f̂N (q0)
P
→Eπ [f ].

Here δq is the Dirac measure that concentrates on q ,

δq(A) ∝

{
0, q /∈ A,

1, q ∈ A,
q ∈ Q,A ∈ B(Q).

In practice, we are interested not just in Markov chains that explore the target distribution

as N → ∞ but in Markov chains that can explore and yield precise Markov chain Monte Carlo

estimators in only a finite number of transitions. From this perspective, the efficiency of a Markov

chain can be quantified in terms of the autocorrelation, which measures the dependence of any

square integrable test function, f ∈ L2(Q,π), before and after the application of the Markov

transition

ρ[f ] ≡

∫
f (q1)f (q2)τ (q1,dq2)π(dq1) −

∫
f (q2)π(dq2)

∫
f (q1)π(dq1)∫

f 2(q)π(dq) − (
∫

f (q)π(dq))2
.

In the best case, the Markov kernel reproduces the target measure,

τ(q,A) = π(A) ∀q ∈ Q,



2260 Betancourt, Byrne, Livingstone and Girolami

and the autocorrelation vanishes for all test functions, ρ[f ] = 0. Alternatively, a Markov kernel

restricted to a Dirac measure at the initial point,

τ(q,A) = δq(A),

moves nowhere and the autocorrelations are maximal for any test function, ρ[f ] = 1. Note that

we are disregarding anti-autocorrelated chains, whose performance is highly sensitive to the

particular f under consideration.

Given a target measure, any Markov kernel will lie in between these two extremes; the more

of the target measure a kernel explores the smaller the autocorrelations, while the more localized

the exploration to the initial point the larger the autocorrelations. Unfortunately, common Markov

kernels like Gaussian Random walk Metropolis [59] and the Gibbs sampler [26,27] degenerate

into local exploration, and poor efficiency, when targeting the complex distributions of interest.

Even in two-dimensions, for example, nonlinear correlations in the target distribution constrain

the n-step transition kernels to small neighborhoods around the initial point (Figure 1).

In order for Markov chain Monte Carlo to perform well on these contemporary problems, we

need to be able to engineer Markov kernels that maintain exploration, and hence small autocor-

relations, when targeting intricate distributions. The construction of such kernels is greatly eased

with the use of measure-preserving maps.

1.2. Markov kernels induced from measure-preserving maps

Directly constructing a Markov kernel that targets π , let alone an efficient Markov kernel, can

be difficult. Instead of constructing a kernel directly, however, we can construct one indirectly be

defining a family of measure-preserving maps [56].

Formally, let Ŵ be some space of continuous, bijective maps from the space into itself,

t : Q → Q ∀t ∈ Ŵ,

that each preserves the target measure,

t∗π = π,

where the pushforward measure, t∗π , is defined as

(t∗π)(A) ≡
(
π ◦ t−1

)
(A) ∀A ∈ B(Q).

Given a σ -algebra, G, over Ŵ, the choice of a probability measure over G, γ , defines a probability

space,

(Ŵ,G, γ ),

which induces a Markov kernel as an iterated random function [18],

τ(q,A) ≡

∫

Ŵ

γ (dt)IA
(
t (q)

)
, (1)
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Figure 1. Both (a), (b) Random Walk Metropolis and (c), (d) the Gibbs sampler are stymied by complex

distributions, for example the twisted Gaussian distribution on the sample space Q =R
2 presented in [30],

here represented with a 95% probability contour. Even when optimally tuned [60], both Random Walk

Metropolis and Random Walk Metropolis-within-Gibbs kernels concentrate around the initial point, even

after multiple iterations.

where I is the indicator function,

IA(q) =

{
0, q /∈ A,

1, q ∈ A,
q ∈ Q,A ∈ B(Q).

In other words, the kernel assigns a probability to a set, A ∈ B(Q), by computing the measure of

the preimage of that set, t−1(A), averaged over all isomorphisms in Ŵ. Because each t preserves
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the target measure, so too will their convolution and, consequently, the Markov transition induced

by the kernel.

This construction provides a new perspective on the limited performance of existing algo-

rithms.

Example 1. We can consider Gaussian Random Walk Metropolis, for example, as being gener-

ated by random, independent translations of each point in the sample space,

tε,η : q �→ q + εI

(
η <

f (q + ε)

f (q)

)
,

ε ∼ N (0,�),

η ∼ U [0,1],

where f is the density of π with respect to the Lebesgue measure on R
n. When targeting complex

distributions either ε or the support of the indicator will be small and the resulting translations

barely perturb the initial state.

Example 2. The random scan Gibbs sampler is induced by axis-aligned translations,

ti,η : qi �→ P −1
i (η),

i ∼ U{1, . . . , n},

η ∼ U [0,1],

where

Pi(qi) =

∫ qi

∞

π(dq̃i |q)

is the cumulative distribution function of the ith conditional measure. When the target distribu-

tion is strongly correlated, the conditional measures concentrate near the initial q and, as above,

the translations are stunted.

In order to define a Markov kernel that remains efficient in difficult problems, we need

measure-preserving maps whose domains are not limited to local exploration. Realizations of

Langevin diffusions [54], for example, yield measure-preserving maps that diffuse across the

entire target distribution. Unfortunately that diffusion tends to expand across the target measures

only slowly (Figure 2): for any finite diffusion time the resulting Langevin kernels are local-

ized around the initial point (Figure 3). What we need are more coherent maps that avoid such

diffusive behavior.

One potential candidate for coherent maps are flows. A flow, {φt }, is a family of isomorphisms

parameterized by a time, t ,

φt : Q → Q ∀t ∈R,
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Figure 2. Langevin trajectories are, by construction, diffusive, and are just as likely to double back as they

are to move forward. Consequently even as the diffusion time grows, here to t = 1000 as the trajectory

darkens, realizations of a Langevin diffusion targeting the twisted Gaussian distribution from [30] only

slowly wander away from the initial point.

Figure 3. Because of the diffusive nature of the underlying maps, Langevin kernels expand very slowly

with increasing diffusion time, t . For any reasonable diffusion time, the resulting kernels will concentrate

around the initial point, as seen here for a Langevin diffusion targeting the twisted Gaussian distribution

from [30].
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that form a one-dimensional group on composition,

φt ◦ φs = φs+t ,

φ−1
t = φ−t ,

φ0 = IdQ,

where IdQ is the natural identity map on Q. Because the inverse of a map is given only by
negating t , as the time is increased the resulting φt pushes points away from their initial posi-
tions and avoids localized exploration. Our final obstacle is in engineering a flow comprised of
measure-preserving maps.

Flows are particularly natural on the smooth manifolds of differential geometry, and flows that
preserve a given target measure can be engineered on one special class of smooth manifolds
known as symplectic manifolds. If we can understand these manifolds probabilistically, then we
can take advantage of their properties to build Markov kernels with small autocorrelations for
even the complex, high-dimensional target distributions of practical interest.

2. Measures on manifolds

In this section, we review probability measures on smooth manifolds of increasing sophistication,
culminating in the construction of measure-preserving flows.

Although we will relate each result to probabilistic theory and introduce intuition where we
can, the formal details in the following require a working knowledge of differential geometry
up to [46]. We will also use the notation therein throughout the paper. For readers new to the
subject but interested in learning more, we recommend the introduction in [2], the applications in
[40,64], and then finally [46]. The theory of symplectic geometry in which we will be particularly
interested is reviewed in [40,46,64], with [12] providing the most modern and thorough coverage
of the subject.

Smooth manifolds generalize the Euclidean space of real numbers and the corresponding cal-
culus; in particular, a smooth manifold need only look locally like a Euclidean space (Figures 4).
These more general spaces includes Lie groups, Stiefel manifolds, and other spaces becoming
common in contemporary applications [10], not to mention Euclidean spaces as a special case. It
does not, however, include any manifold with a discrete topology such as tree spaces.

Formally, we assume that our sample space, Q, satisfies the properties of a smooth, con-
nected, and orientable n-dimensional manifold. Specifically, we require that Q be a Hausdorff
and second-countable topological space that is locally homeomorphic to R

n and equipped with
a differential structure,

{Uα,ψα}α∈I ,

consisting of open sets in Q,

Uα ⊂ Q,

and homeomorphic charts,

ψα : Uα → Vα ⊂R
n,
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Figure 4. (a) The cylinder, Q = S
1 × R, is a nontrivial example of a manifold. Although not globally

equivalent to a Euclidean space, (b) the cylinder can be covered in two neighborhoods (c) that are themselves

isomorphic to an open neighborhood in R
2. The manifold is smooth when ψ1 ◦ψ−1

2 : R2 →R
2 is a smooth

function wherever the two neighborhoods intersect (the intersections here shown in gray).

that are smooth functions whenever their domains overlap (Figure 4),

ψβ ◦ ψ−1
α ∈ C∞

(
R

n
)

∀α,β|Uα ∩ Uβ �=∅. (2)

Coordinates subordinate to a chart,

q i : Uα → R,

q �→ ̟i ◦ ψα(q),

where ̟i is the ith Euclidean projection on the image of ψα , provide local parameterizations of

the manifold convenient for explicit calculations.

This differential structure allows us to define calculus on manifolds by applying concepts from

real analysis in each chart. The differential properties of a function f : Q → R, for example, can

be studied by considering the real functions,

f ◦ ψ−1
α : Rn →R;

because the charts are smooth in their overlap (2), these local properties define a consistent global

definition of smoothness.

Ultimately these properties manifest as geometric objects on Q, most importantly vector fields

and differential k-forms. Informally, vector fields specify directions and magnitudes at each point

in the manifold while k-forms define multilinear, antisymmetric maps of k such vectors to R. If

we consider n linearly-independent vector fields as defining infinitesimal parallelepipeds at every
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point in space, then the action of n-forms provides a local sense of volume and, consequently,

integration. In particular, when the manifold is orientable we can define n-forms that are every-

where positive and a geometric notion of a measure.

Here we consider the probabilistic interpretation of these volume forms, first on smooth man-

ifolds in general and then on smooth manifolds with additional structure: fiber bundles, Rieman-

nian manifolds, and symplectic manifolds. Symplectic manifolds will be particularly important

as they naturally provide measure-preserving flows. Proofs of intermediate lemmas are presented

in Appendix.

2.1. Smooth measures on generic smooth manifolds

Formally, volume forms are defined as positive, top-rank differential forms,

M(Q) ≡
{
μ ∈ �n(Q)|μq > 0,∀q ∈ Q

}
,

where �n(Q) is the space of n-forms on Q. By leveraging the local equivalence to Euclidean

space, we can show that these volume forms satisfy all of the properties of σ -finite measures on

Q (Figure 5).

Lemma 1. If Q is an oriented, smooth manifold then M(Q) is non-empty and its elements are

σ -finite measures on Q.

We will refer to elements of M(Q) as smooth measures on Q.

Figure 5. (a) In the neighborhood of a chart, any top-rank differential form is specified by its density,

μ(q1, . . . , qn), with respect to the coordinate volume, μ = μ(q1, . . . , qn)dq1 ∧· · ·∧dqn, (b) which pushes

forward to a density with respect to the Lebesgue measure in the image of the corresponding chart. By

smoothly patching together these equivalences, Lemma 1 demonstrates that these forms are in fact mea-

sures.
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Because of the local compactness of Q, the elements of M(Q) are not just measures but also

Radon measures. As expected from the Riesz Representation theorem [24], any such element

also serves as a linear functional via the usual geometric definition of integration,

μ : L1(Q,μ) → R,

f �→

∫

Q

f μ.

Consequently, (Q,M(Q)) is also a Radon space, which guarantees the existence of various

probabilistic objects such as disintegrations as discussed below.

Ultimately we are not interested in the whole of M(Q) but rather P(Q), the subset of volume

forms with unit integral,

P(Q) =

{
π ∈ M(Q)

∣∣∣
∫

Q

π = 1

}
,

which serve as probability measures. Because we can always normalize measures, P(Q) is

equivalent to the finite elements of M(Q),

M̃(Q) =

{
π ∈ M(Q)

∣∣∣
∫

Q

π < ∞

}
,

modulo their normalizations.

Corollary 2. If Q is an oriented, smooth manifold then M̃(Q), and hence P(Q), is non-empty.

Proof. Because the manifold is paracompact, the prototypical measure constructed in Lemma 1

can always be chosen such that the measure of the entire manifold is finite. �

2.2. Smooth measures on fiber bundles

Although conditional probability measures are ubiquitous in statistical methodology, they are

notoriously subtle objects to rigorously construct in theory [33]. Formally, a conditional prob-

ability measure appeals to a measurable function between two generic spaces, F : R → S, to

define measures on R for some subsets of S along with an abundance of technicalities. It is only

when S is endowed with the quotient topology relative to F [24,45] that we can define regular

conditional probability measures that shed many of the technicalities and align with common in-

tuition. In practice, regular conditional probability measures are most conveniently constructed

as disintegrations [14,44].

Fiber bundles are smooth manifolds endowed with a measurable map to a lower-dimensional

submanifold and the quotient topology necessary to admit disintegrations. Consequently, fiber

bundles are the natural geometries for defining conditional and marginal probability measures.
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2.2.1. Fiber bundles

A smooth fiber bundle, ̟ : Z → Q, combines an (n + k)-dimensional total space, Z, an n-

dimensional base space, Q, and a smooth projection, ̟ , that injectively maps, or submerses,

the total space into the base space. We will refer to a positively-oriented fiber bundle as a fiber

bundle in which both the total space and the base space are positively-oriented and the projection

operator is orientation-preserving.

Each fiber,

Zq = ̟−1(q),

is itself a k-dimensional manifold isomorphic to a common fiber space, F , and is naturally im-

mersed into the total space,

ιq : Zq →֒ Z,

where ιq is the inclusion map. We will make heavy use of the fact that there exists a trivializing

cover of the base space, {Uα}, along with subordinate charts and a partition of unity, where the

corresponding total space is isomorphic to a trivial product (Figures 6, 7),

̟−1(Uα) ≈ Uα × F.

Vector fields on Z are classified by their action under the projection operator. Vertical vector

fields, Yi , lie in the kernel of the projection operator,

̟∗Yi = 0,

Figure 6. In a local neighborhood, the total space of a fiber bundle, ̟−1(Uα) ⊂ Z, is equivalent to at-

taching a copy of some common fiber space, F , to each point of the base space, q ∈ Uα ⊂ Q. Under the

projection operator each fiber projects back to the point at which it is attached.
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Figure 7. (a) The canonical projection, ̟ : S1 ×R → S
1, gives the cylinder the structure of a fiber bundle

with fiber space F = R. (b) The domain of each chart becomes isomorphic to the product of a neighborhood

of the base space, Uα ⊂ S
1, and the fiber, R.

while horizontal vector fields, X̃i , push forward to the tangent space of the base space,

̟∗X̃i(z) = Xi

(
̟(z)

)
∈ T̟(z)Q,

where z ∈ Z and ̟(z) ∈ Q. Horizontal forms are forms on the total space that vanish when
contracted against one or more vertical vector fields.

Note that vector fields on the base space do not uniquely define horizontal vector fields on the
total space; a choice of X̃i consistent with Xi is called a horizontal lift of Xi . More generally,
we will refer to the lift of an object on the base space as the selection of some object on the total
space that pushes forward to the corresponding object on the base space.

2.2.2. Disintegrating fiber bundles

Because both Z and Q are both smooth manifolds, and hence Radon spaces, the structure of
the fiber bundle guarantees the existence of disintegrations with respect to the projection opera-
tor [13,44,65] and, under certain regularity conditions, regular conditional probability measures.
A substantial benefit of working with smooth manifolds is that we can not only prove the exis-
tence of disintegrations but also explicitly construct their geometric equivalents and utilize them
in practice.

Definition 1. Let (R,B(R)) and (S,B(S)) be two measurable spaces with the respective σ -finite

measures μR and μS , and a measurable map, F : R → S, between them. A disintegration of μR

with respect to F and μS is a map,

ν : S ×B(R) →R
+,
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Figure 8. The disintegration of (a) a σ -finite measure on the space R with respect to a map F : R → S and

a σ -finite measure on S defines (b) a family of σ -finite measures that concentrate on the level sets of F .

such that:

(i) ν(s, ·) is a B(R)-finite measure concentrating on the level set F−1(s), i.e. for μS -almost

all s

ν(s,A) = 0 ∀A ∈ B(R)|A ∩ F−1(s) = 0,

and for any positive, measurable function f ∈ L1(R,μR).

(ii) s �→
∫
R

f (r)ν(s,dr) is a measurable function for all s ∈ S.

(iii)
∫
R

f (r)μR(dr) =
∫
S

∫
F−1(s)

f (r)ν(s,dr)μS(ds).

In other words, a disintegration is an unnormalized Markov kernel that concentrates on the

level sets of F instead of the whole of R (Figure 8). Moreover, if μR is finite or F is proper then

the pushforward measure,

μS = T∗μR,

μS(B) = μR

(
F−1(B)

)
∀B ∈ B(S),

is σ -finite and known as the marginalization of μR with respect to F . In this case, the disintegra-

tion of μR with respect to its pushforward measure becomes a normalized kernel and exactly a

regular conditional probability measure. The classic marginalization paradoxes of measure the-

ory [17] occur when the pushforward of μR is not σ -finite and the corresponding disintegration,

let alone a regular conditional probability measure, does not exist; we will be careful to explicitly

exclude such cases here.

For the smooth manifolds of interest we do not need the full generality of disintegrations, and

instead consider the equivalent object restricted to smooth measures.

Definition 2. Let R and S be two smooth, orientable manifolds with the respective smooth

measures μR and μS , and a smooth, orientation-preserving map, F : R → S, between them.
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A smooth disintegration of μR with respect to F and μS is a map,

ν : S ×B(R) →R
+,

such that:

(i) ν(s, ·) is a smooth measure concentrating on the level set F−1(s), i.e. for μS -almost all s

ν(s,A) = 0 ∀A ∈ B(R)|A ∩ F−1(s) = 0,

and for any positive, smooth function g ∈ L1(R,μR).

(ii) The function G(s) =
∫
R

g(r)ν(s,dr) is integrable with respect to any smooth measure

on S.

(iii)
∫
R

g(r)μR(dr) =
∫
S

∫
F−1(s)

g(r)ν(s,dr)μS(ds).

Smooth disintegrations have a particularly nice geometric interpretation: Definition 2(i) im-

plies that these disintegrations define volume forms when pulled back onto the fibers, while Def-

inition 2(ii) implies that they are smooth objects in the total space (Figure 9). Hence, if we want

to construct smooth disintegrations geometrically then we should consider the space of k-forms

on Z that restrict to finite volume forms on the fibers, that is, ω ∈ �k(Z) satisfying

ι∗qω > 0,

∫

Zq

ι∗qω < ∞.

Note that the finiteness condition is not strictly necessary, but allows us to construct smooth

disintegrations independent of the exact measure being disintegrated.

Figure 9. Considering the cylinder as a fiber bundle, ̟ : S1 ×R → S
1, (a) any joint measure on the total

space S
1 × R, and (b) any measure on the base space, S1, define (c) a disintegration that concentrates on

the fibers, R. Given any two of these objects we can uniquely construct the third.
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The only subtlety with such a definition is that k-forms on the total space differing by only

a horizontal form will restrict to the same volume form on the fibers. Consequently, we will

consider the equivalence classes of k-forms up to the addition of horizontal forms,

ϒ(̟ : Z → Q) ≡ �k(Z)/ ∼,

ω1 ∼ ω2 ⇔ ω1 − ω2 ∈ �k
H (̟ : Z → Q),

where �k
H (̟ : Z → Q) is the space of horizontal k-forms on the total space. As expected from

the fact that any smooth manifold is a Radon space, such forms always exist.

Lemma 3. The space ϒ(̟ : Z → Q) is convex and nonempty.

Given a point on the base space, q ∈ Q, the elements of ϒ(̟ : Z → Q) naturally define

smooth measures that concentrate on the fibers.

Lemma 4. Any element of ϒ(̟ : Z → Q) defines a smooth measure,

ν : Q ×B(Z) → R
+,

(q,A) �→

∫

ιq (A∩Zq )

ι∗qυ,

concentrating on the fiber Zq ,

ν(q,A) = 0 ∀A ∈ B(Z)|A ∩ Zq = 0.

Finally, any υ ∈ ϒ(̟ : Z → Q) satisfies an equivalent of the product rule.

Lemma 5. Any element υ ∈ ϒ(̟ : Z → Q) lifts any smooth measure on the base space, μQ ∈

M(Q), to a smooth measure on the total space by

μZ = ̟ ∗μQ ∧ υ ∈M(Z).

Note the resemblance to the typical measure-theoretic result,

μZ(dz) = μQ(dq)υ(q,dz).

Consequently, the elements of ϒ(̟ : Z → Q) define smooth disintegrations of any smooth

measure on the total space.

Theorem 6. A positively oriented, smooth fiber bundle admits a smooth disintegration of any

smooth measure on the total space, μZ ∈ M(Z), with respect to the projection operator and any

smooth measure μQ ∈M(Q).
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Proof. From Lemma 5, we know that for any υ ′ ∈ ϒ(̟ : Z → Q) the exterior product ̟ ∗μQ ∧

υ ′ is a smooth measure on the total space, and because the space of smooth measures is one-

dimensional we must have

μZ = h̟ ∗μQ ∧ υ ′,

for some bounded, positive function h : Z → R
+. Because h is everywhere positive it can be

absorbed into υ to define a new, unique element υ ∈ ϒ(Z) such that μZ = ̟ ∗μQ ∧ υ . With

Lemma 3 showing that ϒ(̟ : Z → Q) is non-empty, such an υ exists for any positively-

oriented, smooth fiber bundle.

From Lemma 4, this υ defines a smooth kernel and, hence, satisfies Definition 2(i).

If λQ is any smooth measure on Q, not necessarily equal to μQ, then for any smooth, positive

function g ∈ L1(Z,μZ) and G(q) =
∫
Zq

ι∗q(gυ) we have

∫

Q

G(q)λQ =

∫

Q

[∫

Zq

ι∗q(gυ)

]
λQ,

or, employing a trivializing cover,

∫

Q

G(q)λQ =
∑

α

∫

Uα

ρα

[∫

Zq

ι∗q(gαυ)

]
λQ

=
∑

α

∫

Uα

ρα

[∫

F

ι∗q(gαυ)

]
λQ

=
∑

α

∫

Uα×F

ραgα̟ ∗λQ ∧ υ,

where F here refers to the fiber space. Once again noting that the space of smooth measures on

Z is one-dimensional, we must have for some positive, bounded function h : Z → R
+,

∫

Q

G(q)λQ =
∑

α

∫

Uα×F

ραgαhμZ

=

∫

Z

fgμZ.

Because h is bounded the integral is finite given the μZ integrability of g, hence υ satisfies

Definition 2(ii).

Similarly, for any smooth, positive function g ∈ L1(Z,μZ),

∫

Z

gμZ =

∫

Z

g̟ ∗μQ ∧ υ

=
∑

α

∫

Uα×F

ραgα̟ ∗μQ ∧ υ
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=
∑

α

∫

Uα

ρα

[∫

F

ι∗q(gαυ)

]
μQ

=

∫

Q

[∫

Zq

ι∗q(gυ)

]
μQ

=

∫

Q

[∫

Zq

gν(q, ·)

]
μQ.

Because of the finiteness of υ the integral is well-defined and the kernel satisfies Definition 2(iii).

Hence for any smooth fiber bundle and smooth measures μZ and μQ, there exists an υ ∈

ϒ(̟ : Z → Q) that induces a smooth disintegration of μZ with respect to the projection operator

and μQ. �

Ultimately we are not interested in smooth disintegrations but rather regular conditional prob-

ability measures. Fortunately, the elements of ϒ(̟ : Z → Q) are only a normalization away

from defining the desired probability measures. To see this, first note that we can immediately

define the new space �(̟ : Z → Q) ⊂ ϒ(̟ : Z → Q) with elements ξ satisfying

ι∗qξ > 0,

∫

Zq

ι∗qξ = 1.

The elements of �(̟ : Z → Q) relate a smooth measure on the total space to its pushforward

measure with respect to the projection, provided it exists, which is exactly the property needed

for the smooth disintegrations to be regular conditional probability measures.

Lemma 7. Let μZ be a smooth measure on the total space of a positively-oriented, smooth

fiber bundle with μQ the corresponding pushforward measure with respect to the projection

operator, μQ = ̟∗μZ . If μQ is a smooth measure, then μZ = ̟ ∗μQ ∧ ξ for a unique element

of ξ ∈ �(̟ : Z → Q).

Consequently, the elements of �(̟ : Z → Q) also define regular conditional probability mea-

sures.

Theorem 8. Any smooth measure on the total space of a positively-oriented, smooth fiber bundle

admits a regular conditional probability measure with respect to the projection operator provided

that the pushforward measure with respect to the projection operator is smooth.

Proof. From Lemma 7, we know that for any smooth measure μZ there exists a ξ ∈ �(̟ : Z →

Q) such that μZ = ̟ ∗μQ ∧ ξ so long as the pushforward measure, μQ, is smooth. Applying

Theorem 6, any choice of ξ then defines a smooth disintegration of μZ with respect to the projec-

tion operator and the pushforward measure and hence the disintegration is a regular conditional

probability measure. �
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Although we have shown that elements of �(̟ : Z → Q) disintegrate measures on fiber
bundles, we have not yet explicitly constructed them. Fortunately the fiber bundle geometry
proves productive here as well.

2.2.3. Constructing smooth measures from smooth disintegrations

The geometric construction of regular conditional probability measures is particularly valuable
because it provides an explicit construction for lifting measures on the base space to measures
on the total space as well as marginalizing measures on the total space down to the base space.

As shown above, the selection of any element of �(̟ : Z → Q) defines a lift of smooth
measures on the base space to smooth measures on the total space.

Corollary 9. If μQ is a smooth measure on the base space of a positively-oriented, smooth fiber

bundle then for any ξ ∈ �(̟ : Z → Q), μZ = ̟ ∗μQ ∧ξ is a smooth measure on the total space

whose pushforward is μQ.

Proof. μZ = ̟ ∗μQ ∧ ξ is a smooth measure on the total space by Lemma 5, and Lemma 7
immediately implies that its pushforward is μQ. �

Even before constructing the pushforward measure of a measure on the total space, we can
construct its regular conditional probability measure with respect to the projection.

Lemma 10. Let μZ be a smooth measure on the total space of a positively-oriented, smooth

fiber bundle whose pushforward measure with respect to the projection operator is smooth, with

U ⊂ Q any neighborhood of the base space that supports a local frame. Within ̟−1(U), the

element ξ ∈ �(̟ : Z → Q)

ξ =
(X̃1, . . . , X̃n)�μZ

μQ(X1, . . . ,Xn)
,

defines the regular conditional probability measure of μZ with respect to the projection operator,
where (X1, . . . ,Xn) is any positively-oriented frame in U satisfying

μQ(X1, . . . ,Xn) < ∞ ∀q ∈ U

and (X̃1, . . . , X̃n) is any corresponding horizontal lift.

The regular conditional probability measure then allows us to validate the geometric construc-
tion of the pushforward measure.

Corollary 11. Let μZ be a smooth measure on the total space of a positively-oriented, smooth

fiber bundle whose pushforward measure with respect to the projection operator is smooth, with

U ⊂ Q any neighborhood of the base space that supports a local frame. The pushforward mea-

sure at any q ∈ U is given by

μQ

(
X1(q), . . . ,Xn(q)

)
=

∫

Zq

ι∗q
(
(X̃1, . . . , X̃n)�μZ

)
,
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where (X1, . . . ,Xn) is any positively-oriented frame in U satisfying

μQ(X1, . . . ,Xn) < ∞ ∀q ∈ U

and (X̃1, . . . , X̃n) is any corresponding horizontal lift.

Proof. From Lemma 10, the regular conditional probability measure of μZ with respect to the
projection operator is defined by

ξ =
(X̃1, . . . , X̃n)�μZ

μQ(X1, . . . ,Xn)
.

By construction ξ restricts to a unit volume form on any fiber within U , hence

1 =

∫

Zq

ι∗qξ,

=

∫
Zq

ι∗q((X̃1, . . . , X̃n)�μZ)

μQ(X1(q), . . . ,Xn(q))
,

or

μQ

(
X1(q), . . . ,Xn(q)

)
=

∫

Zq

ι∗q
(
(X̃1, . . . , X̃n)�μZ

)
,

as desired. �

2.3. Measures on Riemannian manifolds

Once the manifold is endowed with a Riemannian metric, g, the constructions considered above
become equivalent to results in classical geometric measure theory [22].

In particular, the rigidity of the metric defines projections, and hence regular conditional prob-
ability measures, onto any submanifold. The resulting conditional and marginal measures are
exactly the co-area and area measures of geometric measure theory.

Moreover, the metric defines a canonical volume form, Vg , on the manifold,

Vg =
√

|g|dq1 ∧ · · · ∧ dqn.

Probabilistically, Vg is a Hausdorff measure that generalizes the Lesbegue measure on R
n. If the

manifold is globally isomorphic to R
n, then Hausdorff measure reduces to the usual Lebesgue

measure.

2.4. Measures on symplectic manifolds

A symplectic manifold is an even-dimensional manifold, M , endowed with a non-degenerate
symplectic form, ω ∈ �2(M). Unlike Riemannian metrics, there are no local invariants that dis-
tinguish between different choices of the symplectic form: within the neighborhood of any chart
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all symplectic forms are isomorphic to each other and to canonical symplectic form,

ω =

n∑

i=1

dq i ∧ dpi,

where (q1, . . . , qn,p1, . . . , pn) are called canonical or Darboux coordinates.

From our perspective, the critical property of symplectic manifolds is that the symplectic form

admits not only a canonical family of smooth measures but also a flow that preserves those

measures. This structure will be the fundamental basis of Hamiltonian Monte Carlo and hence

pivotal to a theoretical understanding of the algorithm.

2.4.1. The symplectic measure

Wedging the non-degenerate symplectic form together,

� =

n∧

i=1

ω,

yields a canonical volume form on the manifold.

The equivalence of symplectic forms also ensures that the symplectic volumes, given in local

coordinates as

� = n!
(
dq1 ∧ · · · ∧ dqn ∧ dp1 ∧ · · · ∧ dpn

)
,

are also equivalent locally.

2.4.2. Hamiltonian systems and canonical measures

A symplectic manifold becomes a Hamiltonian system with the selection of a smooth Hamilto-

nian function,

H : M → R.

Together with the symplectic form, a Hamiltonian defines a corresponding vector field,

dH = ω(XH , ·)

naturally suited to the Hamiltonian system. In particular, the vector field preserves both the sym-

plectic measure and the Hamiltonian,

LXH
� = LXH

H = 0,

where LXH
is the Lie derivative along the Hamiltonian vector field. Consequently any measure

of the form

e−βH �, β ∈R
+,
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Figure 10. Hamiltonian flow is given by dragging points along the integral curves of the corresponding

Hamiltonian vector field. Because they preserve the symplectic measure, Hamiltonian vector fields are said

to be divergenceless and, consequently, the resulting flow preserves any canonical distribution.

known collectively as Gibbs measures or canonical distributions [67], is invariant to the flow

generated by the Hamiltonian vector field (Figure 10),

(
φH

t

)
∗

(
e−βH �

)
= e−βH �,

where

XH =
dφH

t

dt

∣∣∣∣
t=0

.

The level sets of the Hamiltonian,

H−1(E) =
{
z ∈ M|H(z) = E

}
,

decompose into regular level sets containing only regular points of the Hamiltonian and critical

level sets which contain at least one critical point of the Hamiltonian. When the critical level sets

are removed from the manifold it decomposes into disconnected components, M =
∐

i Mi , each

of which foliates into level sets that are diffeomorphic to some common manifold (Figure 11).

Consequently, each H : Mi → R becomes a smooth fiber bundle with the level sets taking the

role of the fibers.

Provide that it is finite,
∫

M

e−βH � < ∞,

the canonical distribution becomes a probability measure upon normalization,

π =
e−βH �∫
M

e−βH �
.
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Figure 11. When the cylinder, S1 × R is endowed with a symplectic structure and Hamiltonian function,

the level sets of a Hamiltonian function foliate the manifold. Upon removing the critical level sets, here

shown in purple, the cylinder decomposes into three components, each of which becomes a smooth fiber

bundle with fiber space F = S
1.

Applying Lemma 10, each component of the excised canonical distribution then disintegrates

into microcanonical distributions on the level sets,

πH−1(E) =
v��∫

H−1(E)
ι∗E(v��)

.

Similarly, the pushforward measure on R is given by Lemma 11,

H∗π =
e−βE

∫
M

e−βH �

(
∫
H−1(E)

ι∗E(v��))

dH(v)
dE,

where v is any horizontal vector field satisfying dH(v) > 0 to ensure that it is positively-oriented

with respect to the image of H . Because the critical level sets have zero measure with respect to

the canonical distribution, the disintegration on the excised manifold defines a valid disintegra-

tion of original manifold as well. For more on non-geometric constructions of the microcanonical

distribution, see [19].

The disintegration of the canonical distribution is also compatible with the Hamiltonian flow.

Lemma 12. Let (M,�,H) be a Hamiltonian system with the finite and smooth canonical mea-

sure, μ = e−βH �. The microcanonical distribution on the level set H−1(E),

πH−1(E) =
v��∫

H−1(E)
ι∗E(v��)

,

is invariant to the corresponding Hamiltonian flow restricted to the level set, φH
t |H−1(E).
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The density of the pushforward of the symplectic measure relative to the Lebesgue measure,

d(E) =
d(H∗�)

dE
=

∫
H−1(E)

ι∗E(v��)

dH(v)
,

is known as the density of states in the statistical mechanics literature [42].

3. Hamiltonian Monte Carlo

Although Hamiltonian systems feature exactly the kind of measure-preserving flow that could

generate an efficient Markov transition, there is no canonical way of endowing a given probability

space with a symplectic form, let alone a Hamiltonian. In order take advantage of Hamiltonian

flow, we need to consider not the sample space of interest but rather its cotangent bundle.

In this section, we develop the formal construction of Hamiltonian Monte Carlo and identify

how the theory informs practical considerations in both implementation and optimal tuning. Last,

we reconsider a few existing Hamiltonian Monte Carlo implementations with this theory in mind.

3.1. Formal construction

The key to Hamiltonian Monte Carlo is that the cotangent bundle of the sample space, T ∗Q, is

endowed with both a canonical fiber bundle structure, ̟ : T ∗Q → Q, and a canonical symplectic

form. If we can lift the target distribution onto the cotangent bundle, then we can construct an

appropriate Hamiltonian system and utilize its Hamiltonian flow to generate a powerful Markov

kernel. When the sample space is also endowed with a Riemannian metric this construction

becomes particularly straightforward.

3.1.1. Constructing a Hamiltonian system

By Corollary 9, the target distribution, π , is lifted onto the cotangent bundle with the choice of a

smooth disintegration, ξ ∈ �(̟ : T ∗Q → Q),

πH = ̟ ∗π ∧ ξ.

Because πH is a smooth probability measure it must be of the form of a canonical distribution

for some Hamiltonian H : T ∗Q → R,

πH = e−H �,

with β taken to be unity without loss of generality. In other words, the choice of a disintegration

defines not only a lift onto the cotangent bundle but also a Hamiltonian system (Figure 12) with

the Hamiltonian

H = − log
d(̟ ∗π ∧ ξ)

d�
.
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Figure 12. (a) Hamiltonian Monte Carlo begins with a target measure on the base space, for example

Q = S
1. (b) The choice of a disintegration on the cotangent bundle, T ∗Q = S

1 × R, defines (c) a joint

measure on the cotangent bundle which immediately defines (d) a Hamiltonian system given the canonical

symplectic structure. The Hamiltonian flow of this system is then used to construct an efficient Markov

transition.

Although this construction is global, it is often more conveniently implemented in local coordi-

nates. Consider first an open subset of the sample space, Uα ⊂ Q, in which the target distribution

decomposes as

π = e−V dq1 ∧ · · · ∧ dqn.

Here e−V is the Radon–Nikodym derivative of the target measure with respect to the pullback

of the Lebesgue measure on the image of the local chart. Following the natural analogy to the

physical application of Hamiltonian systems, we will refer to V as the potential energy.

In the corresponding neighborhood of the cotangent bundle, ̟−1(Uα) ⊂ T ∗Q, the smooth

disintegration, ξ , similarly decomposes into,

ξ = e−K dp1 ∧ · · · ∧ dpn + horizontal n-forms.

When ξ is pulled back onto a fiber all of the horizontal n-forms vanish and e−K can be consid-

ered the Radon–Nikodym derivative of the disintegration restricted to a fiber with respect to the

Lebesgue measure on that fiber. Appealing to the physics conventions once again, we call K as

the kinetic energy.

Locally the lift onto the cotangent bundle becomes

πH = ̟ ∗π ∧ πq

= e−(K+V ) dq1 ∧ · · · ∧ dqn ∧ dp1 ∧ · · · ∧ dpn

= e−H �,
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with the Hamiltonian

H = − log
dπH

d�
= K + V,

taking a form familiar from classical mechanics [40].

A particular danger of the local perspective is that neither the potential energy, V , or the kinetic

energy, K , are proper scalar functions. Both depend on the choice of chart and introduce a log

determinant of the Jacobian when transitioning between charts with coordinates q and q ′,

V �→ V + log

∣∣∣∣
∂q

∂q ′

∣∣∣∣,

K �→ K − log

∣∣∣∣
∂q

∂q ′

∣∣∣∣;

only when V and K are summed do the chart-dependent terms cancel to give a scalar Hamilto-

nian. When these local terms are used to implement Hamiltonian Monte Carlo care must be taken

to avoid any sensitivity to the arbitrary choice of chart, which usually manifests as pathological

behavior in the algorithm.

3.1.2. Constructing a Markov transition

The Hamiltonian flow on the cotangent bundle generates isomorphisms that preserve πH , but in

order to define an isomorphism on the sample space we first need to map to the cotangent bundle

and back.

If q were drawn from the target measure, then we could generate an exact sample from πH by

sampling directly from the measure on the corresponding fiber,

p ∼ ι∗qξ = e−K dp1 ∧ · · · ∧ dpn.

In other words, sampling along the fiber defines a lift from π to πH ,

λ : Q → T ∗Q,

q �→ (p, q), p ∼ ι∗qξ.

In order to return to the sample space, we use the canonical projection, which by construction

maps πH back into its pushforward, π .

Together we have a random lift,

λ : Q → T ∗Q,

λ∗π = πH ,

the Hamiltonian flow,

φH
t : T ∗Q → T ∗Q,

(
φH

t

)
∗
πH = πH ,
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and finally the projection,

̟ : T ∗Q → Q,

̟∗πH = π.

Composing the maps together,

φHMC = ̟ ◦ φH
t ◦ λ

yields exactly the desired measure-preserving isomorphism,

φHMC : Q → Q,

(φHMC)∗π = π,

for which we have been looking.

Finally, the measure on λ, and possibly a measure on the integration time, t , specifies a mea-

sure on φHMC from which we can define a Hamiltonian kernel via (1).

3.1.3. Constructing an explicit disintegration

The only obstacle with implementing Hamiltonian Monte Carlo as constructed is that the dis-

integration is left completely unspecified. Outside of needing to sample from ι∗qξ there is little

motivation for an explicit choice.

This choice of a smooth disintegration, however, is greatly facilitated by endowing the base

manifold with a Riemannian metric, g, and its inverse, g−1, which provide two canonical objects

from which we can construct a kinetic energy and, consequently, a disintegration. If we denote

by p̃(z) the element of T ∗
̟(z)Q identified by z ∈ T ∗Q, then the metric immediately defines a

quadratic form, g−1(p̃(z), p̃(z)) and a density, |g(̟(z))|. From the perspective of geometry

measure theory this latter term is just the Hausdorff density; in molecular dynamics it is known

as the Fixman potential [23].

Noting that the quadratic function is a scalar function whereas the log density transforms like

the kinetic energy, an immediate candidate for the kinetic energy is given by simply summing

the two together,

K(z) = 1
2g−1

(
p̃(z), p̃(z)

)
+ 1

2 log
∣∣g

(
̟(z)

)∣∣ + const,

or in coordinates,

K(p,q) =
1

2

n∑

i,j=1

pipj

(
g−1(q)

)ij
+

1

2
log

∣∣g(q)
∣∣ + const,

which defines a Gaussian distribution on the fibers,

ι∗qξ = e−K dp1 ∧ · · · ∧ dpn =N (0, g).
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Using these same two ingredients we could also construct, for example, a multivariate Student’s

t distribution,

K(z) =
ν + n

2
log

(
1 +

1

ν
g−1

(
p̃(z), p̃(z)

))
+

1

2
log

∣∣g
(
̟(z)

)∣∣ + const,

ι∗qξ = tν(0, g),

or any distribution whose sufficient statistic is the Mahalanobis distance.

When g is taken to be Euclidean the resulting algorithm is exactly the Hamiltonian Monte

Carlo implementation that has dominated both the literature and applications to date; we refer

to this implementation as Euclidean Hamiltonian Monte Carlo. The more general case, where

g varies with position, is exactly Riemannian Hamiltonian Monte Carlo [29] which has shown

promising success when the metric is used to correct for the nonlinearities of the target distri-

bution. In both cases, the natural geometric motivation for the choice of disintegration helps to

explain why the resulting algorithms have proven so successful in practice.

3.2. Practical implementation

Ultimately the Hamiltonian Monte Carlo transition constructed above is a only a mathematical

abstraction until we are able to simulate the Hamiltonian flow by solving a system of highly-

nonlinear, coupled ordinary differential equations. At this stage the algorithm is vulnerable to a

host of pathologies and we have to heed the theory carefully.

The numerical solution of Hamiltonian flow is a well-researched subject and many efficient

integrators are available. Of particular importance are symplectic integrators which utilize the

underlying symplectic geometry to exactly preserve the symplectic measure with only a small

error in the Hamiltonian [32,47]. Because they preserve the symplectic measure exactly, these

integrators are highly accurate even over long integration times.

Formally, symplectic integrators approximate the Hamiltonian flow by composing the flows

generated from individual terms in the Hamiltonian. For example, one second-order symplectic

integrator approximating the flow from the Hamiltonian H = H1 + H2 is given by

φH
δt = φ

H1
δt/2 ◦ φ

H2
δt ◦ φ

H1
δt/2 +O

(
δt2

)
.

The choice of each component, Hi , and the integration of the resulting flow requires particular

care. If the flows are not solved exactly, then the resulting integrator no longer preserves the

symplectic measure and the accuracy plummets. Moreover, each component must be a scalar

function on the cotangent bundle: although one might be tempted to take H1 = V and H2 = K ,

for example, this would not yield a symplectic integrator as V and K are not proper scalar func-

tions as discussed in Section 3.1.1. When using a Gaussian kinetic energy as described above, a

proper decomposition is given by

H1 = 1
2 log

∣∣g
(
̟(z)

)∣∣ + V
(
̟(z)

)
,

H2 = 1
2g−1

(
p̃(z), p̃(z)

)
.
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Although symplectic integrators introduce only small and well-understood errors, those errors
will ultimately bias the resulting Markov chain. In order to remove this bias, we can consider the
Hamiltonian flow not as a transition but rather as a Metropolis proposal on the cotangent bun-
dle and let the acceptance procedure cancel any numerical bias. Because symplectic integrators
remain accurate even for high-dimensional systems, their use here is crucial lest the Metropolis
acceptance probability fall towards zero.

The only complication with a Metropolis strategy is that the numerical flow, �H
ε,t , defines

a valid Metropolis proposal only when it is an involution [72]. This can be accomplished by
making the measure on the integration time symmetric about 0, or by composing the flow with
any operator, R, satisfying

�H
ε,t ◦ R ◦ �H

ε,t = IdT ∗Q.

For all of the kinetic energies considered above, this is readily accomplished with a parity inver-
sion given in canonical coordinates by

R(q,p) = (q,−p).

In either case, the acceptance probability reduces to

a
(
z,R ◦ �H

ε,tz
)
= min

[
1, exp

(
H

(
R ◦ �H

ε,tz
)
− H(z)

)]
,

where �H
ε,t is the symplectic integrator with step size, ε, and z ∈ T ∗Q.

3.3. Tuning

Although the selection of a disintegration and a symplectic integrator formally define a full im-
plementation of Hamiltonian Monte Carlo, there are still free parameters left unspecified to which
the performance of the implementation will be highly sensitive. In particular, we must set the in-
tegration time of the flow, the Riemannian metric, and symplectic integrator step size. All of the
machinery developed in our theoretical construction proves essential here, as well.

The Hamiltonian flow generated from a single point may explore the entirety of the corre-
sponding level set or be restricted to a smaller submanifold of the level set, but in either case the
trajectory nearly closes in some possibly-long but finite recurrence time, τH−1(E) [56,78]. Taking

t ∼ U(0, τH−1(E)),

would avoid redundant exploration but unfortunately the recurrence time for a given level set
is rarely calculable in practice and we must instead resort to approximations. When using a

Riemannian geometry, for example, we can appeal to the No-U-Turn sampler [5,34] which has
proven an empirical success.

When using such a Riemannian geometry, however, we must address the fact that the choice
of metric is itself a free parameter. One possible criterion to consider is the interaction of the
geometry with the symplectic integrator—in the case of a Gaussian kinetic energy, integrators
are locally optimized when the metric approximates the Hessian of the potential energy, essen-
tially canceling the local nonlinearities of the target distribution. This motivates using the global
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covariance of the target distribution for Euclidean Hamiltonian Monte Carlo and the SoftAbs

metric [6] for Riemannian Hamiltonian Monte Carlo; for further discussion see [48]. Although

such choices work well in practice, more formal ergodicity considerations are required to define

a more rigorous optimality condition.

Last, we must consider the step size, ε, of the symplectic integrator. As the step size is made

smaller, the integrator will become more accurate but also more expensive—larger step sizes

yield cheaper integrators but at the cost of more Metropolis rejections. When the target distri-

bution decomposes into a product of many independent and identically distributed measures,

the optimal compromise between these extremes can be computed directly [3]. More general

constraints on the optimal step size, however, requires a deeper understanding of the interac-

tion between the geometry of the exact Hamiltonian flow and that of the symplectic integrator

developed in backwards error analysis [32,38,47]. In particular, the microcanonical distribution

constructed in Section 2.4.2 plays a crucial role.

3.4. Retrospective analysis of existing work

In addition to providing a framework for developing robust Hamiltonian Monte Carlo method-

ologies, the formal theory also provides insight into the performance of recently published im-

plementations.

We can, for example, now develop of deeper understanding of the poor scaling of the ex-

plicit Lagrangian Dynamical Monte Carlo algorithm [43]. Here the authors were concerned with

the computation burden inherent to the implicit symplectic integrators necessary for Rieman-

nian Hamiltonian Monte Carlo, and introduced an approximate integrator that sacrificed exact

symplecticness for explicit updates. As we saw in Section 3.2, however, exact symplecticness

is critical to maintaining the exploratory power of an approximate Hamiltonian flow, especially

as the dimension of the target distribution increases and numerical errors amplify. Indeed, the

empirical results in the paper show that the performance of the approximate integrator suffers

with increasing dimension of the target distribution. The formal theory enables an understanding

of the compromises, and corresponding vulnerabilities, of such approximations.

Moreover, the import of the Hamiltonian flow elevates the integration time as a fundamental

parameter, with the integrator step size accompanying the use of an approximate flow. A common

error in empirical optimizations is to reparameterize the integration time and step size as the

number of integrator steps, which can obfuscate the optimal settings. For example, [75] use

Bayesian optimization methods to derive an adaptive Hamiltonian Monte Carlo implementation,

but they optimize the integrator step size and the number of integrator steps over only a narrow

range of values. This leads not only to a narrow range of short integration times that limits the

efficacy of the Hamiltonian flow, but also a step size-dependent range of integration times that

skew the optimization values. Empirical optimizations of Hamiltonian Monte Carlo are most

productive when studying the fundamental parameters directly.

In general, care must be taken to not to limit the range of integration times considered lest

the performance of the algorithm be misunderstood. For example, restricting the Hamiltonian

transitions to only a small fraction of the recurrence time forfeits the efficacy of the flow’s coher-

ent exploration. Under this artificial limitation, partial momentum refreshment schemes [36,66],
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which compensate for the premature termination of the flow by correlating adjacent transitions,

do demonstrate some empirical success. As the restriction is withdrawn and the integration times

expand towards the recurrence time, however, the success of such schemes fade. Ultimately,

removing such limitations in the first place results in more effective transitions.

4. Future directions

By appealing to the geometry of Hamiltonian flow we have developed a formal, foundational

construction of Hamiltonian Monte Carlo, motivating various implementation details and identi-

fying the properties critical for a high performance algorithm. Indeed, these lessons have already

proven critical in the development of high-performance software like Stan [68]. Moving for-

ward, the geometric framework not only admits further understanding and optimization of the

algorithm but also suggests connections to other fields and motivates generalizations amenable

to an even broader class of target distributions.

4.1. Robust implementations of Hamiltonian Monte Carlo

Although we have constructed a theoretical framework in which we can pose rigorous optimiza-

tion criteria for the integration time, Riemannian metric, and integrator step size, there is much

to be done in actually developing and then implementing those criteria. Understanding the er-

godicity of Hamiltonian Monte Carlo is a critical step towards this goal, but a daunting technical

challenge.

Continued application of both the symplectic and Riemannian geometry underlying imple-

mentations of the algorithm will be crucial to constructing a strong formal understanding of the

ergodicity of Hamiltonian Monte Carlo and its consequences. Initial applications of metric space

methods [41,55], for example, have shown promise [35], although many technical obstacles, such

as the limitations of geodesic completeness, remain.

4.2. Relating Hamiltonian Monte Carlo to other fields

The application of tools from differential geometry to statistical problems has rewarded us with

a high-performance and robust algorithm. Continuing to synergize seemingly disparate fields of

applied mathematics may also prove fruitful in the future.

One evident association is to molecular dynamics [25,31,49], which tackles expectations of

chemical systems with natural Hamiltonian structures. Although care must be taken with the

different construction and interpretation of the Hamiltonian from the statistical and the molecular

dynamical perspectives, once a Hamiltonian system has been defined the resulting algorithms

are identical. Consequently molecular dynamics implementations may provide insight towards

improving Hamiltonian Monte Carlo and vice versa.

Additionally, the composition of Hamiltonian flow with a random lift from the sample space

onto its cotangent bundle can be considered a second-order stochastic process [9,57], and the
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theory of these processes has the potential to be a powerful tool in understanding the ergodicity
of the algorithm.

Similarly, the ergodicity of Hamiltonian systems has fueled a wealth of research into dynami-
cal systems in the past few decades [56,78]. The deep geometric results emerging from this field
complement those of the statistical theory of Markov chains and provide another perspective on
the ultimate performance of Hamiltonian Monte Carlo.

The deterministic flow that powers Hamiltonian Monte Carlo is also reminiscent of various
strategies of removing the randomness in Monte Carlo estimation [11,51,53]. The generality of
the Hamiltonian construction may provide insight into the optimal compromise between random
and deterministic algorithms.

Finally, there is the possibility that the theory of measures on manifolds may be of use to
the statistical theory of smooth measures in general. The application of differential geometry to
Frequentist methods that has consolidated into Information Geometry [1] has certainly been a
great success, and the use Bayesian methods developed here suggests that geometry’s domain of
applicability may be even broader. As demonstrated above, for example, the geometry of fiber
bundles provides a natural setting for the study and implementation of conditional probability
measures, generalizing the pioneering work of [73].

4.3. Generalizing Hamiltonian Monte Carlo

Although we have made extensive use of geometry in the construction of Hamiltonian Monte
Carlo, we have not yet exhausted its utility towards Markov chain Monte Carlo. In particu-
lar, further geometrical considerations suggest tools for targeting multimodal, trans-dimensional,
infinite-dimensional, and possibly discrete distributions.

Like most Markov chain Monte Carlo algorithms, Hamiltonian Monte Carlo has trouble ex-
ploring the isolated concentrations of probability inherent to multimodal target distributions.
Leveraging the geometry of contact manifolds [46], however, admits not just transitions within
a single canonical distribution but also transitions between different canonical distributions. The
resulting Adiabatic Monte Carlo provides a geometric parallel to simulated annealing and simu-
lated tempering without being burdened by their common pathologies [7].

Trans-dimensional target distributions are another obstacle for Hamiltonian Monte Carlo be-
cause of the discrete nature of the model space. Differential geometry may too prove fruitful here
with the Poisson geometries that generalize symplectic geometry by allowing for a symplectic
form whose rank need not be constant [77].

Many of the properties of smooth manifolds critical to the construction of Hamiltonian Monte
Carlo do not immediately extend to the infinite-dimensional target distributions common to func-
tional analysis, such as the study of partial differential equations [15]. Algorithms on infinite-
dimensional spaces motivated by Hamiltonian Monte Carlo, however, have shown promise [4]
and suggest that infinite-dimensional manifolds admit symplectic structures, or the appropriate
generalizations thereof.

Finally, there is the question of fully discrete spaces from which we cannot apply the theory
of smooth manifolds, let alone Hamiltonian systems. Given that Hamiltonian flow can also be
thought of as an orbit of the symplectic group, however, there may be more general group-
theoretic constructions of measure-preserving orbits that can be applied to discrete spaces.
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Appendix: Proofs

Here we collect the proofs of the Lemmas introduced in Section 2.

Lemma 1. If Q is an oriented, smooth manifold then M(Q) is non-empty and its elements are

σ -finite measures on Q.

Proof. We begin by constructing a prototypical element of M(Q). In a local chart {Uα,ψα} we

can construct a positive μα as μα = fα dq1 ∧· · ·∧dqn for any fα : Uα → R
+. Given the positive

orientation of Q, the set of μα is convex and we can define a global μ ∈ M(Q) by employing a

partition of unity subordinate to the Uα ,

μ =
∑

α

ραμα.

To show that any μ ∈ M(Q) is a measure, consider the integral of μ over any A ∈ B(Q). By

construction

μ(A) =

∫

A

μ > 0,

leaving us to show that μ(A) satisfies countable additivity and vanishes when A =∅. We proceed

by covering A in charts and employing a partition of unity to give

∫

A

μ =
∑

α

∫

A∩Uα

ραμα

=
∑

α

∫

A∩Uα

ραfα dq1 ∧ · · · ∧ dqn

=
∑

α

∫

ψα(A∩Uα)

(
ραfα ◦ ψ−1

α

)
dnq,

where fα is defined as above and dnq is the Lebesgue measure on the image of the charts.

Now each domain of integration is in the σ -algebra of the sample space,

A ∩ Uα ∈ B(Q),

and, because the charts are diffeomorphisms and hence Lebesgue measurable functions, we must

have

ψα(A ∩ Uα) ∈ B
(
R

n
)
.

Consequently the action of μ(A) decomposes into a countable number of Lebesgue integrals,

and μ immediately inherits countable additivity.
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Moreover, ψα(∅∩ Uα) = ψα(∅) =∅ so that, by the same construction as above,

μ(∅) =

∫

∅

μ

=
∑

α

∫

ψα(∅∩Uα)

(
ραfα ◦ ψ−1

α

)
dnq

=
∑

α

∫

∅

(
ραfα ◦ ψ−1

α

)
dnq

= 0.

Finally, because Q is paracompact any A ∈ B(Q) admits a locally-finite refinement and, be-

cause any μ ∈ M(Q) is smooth, the integral of μ over the elements of any such refinement are

also finite. Hence, μ itself is σ -finite. �

Lemma 3. The space ϒ(̟ : Z → Q) is convex and nonempty.

Proof. The convexity of ϒ(̟ : Z → Q) follows immediately from the convexity of the positiv-

ity constraint and admits the construction of elements with a partition of unity.

In any neighborhood of a trivializing cover, {Uα}, we have

ϒ
(
̟−1(Uα)

)
=M(F )

which is nonempty by Corollary 2. Selecting some υα ∈ M(F ) for each α and summing over

each neighborhood gives

υ =
∑

α

(ρα ◦ ̟)υα ∈ ϒ(Z)

as desired. �

Lemma 4. Any element of ϒ(̟ : Z → Q) defines a smooth measure,

ν : Q ×B(Z) → R
+,

(q,A) �→

∫

ιq (A∩Zq )

ι∗qυ,

concentrating on the fiber Zq ,

ν(q,A) = 0 ∀A ∈ B(Z)|A ∩ Zq = 0.

Proof. By construction the measure of any A ∈ B(Z) is limited to its intersection with the fiber

Zq , concentrating the measure onto the fiber. Moreover, because the immersion, ιq , preserves the

smoothness of υ , ι∗qυ is smooth for all q ∈ Q and the measure must be B(F )-finite. Consequently,

the kernel is B(Z)-finite. �
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Lemma 5. Any element υ ∈ ϒ(̟ : Z → Q) lifts any smooth measure on the base space, μQ ∈

M(Q), to a smooth measure on the total space by

μZ = ̟ ∗μQ ∧ υ ∈ M(Z).

Proof. Let (X1(q), . . . ,Xn(q)) be a basis of TqQ,q ∈ Q, positively-oriented with respect to
the μQ,

μQ

(
X1(q), . . . ,Xn(q)

)
> 0,

and (Y1(p), . . . , Yk(p)) a basis of TpZq ,p ∈ Zq , positively-oriented with respect to the pull-back
of υ ,

ι∗qυ
(
Y1(p), . . . , Yk(p)

)
> 0.

Identifying TpZq as a subset of TpZ, any horizontal lift of the Xi(q) to X̃i(q) ∈ Tp,qZ yields a

positively-oriented basis of the total space, (X̃1(q), . . . , X̃n(q), Y1(p), . . . , Yk(p)).
Now consider the contraction of this positively-oriented basis against μZ = ̟ ∗μQ ∧ω for any

ω ∈ �k(Z). Noting that, by construction, the Yi are vertical vectors and vanish when contracted
against ̟ ∗μQ, we must have

μZ

(
X̃1(q), . . . , X̃n(q), Y1(p), . . . , Yk(p)

)

= ̟ ∗μQ ∧ ω
(
X̃1(q), . . . , X̃n(q), Y1(p), . . . , Yk(p)

)

= ̟ ∗μQ

(
X̃1(q), . . . , X̃n(q)

)
ω

(
Y1(p), . . . , Yk(p)

)

= μQ

(
X1(q), . . . ,Xn(q)

)
ω

(
Y1(p), . . . , Yk(p)

)

> 0.

Hence, μZ is a volume form and belongs to M(Z).
Moreover, adding a horizontal k-form, η, to ω yields the same lift,

μ′
Z

(
X̃1(q), . . . , X̃n(q), Y1(p), . . . , Yk(p)

)

= ̟ ∗μQ ∧ (ω + η)
(
X̃1(q), . . . , X̃n(q), Y1(p), . . . , Yk(p)

)

= ̟ ∗μQ

(
X̃1(q), . . . , X̃n(q)

)
ω

(
Y1(p), . . . , Yk(p)

)

+ ̟ ∗μQ

(
X̃1(q), . . . , X̃n(q)

)
η
(
Y1(p), . . . , Yk(p)

)

= μQ

(
X1(q), . . . ,Xn(q)

)
ω

(
Y1(p), . . . , Yk(p)

)

= μZ.

Consequently lifts are determined entirely by elements of the quotient space, υ ∈ ϒ(̟ : Z →

Q). �

Lemma 7. Let μZ be a smooth measure on the total space of a positively-oriented, smooth

fiber bundle with μQ the corresponding pushforward measure with respect to the projection
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operator, μQ = ̟∗μZ . If μQ is a smooth measure, then μZ = ̟ ∗μQ ∧ ξ for a unique element

of ξ ∈ �(̟ : Z → Q).

Proof. If the pushforward measure, μQ, is smooth then it must satisfy

∫

B

μQ =

∫

̟−1(B)

μZ.

Employing a trivializing cover over ̟−1(B), we can expand the integral over the total space

as

∫

̟−1(B)

μZ =
∑

α

∫

̟−1(B)∩(Uα×F)

ραμZ

=
∑

α

∫

(B∩Uα)×F

ραμZ.

By Theorem 6, there is a unique υ ∈ ϒ(̟ : Z → Q) such that μZ = ̟ ∗μQ ∧ υ and the

integral becomes

∫

̟−1(B)

μZ =
∑

α

∫

(B∩Uα)×F

ραμZ

=
∑

α

∫

(B∩Uα)×F

ρα̟ ∗μQ ∧ υ

=
∑

α

∫

(B∩Uα)

ρα

[∫

F

ι∗qυ

]
μQ

=

∫

B

ρα

[∫

Zq

ι∗qυ

]
μQ.

Because μQ is σ -finite and
∫
Zq

ι∗qυ is finite, the pushforward condition is satisfied if and only if

∫

Zq

ι∗qυ = 1 ∀q ∈ Q,

which is satisfied if and only if υ ∈ �(̟ : Z → Q) ⊂ ϒ(̟ : Z → Q).

Consequently there exists a unique ξ ∈ �(̟ : Z → Q) that lifts the pushforward measure of

μZ back to μZ . �

Lemma 10. Let μZ be a smooth measure on the total space of a positively-oriented, smooth

fiber bundle whose pushforward measure with respect to the projection operator is smooth, with

U ⊂ Q any neighborhood of the base space that supports a local frame. Within ̟−1(U), the
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element ξ ∈ �(̟ : Z → Q)

ξ =
(X̃1, . . . , X̃n)�μZ

μQ(X1, . . . ,Xn)
,

defines the regular conditional probability measure of μZ with respect to the projection operator,

where (X1, . . . ,Xn) is any positively-oriented frame in U satisfying

μQ(X1, . . . ,Xn) < ∞ ∀q ∈ U

and (X̃1, . . . , X̃n) is any corresponding horizontal lift.

Proof. Consider any positively-oriented frame on the base space, (X1, . . . ,Xn), along with any

choice of horizontal lift, (X̃1, . . . , X̃n), and an ordered k-tuple of vector fields on the total space,

(Y1, . . . , Yk), that restricts to a positively-ordered frame in some neighborhood of the fibers,

V ⊂ ̟−1(U). Because the fiber bundle is oriented, the horizontal lift and the ordered k-tuple

define a positively-ordered frame in V ,

(W1, . . . ,Wn+k) = (X̃1, . . . , X̃n, Y1, . . . , Yk).

If the pushforward measure, μQ, is smooth then from Lemma 7 we have μZ = ̟ ∗μQ ∧ ξ for

some unique ξ ∈ �(̟ : Z → Q). Contracting the frame onto these forms gives

μZ(W1, . . . ,Wn+k) =
(
̟ ∗μQ ∧ ξ

)
(W1, . . . ,Wn+k)

= μQ(X1, . . . ,Xn)ξ(Y1, . . . , Yk).

Given the positive orientations of the frames and the forms, each term is strictly positive and

provided that μQ(X1, . . . ,Xn) is finite for all q ∈ U we can divide to give,

ξ(Y1, . . . , Yk) =
μZ(W1, . . . ,Wn+k)

μQ(X1, . . . ,Xn)
.

Finally, because ξ is invariant to the addition of horizontal k-forms this implies that within U

ξ =
(X̃1, . . . , X̃n)�μZ

μQ(X1, . . . ,Xn)
.

�

Lemma 12. Let (M,�,H) be a Hamiltonian system with the finite and smooth canonical mea-

sure, μ = e−βH . The microcanonical distribution on the level set H−1(E),

πH−1(E) =
v��∫

H−1(E)
ι∗E(v��)

,

is invariant to the corresponding Hamiltonian flow restricted to the level set, φH
t |H−1(E).
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Proof. By construction, the global flow preserves the canonical distribution,

π =
(
φH

t

)
∗
π

=
(
φH

t

)
∗
(πH−1(E) ∧ πE)

=
((

φH
t

)
∗
πH−1(E)

)
∧

((
φH

t

)
∗
πE

)
.

Because the Hamiltonian is itself invariant to the flow, we must have

((
φH

t

)
∗
πE

)
= πE

and

π =
((

φH
t

)
∗
πH−1(E)

)
∧ πE .

From Lemma 7, however, the regular conditional probability measure in the decomposition

must be unique, hence

ι∗qπH−1(E) = ι∗q
((

φH
t

)
∗
πH−1(E)

)

=
(
φH

t ◦ ιq
)
∗
πH−1(E)

=
(
ιq ◦ φH

t |H−1(E)

)
∗
πH−1(E)

=
(
φH

t |H−1(E)

)
∗
ι∗qπH−1(E),

as desired. �
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