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The variability of magnitude estimations has been found
to grow approximately in proportion to the magnitude,
and to produce distributions that are roughly log normal.
Consequently, averaging is done best by taking geometric
means of the estimations. This method of averaging also
has the advantage that, despite the different ranges of
numbers used by different observers, no normalizing is
needed prior to averaging. (Stevens, 1966, p. 531)

Ernst Heinrich Weber (1795-1878) is generally
credited with being the first to observe that the incre-
ment in a stimulus that is just noticed is proportional
to the size of the stimulus. According to Boring
(1957), Weber performed many experiments verify-
ing this, and reported them in his Latin monograph,
De tactu: annotationes anatomicae et physiologicae,
which appeared in 1834. Weber noted, for example,
that, in lifting weights, we can ‘‘just perceive’’ the
difference between two weights if they differ by
about 1/40th, e.g., if the heavier is 1/40th larger
than the lighter of the two weights. The heavier the
weight, the greater must be the increment in order
for it to be noticed.

Although just perceptible increments change as a
function of stimulus size, the difference between the
logarithms of the stimulus and the just noticeably
larger stimulus will be constant. Thus, to the extent
that Weber’s law is true, the use of logarithms equal-
izes the just perceptible differences throughout the
usual stimulus range. Furthermore, these logarithms
tend to be normally distributed, and tend to have
the same standard deviation for different stimuli
throughout the stimulus range. As the opening quo-
tation from Stevens (1966) indicates, it can be argued
that in combining several independent estimates of a
judged quantity, one should find the mean of the
logarithms of the estimates, and then take the anti-
logarithm of the result, which is the geometric mean
of the observations.

Very possibly, the geometric mean of the observa-
tions provides a more stable estimate of the subjec-
tive evaluation of a stimulus than does the arithmetic
mean. However, two important questions arise
regarding the resulting statistic: (1) What is the for-
mula for finding the approximate standard error
of the geometric mean? (2) How can we calculate
the exact confidence limits for the geometric mean?
The present paper provides answers to these ques-
tions.
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APPROXIMATING THE STANDARD ERROR

Derivation
Consider a sample of n values, x,, X3, ..., X;,
.» Xp, from the random variable X, in which
x; > 0 for all population values. The sample geo-
metric mean, G, is defined as:

G = (Mx)1/», (1)

From Equation 1, the arithmetic mean of the loga-
rithms of the x values, M, may be written as:

M = (Z1nx)/n = InG. )

That is, the logarithm of the geometric mean, 1nG,
is equal to M; the arithmetic mean of the logarithms
of the sample values. It is sometimes more con-
venient to calculate G as the antilogarithm of the
mean of the logarithms:

G = f(M) = eM. 3)
We may define the parameter u as:
u = EM). )

Note that u is the population arithmetic mean, or
expected value, of the random variable 1nX.

We may define a second parameter, u., as an
explicit function of u:

He = f(u) = e ®

Note that p. is the geometric mean of the random
variable X. And when the distribution of 1nX is
symmetrical, u. will also be the population median
of the random variable X.

Any sample geometric mean, G, may be expressed
in the form

G = u + AG = f(u + AM), 6)

where AG represents the error in G (i.e., its deviation
from the parameter p.), and AM represents the error
in M (i.e., its deviation from the parameter ).

Expanding the right side of Equation 6 by Taylor’s
theorem (Scarborough, 1962, p. 505) and discarding
higher derivatives,

He + AG = f(u) + AMSE' (), )
where f'(u) indicates that the first derivative is to be

evaluated at the value u.
Subtracting Equation 5 from Equation 7,
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AG = AMS (). 8)
Notice in Equation 8 that the errors in G are approxi-

mately equal to the errors in M multiplied by a con-
stant. Therefore,

oh 2 ' (W}, ©

From Equation §,

f(w) = e = f'(W) = ye. (10
Substituting Equation 10 in Equation 9,
G = HeOM; 1)

and the standard error of the geometric mean will
be approximately equal to the square root of Equa-
tion 11,
0G = HoOM- (12)
Equation 12 refers to parameter values. In an
applied problem, one would replace these parameters
by their sample estimates,
sG = Gsyy, 13)
where G is the sample geometric mean as defined in
Equation 1, and sy is the sample estimate of the

standard error of the mean of the logarithms of
the sample values, defined as

sy = {INZ(1nx)? — (Z1nx)?)/[n3(n— DJ}/2. (14)

Accuracy of the Approximation

The approximation in Equation 11 doesn’t require
the random variable X to be lognormally distributed,
but its accuracy does depend on the degree to which
the relation between G and M is approximately lin-
ear. And the degree of linearity between G and M
is heavily dependent on the value of oy4. Let us exam-
ine this relation for the lognormal case, using realis-
tic values for gp.

If X is, in fact, lognormally distributed, then the
variance of G is exactly

o = uleM(e™M — 1) (15)

(see, e.g., Hastings & Peacock, 1975, p. 84).

From Equations 11 and 15, the percent error in
Equation 11 may be expressed as

% error = 100{[u203;)/[2eM(e°M — D]} (16)
Finally, we may express °12\4 in the form

a7

oy = 0¥/n,

where oy, is the variance of the mean of the loga-
rithms, and o? is the variance of the parent popula-
tion of logarithms from which samples of size n are
drawn.

Reasonable estimates of o> may be taken from
Luce and Mo (1965, Figure 6, p. 170), which shows
the distribution of 2,000 log x values for each of two
subjects. From these we would estimate o to fall
in the range .15 < ¢ < .35. From these estimates and
Equation 17, we would estimate oy for samples of
size n = 3 to fall in the range .0075 < of; < .0408.
Substituting these values in Equation 16, we would
estimate — .37 < % error < —5.94,

In summary, using reasonable estimates of o?, in
samples of size n = 3 we would expect the approxi-
mation in Equation 11 to lead to an underestimation
of og; of between about .5% to about 6%, when the
lognormal assumption is met.

The Lognormal Assumption

The data of Luce and Mo (1965) suggest that the
distribution of magnitude estimates may not be log-
normal. This may well be correct. But, as Galton
(1879) suggested in one of the earliest papers on this
topic, the distribution of M will approach normality
as n increases, for all parent distributions to which
the central limit theorem applies. Thus, the distribu-
tion of G will approach the lognormal form, even
though the parent distribution of X may not be log-
normal.

The approach to normality is usually quite rapid.
For example, Edwards (1968, p. 78) illustrates how
the sampling distribution of the mean of even a com-
pletely rectangular distribution approaches normality
closely in samples as small as n = 4., For unimodal
leptokurtic distributions like those in Figure 6 of
Luce and Mo (1965), the approach to normality
should be even more rapid. To check on this assump-
tion, we constructed hypothetical distributions simi-
lar to those in Figure 6 of Luce and Mo, and the
actual standard errors of the geometric means in
samples of size n = 3 were determined using Monte
Carlo methods. For both subjects, the approxima-
tion in Equation 11 was closer to the true value than
the approximation using the square root of Equa-
tion 15. Equation 11 overestimated og by 3.03% and
4.9% for subjects 11 and 8, respectively; while the
square root of Equation 15 overestimated og by
4.65% and 6.9%, respectively. The slightly greater
accuracy of Equation 11 may be due to its fewer
assumptions regarding the parent distribution; so
it may be preferable when the lognormal assumption
is questionable. In any case, both approximations
become more accurate as sample size increases.

Computational Procedures
Let x be a subject’s judgment, and assume we have
n values of x for which we wish to find the geometric



mean and its standard error. The computational pro-
cedures are as follows: (1) Find the natural logarithm,
In x, for each x value. (2) Find the mean of the
logarithms, which is simply the sum of the In x
values ‘divided by n, the number of such values.
(3) Find the antilogarithm of the mean of the loga-
rithms. This is the geometric mean. (4) Find the stan-
dard error of the mean of the logarithms. This is
given by Equation 14. (5) Multiply the standard
error of the mean of the logarithms by the geometric
mean. The resulting product is the standard error of
the geometric mean.

EXACT METHODS

The methods of the preceding sections are approxi-
mate, but they should be serviceable enough for most
purposes. However, when the assumptions of Stevens
(1966) are met, and the responses follow a log normal
distribution, then exact significance tests and exact
confidence limits can be obtained for the logarithms
of the responses. Because of the exact monotonic
relation between the mean of the logarithms and the
geometric mean of the responses, it is also possible,
under these assumptions, to make exact significance
tests on the geometric mean.

Exact Confidence Limits

Continuing the terminology of the previous sec-
tions, if the logarithms of the observations are nor-
mally distributed, then

M- p)/(spp) =t

will follow Student’s t distribution.

Exact confidence limits can then be found as fol-
lows, For the (1 —a)% confidence limits, the upper
limit is

(18)
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and the lower limit is
L=M- (SM)t(a/z; dfy- (20)

The limits in Equations 19 and 20 are for the expected
value of the mean of the logarithms. Since the geo-
metric mean is a monotonic function of the mean
of the logarithms, the upper and lower confidence
limits for the geometric mean are

Upper Limit = eV, @n

Lower Limit = el. 22)

Significance Tests

For hypotheses regarding the difference between
geometric means, it is possible to perform conven-
tional t tests on the logarithms of the observations.
Since the geometric mean is a monotonic function of
the mean of the logarithms, significance of the dif-
ference between the means of the logarithms implies
significance of the difference between geometric
means.
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