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Abstract

Dynamical systems with small noise (e.g. SDEs or continuous-time Markov chains)

allow for rare events that would not be possible without the presence of noise,

e.g. for transitions from one stable state into another. Large deviations theory

provides the means to analyze both the frequency of these transitions and the

maximum likelihood transition path. The key object for the determination of

both is the quasipotential,

V (x1, x2) = inf
T, ψ

ST (ψ),

where ST (ψ) is the action functional associated to the system, and where the

infimum is taken over all T > 0 and all paths ψ : [0, T ] → R
n leading from x1 to

x2. The numerical evaluation of V (x1, x2) however is made difficult by the fact

that in most cases of interest no minimizer exists.

Here, this issue is resolved by introducing the action Ŝ(ϕ) on the space of

curves (i.e. Ŝ is independent of the parametrization of ϕ) and proving the alter-

native geometric formulation of the quasipotential

V (x1, x2) = inf
ϕ
Ŝ(ϕ),
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where the infimum is taken over all curves ϕ : [0, 1] → R
n leading from x1 to

x2. In this formulation a minimizer exists, and we use this formulation to build

a flexible algorithm (the geometric minimum action method, gMAM) for finding

the maximum likelihood transition curve.

We demonstrate on several examples that the gMAM performs well for SDEs,

SPDEs and continuous-time Markov chains, and we show how the gMAM can

be adjusted to solve also minimization problems with endpoint constraints or

endpoint penalties.

Finally, we apply the gMAM to problems from mathematical finance (the

valuation of European options) and synthetic biology (the design of reliable stan-

dard genetic parts). For the latter, we develop a new tool to identify sources of

instability in (genetic) networks that are modelled by continuous-time Markov

chains.
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Chapter 1

Introduction and main results

Dynamical systems are often subject to random perturbations. Even when these

perturbations have small amplitude, they have a profound impact on the dynam-

ics on the appropriate time scale. For instance, perturbations result in transitions

between regions around the stable equilibrium points of the deterministic dynam-

ical system which would otherwise be impossible. Such transitions are responsible

for metastable phenomena observed in many systems: regime changes in climate,

nucleation events during phase transitions, conformation changes of biomolecules

and bistable behavior in genetic switches are just a few examples among many

others.

When the amplitude of the random perturbations is small, Freidlin-Wentzell

theory of large deviations provides the right framework to understand their effects

on the dynamics [12, 29, 31]. In a nutshell, the theory builds on the property

that events with very little likelihood, when they occur, do so with high prob-

ability by following the pathway that is least unlikely. This makes rare events
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predictable, in a way that Freidlin-Wentzell theory of large deviations quanti-

fies. The central object in the theory is an action functional whose minimum

(subject to appropriate constraints) gives an estimate of the probability and the

rate of occurrence of the rare event and whose minimizer gives the pathway of

maximum likelihood by which this event occurs. A key practical question then

becomes how to compute the minimum and minimizer of the Freidlin-Wentzell

action functional. This question is the main topic of this thesis. As we will see,

it will lead us to reformulate the action minimization problem in a form which

is convenient for numerical purposes but will also shed light on some interesting

analytical properties of the minimizer.

Before going there, however, we begin with a brief summary of the main results

of Freidlin-Wentzell theory of large deviations which we will use. For simplicity

of exposition, we focus here on the finite dimensional case, but the theory can be

extended to infinite-dimension (e.g. to situations where (1.3) below is replaced

by a stochastic partial differential equation defining a stochastic process Xε with

values in some suitable Hilbert space [5] – situations of this type are considered

in Section 4.2).

1.1 Freidlin-Wentzell theory of large deviations

As mentioned above, the central object in the theory is an action functional: if

the state space of the dynamical system is embedded in R
n and if C(0, T ) denotes

the space of all continuous functions mapping from [0, T ] into R
n, this action can
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be written as

ST (ψ) =







∫ T

0
L(ψ, ψ̇) dt if ψ ∈ C(0, T ) is absolutely continuous

and the integral converges,

+∞ otherwise,

(1.1)

where the Lagrangian L(x, y) is given by

L(x, y) = sup
θ∈Rn

(
〈y, θ〉 −H(x, θ)

)
. (1.2)

Here 〈·, ·〉 denotes the Euclidean scalar product in R
n and H(x, θ) is the Hamil-

tonian whose specific form depends on the dynamical system at hand. There

are two important classes we shall consider here. The first consists of stochas-

tic differential equations (SDEs) on R
n with drift vector b and diffusion tensor

a = σσT , i.e.

dXε(t) = b(Xε(t))dt+
√
ε σ(Xε(t))dW (t). (1.3)

Their Hamiltonian H and Lagrangian L are given by

H(x, θ) = 〈b(x), θ〉 + 1
2
〈θ, a(x)θ〉,

and L(x, y) =
〈
y − b(x), a−1(x)(y − b(x))

〉
.

(1.4)

Additional restrictions are required on b and σ in order that large deviations

theory applies, but these are usually mild – for instance it suffices that a and

b be bounded and uniformly continuous, and that a be uniformly elliptic, i.e.

∃m > 0 ∀ξ ∈ R
n : 〈ξ, a(x)ξ〉 ≥ m|ξ|2, see [12, Chapter 5.3]. The second class

3



consists of continuous-time Markov jump processes on εZn with a generator Q

defined for every test function f : R
n → R by

(Qf)(x) = ε−1

N∑

j=1

νj(x)
(
f(x+ εej) − f(x)

)
, (1.5)

where νj : R
n → (0,∞), j = 1, . . . , N , are the rates (or propensities) and ej ∈ Z

n,

j = 1, . . . , N , are the change (or stoichiometric) vectors. The Hamiltonian H for

this type of dynamics is given by

H(x, θ) =
N∑

j=1

νj(x)
(
e〈θ,ej〉 − 1

)
, (1.6)

and L must be obtained via (1.2) – in this case, no closed-form expression for L is

available in general. Here too, some mild restrictions are necessary in order that

large deviations theory applies, e.g. that νj be uniformly bounded away from 0

and +∞ [29].

Large deviations theory gives a rough estimate for the probability that the

trajectory Xε(t), t ∈ [0, T ], T < ∞, of the random dynamical system, be it the

SDE (1.3), the Markov chain with generator (1.5) or any other system whose

action functional can be expressed as (1.1), lies in a small neighborhood around

a given path ψ ∈ C(0, T ). The theory asserts that, for δ and ε sufficiently small,

Px

{

sup
0≤t≤T

|Xε(t) − ψ(t)| ≤ δ
}

≈ exp
(
−ε−1ST (ψ)

)
, (1.7)

where Px denotes the probability conditional on Xε(0) = x and we assumed that
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ψ(0) = x. The estimate (1.7) can be made precise in terms of lower and upper

bounds on the probability [12, 29, 31], but for our purpose here it suffices to

say that it implies that the probability of various events can be evaluated by

constrained minimization. For instance, if B is a Borel subset of R
n, we have

Px {Xε(T ) ∈ B} ≍ exp
(

− ε−1 inf
ψ
ST (ψ)

)

(1.8)

where f(ε) ≍ g(ε) iff log f(ε)/ log g(ε) → 1 as ε → 0, and the infimum is taken

over all paths ψ such that ψ(0) = x and ψ(T ) ∈ B. The minimizer of ST (ψ)

in (1.8) is then the path of maximum likelihood by which the process Xε ends

in B at time T starting from x.

1.2 The role of the quasipotential

In (1.8), T is finite, but large deviations theory can be generalized to make

predictions on long time intervals [0, T (ε)], with T (ε) ≍ exp(ε−1C) and C > 0.

On these time scales, the effects of the noise become ubiquitous in the sense that

it makes likely the occurence of events which are otherwise prohibited by the

deterministic dynamics. For this reason these are often the natural time scales

over which to analyze the dynamics, and these are the time scales on which we

shall mostly focus in this thesis. To understand what happens then, the relevant

object is the quasipotential

V (x1, x2) = inf
T>0

inf
ψ∈C̄

x2
x1

(0,T )
ST (ψ), (1.9)
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where C̄x2
x1

(0, T ) denotes the space of all absolutely continuous functions

f : [0, T ] → R
n such that f(0) = x1 and f(T ) = x2.

A detailed exposition of the significance of the quasipotential is beyond the

scope of this thesis and can be found in [12, Chapter 6]. Let us simply say that

the quasipotential roughly measures the difficulty to go from point x1 to point

x2, as made apparent by the following alternative definition (see [12, p. 161])

V (x1, x2) = lim
T→∞

lim
δ→0

lim
ε→0

(−ε log Px1{τδ,x2(X
ε) ≤ T}) (1.10)

where

τδ,x2(X
ε) := inf{t > 0 |Xε(t) ∈ Bδ(x2)} (1.11)

denotes the first time at which the process Xε starting from x1 enters the ball

Bδ(x2) of radius δ around x2.

The quasipotential allows one to understand the limiting dynamics over ex-

ponentially long intervals of time. For instance, suppose that the deterministic

systems associated with (1.3) and (1.5), that is

Ẋ(t) = b(X(t)) (1.12)

and, according to Kurtz’s Theorem [29],

Ẋ(t) =
N∑

j=1

νj(X(t))ej, (1.13)

respectively, possess exactly two stable equilibrium points x1 and x2, the basins of

6



attraction of which form a complete partition of R
n. Then on large time intervals

the dynamics can be reduced to that of a continuous-time Markov chain on the

state space {x1, x2} with rates

k1,2 ≍ exp
(
−ε−1V (x1, x2)

)
, k2,1 ≍ exp

(
−ε−1V (x2, x1)

)
. (1.14)

These are reminiscent of the Arrhenius law. Similar reductions are possible when

(1.12) and (1.13) possess more than two stable equilibrium points or even other

stable equilibrium structures such as limit cycles, etc. [12] The quasipotential

V (x1, x2) is also the key object to characterize the equilibrium distribution of the

process in the limit as ε → 0. For instance, if x1 is the only stable equilibrium

point of (1.12) or (1.13) and it is globally attracting, then

µε(B) ≍ exp
(

− ε−1 inf
x2∈B

V (x1, x2)
)

(1.15)

where B is any Borel set in R
n and µε is the equilibrium distribution of the pro-

cess. (1.15) is reminiscent of the Gibbs distribution associated with a potential.

Similar statements can again be made in more general situations [12].

1.3 Geometric reformulation

One of our main theoretical results is to show that the variational problem (1.9)

which defines the quasipotential admits a geometric reformulation. This refor-

mulation will prove quite useful for numerical purposes. Since it is actually quite

simple to understand in the context of SDEs, let us outline the argument in
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this case (a similar argument is given in [30] in the different context of quantum

tunneling, and it is also at the core of [12, Lemma 3.1, p. 120]). For an SDE

like (1.3), (1.9) reduces to (using (1.1) and (1.4))

V (x1, x2) = 1
2

inf
T>0

inf
ψ∈C̄

x2
x1

(0,T )

∫ T

0

|ψ̇(t) − b(ψ(t))|2a(ψ) dt, (1.16)

where, for any u, v, x ∈ R
n, 〈u, v〉a(x) = 〈u, a−1(x)v〉 is the inner product asso-

ciated with the diffusion tensor a = σσT and |u|a(x) = 〈u, u〉1/2a(x) is the associ-

ated norm. Clearly, expanding the square under the integral in (1.16) and using

|u|2a(x) + |v|2a(x) ≥ 2|u|a(x)|v|a(x), we deduce that

V (x1, x2) ≥ inf
T,ψ

∫ T

0

(
|ψ̇(t)|a(ψ)|b(ψ(t))|a(ψ) − 〈ψ̇(t), b(ψ(t))〉a(ψ)

)
dt

= 2 inf
T,ψ

∫ T

0

|ψ̇(t)|a(ψ)|b(ψ(t))|a(ψ) sin2 1
2
η(t) dt,

(1.17)

where η(t) is the angle between ψ̇(t) and b(ψ(t)) in the metric induced by

〈·, ·〉a(ψ(t)). On the other hand, there is a matching upper bound since equality

between the integrals at the left-hand sides of (1.16) and (1.17) is achieved in the

special case when ψ is constrained so that |ψ̇(t)| = |b(ψ(t))|. Thus, the inequal-

ity sign in (1.17) can be replaced by an equality sign (this conclusion is proven

rigourously in Chapter 2). Now, the key observation is that the integral in (1.17)

has become independent of the particular way in which ψ is parametrized by

time. In other words, (1.17) offers a geometric expression for the quasipotential

as

V (x1, x2) = 2 inf
γ

∫

γ

|b|a sin2 1
2
η ds, (1.18)

8



where the integral at the right-hand side is the line integral along the curve γ

(ds being the arclength element along this curve), η is angle between γ and b at

location s along the curve, and the infimum is taken over all curves γ connecting

x1 to x2.

As shown below, (1.18) can be generalized to dynamical systems with action

functional (1.1) which are not SDEs (like e.g. Markov jump processes with gener-

ator (1.5)). In these cases too, the key idea is to reformulate (1.9) geometrically

in terms of curves γ = {ϕ(α) |α ∈ [0, 1]}, where ϕ : [0, 1] → R
n is an arbitrary

parametrization of the curve γ. Our main result in this direction is that the

quasipotential (1.9) can be expressed as

V (x1, x2) = inf
ϕ∈C̄

x2
x1

(0,1)
Ŝ(ϕ), with Ŝ(ϕ) = sup

ϑ:[0,1]→R
n

H(ϕ,ϑ)≡0

∫ 1

0

〈ϕ′, ϑ〉 dα (1.19)

(see Proposition 1 below for a precise statement and other representations of

Ŝ(ϕ)).

The action Ŝ(ϕ) in (1.19) is parametrization-free, i.e. it is left invariant under

reparametrization of ϕ, so it can be interpreted as an action on the space of curves.

Compared to (1.9), the minimizer of (1.19) over all ϕ exists in more general

circumstances (since the issue of infinite T does not exist in this formulation),

and this makes (1.19) also more suitable for computations, as explained next.

The curve γ⋆ associated with the minimizer ϕ⋆ of (1.19) can then be interpreted

as the curve of maximum likelihood by which transitions from x1 to x2 occur (see

Proposition 2).
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1.4 Numerical aspects

One of our main points of focus in this thesis is the numerical counterpart to

Freidlin-Wentzell theory, i.e. how can one efficiently compute the quasipoten-

tial V (x1, x2) in (1.19) and the corresponding the minimizer ϕ⋆ (the maximum

likelihood transition curve)?

The Shooting method. Perhaps the simplest way to minimize the Freidlin-

Wentzel action is to use a shooting method (see e.g. [19]) to solve as an initial

value problem the boundary value problem for the Hamilton equation associated

with the minimization problem in (1.8) or (1.9). Working with the Hamiltonian

is an advantage since it is typically known explicitly. On the other hand, in

practice this approach quickly becomes inefficient when the dimension of the

system increases, and it can be inapplicable in infinite dimension. In addition, the

shooting method is better suited for the fixed T problem and leads to additional

difficulties when T is optimized upon as well.

The original MAM and the string method. In [8], a numerical technique,

termed minimum action method (MAM), was introduced for situations where

the minimization of ST (ψ) is sought over a fixed time interval of length T . The

MAM is a relaxation method and is a generalization of previous techniques, such

as the one used in [25]. The MAM, however, is not very well-suited for the

double minimization problem over ψ and T required to compute the quasipoten-

tial V (x1, x2) defined in (1.9). The main reason is that the functional may have

no minimizer because the infimum is only “achieved” when T → ∞. (In fact,
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this will always happen in the typical case in which the prescribed start and end

points x1 and x2 are critical points of the deterministic dynamics (1.12) or (1.13),

see Lemma 3 (ii) below.)

In the special case of an SDE (1.3) in which b is minus the gradient of some po-

tential, b = −∇U , and σ is the identity, the string method (introduced in [7] and

generalizing the nudged elastic band method introduced in [18]) circumvents this

problem by taking advantage of the fact that for such systems transition paths are

always parallel to the drift b = −∇U . This allows for a geometric reformulation

of the problem and leads to a numerical algorithm in which a discretized curve

(or string) is evolved by iterating over the following two step procedure: in the

first step the discretization points along the curve are evolved independently in

the direction of the flow b = −∇U ; in the second step the curve is reparametrized

by redistributing the discretization points at equally spaced positions along the

curve (an idea which we will borrow in our approach). Unfortunately, for a generic

SDE, transition paths are generally not parallel to the drift, and therefore the

string method is not applicable.

The gMAM. The geometric minimum action method (gMAM) presented in

this thesis merges and further develops ideas from both the original MAM and

the string method. It also has the advantage that it is formulated in terms of the

Hamiltonian H(x, θ). The gMAM resolves the problem of infinite T analytically,

leading to the equivalent minimization problem (1.19), which can then be per-

formed in various ways. Here we will use what is, in essence, a pre-conditioned

steepest descent algorithm (that is, it is based on a semi-implicit spatio-temporal
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discretization of the Euler-Lagrange equation for (1.19)). The only nonstandard

aspects of the procedure are that (i) it requires performing first the maximization

over ϑ, which we do in an inner loop using a quadratically convergent version of

a Newton-Raphson-like algorithm, and (ii) it requires to control the parametriza-

tion of the curve ϕ since the latter is non-unique. Here we opt for parametrizing

ϕ by normalized arclength (as it was done in the string method), meaning that

ϕ satisfies |ϕ′| = cst a.e. on [0, 1].

The gMAM can be applied to generic SDEs, continuous-time Markov chains,

and other types of dynamics whose Hamiltonians are known analytically and ful-

fill the Assumptions 1–3 below. The gMAM can also be applied to SPDEs, as

illustrated here, and the underlying strategy may even apply to the minimiza-

tion of integrals that do not directly fit into the framework of this thesis (see

Remark 4).

1.5 Organization, notations and assumptions

The remainder of this thesis, the core results of which will be published in [16],

is organized as follows.

In Chapter 2 we first establish and discuss the theoretical results mentioned

above, and we also show how to recover the optimal time parametrization once

the minimizing curve γ⋆ is found.

In Chapter 3, we propose and discuss the gMAM algorithm for computing

V (x1, x2) and the maximum likelihood transition curve γ⋆.

In Chapter 4 we illustrate these algorithms on several examples: in Section 4.1
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we consider an example with bistable behavior first analyzed in [22] in the context

of an SDE; in Section 4.2 we consider two SPDE generalizations of this example;

and in Section 4.3 we consider a Markov chain used in [1, 28] which arises in the

context of the genetic toggle switch.

In Chapter 5 we provide the numerical tools necessary to handle action min-

imization with either constraints or penalties associated to the location of the

endpoint of the curve (Sections 5.1 and 5.2); then we discuss one SDE example

to benchmark these methods (Section 5.3), and another example illustrating their

use in the context of a problem from mathematical finance (Section 5.4).

In Chapter 6 we give an introduction to the field of synthetic biology (Sec-

tion 6.1), with focus on possible uses of large deviations theory in the design

process of artificial genetic networks (Section 6.2). We then use the gMAM to

investigate a more elaborate six-dimensional version of the genetic switch model

from Section 4.3, and in this context we develop a tool to detect the sources of

instabilities in networks (Sections 6.3 and 6.4).

Finally, we draw some conclusions in Chapter 7.

For the reader’s convenience, our most technical calculations and proofs are

deferred to several appendices which we recommend to skip on first reading. We

do however recommend to read the proof of Proposition 1 in Section 2.3 since it

provides valuable insights into the workings of our method. Note also that the

Appendices A-D are sorted by their order of dependence and should thus be read

in the order in which they appear.
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Notations and assumptions. Throughout this thesis we make the following

assumptions on the HamiltonianH(x, θ) : D×R
n → R in (1.2), where the domain

D is an open connected subset of R
n (in the introduction we used D = R

n for

simplicity):

Assumption 1. For every x ∈ D we have H(x, 0) ≤ 0.

Assumption 2. H(·, ·) is twice continuously differentiable.

Assumption 3. Hθθ(x, ·) is uniformly elliptic on compact sets, i.e. there exists

a function m(x) such that for ∀ξ, θ ∈ R
n : 〈ξ,Hθθ(x, θ)ξ〉 ≥ m(x)|ξ|2, and for

every compact set K ⊂ D we have mK := infx∈Km(x) > 0.

Remark 1. Equivalently, one can rephrase these assumptions in terms of the

Lagrangian L(x, y) defined in (1.2) by requiring that L(x, y) ≥ 0 for every x ∈ D

and y ∈ R
n, and that Assumptions 2 and 3 hold with H replaced by L.

For every T > 0 we denote by C(0, T ) the space of all continuous functions

f : [0, T ] → D equipped with the supremum norm |f |[0,T ] := supt∈[0,T ] |f(t)|, and

by C̄(0, T ) the subspace of all such functions which are absolutely continuous.

For every x1, x2 ∈ D we further define the subspaces

C̄x1(0, T ) = {f ∈ C̄(0, T ) | f(0) = x1},

C̄x2
x1

(0, T ) = {f ∈ C̄(0, T ) | f(0) = x1, f(T ) = x2}.

For every function f ∈ C̄(0, T ) we denote its graph as

γ(f) := {f(t) | t ∈ [0, T ]}.
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We say that two functions f1 ∈ C̄(0, T1) and f2 ∈ C̄(0, T2) traverse the same

curve and write

γ(f1) = γ(f2)

if there exists a (necessarily unique) curve ϕ ∈ C̄(0, 1) with |ϕ′| ≡ cst a.e. and

two absolutely continuous rescalings α1 : [0, T1] → [0, 1] and α2 : [0, T2] → [0, 1]

with α′
1, α

′
2 ≥ 0 a.e. such that

ϕ(α1(t)) = f1(t) for every t ∈ [0, T1]

and ϕ(α2(t)) = f2(t) for every t ∈ [0, T2].

We denote the space of all functions g traversing the curve of a given function

f ∈ C̄(0, Tf ) within a fixed time T by

C̄f (0, T ) := {g ∈ C̄(0, T ) | γ(g) = γ(f)}.

To express the distance between two functions f1 ∈ C̄(0, T1) and f2 ∈ C̄(0, T2), we

either use the pointwise distance |f1−f2|[0,T1] (if T1 = T2), or for more geometrical

statements we use the Fréchet distance defined as

ρ(f1, f2) = inf
t1:[0,1]→[0,T1]
t2:[0,1]→[0,T2]

∣
∣f1 ◦ t1 − f2 ◦ t2

∣
∣
[0,1]

, (1.20)

where the infimum is taken over all weakly increasing continuous surjective re-

parametrizations t1 and t2 only. (One can quickly check that ρ(f1, f2) = 0 if

γ(f1) = γ(f2).)
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We use subscripts to denote differentiation, i.e. Hθ(x, θ) = ∂H/∂θ, etc., and

regard all vectors (including gradients) as column vectors.

We introduce the following notation for the Lagrangian:

L(x, y) = sup
θ∈Rn

(
〈y, θ〉 −H(x, θ)

)
(1.21)

= 〈y, θ⋆(x, y)〉 −H(x, θ⋆(x, y)), (1.22)

where the maximizer θ⋆(x, y) is implicitly (and due to Assumption 3 uniquely)

defined by

Hθ(x, θ
⋆(x, y)) = y. (1.23)

Finally, we call a point x ∈ D a critical point if

H(x, 0) = 0 and Hθ(x, 0) = 0. (1.24)

Remark 2. Note that in the examples treated in this thesis, i.e. for the Hamil-

tonians (1.4) and (1.6), we actually have equality in Assumption 1 so that the

requirement H(x, 0) = 0 in (1.24) is redundant. However, the weaker Assumption

1 allows for a broader class of applications, as we will show in the conclusions

(Chapter 7). In fact, in the example in Chapter 7 it is the first condition in

(1.24) that is the decisive one, whereas the second one is fulfilled by every point

x ∈ D. Our motivation to define critical points in the general case via (1.24) will

become clear later in Lemmas 1 and 3 (see Remark 5).

16



Chapter 2

Theoretical background

2.1 A large deviations action on the space of

curves

We collect our main theoretical results regarding the quasipotential V (x1, x2)

defined in (1.9), with ST given by (1.1), in the following proposition whose proof

will be carried out in Section 2.3.

Proposition 1. (i) Under the Assumptions 1-3 the following two representations

of the quasipotential are equivalent:

V (x1, x2) = inf
T>0

inf
ψ∈C̄

x2
x1

(0,T )
ST (ψ) and (2.1)

V (x1, x2) = inf
ϕ∈C̄

x2
x1

(0,1)
Ŝ(ϕ), (2.2)

where for every ϕ ∈ C̄(0, 1) the action Ŝ(ϕ) is given by any of the following four
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equivalent expressions:

Ŝ(ϕ) = inf
T>0

inf
ψ∈C̄ϕ(0,T )

ST (ψ), (2.3)

Ŝ(ϕ) = sup
ϑ:[0,1]→R

n

H(ϕ,ϑ)≡0

∫ 1

0

〈ϕ′, ϑ〉 dα, (2.4)

Ŝ(ϕ) =

∫ 1

0

〈ϕ′, ϑ̂(ϕ, ϕ′)〉 dα, (2.5)

Ŝ(ϕ) =

∫ 1

0

L(ϕ, λϕ′)/λ dα, λ = λ(ϕ, ϕ′). (2.6)

Here L(x, y) is the Lagrangian associated with the Hamiltonian H(x, θ) via (1.21),

and the functions ϑ̂(x, y) and λ(x, y) are implicitly defined for all x ∈ D and

y ∈ R
n \ {0} as the unique solution (ϑ̂, λ) ∈ R

n × [0,∞) of the system

H(x, ϑ̂) = 0, Hθ(x, ϑ̂) = λy, λ ≥ 0. (2.7)

When ϕ′ = 0 or λ(ϕ, ϕ′) = 0, the integrands in (2.5) and (2.6) are interpreted

as 0.

(ii) The functional Ŝ(ϕ) is invariant under reparametrization of ϕ, in the

sense that Ŝ(ϕ1) = Ŝ(ϕ2) if γ(ϕ1) = γ(ϕ2). Thus the infimum in (2.2) may be

taken subject to some additional constraint on the parametrization of ϕ, e.g. that

|ϕ′| = cst almost everywhere.

(iii) Assume that the sequence
(
(Tk, ψk)

)

k∈N
, with Tk > 0 and ψk ∈ C̄x2

x1
(0, Tk)

for every k ∈ N, is a minimizing sequence of (2.1) and that the lengths of the
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curves of ψk are uniformly bounded, i.e.

lim
k→∞

STk
(ψk) = V (x1, x2) and sup

k∈N

∫ Tk

0

|ψ̇k| dt <∞. (2.8)

Then the infimum in (2.2) has a minimizer ϕ⋆, and for some subsequence (ψkl
)l∈N

we have that

lim
l→∞

ρ(ψkl
, ϕ⋆) = 0, (2.9)

where ρ denotes the Fréchet distance. If ϕ⋆ is unique up to reparametrization

(i.e. if γ(ϕ̃) = γ(ϕ⋆) for every minimizer ϕ̃ of Ŝ) then the full sequence (ψk)k∈N

converges to ϕ⋆ in the Fréchet distance.

At the end of this section we specialize the results in this proposition to the

case of diffusions and derive expression (1.18). The probabilistic interpretation

of Proposition 1 is discussed in Section 2.2.

We comment on the meaning of the various quantities entering Proposition 1,

starting with the action Ŝ(ϕ). Ŝ(ϕ) can be viewed as the rate function on the

space of curves (constructed in a way reminiscent of the contraction principle of

large deviations theory, see (2.3)). Indeed, Ŝ(ϕ) is invariant under reparametriza-

tion of ϕ (this is part (ii) of Proposition 1 which is a consequence of (2.3)), and

one should think of the integrals (2.4)-(2.6) as line integrals such as

Ŝ(ϕ) =

∫

γ(ϕ)

〈ϑ̂(z, τ̂z), dz〉 =

∫

γ(ϕ)

L(z, τ̂zλ)/λ dz, λ = λ(z, τ̂z), (2.10)

where τ̂z denotes the unit tangent vector along the curve. Note that this invari-

ance also means that in order to make the minimizer ϕ⋆ (as opposed to γ(ϕ⋆))
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unique, one has to decide for a constraint on its parametrization, such as |ϕ′| = cst

almost everywhere.

Consider now the other two important quantities entering Proposition 1,

ϑ̂(x, y) and λ(x, y). The meaning of the system of equations (2.7) which de-

fines the functions ϑ̂(x, y) and λ(x, y) can be understood as follows: ϑ̂(x, y) is

the extremal point of the set {θ ∈ R
n |H(x, θ) ≤ 0} in the direction y (see the

illustration in Figure 2.1); therefore Hθ(x, ϑ̂) is parallel to y, and λ(x, y) is the

factor such that Hθ(x, ϑ̂) = λy. One can quickly check the properties

ϑ̂(x, cy) = ϑ̂(x, y) and cλ(x, cy) = λ(x, y) for ∀c > 0, (2.11)

which are used to show that the representations (2.5) and (2.6) of Ŝ are in-

variant under reparametrization of ϕ (Proposition 1 (ii), see also Lemma 10 in

Appendix A).

Two further interpretations of λ are: (i) λ(x, y)y is the optimal speed for

moving into a given direction y starting from point x (this will become clear in

the proof of Proposition 1), and (ii) λ is the Lagrange multiplier used to enforce

the constraint in (2.4). λ can also be used as an indicator that tells us where the

curve passes a critical point, as part (i) of the following Lemma shows.

Lemma 1. (i) Let y 6= 0. Then x is a critical point if and only if λ(x, y) = 0.

(ii) If x is a critical point and y 6= 0 then ϑ̂(x, y) = 0.

(iii) If x is a critical point then for ∀y ∈ R
n : limλ→0+ L(x, λy)/λ = 0.
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Figure 2.1: Illustration of the system of equations (2.7) for fixed x and y, with h(θ) :=
H(x, θ): ϑ̂ is the extremal point of {θ ∈ R

n |h(θ) ≤ 0} in direction y, λ is then the
value such that hθ(ϑ̂) = λy.

(iv) Thus the local action of Ŝ, given by any of the integrands in (2.4)–(2.6),

vanishes as ϕ passes a critical point.

The proof of Lemma 1 is carried out in Appendix B. Note also that parts (i)

and (iii) explain why we have to interpret the integrand in (2.6) as 0 if λ = 0.

The case of diffusion processes. If we specialize to diffusion processes whose

dynamics is given by (1.3), L(x, y) is available explicitly (see (1.4)), and this

allows one to give a closed form formula also for Ŝ(ϕ). A quick calculation shows

that in this case

ϑ̂(x, y) = a−1(x)
( |b(x)|a

|y|a
y − b(x)

)

(2.12)

and λ(x, y) =
|b(x)|a
|y|a

. (2.13)
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As a result, Ŝ(ϕ) as given by (2.5) and (2.6) reduces to

Ŝ(ϕ) =

∫ 1

0

(
|ϕ′|a|b(ϕ)|a − 〈ϕ′, b(ϕ)〉a

)
dα (SDE), (2.14)

consistent with (1.18).

2.2 Probabilistic interpretation

The minimizing curve γ(ϕ⋆) in Proposition 1 (iii) has also a probabilistic interpre-

tation: Let {(Xε
t )t≥0, ε > 0} be a family of processes that for every fixed T > 0

in the limit ε → 0 satisfy a large deviations principle with respect to the metric

induced by | · |[0,T ], and let the associated rate function ST be of the form (1.1),

where the Hamiltonian H fulfills the Assumptions 1-3. Then the statement in

Proposition 2 holds.

Put simply, Proposition 2 says the following (under certain technical assump-

tions): Given that a transition from x1 to a small ball around x2 occurs before

some finite time T close to some T ⋆ = T ⋆(ϕ⋆), the probability that the process fol-

lows γ(ϕ⋆) throughout this transition goes to 1 as ε→ 0. (T ⋆ can be interpreted

as the “optimal transition time”, see Section 2.4.)

The precise statement is as follows:

Proposition 2. Assume that the action Ŝ has a minimizer ϕ⋆ among all curves

leading from x1 ∈ D to x2 ∈ D, and that this minimizer is unique up to

reparametrization. Define T ⋆ :=
∫ 1

0
1/λ(ϕ⋆, ϕ⋆′) dα ∈ (0,∞], and for any δ > 0

and any path ψ : [0, T ] → D, T > 0, let τδ(ψ) denote the first time the path ψ
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hits the closed ball Bδ(x2).

Further assume that for all δ, T > 0 sufficiently close to 0 and T ⋆, respectively,

there exists a unique path ψδ,T ∈ C̄x1(0, T ) such that

ST (ψδ,T ) = inf
ψ∈C̄x1 (0,T )
τδ(ψ)≤T

ST (ψ),

and such that the length and the endpoint of this path fulfills

lim sup
δ→0+
T→T ⋆

∫ T

0

|ψ̇δ,T | dt <∞ and lim
δ→0+
T→T ⋆

ψδ,T (T ) = x2. (2.15)

Then for every η > 0 we have

lim
δ→0+
T→T ⋆

lim inf
ε→0

P

(

ρ
(
Xε|[0,τδ(Xε)], ϕ

⋆
)
≤ η

∣
∣
∣ τδ(X

ε) ≤ T
)

= 1, (2.16)

where ρ is the Fréchet distance. Equation (2.16) remains true if Xε|[0,τδ(Xε)] is

replaced by Xε|[0,T ].

Remark 3. (i) The form of Equation (2.16) was chosen to resemble the for-

mula (1.10). We actually prove a stronger statement, namely that for δ and T

sufficiently close to 0 and T ⋆ the limit in (2.16) as ε→ 0 is already equal to 1.

(ii) The second condition in (2.15) can be shown to hold whenever x1 is a

critical point, or under other technical assumptions (such as bounded lengths of

the paths ψδ,T in phase space if T ⋆ is finite). We decided not to go any further

here in order to keep the length of the proof within reasonable limits.

Sketch of Proof. The proof of this proposition relies on three rather technical
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statements (Steps 1-3 below) whose proofs can be found in Appendix D. Note

that the proof of Step 2 will require techniques that we will only develop in the

proof of Proposition 1 in Section 2.3.

First we would like to estimate the probability in (2.16) below by the same

expression with Xε|[0,τδ(Xε)] replaced by Xε|[0,T ] (and then show that the result-

ing expression still converges to 1). Since replacing Xε|[0,τδ(Xε)] by Xε|[0,T ] can

potentially decrease the Fréchet distance and thus increase the probability, we

have to decrease η at the same time. This is done in

Step 1: There exists an η̃ > 0 such that for small enough δ

ρ(Xε|[0,T ], ϕ
⋆) ≤ η̃ and τδ(X

ε) ≤ T ⇒ ρ(Xε|[0,τδ(Xε)], ϕ
⋆) ≤ η. (2.17)

We then want to replace ϕ⋆ by ψδ,T since we expect Xε to be close to ψδ,T (even

pointwise). This can be achieved by showing

Step 2: lim(T,δ)→(T ⋆,0+) ρ(ψδ,T , ϕ
⋆) = 0.

Putting both steps together, we find that if δ is small enough so that (2.17) is

true, and if δ and T are also close enough to 0 and T ⋆ so that ρ(ψδ,T , ϕ
⋆) ≤ 1

2
η̃,

then we have

1 ≥ P
(
ρ(Xε|[0,τδ(Xε)], ϕ

⋆) ≤ η | τδ(Xε) ≤ T
)

≥ P
(
ρ(Xε|[0,T ], ϕ

⋆) ≤ η̃ | τδ(Xε) ≤ T
)

≥ P
(
ρ(Xε|[0,T ], ψδ,T ) ≤ 1

2
η̃ | τδ(Xε) ≤ T

)

≥ P
(
|Xε − ψδ,T |[0,T ] ≤ 1

2
η̃ | τδ(Xε) ≤ T

)
. (2.18)
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Now suffices to show

Step 3: For all T, δ > 0 the set of paths {ψ ∈ C̄x1(0, T ) | τδ(ψ) ≤ T} is regular

with respect to ST

(i.e. the minimal action on the closure of that set is the same as the one on its

interior, see [12, p. 85]). Then, since ψδ,T is the unique minimizer of the action

ST on the set of paths {ψ ∈ C̄x1(0, T ) | τδ(ψ) ≤ T}, by [12, p. 86, Thm. 3.4] the

lower bound in (2.18) converges to 1 as ε→ 0, terminating the proof.

2.3 Lower semi-continuity of Ŝ, proof of Propo-

sition 1

The proof of part (iii) of Proposition 1 relies on parts (ii) and (iii) of the following

lemma which states some important technical properties of the action Ŝ(ϕ). The

proof of this lemma will be carried out in Appendix C.

Lemma 2. (i) For every M > 0 and every compact set X ⊂ D, the set

CX,M :=
{

ϕ ∈ C̄(0, 1)
∣
∣ ϕ(0) ∈ X, |ϕ′| ≤M a.e.

}

(2.19)

is a compact subset of C(0, 1).

(ii) For every x1, x2 ∈ D and every M > 0, the set

Cx1,x2

M :=
{

ϕ ∈ C̄x2
x1

(0, 1)
∣
∣ |ϕ′| ≤M a.e.

}

(2.20)
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is a compact subset of C(0, 1).

(iii) For every M > 0 and every compact X ⊂ D, the functional Ŝ : CX,M →

R defined by (2.4) – (2.6) is lower semicontinuous with respect to uniform con-

vergence.

(iv) Ŝ attains its infimum on every non-empty closed subset of CX,M . Specif-

ically, it attains its infimum on the sets Cx1,x2

M .

We can now begin with the proof of Proposition 1 which generalizes the heuris-

tic argument given in Section 1.3 for the case of diffusions.

Proof of Proposition 1. (i) and (ii): The main idea of the proof is to rewrite

the quasipotential as

V (x1, x2) = inf
T>0

inf
ψ∈C̄

x2
x1

(0,T )
ST (ψ)

= inf
T>0

inf
ϕ∈C̄

x2
x1

(0,1)
inf

ψ∈C̄ϕ(0,T )
ST (ψ)

= inf
ϕ∈C̄

x2
x1

(0,1)

(

inf
T>0

inf
ψ∈C̄ϕ(0,T )

ST (ψ)
)

=: inf
ϕ∈C̄

x2
x1

(0,1)
Ŝ(ϕ) (2.21)

where Ŝ(ϕ) is defined by (2.3). Note that it is clear from the definition (2.3)

that Ŝ(ϕ) actually only depends on the curve that ϕ traverses and not on the

specific parametrization of ϕ (which already proves part (ii)). Therefore, to

prove that Ŝ(ϕ) as defined in (2.3) can also be written in the forms (2.4)-(2.6),

it is enough to restrict ourselves to all those functions ϕ ∈ C̄x2
x1

(0, 1) with the

additional property that |ϕ′| ≡ cst almost everywhere, and then to show that the

representations (2.4)-(2.6) are invariant under reparametrization as well.
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To do so, let ϕ ∈ C̄x2
x1

(0, 1) be given with |ϕ′| ≡ cst almost everywhere. To get

a lower bound for Ŝ(ϕ), we estimate, for any T > 0 and any path ψ ∈ C̄ϕ(0, T ):

ST (ψ) =

∫ T

0

L(ψ, ψ̇) dt =

∫ T

0

sup
θ∈Rn

(
〈ψ̇, θ〉 −H(ψ, θ)

)
dt

≥
∫ T

0

sup
θ∈R

n

H(ψ,θ)=0

(
〈ψ̇, θ〉 −H(ψ, θ)

)
dt =

∫ T

0

sup
θ∈R

n

H(ψ,θ)=0

〈ψ̇, θ〉 dt

=

∫ 1

0

sup
θ∈R

n

H(ϕ,θ)=0

〈ϕ′, θ〉 dα,

where in the last step we applied Lemma 10 in Appendix A, with ℓ(x, y) :=

supθ∈Rn, H(x,θ)=0 〈y, θ〉. Since the last expression only depends on ϕ, this shows

that the representations (2.4) and (2.5) are lower bounds for Ŝ(ϕ):

Ŝ(ϕ) = inf
T>0

inf
ψ∈C̄ϕ(0,T )

ST (ψ)

≥
∫ 1

0

sup
θ∈R

n

H(ψ,θ)=0

〈ϕ′, θ〉 dα ≥
∫ 1

0

〈ϕ′, ϑ̂(ϕ, ϕ′)〉 dα, (2.22)

where we used the first equation in (2.7). To obtain an upper bound on Ŝ(ϕ),

define a minimizing sequence
(
(Tk, ψk)

)

k∈N
as follows. For every k ∈ N let

λk(α) := max
{
λ(ϕ(α), ϕ′(α)), 1

k

}
, α ∈ [0, 1],

Gk(α) :=

∫ α

0

1/λk da, α ∈ [0, 1],

Tk := Gk(1),

ψk(t) := ϕ(G−1
k (t)), t ∈ [0, Tk]. (2.23)
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Since for the rescaling α(t) := G−1
k (t) we have α′(t) = λk(α(t)) and thus 1

k
≤

α′(t) ≤ |λk|∞ < ∞ for every t ∈ [0, Tk] (see Lemma 12 in Appendix A), α(t) is

absolutely continuous. Therefore we see from (2.23) that γ(ψk) = γ(ϕ), i.e. ψk ∈

C̄ϕ(0, Tk).

To compute STk
(ψk), we perform the change of variables t = t(α) = Gk(α),

so that dt = dα/λk, ϕ(α) = ψk(Gk(α)) and ϕ′(α) = ψ̇k(t)G
′
k(α) = ψ̇k(t)/λk(α),

and we find that

STk
(ψk) =

∫ Tk

0

L(ψk, ψ̇k) dt =

∫ 1

0

L(ϕ, ϕ′λk)/λk dα. (2.24)

Since the integrand on the right-hand side is uniformly bounded in k (see again

Lemma 12), to compute the limit of (2.24) as k → ∞, we can exchange limit and

integral and obtain the upper bound

Ŝ(ϕ) = inf
T>0

inf
ψ∈C̄ϕ(0,T )

ST (ψ)

≤ lim
k→∞

STk
(ψk) =

∫ 1

0

L(ϕ, ϕ′λ)/λ dα, λ = λ(ϕ, ϕ′), (2.25)

which is representation (2.6), where we interpret L(ϕ, ϕ′λ)/λ = 0 if λ = 0, due

to Lemma 1 (i) and (iii).

To show that the integrands of the lower bound in (2.22) and the upper bound

in (2.25) are the same, consider first the case λ > 0. The maximizing θ in the

expression

L(ϕ, ϕ′λ)/λ = sup
θ∈Rn

(
〈ϕ′, θ〉 −H(ϕ, θ)/λ

)
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has to fulfill the first- and second-order conditions that

ϕ′ −Hθ(ϕ, θ)/λ = 0 and that −Hθθ(ϕ, θ)/λ is negative definite.

By Assumption 3 and the second equation in (2.7), both conditions are fulfilled

by θ = ϑ̂(ϕ, ϕ′), so that in fact

L(ϕ, ϕ′λ)/λ = 〈ϕ′, ϑ̂〉 −H(ϕ, ϑ̂)/λ = 〈ϕ′, ϑ̂〉, ϑ̂ = ϑ̂(ϕ, ϕ′), (2.26)

using also the first relation in (2.7). When λ = 0, Equation (2.26) holds as

well because then ϑ̂ = 0 due to Lemma 1 (i) and (ii) and since we agreed on

interpreting the left-hand side of (2.26) as zero if λ = 0.

Therefore the lower bound in (2.22) and the upper bound in (2.25) are the

same, and thus all four representations (2.3)-(2.6) of Ŝ(ϕ) are equal if |ϕ′| ≡ cst

almost everywhere.

To end the proof of part (i), it now only remains to show that the expressions

(2.4)-(2.6) are invariant under reparametrization, i.e. for Ŝ given by any of the

representations (2.4)-(2.6) and for any ϕ̃ ∈ C̄ϕ(0, 1) we have Ŝ(ϕ̃) = Ŝ(ϕ). But

this is a direct consequence of Lemma 10, the observations (2.11), and our agree-

ment in the statement of Proposition 1 to interpret the integrands in (2.5) and

(2.6) as zero if ϕ′ = 0.

The proof of part (iii) of Proposition 1 follows a standard argument based on

the lower-semicontinuity of the functional Ŝ and the compactness of an appro-

priate set of functions, both of which were established in parts (ii) and (iii) of

29



Lemma 2.

Let a sequence
(
(Tk, ψk)

)
be given with the properties stated in Proposi-

tion 1 (iii), and define the functions ϕk ∈ C̄ψk
(0, 1) such that they traverse the

curves γ(ψk) at normalized unit speed, i.e. |ϕ′
k| ≡ Lk a.e., where Lk is the length

of the curve ψk, as follows:

Let αk : [0, Tk] → [0, 1] be defined as αk(t) := 1
Lk

∫ t

0
|ψ̇k(τ)| dτ , where Lk =

∫ Tk

0
|ψ̇k(τ)| dτ , define its “inverse” as α−1

k (α) := inf{t ∈ [0, 1] |αk(t) ≥ α}, and set

ϕk := ψk◦α−1
k . Then we have ϕk(αk(t)) = ψk(t) for all t ∈ [0, Tk], and both αk and

ϕk are absolutely continuous, with α′
k = |ψ̇k|/Lk and |ϕ′| =

(
|ψ̇k|/α′

k

)
◦α−1

k ≡ Lk.

Therefore we have γ(ϕk) = γ(ψk), i.e. ψk ∈ C̄ϕk
(0, Tk).

Using (2.3), this gives us the estimate

inf
ϕ∈C̄

x2
x1

(0,1)
Ŝ(ϕ) ≤ Ŝ(ϕk) = inf

T>0
inf

ψ∈C̄ϕk
(0,T )

ST (ψ) ≤ STk
(ψk)

for every k ∈ N. In the limit as k → ∞, the right-hand side converges to the

left-hand side, and it follows that

lim
k→∞

Ŝ(ϕk) = inf
ϕ∈C̄

x2
x1

(0,1)
Ŝ(ϕ). (2.27)

Since M := supk |ϕ′
k| = supk Lk < ∞, the sequence (ϕk)k∈N lies in the com-

pact set Cx1,x2

M defined in Lemma 2 (ii), and thus there exists a subsequence

(ϕkl
) that converges uniformly to some limiting function ϕ⋆ ∈ Cx1,x2

M . Now since
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Cx1,x2

M ⊂ C{x1},M , by Lemma 2 (iii) and Equation (2.27) we have

Ŝ(ϕ⋆) ≤ lim inf
l→∞

Ŝ(ϕkl
) = inf

ϕ∈C̄
x2
x1

(0,1)
Ŝ(ϕ)

and thus Ŝ(ϕ⋆) = infϕ Ŝ(ϕ), i.e. ϕ⋆ is a minimizer of Ŝ.

Since the functions ϕkl
are time-rescaled versions of the functions ψkl

and

converge uniformly to ϕ⋆, this implies that

ρ(ψkl
, ϕ⋆) = ρ(ϕkl

, ϕ⋆) ≤ |ϕkl
− ϕ⋆|[0,1] → 0 as l → ∞,

proving the first statement of part (iii).

To prove also the second statement, assume now that the minimizer of Ŝ is

unique up to reparametrization, let ϕ⋆ be the limit of some converging subse-

quence of (ψk) from the first part of the proof, and suppose that ρ(ψk, ϕ
⋆) 9 0

as k → ∞. Then we could construct a subsequence (ψkl
) such that

inf
l∈N

ρ(ψkl
, ϕ⋆) > 0. (2.28)

But by the same arguments as above, this subsequence would have a subsubse-

quence (ψklm
) that converges in the Fréchet metric to some limit ϕ̃ that is a min-

imizer of Ŝ. Now the uniqueness of the minimizer implies that γ(ϕ̃) = γ(ϕ⋆), and

thus we have ρ(ψklm
, ϕ⋆) = ρ(ψklm

, ϕ̃) → 0 as m→ ∞, contradicting (2.28).

Remark 4. The formulas for Ŝ, ϑ̂ and λ can also be derived as follows: Every

ψ ∈ C̄x2
x1

(0, T ) can be written as ψ = ϕ ◦ G−1, where ϕ ∈ C̄x2
x1

(0, 1) follows the
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path of ψ at constant speed, and G : [0, 1] → [0, T ] is an appropriately chosen

time-rescaling. Minimizing over all ψ and T is therefore equivalent to minimizing

over all functions ϕ and G. But after a change of variables we see that

ST (ψ) =

∫ T

0

L(ψ, ψ̇) dt =

∫ 1

0

L(ϕ, ϕ′/g)g dα,

where g = G′ : [0, 1] → (0,∞). The second expression can now easily be mini-

mized over all g (and thus over all G) by setting the derivative of the integrand

equal to zero, which leads us directly to the representations (2.5) and (2.6) and

the equations (2.7) for ϑ̂ and λ := 1/g.

This trick may also be useful for problems that do not directly fit into the

framework of this paper.

2.4 Recovering the time parametrization

Since Ŝ(ϕ) is parametrization-free, its minimizer ϕ⋆ only gives us information

about the graph of the minimizer ψ⋆ of the original action ST (ψ) over both ψ

and T (assuming that ψ⋆ exists), but not its parametrization by time. However,

if the minimizing T ⋆ is finite we can recover T ⋆ and the path ψ⋆ parametrized

by physical time afterwards by defining G(α) :=
∫ α

0
1/λ(ϕ⋆, ϕ⋆′) dα for α ∈ [0, 1],

T ⋆ := G(1), and setting ψ⋆(t) := ϕ⋆(G−1(t)) for t ∈ [0, T ⋆], since then we have

ST ⋆(ψ⋆) =

∫ T ⋆

0

L(ψ⋆, ψ⋆′) dt =

∫ 1

0

L(ϕ⋆, ϕ⋆′λ)/λ dα

= Ŝ(ϕ⋆) = inf
ϕ∈C̄

x2
x1

(0,1)
Ŝ(ϕ) = inf

T>0
inf

ψ∈C̄
x2
x1

(0,T )
ST (ψ),
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where we performed the change of variables t = G(α) and used (2.1) and (2.2).

If T ⋆ =
∫ 1

0
1/λ(ϕ⋆, ϕ⋆′) dα = ∞ (i.e. if “the minimizing T ⋆ is infinite”), then

no minimizer (T ⋆, ψ⋆) of the original action ST (ψ) exists, but we can still extract

information from λ(ϕ⋆, ϕ⋆′) by splitting the curve into pieces on which λ is nonzero

(i.e. into pieces that do not contain any critical points): The following proposition

says that if we recover the parametrization on any such piece as above, then the

resulting path will give us the optimal way to move from the starting point to

the end point of that piece.

Proposition 3. Let ϕ⋆ be a minimizer of the functional Ŝ(ϕ) defined by (2.3)

– (2.6), parametrized such that |ϕ⋆′| ≡ cst almost everywhere. Let α1, α2 ∈ [0, 1]

be such that there is no critical point on γ(ϕ⋆) between x̃1 := ϕ⋆(α1) and x̃2 :=

ϕ⋆(α2).

Define the rescaling G(α) :=
∫ α

α1
1/λ(ϕ⋆, ϕ⋆′) da, α ∈ [α1, α2], and set ψ̃⋆(t) :=

ϕ⋆(G−1(t)) for t ∈ [0, T̃ ⋆], T̃ ⋆ := G(α2). Then we have

V (x̃1, x̃2) = inf
T>0

inf
ψ∈C̄

x̃2
x̃1

(0,T )

ST (ψ) = ST̃ ⋆(ψ̃⋆). (2.29)

Proposition 3, which is proven at the end of this section, is relevant because

T ⋆ =
∫ 1

0
1/λ(ϕ⋆, ϕ⋆′) dα is infinite in most cases of interest, e.g. if at least one end

point of the path is a critical point, or if the path has to pass a critical point to

connect the two given states: Part (ii) in the following lemma, which is a slightly

stronger statement than Lemma 1 (i), tells us that the minimizing path needs

infinite time to leave, pass through, or reach any critical point of the system:
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Lemma 3. Suppose that ϕ is parametrized such that |ϕ′| ≡ cst a.e., and let

αc ∈ [0, 1] be such that ϕ(αc) is a critical point. Then

(i) λ = λ(ϕ, ϕ′) is Lipschitz continuous at αc in the sense that there exists a

constant C > 0 such that for a.e. α ∈ [0, 1] we have λ
(
ϕ(α), ϕ′(α)

)
≤ C|α− αc|.

(ii) 1/λ is not locally integrable at αc. In particular, if the curve γ(ϕ) contains a

critical point then T ⋆ =
∫ 1

0
1/λ dα = ∞.

The proof of this lemma is technical and is carried out in Appendix B.

Remark 5. Recall in this context that for SDE’s and continuous-time Markov

chains critical points are those points x with vanishing drift, Hθ(x, 0) = 0. For

other Hamiltonians (see e.g. Chapter 7) this may not be enough: Only if in

addition that point x fulfills H(x, 0) = 0 then it is a critical point, and it takes

infinite time to pass the point. If however H(x, 0) < 0, then by Lemma 1 we have

λ(x, y) 6= 0 for any direction y 6= 0, and therefore such a point is passed in finite

time. This finally justifies our definition of critical points via (1.24): A point

fulfills the properties (1.24) if and only if it is passed in infinite time.

Proof of Proposition 3. First, note that since λ(x, y) is continuous (even differen-

tiable, see Lemma 13 in Appendix E), we have essinfα1≤α≤α2 λ(ϕ⋆, ϕ⋆′) > 0, and

thus G is well-defined.

Now assume that (2.29) does not hold. Then there exist T̂ > 0 and ψ̂ ∈

C̄ x̃2
x̃1

(0, T̂ ) such that ST̂ (ψ̂) < ST̃ ⋆(ψ̃⋆), i.e. η := ST̃ ⋆(ψ̃⋆) − ST̂ (ψ̂) > 0. Observe

that
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ST̃ ⋆(ψ̃⋆) =

∫ T̃ ⋆

0

L(ψ̃⋆, ψ̃⋆′) dt

=

∫ α2

α1

L(ϕ⋆, ϕ⋆′λ)/λ dα, λ = λ(ϕ⋆, ϕ⋆′)

=

∫

γ(ϕ⋆|[α1,α2])

L(z, τ̂zλ)/λ dα, λ = λ(z, τ̂z)

= inf
T>0

inf
ψ∈C̄ϕ⋆|[α1,α2]

(0,T )
ST (ψ).

We will now use the path ψ̂ to construct a contradiction to the minimizing prop-

erty of ϕ⋆. To do so, define the sequence
(
(ψk, Tk)

)
with ψk ∈ C̄ϕ⋆(0, Tk) for all

k ∈ N and with limk→∞ STk
(ψk) = Ŝ(ϕ⋆), as in the proof of Proposition 1 (i).

Now let T k1 and T k2 be such that ψk(T
k
1 ) = x̃1 and ψk(T

k
1 + T k2 ) = x̃2, set

T k3 := Tk − T k1 − T k2 , and define the pieces ψk1 , ψ
k
2 and ψk3 by

ψk1(t) = ψk(t), t ∈ [0, T k1 ],

ψk2(t) = ψk(T
k
1 + t), t ∈ [0, T k2 ],

ψk3(t) = ψk(T
k
1 + T k2 + t), t ∈ [0, T k3 ].

Finally, define the sequence (T̄k, ψ̄k) by replacing the piece of ψk between x̃1 and

x̃2 by ψ̂ in order to reduce its action, i.e. let

ψ̄k(t) :=







ψk1(t), t ∈ [0, T k1 ],

ψ̂(t− T k1 ), t ∈ [T k1 , T
k
1 + T̂ ],

ψk3(t− T k1 − T̂ ), t ∈ [T k1 + T̂ , T k1 + T̂ + T k3 ],
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and T̄k := T k1 + T̂ + T k3 . For this path we have

ST̄k
(ψ̄k) = STk

1
(ψk1) + ST̂ (ψ̂) + STk

3
(ψk3)

= STk
1
(ψk1) + ST̃ ⋆(ψ̃⋆) − η + STk

3
(ψk3)

= STk
1
(ψk1) + inf

T>0
inf

ψ∈C̄ϕ⋆|[α1,α2]
(0,T )

ST (ψ) − η + STk
3
(ψk3)

≤ STk
1
(ψk1) + STk

2
(ψk2) − η + STk

3
(ψk3)

= STk
(ψk) − η

→ Ŝ(ϕ⋆) − η = inf
ϕ∈C̄

x2
x1

(0,1)
Ŝ(ϕ) − η

= inf
T>0

inf
ψ∈C̄

x2
x1

(0,T )
ST (ψ) − η

as k → ∞. But this means that for sufficiently large k we have

ST̄k
(ψ̄k) < inf

T>0
inf

ψ∈C̄
x2
x1

(0,T )
ST (ψ),

and since ψ̄k ∈ C̄x2
x1

(0, Tk) for every k ∈ N we have a contradiction.
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Chapter 3

Numerical algorithms

The main objective of this section is to design a numerical algorithm to compute

the quasipotential V (x1, x2) via minimization of Ŝ(ϕ) and identify the minimizer

ϕ⋆ such that

V (x1, x2) = inf
ϕ∈C̄

x2
x1

(0,1)
Ŝ(ϕ) = Ŝ(ϕ⋆), (3.1)

where Ŝ(ϕ) is the action functional given by (2.3)-(2.6). We are primarily in-

terested in cases where x1 and x2 in (3.1) are stable equilibrium points of the

deterministic dynamics, Ẋ(t) = Hθ(X(t), 0), though the algorithm presented be-

low can also be applied to situations where x1 and/or x2 are not critical points.

Several strategies can be used for the minimization problem in (3.1). Here, we

will proceed as follows. In Section 3.1, starting from the representation (2.5) we

will derive the Euler-Lagrange equation associated with the minimization of Ŝ(ϕ),

assuming that ϑ̂(ϕ, ϕ′) is known. In Section 3.2 we will then design a (pre-

conditioned) steepest descent algorithm for the solution of the Euler-Lagrange

equation. If no explicit formula for ϑ̂(x, y) is available, this algorithm will com-
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pute ϑ̂(x, y) in an inner loop, using an efficient quadratically convergent routine

which is derived in Section 3.4. The steepest descent algorithm is based on a

proper discretization of the Euler-Lagrange equation and uses an interpolation-

reparametrization step, similar to the one used in the string method [7], to enforce

exactly a constraint on the parametrization of ϕ, such as |ϕ′| = cst. (As we men-

tioned in Section 2.1, such a constraint is necessary to make the minimizer ϕ⋆ of

Ŝ unique.)

We note that the strategy above may not be the most efficient one: for in-

stance, the nonlinear minimization problem in (2.2) could be tackled by discretiz-

ing the action Ŝ(ϕ) first, then use other techniques than steepest descent (like

e.g. a quasi-Newton method such as BFGS or conjugate gradient, or a multi-grid

method, cf. [24]). However, the approach that we take here has the advantage

that it gives some insight about the nature of the action Ŝ(ϕ). It was also suffi-

cient for our purpose: even the problem considered in Section 4.2 which involves

a stochastic partial differential equation (in which case the path ϕ is not defined

in R
n but rather in some Hilbert space) can be handled by our algorithm in a

few minutes using Matlab on a standard workstation.

3.1 The Euler-Lagrange equation and the steep-

est descent flow

We have the following result whose proof is carried out in Appendix E:

Proposition 4. The Euler-Lagrange-equation associated with the minimization
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problem in (2.2) can be written in the following two ways:







0 = Pϕ′

(
− λ2ϕ′′ + λHθxϕ

′ −HθθHx

)

= −λ2ϕ′′ + λHθxϕ
′ −HθθHx − λλ′ϕ′,

ϕ(0) = x1, ϕ(1) = x2,

(3.2)

where λ =
〈Hθ, ϕ

′〉
|ϕ′|2 and Pϕ′ = I − ϕ′ ⊗H−1

θθ ϕ
′

〈ϕ′, H−1
θθ ϕ

′〉 ,

and where Hx, Hθx and Hθθ are evaluated at (ϕ, ϑ̂(ϕ, ϕ′)).

The right-hand side in (3.2) is in fact λHθθDŜ(ϕ), whereDŜ(ϕ) is the gradient

of Ŝ(ϕ) with respect to the L2 inner product. Note that by taking the Euclidean

inner product of (3.2) with λ−1H−1
θθ ϕ

′ one can see that 〈DŜ(ϕ), ϕ′〉 = 0 for all

α, i.e. the variation DŜ(ϕ) is everywhere perpendicular to the path with respect

to the Euclidean metric. This is a simple consequence of the fact that Ŝ(ϕ) is

parametrization-free: if id denotes the identity mapping on [0, 1], then for any

test function η ∈ C∞
c (0, 1) and sufficiently small h > 0 we have

0 = h−1
[
Ŝ(ϕ ◦ (id+ hη)) − Ŝ(ϕ)

]

= h−1
[
Ŝ(ϕ+ hηϕ′ + o(h)) − Ŝ(ϕ)

]

→ 〈DŜ(ϕ), ηϕ′〉L2([0,1]; Rn) =
〈
〈DŜ(ϕ), ϕ′〉, η

〉

L2([0,1]; R)
as h→ 0.

The algorithm presented in Section 3.2 finds the solution of (3.2) using a relax-
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ation method based on a discretized version of the equation:







ϕ̇ = Pϕ′

(
λ2ϕ′′ − λHθxϕ

′ +HθθHx

)
+ µϕ′

= λ2ϕ′′ − λHθxϕ
′ +HθθHx + λλ′ϕ′ + µϕ′,

ϕ(τ, 0) = x1, ϕ(τ, 1) = x2, ϕ(0, α) = ϕ0(α),

(3.3)

for α ∈ [0, 1] and τ ≥ 0. Here ϕ = ϕ(τ, α) where τ is the artificial relaxation time,

ϕ̇ = ∂ϕ/∂τ , ϕ′ = ∂ϕ/∂α, ϕ′′ = ∂2ϕ/∂α2, and µϕ′ is a Lagrange multiplier term

added to enforce some constraint on the parametrization of ϕ, e.g. by normalized

arclength (in which case |ϕ′(τ, ·)| = cst(τ) and the initial condition ϕ(0, α) =

ϕ0(α) must be consistent with this constraint). Adding the term µϕ′ has no

effect on the graph γ(ϕ) of the solution since Ŝ(ϕ) is parametrization-free.

The simple form of (3.3) is a result of us building the flow on λHθθDŜ(ϕ)

rather than DŜ(ϕ) alone, which is legitimate since Hθθ is a positive-definite

matrix by Assumption 1 and λ ≥ 0. As we shall show in Chapter 4 where we

analyze examples, this choice allows one to design an algorithm that achieves a

good balance among speed, stability, and accuracy.

To further understand the properties of this flow, let us note that (3.3) can

also be derived independently of the theory developed in Chapter 2:

Remark 6. Another interpretation of the right-hand side of (3.3) is the follow-

ing. Suppose that ψ is a minimizer of the original action ST (ψ) for fixed T , i.e. it

satisfies the Hamiltonian system of ODEs, ψ̇ = Hθ(ψ, θ), θ̇ = −Hx(ψ, θ), subject

to some boundary conditions. Let ϕ(α) = ψ(G(α)) and differentiate it twice in α
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to get

λϕ′ = ψ̇ ◦G and λ2ϕ′′ + λλ′ϕ′ = ψ̈ ◦G,

where λ := 1/G′. Now use the Hamilton equations for ψ to obtain the following

second-order ODE for ϕ:

ψ̈ = Hθxψ̇ +Hθθθ̇

= Hθxψ̇ −HθθHx (3.4)

⇔ λ2ϕ′′ + λλ′ϕ′ = Hθxλϕ
′ −HθθHx

⇔ λ2ϕ′′ − λHθxϕ
′ +HθθHx + λλ′ϕ′ = 0. (3.5)

The derivatives of H have to be evaluated at (ϕ, θ), which has to fulfill H(ϕ, θ) =

cst and Hθ(ϕ, θ) = ψ̇ = λϕ′.

This shows the following property of the steady state solutions of (3.3):

Lemma 4. The flow in (3.3) has reached steady state if and only if

(i) µ ≡ 0, and

(ii) the functions ψ corresponding to (ϕ, λ) in the sense of Proposition 3 (i.e. de-

fined by pieces of (ϕ, λ) on which λ 6= 0) solve the second-order Hamiltonian

ODE given by H on the energy level H = 0, i.e. they fulfill (3.4) and H ≡ 0,

where H and all its derivatives are evaluated at
(
ψ, θ⋆(ψ, ψ̇)

)
.

Proof. Looking at the first representation of the flow in (3.3), we multiply the

equation by Pϕ′ and by I − Pϕ′ to conclude that at steady state we must have
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µϕ′ ≡ 0 (and thus µ ≡ 0) and

Pϕ′

(
λ2ϕ′′ − λHθxϕ

′ +HθθHx

)
= 0.

But as shown in Proposition 4, this equation is the same as (3.5), which by

Remark 6 is equivalent to the second-order Hamiltonian ODE (3.4) for ψ(t) =

ϕ(G−1(t)), where G′ = 1/λ with

λ =
〈
ϕ′, Hθ

(
ϕ, ϑ̂(ϕ, ϕ′)

)〉
/|ϕ′|2 =

〈
ϕ′, λ(ϕ, ϕ′)ϕ′

〉
/|ϕ′|2 = λ(ϕ, ϕ′),

as in the construction of Proposition 3. The energy level is zero because we have

H
(
ψ, θ⋆(ψ, ψ̇)

)
◦G = H

(
ϕ, θ⋆(ϕ, ϕ′λ)

)
= H

(
ϕ, ϑ̂(ϕ, ϕ′)

)
≡ 0.

The fact that at steady state we have µ ≡ 0 also eliminates possible inaccu-

racies in the result of an algorithm based on discretizing (3.3), and it opens the

door to methods for achieving second-order accuracy in α or higher even if the

curve passes through critical points, see Section 3.3.

Also note that one could have designed the algorithm without the discussion

in Chapter 2, solely based on the observation in Remark 6. Within that ap-

proach, however, to show that (3.3) converges one would then have to look for

a corresponding Lyapunov function for this equation, which is in fact given by

Ŝ(ϕ).
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3.2 The outer loop

To solve (3.3) in practice, we discretize first ϕ(τ, α) both in τ and α, i.e. we

define ϕki = ϕ(k∆τ, i∆α), k ∈ N0, i = 0, . . . , N , where ∆τ is the time step and

∆α = 1/N if we discretize the curve into N + 1 points. Then we discretize the

initial condition ϕ(0, α) to obtain {ϕ0
i }i=0,...,N and, for k ≥ 0, use the following

two-step method to update these points.

1. Given ϕki and ϕ′k
i = (ϕki+1 − ϕki−1)/(2/N), compute ϑ̂ki = ϑ̂(ϕki , ϕ

′k
i ),

λki =
〈Hθ(ϕ

k
i , ϑ̂

k
i ), ϕ

′k
i 〉

|ϕ′k
i |2

,

and finally λ′ki = (λki+1 − λki−1)/(2/N) for i = 1, . . . , N − 1.

2. Let {ϕ̃i}i=0,...,N be the solution of the linear system







ϕ̃i − ϕki
∆τ

= (λki )
2 ϕ̃i+1 − 2ϕ̃i + ϕ̃i−1

1/N2
− λkiHθxϕ

′k
i

+HθθHx + λki λ
′k
i ϕ

′k
i , i = 1, . . . , N − 1,

ϕ̃0 = x1,

ϕ̃N = x2,

(3.6)

where Hθx, Hθθ and Hx are evaluated at (ϕki , ϑ̂
k
i ).

3. Interpolate a curve across {ϕ̃i}i=0,...,N and discretize this curve to find

{ϕk+1
i }i=0,...,N so that the prescribed constraint on the parametrization of ϕ

be satisfied.
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4. Repeat until some stopping criterion is fulfilled.

Step 1 requires the computation of ϑ̂(ϕ, ϕ′). In the case of a diffusion, ϑ̂(ϕ, ϕ′)

is given by (2.12). If ϑ̂(ϕ, ϕ′) is not available explicitly, it is computed using the

algorithm given in Section 3.4 in an inner loop.

Step 2 uses semi-implicit updating for stability: as will be shown via the ex-

amples in Chapter 4, proceeding this way makes the time step ∆τ required for

stability independent of ∆α = 1/N (in contrast, an explicit step would require

∆τ = O(∆α2)). As a result, it accelerates the convergence rate (see the discus-

sion in Section 3.3) and, in effect, amounts to pre-conditioning appropriately the

steepest descent scheme [23, 24]. In practice it turns out that it is not necessary

to treat the term λλ′ϕ′ (which, when written out, contains the term ϕ′′ as well)

implicitly, since changes of the curve ϕ in the direction of ϕ′ do not carry any

information. Notice also that Step 2 is computationally straightforward since λki

is scalar: hence the linear system can be solved component by component using

e.g. the Thomas algorithm [23]. Finally notice that a simple modification of (3.6)

in Step 2 can be used to have the two endpoints of the curve fall into the nearest

stable state, by setting

ϕ̃i − ϕki
∆τ

= Hθ(ϕ
k
i , 0) (i = 0, N). (3.7)

Step 3 is the interpolation-reparametrization step used to enforce the constraint

on the parametrization of the curve γ(ϕ). For instance, if we parametrize the

curve by normalized arclength so that |ϕ′| = cst, this step amounts to redis-

tributing the images along the interpolated curve in such a way that the points
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ϕki , i = 0, . . . , N , be equidistant. Consistent with the order of accuracy at which

we discretize the derivatives ϕ′, ϕ′′, etc., Step 3 can be done using linear inter-

polation which is second-order accurate if ϕ ∈ C1(0, 1) (see the discussion about

accuracy in Section 3.3).

Finally, the stopping criterion in Step 4 can be based on a slowdown in

the movement of ϕ, or in the decay of the action Ŝ(ϕ). Plotting the function

α 7→ λ(ϕ(α), ϕ′(α)) at each iteration can further help to determine whether the

algorithm has already converged: if one knows that the curve that one is looking

for has to pass a saddle point, then λ must have a root in (0, 1) by Lemma 1 (i)

(see also Figure 4.3 in Section 4.1).

All in all, this algorithm is a blend between the original MAM [8] and the

string method [7].

Recovering the parametrization, evaluating the action. Other quantities

of interest include the actual value of the action, the optimal transition time T ⋆,

and the path ψ⋆ parametrized by physical time. To compute those, one can then

add the following steps:

5. Given {ϕki }i=0,...,N , compute ϕ′k
i , ϑ̂

k
i and λki as in Step 1, for every i =

0, . . . , N .

6. Return the action

Ŝ =
1

2N

N∑

i=1

(

〈ϕ′k
i , ϑ̂

k
i 〉 + 〈ϕ′k

i−1, ϑ̂
k
i−1〉
)

.
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7. Set t0 = 0, and ti = 1
2λk

0
+ 1

λk
1

+ · · · + 1
λk

i−1
+ 1

2λk
i

for i = 1, . . . , N .

8. Return the transition time T ⋆ = tN .

9. To add D + 1 points at equidistant times to the graph of ϕ (if T ⋆ < ∞),

interpolate the function G−1(t) given by the points (t, G−1(t)) = (ti,
i
N

),

i = 0, . . . , N , at the values t̃d = d
D
T ⋆, d = 0, . . . , D, to obtain values

αd = G−1(t̃d), and then discretize the curve interpolated from {ϕki }i=0,...,N

at those values αd.

If T ⋆ is infinite or very large (i.e. if λki ≈ 0 for some index i), Step 9 can be

performed on trimmed values λ̃ki := max{λki , η} (for some small η > 0): Proposi-

tion 3 shows that this will still lead to representative dots away from the critical

points (where λ ≥ η); only close to the critical points (where λ < η) this will

simply lead to dots that are equidistant in space.

3.3 Accuracy and efficiency of the outer loop

A rigorous discussion of the accuracy and efficiency of the gMAM is beyond the

scope of the present paper. However, we find it useful to make a few heuristic

comments.

The discussion is complicated by the fact that the minimum action path

(i.e. the steady state solution ϕ⋆ of (3.3) which is also the minimizer of Ŝ(ϕ))

will, in general, go through critical points, and the path may not be smooth at

these points. We first discuss the case when this does not happen, i.e. when ϕ⋆

is smooth, then explain what to do if that is not the case.
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If ϕ⋆ is smooth, we expect the algorithm to identify it with second-order ac-

curacy in ∆α = 1/N . This is because the derivatives of ϕ and λ are computed by

central differences, which are second-order accurate, and the linear interpolation

in Step 3 is second-order accurate as well. This was confirmed in the example

below. As long as we achieve stability (which requires to take a small enough

value for ∆τ , but one that is independent of N), we observe that the error on

the curve can be made O(∆α2) = O(1/N2), in the sense that

ρ(ϕinterp, ϕ
⋆) ≤ CN−2 (3.8)

for some constant C > 0, where ϕinterp is the curve linearly interpolated from

{ϕki }i=0,...,N after convergence. Assuming linear convergence in time, the number

of steps until convergence is then O(logN) which gives a total cost, measured in

number of operations till convergence, scaling as

cost = O(N logN). (3.9)

Notice that this estimate takes into account that the interpolation step requires

O(N) operations if there are N + 1 discretization points along the curve. The

estimate (3.9) was confirmed in our numerical examples, see Chapter 4.

Consider now what happens if the steady state solution of (3.3) (i.e. the

solution of (3.2)) goes through one or more critical points and is not smooth at

these points. Notice first that this leads to no problem with (3.2). Indeed, by

Lemma 1 (i), if the point ϕ(αc) is a critical point for some αc ∈ [0, 1] then λ→ 0
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as α → αc. All the terms in (3.2) involving ϕ′, ϕ′′ and λ′ are multiplied by λ

or λ2 and so these products tend to 0 as α → αc. Furthermore, because of the

Lipschitz continuity of λ their discretizations still approximate the correct value

0 at the critical point. However, they will do so only up to first-order accuracy,

O(∆α) = O(1/N), unless one makes sure that one discretization point of the

curve falls onto the critical point (in which case we obtain the exact value 0).

In the algorithm, this problem is also aggravated by the interpolation-repa-

rametrization Step 3. The non-differentiability of the curve will reduce the order

of accuracy of the linear interpolation procedure to first-order as well, unless we

take some extra care of how we handle the critical points on the curve.

One possible way to solve these problems and restore the second-order accu-

racy is to identify the location(s) of the critical point(s) along the curve and treat

the pieces on each side separately by the same basic algorithm above. This can

be done on-the-fly using the following procedure. Specify a small threshold value

for λ, say λ0 > 0, such that if λ < λ0 there is likely to be a critical point in the

vicinity. Then let the curve evolve as above, but as soon as λ < λ0 at some point,

say ϕki⋆ , split the curve into the two pieces at the left and right of ϕki⋆ . Continue

the algorithm with modified Steps 2 and 3: in Step 2 replace the equation for ϕki⋆

in (3.6) by

ϕ̃i⋆ − ϕki⋆

∆τ
= −HxθHθ −HHx

(

= −1
2
∇x

(
|Hθ|2 +H2

) )

, (3.10)

with all functions on the right evaluated at (ϕki⋆ , 0), so that ϕki⋆ is attracted by the

critical point where Hθ(x, 0) and H(x, 0) vanish; in Step 3 redistribute the points
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on both parts of the curve separately, without changing ϕ̃i⋆ (i.e. ϕk+1
i⋆ = ϕ̃i⋆).

Observe that in the cases of an SDE or an SPDE with unit noise the modification

(3.10) can be achieved by setting λki⋆ = 0 after completion of Step 1 (to see this,

set λ = 0 in (4.3) and (4.10) below).

This procedure, which we found to work well on all examples treated in Chap-

ter 4 and which is further discussed in Section 4.1, restores the second-order ac-

curacy in ∆α = 1/N even if there are critical points along the curve. Note that

there is no a priori difficulty to design more accurate schemes by using a higher-

order stencil for the derivatives, choosing a higher-order interpolation method,

and taking care of the critical points along the curve as explained above.

3.4 The inner loop (computing ϑ̂(ϕ, ϕ′))

In order to compute ϑ̂(ϕ, ϕ′) from (2.7) we must solve the following problem:

Given the strictly convex and twice differentiable function h(·) = H(ϕ, ·) with

h(0) ≤ 0, and given a direction ϕ′, we want to find the unique point ϑ̂ with

h(ϑ̂) = 0 and hθ(ϑ̂) = λϕ′ for some λ ≥ 0. (3.11)

This problem has a simple geometric interpretation, as was illustrated before in

Figure 2.1 (with y = ϕ′): it amounts to finding the point of the convex zero-level

set of h where the normal to that level set is parallel to and points into the same

direction as ϕ′.

Since the region {θ ∈ R
n |h(θ) ≤ 0} can be potentially very thin and long,
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one must make use of the underlying geometry of the problem. One very efficient

strategy for finding a smart update for an initial guess ϑ̂0 is a procedure similar

in spirit to a higher-order version of the standard Newton-Raphson algorithm.

However, while the Newton-Raphson method typically computes in each iteration

the exact solution of the first-order approximation of the problem, we must use a

second-order approximation since the solution of our problem is only well-defined

for strictly convex functions h.

The procedure is thus as follows. For p ≥ 0:

1. Compute h(ϑ̂p), hθ(ϑ̂
p) and hθθ(ϑ̂

p).

2. Find the unique quadratic function f(θ) such that f(ϑ̂p) = h(ϑ̂p), fθ(ϑ̂
p) =

hθ(ϑ̂
p) and fθθ(ϑ̂

p) = hθθ(ϑ̂
p).

3. If the region {θ ∈ R
n | f(θ) < 0} is non-empty, let ϑ̂p+1 be the solution of

f(ϑ̂) = 0 and fθ(ϑ̂) = λϕ′ for some λ ≥ 0,

i.e. of (3.11) with h replaced by its approximation f . Otherwise, let ϑ̂p+1 :=

argminθ f(θ).

4. Repeat until convergence.

Steps 1–3 in this procedure can be done analytically, and so it provides us with a

closed-form update formula. The computation is carried out in Appendix F and
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gives:

ϑ̂p+1 := ϑ̂p+h−1
θθ

(
λ̃(ϑ̂p)ϕ′−hθ

)
with λ̃(ϑ̂p) :=

(

〈hθ, h−1
θθ hθ〉 − 2h

〈ϕ′, h−1
θθ ϕ

′〉

)1/2

+

, (3.12)

where w
1/2
+ =

√
w if w ≥ 0 and w

1/2
+ = 0 otherwise, and where h, hθ and hθθ are

evaluated at ϑ̂p. Note also that by definition of the algorithm, if h is quadratic

to begin with, then the algorithm converges after only one iteration (since then

f = h). This will happen if the underlying process is a diffusion process.

Once ϑ̂ has been determined, the value of λ in (3.11) can then be computed

as a simple function of ϑ̂ via

λ =
〈hθ(ϑ̂), ϕ′〉

|ϕ′|2 =
〈Hθ(ϕ, ϑ̂), ϕ′〉

|ϕ′|2 . (3.13)

Next we show that the sequence generated by (3.12) has ϑ̂ as its unique fixed

point and is quadratically convergent if h is smooth enough. The latter is not

surprising since the standard Newton-Raphson algorithm has the same rate of

convergence.

Lemma 5 (Uniqueness of fixed point ϑ̂). We have ϑ̂p+1 = ϑ̂p if and only if

ϑ̂p = ϑ̂, i.e. if ϑ̂p is the solution of the system (3.11). In that case, the value of

λ in (3.11) is given by λ̃(ϑ̂p).

Proof. “⇐”: If h(ϑ̂p) = 0 and hθ(ϑ̂
p) = λϕ′ for some λ ≥ 0 then

λ̃(ϑ̂p)ϕ′ =

(〈hθ, h−1
θθ hθ〉 − 2h

〈ϕ′, h−1
θθ ϕ

′〉

)1/2

+

ϕ′ =

(〈hθ, h−1
θθ hθ〉

〈ϕ′, h−1
θθ ϕ

′〉

)1/2

+

ϕ′ = λϕ′ = hθ(ϑ̂
p),

51



so that ϑ̂p+1 = ϑ̂p.

“⇒”: Now let ϑ̂p+1 = ϑ̂p. Then hθ(ϑ̂
p) = λ̃(ϑ̂p)ϕ′ and clearly λ̃(ϑ̂p) ≥ 0, so it

remains to show that h(ϑ̂p) = 0. If β := 〈hθ, h−1
θθ hθ〉 − 2h ≥ 0 (where here and in

the next line h, hθ and hθθ are evaluated at ϑ̂p) then we can compute that

〈hθ, h−1
θθ hθ〉 = λ̃(ϑ̂p)2〈ϕ′, h−1

θθ ϕ
′〉 = 〈hθ, h−1

θθ hθ〉 − 2h ⇒ h(ϑ̂p) = 0.

If β ≤ 0, then λ̃(ϑ̂p) = 0 and thus hθ(ϑ̂
p) = 0, i.e. ϑ̂p is the minimum of h.

Since we know that h(0) ≤ 0, this implies h(ϑ̂p) ≤ 0. On the other hand,

0 ≥ β = −2h(ϑ̂p), so h(ϑ̂p) must be zero.

Lemma 6 (Quadratic convergence). If h ∈ C4(Rn) then there exists a neighbor-

hood Uǫ(ϑ̂) of the solution ϑ̂ and a constant c > 0 such that for ∀ϑ̂p ∈ Uǫ(ϑ̂) we

have

|ϑ̂p+1 − ϑ̂| ≤ c|ϑ̂p − ϑ̂|2.

Proof. Starting from (3.12), we write

|hθθ(ϑ̂p)(ϑ̂p+1 − ϑ̂)| =
∣
∣hθθ(ϑ̂

p)(ϑ̂p − ϑ̂) + λ̃(ϑ̂p)ϕ′ − hθ(ϑ̂
p)
∣
∣. (3.14)

We approximate the expression λ̃(ϑ̂p)ϕ′ − hθ(ϑ̂
p) by its first-order Taylor expan-

sion around ϑ̂ and estimate the remainder involving its second derivative (and

thus the fourth derivative of h) by O(|ϑ̂p − ϑ̂|2). Since the zeroth-order term

vanishes, i.e. λ̃(ϑ̂)ϕ′ − hθ(ϑ̂) = 0 (this was shown in the first part of the proof of
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Lemma 5), the right-hand side of (3.14) is equal to

∣
∣
∣hθθ(ϑ̂

p)(ϑ̂p − ϑ̂) +
(
ϕ′ ⊗∇λ̃(ϑ̂) − hθθ(ϑ̂)

)
(ϑ̂p − ϑ̂)

∣
∣
∣+O(|ϑ̂p − ϑ̂|2).

We show below that ∇λ̃(ϑ̂) = 0, so that

∣
∣hθθ(ϑ̂

p)(ϑ̂p+1 − ϑ̂)
∣
∣ =

∣
∣(hθθ(ϑ̂

p) − hθθ(ϑ̂))(ϑ̂p − ϑ̂)
∣
∣+O(|ϑ̂p − ϑ̂|2)

= O(|ϑ̂p − ϑ̂|2).

Since |ϑ̂p+1 − ϑ̂| ≤ |h−1
θθ (ϑ̂p)| |hθθ(ϑ̂p)(ϑ̂p+1 − ϑ̂)|, we are done.

To show that ∇λ̃(ϑ̂) = 0, consider first the case λ > 0, pick any i ∈ {1, . . . , n}

and use that at θ = ϑ̂ we have h = 0 and hθ = λϕ′:

∂θi

(〈hθ, h−1
θθ hθ〉 − 2h

〈ϕ′, h−1
θθ ϕ

′〉

)1/2∣
∣
∣
∣
θ=ϑ̂

=

(
1

2(. . . )1/2
∂θi

〈hθ, h−1
θθ hθ〉 − 2h

〈ϕ′, h−1
θθ ϕ

′〉

)∣
∣
∣
∣
θ=ϑ̂

=
1

2λ
〈ϕ′, h−1

θθ ϕ
′〉−2
[(

〈hθ, (∂θi
h−1
θθ )hθ〉 + 2hTθ h

−1
θθ hθθi

− 2hθi
︸ ︷︷ ︸

=0

)

〈ϕ′, h−1
θθ ϕ

′〉

−
(

〈hθ, h−1
θθ hθ〉 − 2h

︸︷︷︸

=0

)

〈ϕ′, (∂θi
h−1
θθ )ϕ′〉

]∣
∣
∣
θ=ϑ̂

=
1

2λ
〈ϕ′, h−1

θθ ϕ
′〉−2
[

〈hθ, (∂θi
h−1
θθ )hθ〉〈ϕ′, h−1

θθ ϕ
′〉−〈hθ, h−1

θθ hθ〉〈ϕ′, (∂θi
h−1
θθ )ϕ′〉

]∣
∣
∣
θ=ϑ̂

= 0.

The case λ = 0 can be treated by checking that in this case the function

〈hθ, h−1
θθ hθ〉 − 2h as well as its first two derivatives vanish at θ = ϑ̂, so that

its square root is of order o(|ϑ̂p − ϑ̂|).
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Chapter 4

Examples

4.1 SDE: The Maier-Stein model

As a first test for our method, we use the following example of a diffusion process

(SDE) first proposed by Maier and Stein [22]:







du = (u− u3 − βuv2)dt+
√
ε dWu(t)

dv = −(1 + u2)vdt+
√
ε dWv(t)

(4.1)

where Wu and Wv are independent Wiener processes, and β > 0 is a parameter.

(In [22], Maier and Stein use two parameters: µ, which we set to 1 in this treat-

ment, and α, which we call β in order to avoid confusion with the variable used

to parametrize the path ϕ(α).)

For all values of β > 0, the SDE (4.1) has two stable equilibrium points

at (u, v) = (±1, 0) and an unstable equilibrium point at (u, v) = (0, 0) (see

Figure 4.1). The drift vector field

54



−1 −0.5 0 0.5 1
−0.1

0

0.1

0.2

0.3

0.4

v

β=1

u

−1 −0.5 0 0.5 1
−0.1

0

0.1

0.2

0.3

0.4

β=10

u

v

Figure 4.1: The minimum action paths from (u, v) = (−1, 0) to (u, v) = (1, 0) for the
Maier-Stein model (4.1) shown on the top of the flow lines of the determinitic velocity
field (gray lines). The parameters are β = 1 (first panel) and β = 10 (second panel).
When β = 1, the minimum action path is simply the heteroclinic orbit joining (±1, 0)
via (0, 0); when β = 10, non-gradient effects take over, and the minimum action path
is different from the heteroclinic orbit.
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b(u, v) =






u− u3 − βuv2

−(1 + u2)v




 (4.2)

is the gradient of a potential if and only if β = 1.

When the noise amplitude ε is small, (4.1) displays bistability. Any initial

condition with u < 0 is rapidly attracted toward a small neighborhood of (u, v) =

(−1, 0) whereas any initial condition with u > 0 is rapidly attracted toward a

small neighborhood of (u, v) = (1, 0). As a result, the equilibrium distribution

of the process defined by (4.1) is concentrated in small neighborhoods around

(±1, 0) and the process switches between these two regions only rarely. When it

does so, large deviations theory tells us that, with probability 1 in the limit as

ε→ 0, the trajectory remains in an arbitrarily small tube around the miminizer

ϕ⋆ of Ŝ(ϕ) connecting (u, v) = (−1, 0) to (u, v) = (1, 0) or the other way around –

in other words, the minimum action curve ϕ⋆ is the maximum likelihood pathway

of switching (see Section 2.2). In addition, large deviations theory tells us that

the frequency of these hopping events is roughly exp(−ε−1Ŝ(ϕ⋆)).

Maier and Stein studied (4.1) for various values of β. They noted that the

minimum action path from (u, v) = (−1, 0) to (u, v) = (1, 0) is the heteroclinic

orbit joining these two points via (u, v) = (0, 0) when β < βcrit = 4 (this is

consistent with the system being not too far from the gradient regime in these

cases). However, when β > βcrit = 4, the piece of the minimum action path

in the region u < 0 (i.e. in the basin of attraction of (u, v) = (−1, 0) by the

deterministic dynamics) stops being the heteroclinic orbit. Some intuition for
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why this change of behavior occurs can be gained by looking at the deterministic

flow lines shown in Figure 4.1. Here we confirm these results using our method

to find the minimum action path, as shown in Figure 4.1.

Before discussing the accuracy, stability and efficiency of our method in the

context of the Maier-Stein model in detail, let us note that when applying our

technique to a diffusion process such as (4.1) where the diffusion tensor is the

identity, we can use the following explicit formulas for ϑ̂ and λ:

ϑ̂ = λϕ′ − b(ϕ), λ =
|b(ϕ)|
|ϕ′| .

Since H(x, θ) = 〈b(x), θ〉 + 1
2
|θ|2, we also have

Hθx = ∇b, Hθθ = I, Hx = (∇b)T ϑ̂ = (∇b)T (λϕ′ − b),

and so the equation (3.3) can be written explicitly as

ϕ̇ = λ2ϕ′′ − λ(∇b− (∇b)T )ϕ′ − (∇b)T b+ λλ′ϕ′ + µϕ′. (4.3)

Equation (4.3) can be integrated using a straight forward modification of the

algorithm presented in Section 3.2. If b is a gradient field, b = −∇U , then

∇b− (∇b)T = 0 and the right-hand side simplifies further:

ϕ̇ = λ2ϕ′′ −∇∇U ∇U + λλ′ϕ′ + µϕ′. (4.4)

The steady state of this equation is the minimum energy path, i.e. the path such
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that ∇U⊥ = 0 along it. Using gMAM to integrate (4.4) may represent a useful

alternative to the string method [7].

Stability, accuracy and efficiency. We discuss the case β = 10 when the

minimum action path is nontrivial. To obtain a benchmark solution, we first ran

the algorithm with N = 105 discretization points at decreased stepsize to obtain

a curve which we regarded as the true solution connecting (−1, 0) and (1, 0) (to

get this benchmark, we actually ran the code between (−1, 0) and (0, 0) and then

extended the path by the straight line between (0, 0) and (1, 0) since we know

that piece exactly).

Next we ran the code for 300 iterations for N = 100, 200, . . . , 900, 1000,

2000, . . . , 10000 at a fixed time step ∆τ = 0.1, to find both the minimum action

path connecting (−1, 0) to (0, 0) and the one connecting (−1, 0) to (1, 0) via the

critical point (0, 0). For the initial condition, we used a semicircle in the upper

half plane connecting the critical points (−1, 0) and (0, 0) in the first case, or

(−1, 0) and (1, 0) in the second case. The error was estimated by computing the

maximum distance of each of the curves interpolated between the points to the

benchmark curve obtained before. (Note that we took as many as 300 iterations

because we are interested in measuring the accuracy of the algorithm here, but

convergence is already achieved up to an error of 10−6 in the action after less

than 20 iterations, see Figure 4.4.)

Since the left part of the path is smooth (there is no critical point along the

path), we expect that the unmodified algorithm of Section 3.2 be second-order

accurate in N if we seek for the minimum action path connecting (−1, 0) to (0, 0):
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this is confirmed by results shown in Figure 4.2a. On the other hand, since the

path connecting (−1, 0) to (1, 0) has to pass the critical point (0, 0) and is not

differentiable at that point, we expect the unmodified algorithm of Section 3.2

to be only first-order accurate for these runs, and this is confirmed by the upper

curve in Figure 4.2b. However, when we modified the algorithm as proposed

in Section 3.3 and ran it for an additional 300 steps with the reparametrization

step treating the right and the left side separately, second-order accuracy was

restored, as shown by the lower curve in Figure 4.2b.

To check convergence of the curve between (−1, 0) and (1, 0), we also plotted

λ(ϕ(α), ϕ′(α)), see Figure 4.3. As expected, after convergence it has one root

in the interval (0, 1), corresponding to the critical point on the curve ϕ. The

plot also confirms Lemma 3 (i), which says that λ is Lipschitz continuous at that

point. Furthermore, we observed that with the unmodified algorithm the value

of λ at that point only reaches O(N−1) (since the points of the discretized curve

ϕ only approximate the critical point to that order), whereas our method to

achieve second-order accuracy brings it all the way down to zero (up to machine

precision).

The time step to achieve stability in all the runs was found to be largely

independent of the choice of N . For the gridsizes N as above, the maximum

value for ∆τ before visible oscillations occured stayed constant at about 0.3.

The required number of iterations at ∆τ = 0.2 until the change of the action

per iteration became less than 10−7 varies insignificantly between 31 and 33 for

the gridsizes N as above. For fixed N , the action decreases exponentially to its

limiting value, as can be seen in Figure 4.4 which shows the decay for the various

59



10
2

10
3

10
4

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

accuracy (curve connecting (−1,0) and (0,0))

N

e
rr

o
r

panel a) 

10
2

10
3

10
4

10
−8

10
−6

10
−4

10
−2

accuracy (curve connecting (−1,0) and (1,0))

N

e
rr

o
r

panel b) 

Figure 4.2: The accuracy measurements for the Maier-Stein model on double-
logarithmic scale, for the left path (panel a) and the whole path (panel b, using the
modified and the unmodified algorithm). The red lines have slope −1 (panel b, up-
per curve) and −2, indicating accuracies of order O(1/N) and O(1/N2), respectively.
The noise in the measurements of the unmodified algorithm on the whole path (panel
b, upper curve) is due to the fact that the error strongly depends on whether a grid
point happens to lie close to the unstable equilibrium point; however, modifying the
algorithm as explained in Section 3.3 restores the second-order accuracy.
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Figure 4.3: The function λ(ϕ(α), ϕ′(α)). The root in the middle corresponds to the
value α where ϕ(α) is a critical point.
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Figure 4.5: The runtime for 100 iterations at various gridsizes (using MatLab 6.5
running under Windows XP on a 1.5 GHz Pentium 4), showing linear dependency
in N .
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values of N in a semilogarithmic plot. The runtime for 100 iterations for various

gridsizes is plotted in Figure 4.5. It shows linear dependency on N , which is

due to the fact that all of our operations have a cost of order O(N), including

solving the linear system in Step 2 and the linear interpolation in Step 3. These

observations are consistent with the estimate (3.9) for the cost.

4.2 SPDE: An SPDE generalization of the Maier-

Stein model

4.2.1 One dimension

As a natural generalization of the SDE (4.1), we consider the following SPDE

analogue of this equation (here written as a standard PDE for the sake of clarity):







ut = κuxx + u− u3 − βuv2 +
√
ε ηu(x, t),

vt = κvxx − (1 + u2)v +
√
ε ηv(x, t).

(4.5)

Here x ∈ [0, 1] and we assume periodic boundary conditions. κ > 0 is an addi-

tional parameter, and ηu(x, t), ηv(x, t) are spatio-temporal white-noises (i.e. the

space-time derivatives of Brownian sheets, Wu(x, t) and Wv(x, t), defined on

(x, t) ∈ [0, 1]× [0,∞)). The system (4.5) is formal, but it can be shown (see [11])

by rewriting it in integral form that its solutions are well-defined and Hölder con-

tinuous and define a Markov process adapted to the filtrations of Wu(t, x) and

Wv(t, x). In addition, it was shown in [11] that (4.5) satisfies a large deviations
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principle with action functional

ST (u, v) =
1

2

∫ T

0

∫ 1

0

(

(ut − κuxx − u+ u3 + βuv2)2

+
(
vt − κvxx + (1 + u2)v

)2
)

dx dt.

(4.6)

Thus, like its finite-dimensional analogue (4.1), (4.5) will display bistability in

the limit as ε→ 0 in the sense that the invariant measure of the process defined

by (4.5) is concentrated in a small neighborhood around the two stable equilib-

rium solutions of the deterministic equation obtained by setting ε = 0 in (4.5):

these are
(
u±(x), v±(x)

)
≡ (±1, 0). Here we are interested in analyzing the path-

ways of transition between these points which, with probability 1 as ε → 0,

are located in a small tube around the minimizer of the action (4.6) over both

(u(t, x), v(t, x)) and T .

By analogy with what happens in the finite-dimensional system, we expect

that when the system is not too far from gradient, i.e. when β is small enough,

the minimum action path will follow the graph of a heteroclinic orbit connecting

(u−, v−) and (u+, v+). The only difference with the finite-dimensional situation

is then that, if the coefficient κ in (4.5) is small enough, κ < κcrit = 1
4π2 ≈ 0.0253,

there are many such orbits because (4.5) has many unstable equilibrium points.

As a result there will be several minimum action paths (one global minimizer and

several local minimizers). How to identify these unstable critical points as a way

to benchmark the results from the minimum action method is explained below.

On the other hand, if the system is far from gradient, i.e. if β is large enough,

then we expect that the piece of the minimum action path connecting the stable
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equilibrium point (u−, v−) to an unstable equilibrium point will be different from

the heteroclinic orbit connecting these points. Our results below confirm this

intuition.

It is worth pointing out that traditional shooting methods to solve the Hamil-

ton equations associated with the minimization of (4.6) are inapplicable here.

The reason is that, unlike their finite-dimensional analogue, these equations are

only well-posed as a boundary value problem in time, which prohibits the use of

the shooting method. Hence, the technique used by Maier and Stein in [22] in

the context of the finite-dimensional diffusion (4.1) cannot be used to obtain the

minimizers of (4.6). Next we show that the gMAM is the right alternative to do

this minimization.

The gMAM in infinite dimensions. We want to apply our algorithm to

find the minimum action path connecting the stable states (u−, v−) and (u+, v+).

In order to do so, we first recast our theoretical results to the present infinite-

dimensional setting. Basically, this amounts to changing the finite-dimensional

inner product 〈·, ·〉a by its analogue in function space, and the only result we

actually need is the equivalent of (2.2) and (2.14) which we state without proof:

V
(
(u−, v−), (u+, v+)

)
= inf

ϕ
Ŝ(ϕ) (4.7)

where the infimum is taken over all spatially-periodic functions ϕ(x, α) : [0, 1] ×

[0, 1] → R
2 subject to ϕ(·, 0) ≡ (−1, 0) and ϕ(·, 1) ≡ (1, 0), and where
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Ŝ(ϕ) =

∫ 1

0

(

‖ϕ′‖L2‖B(ϕ)‖L2 − 〈ϕ′, B(ϕ)〉L2

)

dα. (4.8)

Here

B(ϕ) := b(ϕ) + κϕxx, (4.9)

where b is given by (4.2).

The steepest descent flow associated with (4.7) is the analogue of (4.3). It

can be written in compact form as

ϕ̇ = λ2ϕ′′ − λ(∂B − (∂B)∗)ϕ′ − (∂B)∗B + λλ′ϕ′ + µϕ′, (4.10)

where λ = ‖B(ϕ)‖L2/‖ϕ′‖L2 , and ∂B is the operator

∂B = ∇b(ϕ) + κ∂2
x. (4.11)

Explicitly, (4.10) is

ϕ̇ = λ2ϕ′′ − λ(∇b− (∇b)T )ϕ′ − (∇b)T b− κ(∇b+ (∇b)T )ϕxx

− κ2ϕxxxx − κ

(

〈ϕx,∇∇b1 ϕx〉

〈ϕx,∇∇b2 ϕx〉

)

+ λλ′ϕ′ + µϕ′.
(4.12)

(4.12) can be solved by discretizing ϕ(x, α, τ) in x, α and τ and using a general-

ization of the algorithm in Section 3.2. There is, however, an additional difficulty

caused by the presence of the spatial derivatives such as ϕxxxx. To stabilize the

code with respect to those, we may use a FFT-based pseudo-spectral code in x
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and Duhamel’s principle to solve ϕ̇ + κ2ϕxxxx = (remaining terms) explicitly.

However, having tried this approach, we found that a slightly more efficient al-

ternative was to not go pseudo-spectral but rather split each iteration step into

two, the first one being the equivalent of the semi-implicit Step 2 (evaluating ϕ′′

at the new time step) in which the term κ2ϕxxxx at the right-hand side of (4.12)

was excluded, and the second one being an implicit step with that term only. In

this approach all spatial derivatives of ϕ were estimated by finite differences.

To apply the gMAM, we initialized the transition path as the linear interpo-

lation between (u−, v−) and (u+, v+) and added a bump to break the degeneracy

due to the periodicity in x, i.e. we set

ϕ
(
τ = 0, x, α) := (−1 + 2α+ 2 sin2(πα) sin2(πx), 0

)
.

We chose the gridsizes ∆x = 1/128 and ∆α = 1/100, and set the stepsize to

∆τ = 0.1. We then started the algorithm with the model parameters β = 1

and κ = 0.01, and after 40 seconds and about 120 iterations we obtained an

approximate solution. Using a continuation method, we decreased κ to κ = 0.003

and then to κ = 0.001, each time running the algorithm starting from the previous

solution. The whole sequence of operations took about two minutes using MatLab

6.5 running under Windows XP on a 1.5 GHz Pentium 4. Then we started the

process over again, this time increasing κ until it reached κ = 0.026 > κcrit.

Results. Figure 4.6 shows plots for β = 1 and various values of κ. Each of them

shows the first components of the functions ϕ(·, α) for equidistant values of α as
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Figure 4.6: Snapshots along the minimum action path from (u−, v−) to (u+, v+) for
the SPDE generalization of the Maier-Stein model. The parameters are β = 1 and
κ = 0.001, 0.01, 0.024 and 0.026. The red lines are the unstable equilibrium points.
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blue lines. To check our results, we added in each figure the lowest energy saddle

point of the system as a red line, determined independently using the method

explained below. One can see that the transition paths found by our algorithm

indeed pass through these saddle points to very satisfying accuracy. Figure 4.7

shows a three-dimensional representation of the solution for κ = 0.01.

We then added a little bump also to the v-field (the second component of ϕ),

set β = 10 and restarted the algorithm. For this value of β, by analogy with

what happens in the finite-dimensional Maier-Stein model, we expected that the

field v will assist in the transition during the uphill path. The gMAM confirmed

this intuition, as shown in Figure 4.8. Now as u makes a transition similar to

the previous one, v also increases around x = 1
2

but vanishes again as the saddle

point is reached.

Figure 4.9 shows the plot for κ = 0.001. As we can see, smaller values for κ

lead to steeper domain walls. Finally, Figure 4.10 shows an example for a two-

periodic local minimizer, obtained by starting from a two-periodic initial curve.

Notice that the minimum action paths in this example are degenerate due

to the spatial periodicity (i.e. if ϕ(τ, x, α) is a minimizer of the action, so is

ϕ(τ, x + c, α) for any c ∈ R). This degeneracy, however, was broken by our

choice of initial condition and does not appear to affect the convergence of the

algorithm.

Finding saddle points. Since we know that the minimum action paths must

go through critical points (such as saddle points), to check our results we com-

puted these critical points using the following strategy. Any critical point of the
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form (u(x), 0) must fulfill the equation

0 = B1

(
(u, 0)

)
= b1

(
(u, 0)

)
+ κuxx = u− u3 + κuxx. (4.13)

This equation has three constant solutions uk(x) ≡ (k, 0) for k = −1, 0,+1. The

functions (u±1, 0) can be shown to be stable states whereas (u0, 0) is an unstable

critical point. To find nonconstant solutions of (4.13), multiply this equation by

ux and integrate, to obtain

−1
4
(1 − u2)2 + 1

2
κu2

x = cst =: −1
4
E2,

E ∈ [0, 1], or equivalently

|ux(u)| = κ−1/2
√

1
2
(1 − u2)2 − 1

2
E2.

Additional solutions can thus be obtained by inverting the function

x(u) =

∫ u

u−

1

ux(u′)
du′, u− ≤ u ≤ u+, (4.14)

where u± are the locations at which ux = 0, i.e. u± = ±
√

1 − E, and then setting

u(x) := u(2x(u+) − x) for x(u+) ≤ x ≤ 2x(u+). For every choice of E this leads

to a solution with period p(E) = 2x(u+), but we are only interested in those

values for which 1/p(E) ∈ N since u(x) must be periodic on the original domain

x ∈ [0, 1]. These values of E can be found from (4.14):
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p(E) = 2

∫ u+

u−

1

ux(u)
du = 2

√
κ

∫ 1

0

u−1/2fE(u) du,

where

fE(u) = (1 − 1
2
u)−1/2

((
1
2
(1 − E)u+ 2E

)−1/2
+
(
(1 − E)(1 − 1

2
u) + 2E

)−1/2
)

.

We can compute the integral for p(E) numerically for several values of E ∈ [0, 1]

and then determine for which E0 we have p(E0) = 1. Finally, we can invert the

solution x(u) for E = E0 to find the corresponding uE0(x).

As a final remark, note that p(E) can be shown to take its minimum at E = 1,

and its value there is

p(1) = 2
√

2κ

∫ 1

0

u−1/2(1 − u
2
)−1/2 du

= 4
√
κ

∫ 1/2

0

u−1/2(1 − u)−1/2 du

= 2
√
κ

∫ 1

0

u−1/2(1 − u)−1/2 du = 2π
√
κ.

Therefore, if κ > κcrit := 1
4π2 then for every E ∈ [0, 1] we have p(E) ≥ p(1) =

2π
√
κ > 1, i.e. 1/p(E) /∈ N, and there is no non-constant critical point (with

v = 0).

4.2.2 Two dimensions

Next we give a quick demonstration showing that even a two-dimensional SPDE

can be treated by the gMAM within reasonable computation time. The two-
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dimensional version of the SPDE (4.5) that we will treat in this section is







ut = κ∆u+ u− u3 − βuv2 +
√
ε ηu(x, y, t),

vt = κ∆v − (1 + u2)v +
√
ε ηv(x, y, t),

(4.15)

where ∆ = ∂2
x + ∂2

y , x, y ∈ [0, 1] and we assume periodic boundary conditions in

both x and y. This leads to the action

ST (u, v) =
1

2

∫ T

0

∫ 1

0

∫ 1

0

(

(ut − κ∆u− u+ u3 + βuv2)2

+
(
vt − κ∆v + (1 + u2)v

)2
)

dx dy dt.

(4.16)

Then for

B(ϕ) = b(ϕ) + κ∆ϕ and ∂B = ∇b(ϕ) + κ∆

the formulas (4.7) and (4.8) for the associated minimization problem and the

formula (4.10) for the steepest descent flow are still valid. Explicitly, the latter

now reads

ϕ̇ = λ2ϕ′′ − λ(∇b− (∇b)T )ϕ′ − (∇b)T b− κ(∇b+ (∇b)T )∆ϕ− κ2∆∆ϕ

− κ

[(

〈ϕx,∇∇b1 ϕx〉

〈ϕx,∇∇b2 ϕx〉

)

+

(

〈ϕy,∇∇b1 ϕy〉

〈ϕy,∇∇b2 ϕy〉

)]

+ λλ′ϕ′ + µϕ′.
(4.17)

We again implemented both a pseudospectral solver and the two-step approach

and found both to work well. We set N = 80, ∆x = ∆y = 1
64

and ∆τ = 0.02,

chose the initial condition
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ϕ0(τ = 0, α, x, y) =

(

2α2 − 1 + 2 sin2(πα) sin2(πx) sin2(πy)

0

)

,

and started the gMAM with the parameters κ = 0.01 and β = 1. After an

overnight run the algorithm converged. Using the continuation method, we then

tried all combinations of values for κ ∈ {0.01, 0.003, 0.001} and β ∈ {1, 3, 6, 10},

where for β ≥ 6 we introduced a bump in the second component of ϕ by setting

it to 0.1α(1 − α).

Results. Figures 4.11 - 4.15 show some local minimizers that we found using the

gMAM. Figure 4.11 shows the u-field of a local minimizer for (β, κ) = (1, 0.001)

(the v-field remains zero). The figures are to be read starting from the top left

and then proceeding clockwise. The larger square on the right is the saddle point.

Figures 4.12 and 4.13 show a local minimizer for (β, κ) = (10, 0.001); as one can

see, the v-field assists during the nucleation at the beginning of the transition, but

it stays inactive throughout the propagation of the domain walls. The transition

of the u-field on the other hand appears to be almost identical to the one for

β = 1 in Figure 4.11. Figure 4.14 shows a local minimizer for (β, κ) = (1, 0.01),

illustrating that higher values of κ lead to less steep domain walls (i.e. to blurrier

pictures).

Finally, note that global minimizers are constant with respect to either x or y;

the problem then reduces to the one-dimensional one from the previous section.

Figure 4.15 shows an interesting local minimizer that is a combination of two

global minimizers that are constant in the x- and in the y-direction, respectively.
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Figure 4.11: The u-field of a local minimizer for the two-dimensional SPDE, with β = 1
and κ = 0.001. The corresponding v-field remains zero throughout the transition.

Figure 4.12: The u-field of a local minimizer for β = 10 and κ = 0.001. There is
almost no difference to the one of local minimizer in Figure 4.11 for β = 1.
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Figure 4.13: The v-field of the local minimizer of Figure 4.12 for β = 10. We observe
that for this value of β the v-field assists at the beginning of the transition. The
snapshots in this Figure correspond only to the time between the first two squares for
the u-field; during the rest of the transition the v-field is inactive.

Figure 4.14: A local minimizer for β = 1 and κ = 0.01 (u-field only).

76



Figure 4.15: Another local minimizer for β = 10 and κ = 0.001 (u-field only).

4.3 Continuous-time Markov chain: The genetic

switch

As a last example, we apply our technique to a birth-death process with a positive

feedback loop that results in two stable states. The model was first defined by

Roma et al [28] and describes a mechanism in molecular biology called the genetic

switch, illustrated in Figure 4.16. (To illustrate the numerics, in this section we

will only treat the simplifying model of [28] as is; a more precise treatment and

a more detailed introduction to the topic will be done later in Chapter 6.)

A bacterial cell contains plasmids (high-copy DNA strings) with two gene sites

a and b that can be transcribed and translated into proteins A and B. Those in

turn can form polymers that bind to the operator site of the respective other gene,

preventing further production of the corresponding protein. Other reactions are
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to reverse polymer formation or protein binding, and the degradation of proteins.

This setup leads to bistable behavior: If the cell is in a state with many

proteins A and only few proteins B then there are likely also many polymers

Al, the operator site of gene b will be blocked most of the time, and thus only

few new proteins B are being produced. Since there are only few proteins B,

it is unlikely that a polymer Bm will bind to the operator site of gene a, and

the production rate of new proteins A will stay high. Therefore there will be a

stable state with many proteins A and few proteins B, and by symmetry of the

mechanism there is another stable state with few proteins A and many proteins

B. Bistability arises because the fluctuations leading to a switch from one stable

state to the other are rare events.

A simplifying description of this process keeps track only of the numbers

(Xa, Xb) of the proteins of the two types and models polymer formation and

binding to the DNA only by defining the production rate as a function of the

number of proteins of the respective other type, the precise form of which is

motivated by the Hill equation [34]. It thus consists of only four reactions, as

listed in Table 4.1.

Here, Ω is the system size parameter (such as the total number of proteins

in the cell), (xa, xb) := (Xa/Ω, Xb/Ω) is the protein density, a1 and a2 are rate

parameters that combine the rates for transcription into RNA and their transla-

tion into proteins, and l and m are the cooperativity parameters which represent

the numbers of proteins per polymer. In the simulations below, we use the same

model parameters as Roma et al. [28], namely a1 = 156, a2 = 30, µ1 = µ2 = 1,

l = 1, m = 3.
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Under this kind of scaling the stochastic system for x := (xa, xb) satisfies a

large deviations principle as ε = 1
Ω
→ 0, with Hamiltonian

H(x, θ) =
a1

1 + xmb
(eθa − 1) + µ1xa(e

−θa − 1)

+
a2

1 + xla
(eθb − 1) + µ2xb(e

−θb − 1)

(4.18)

(see [29]) which we used in the gMAM algorithm presented in Chapter 3.

Figure 4.17 shows the transition path obtained with gMAM, for the full path

and only for the uphill path. They match those found in [28] using a shooting

method based on the Hamilton equations associated with the Hamiltonian (4.18).

While in general for continuous-time Markov chains no explicit expression for

ϑ̂(x, y) exists, for the simple Hamiltonian (4.18) we could indeed find one. Com-

paring the curve obtained from gMAM using the explicit formula for ϑ̂(x, y) with

the one using the algorithm from Section 3.4 in an inner loop, we found that both

curves matched exactly. When we applied the technique to obtain second-order

accuracy as described in Section 3.3, the corner of the path at the saddle point

was sharp, and λ at that point vanished up to machine precision.

Table 4.2 shows the results of our performance tests on this model. For various

gridsizesN it lists the optimal stepsize ∆τ , the number of steps necessary until the

change in the action Ŝ(ϕ) per iteration drops below 10−7 and the corresponding

runtime. We observe again that the maximum stepsize ∆τ is roughly independent

of the gridsize N , and that the runtime is close to linear in N .
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Figure 4.16: The mechanism of the genetic switch. The X symbolizes protein
degradation.

reaction type rate state change of (Xa, Xb)
protein production Ωa1(1 + xmb )−1 (1, 0)

Ωa2(1 + xla)
−1 (0, 1)

protein degradation Ωµ1xa (−1, 0)
Ωµ2xb (0,−1)

Table 4.1: The reactions of the Roma model.

gridsize N stepsize ∆τ # iterations runtime
100 0.22 20 0.5 sec
300 0.27 15 0.6 sec

1,000 0.26 18 1.3 sec
3,000 0.26 18 3.1 sec

10,000 0.27 19 11.6 sec

Table 4.2: Algorithm performance for the Roma model.
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Figure 4.17: The minimum action path for the Roma model. x- and y-axis denote
the densities of the proteins of type A and B, respectively. The first panel shows the
full path from the right stable state to the left stable state; the second panel shows the
piece of the path from the right stable state to the saddle point.
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Chapter 5

Minimization with variable

endpoints

5.1 Endpoint constraints

Another use of the geometric action Ŝ is the computation of the invariant mea-

sure: Let the family of diffusion processes {(Xε
t )t≥0, ε > 0} on D ⊂ R

n fulfill

a large deviations principle with action ST (ψ), denote by x1, . . . , xK its stable

states (we assume that there are no other stable structures such as limit cyles),

let µε denote its invariant measure (with µε(D) = 1), and let B ⊂ D be a Borel

set. Then the limiting behavior of µε(B) is given by

lim
ε→0

−ε log µε(B) = inf
k=1,...,K

inf
T>0

inf
ψ∈C̄B

xk
(0,T )

ST (ψ), (5.1)

where we denote by C̄B
xk

(0, T ) the space of all functions ψ ∈ C̄(0, T ) such that

ψ(0) = xk and ψ(T ) ∈ B. Note that µε(B) is the probability that after reaching
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equilibrium the process (Xε
t ) is in the set B.

While the minimization over the finitely many points x1, . . . , xK is not a

problem, we see that again we have a double minimization problem over both

T > 0 and a set of paths ψ ∈ C̄(0, T ). In contrast to the minimization problem

(3.1), in this case the end point x2 of the path ψ is allowed to vary within the

set B. But using our technique from Chapter 2, we can easily reformulate the

problem in terms of Ŝ:

Lemma 7. The minimization problem in (5.1) can be reformulated as

lim
ε→0

−ε log µε(B) = inf
k=1,...,K

inf
ϕ∈C̄B

xk
(0,1)

Ŝ(ϕ). (5.2)

Proof.

inf
T>0

inf
ψ∈C̄B

x1
(0,T )

ST (ψ) = inf
T>0

inf
ϕ∈C̄B

x1
(0,1)

inf
ψ∈C̄ϕ(0,T )

ST (ϕ)

= inf
ϕ∈C̄B

x1
(0,1)

inf
T>0

inf
ψ∈C̄ϕ(0,T )

ST (ϕ)

= inf
ϕ∈C̄B

x1
(0,1)

Ŝ(ϕ),

where in the last step we used the representation (2.3) of Ŝ.

This frees us from the minimization over T , and we can again make use of

the invariance of Ŝ(ϕ) under reparametrization of ϕ by reparametrizing the path

after each iteration of our steepest descent scheme. Denoting the local action of

Ŝ by ℓ(x, y), the variation of Ŝ applied to any test function η ∈ C∞(0, 1) with
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η(0) = 0 (but not necessarily η(1) = 0) can be computed as follows:

(
δŜ(ϕ)

)
(η) = first-order approximation in η of Ŝ(ϕ+ η) − Ŝ(ϕ)

=

∫ 1

0

(
〈ℓx, η〉 + 〈ℓy, η′〉

)
dα

=

∫ 1

0

〈ℓx − ∂αℓy, η〉 dα+
〈
ℓy(ϕ(1), ϕ′(1)), η(1)

〉

= 〈DŜ(ϕ), η〉L2([0,1],Rn) +
〈
ϑ̂(ϕ(1), ϕ′(1)), η(1)

〉
,

where ℓx and ℓy are evaluated at (ϕ(α), ϕ′(α)) unless specified otherwise, and

where DŜ(ϕ) is the variation of Ŝ(ϕ) taken in the L2-norm, as computed in

Section 3.1, with both endpoints fixed. In the last step we used that

ℓy(x, y) = ∂y〈y, ϑ̂(x, y)〉 = ϑ̂(x, y) + ϑ̂y(x, y)
Ty = ϑ̂(x, y)

by representation (2.5) and (E.3) in Appendix E. Assume now that the boundary

of B can be written as ∂B = {x ∈ D | g(x) = 0} for some differentiable function

g : D → R. When looking for the minimizer in (5.2), we can clearly restrict

ourselves to curves ϕ with endpoint ϕ(1) ∈ ∂B since any piece of the curve

beyond the first hitting point of B can only increase the action and may thus

be deleted at no cost (unless some xk is in B, in which case (5.2) is equal to

zero). Therefore, to adjust the gMAM to the present situation, we can introduce

a Lagrange multiplier term ν to enforce the endpoint constraint g(ϕ(τ, 1)) = 0
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throughout the steepest descent flow:







ϕ̇(τ, α) = −λHθθDŜ(ϕ),

ϕ̇(τ, 1) = −ϑ̂
(
ϕ(τ, 1), ϕ′(τ, 1)

)
+ ν∇g(ϕ(τ, 1)),

ϕ(τ, 0) = x1, ϕ(0, α) = ϕ0(α)

(5.3)

for α ∈ [0, 1] and τ ≥ 0. Here, ν(τ) ∈ R is chosen such that g(ϕ(τ, 1)) ≡ 0, i.e.

0 ≡ ∂τg(ϕ) =
〈
∇g(ϕ), ϕ̇

〉

=
〈
∇g(ϕ),−ϑ̂(ϕ, ϕ′) + ν∇g(ϕ)

〉

⇒ ν =

〈
∇g(ϕ), ϑ̂(ϕ, ϕ′)

〉

|∇g(ϕ)|2 ,

with all occurrences of ϕ, ϕ′ and ϕ̇ evaluated at (τ, 1). This shows the following

proposition:

Proposition 5. The minimizer ϕ⋆ of the minimization problem in Lemma 7 is

the steady state solution of the steepest descent flow







ϕ̇(τ, α) = Pϕ′

(
λ2ϕ′′ − λHθxϕ

′ +HθθHx

)
+ µϕ′

= λ2ϕ′′ − λHθxϕ
′ +HθθHx + λλ′ϕ′ + µϕ′ for α ∈ (0, 1),

ϕ̇(τ, 1) = −P∇g(τ,1) ϑ̂
(
ϕ(τ, 1), ϕ′(τ, 1)

)
,

ϕ(τ, 0) = x1, ϕ(0, α) = ϕ0(α),

(5.4)
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for α ∈ [0, 1] and τ ≥ 0. Here µϕ′ is the Lagrange multiplier term introduced

to enforce that |ϕ′(τ, ·)| ≡ cst(τ) along the curve, we abbreviate Pc := I − c⊗c
|c|2

for every c ∈ R
n, and the initial curve ϕ0 must be chosen such that it fulfills the

constraints |ϕ0′| ≡ cst and g(ϕ0(1)) = 0.

Note that for α ∈ (0, 1) we are again working with −λHθθDŜ(ϕ) to improve

the stability of the code. Each iteration of the gMAM will now consist of three

steps: (i) follow the flow (5.4) (without the term µϕ′) for one discrete time

step, (ii) redistribute the points along the curve to make them equidistant, and

(iii) update the endpoint once more using Newton-Raphson’s method to make

g(ϕ(1)) = 0, i.e. replace ϕkN by

ϕkN − g(ϕkN)

|∇g(ϕkN)|2∇g(ϕ
k
N),

to get rid of second-order errors in g(ϕ(1)).

5.2 Endpoint penalties

One more situation in which the use of Ŝ is helpful is the following: Let µε be

the invariant measure defined in the previous section, and let f : D → R be a

bounded continuous function. Then we have the limit

lim
ε→0

−ε log

∫

D

e−
1
ε
f(x) dµε(x) = inf

k=1,...,K
inf
T>0

inf
ψ∈C̄xk

(0,T )

(
ST (ψ) + f(ψ(T ))

)
, (5.5)
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where the integral is the expectation with respect to the invariant measure (this

can be considered as a generalization of Varadhan’s Lemma). In this case there

is no constraint on the endpoint ψ(T ), but because of the additive penalty term

f(ψ(T )) a tradeoff between the length and location of the curve and the position

of its endpoint may have to be made. Again, we can use Ŝ to carry out the

minimization over T > 0 analytically:

Lemma 8. The minimization problem in (5.5) can be reformulated as

lim
ε→0

−ε log

∫

D

e−
1
ε
f(x) dµε(x) = inf

k=1,...,K
inf

ϕ∈C̄xk
(0,1)

Ŝf (ϕ), (5.6)

where Ŝf (ϕ) := Ŝ(ϕ) + f(ϕ(1)).

Proof.

inf
T>0

inf
ψ∈C̄xk

(0,T )

(
ST (ψ) + f(ψ(T ))

)

= inf
T>0

inf
ϕ∈C̄xk

(0,1)
inf

ψ∈C̄ϕ(0,T )

(
ST (ψ) + f(ψ(T ))

)

= inf
ϕ∈C̄xk

(0,1)
inf
T>0

inf
ψ∈C̄ϕ(0,T )

(
ST (ψ) + f(ϕ(1))

)

= inf
ϕ∈C̄xk

(0,1)

((

inf
T>0

inf
ψ∈C̄ϕ(0,T )

ST (ψ)
)

+ f(ϕ(1))
)

= inf
ϕ∈C̄xk

(0,1)

(
Ŝ(ϕ) + f(ϕ(1))

)

= inf
ϕ∈C̄xk

(0,1)
Ŝf (ϕ). (5.7)
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The variation of Ŝf applied to any test function η ∈ C∞(0, 1) with η(0) = 0 is

(
δŜf (ϕ)

)
(η) = 〈DŜ(ϕ), η〉L2([0,1],Rn) +

〈
ϑ̂(ϕ(1), ϕ′(1)) + ∇f(ϕ(1)), η(1)

〉
, (5.8)

and we arrive at the following proposition:

Proposition 6. The minimizer ϕ⋆ of the minimization problem in Lemma 8 is

the steady state solution of the steepest descent flow







ϕ̇(τ, α) = Pϕ′

(
λ2ϕ′′ − λHθxϕ

′ +HθθHx

)
+ µϕ′

= λ2ϕ′′ − λHθxϕ
′ +HθθHx + λλ′ϕ′ + µϕ′ for α ∈ (0, 1),

ϕ̇(τ, 1) = −ϑ̂(ϕ(τ, 1), ϕ′(τ, 1)) −∇f(ϕ(τ, 1)),

ϕ(τ, 0) = x1, ϕ(0, α) = ϕ0(α),

(5.9)

for α ∈ [0, 1] and τ ≥ 0. Here µϕ′ is again the Lagrange multiplier term intro-

duced to enforce the constraint that |ϕ′(τ, ·)| ≡ cst(τ) along the curve, and the

initial curve ϕ0 must be chosen such that it fulfills the constraint |ϕ0′| ≡ cst.

Proposition 6 allows for a straight-forward modification of the gMAM algo-

rithm introduced in Chapter 3 by modifying the linear system (3.6) so that

ϕ̃N = ϕN − ∆τ
(
ϑ̂kN + ∇f(ϕkN)

)
.

We remind the reader that in the case of a diffusion process an analytic formula

for ϑ̂(x, y) is given by (2.12).
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As a final remark, we want to point out that it is easily possible to generalize

the use of the gMAM to combinations of the minimization problems (5.1) and

(5.5), i.e. to situations in which one has both an endpoint constraint and a penalty

term.

5.3 Example: SDE

Consider the diffusion process

dX = −M∇V (X) dt+
√
ε dW, (5.10)

where the potential V (x) ≥ 0 achieves its minimal value 0 at the only critical

point x1 = 0, say, and where M is of the form M = I + J , with JT = −J .

The specific form of the SDE allows us to solve the minimization problems

(5.1) and (5.5) analytically (see also [12, Theorem 3.1]), which enables us to

benchmark the results obtained by the gMAM. We start by rewriting the corre-

sponding action:

ST (ψ) =
1

2

∫ T

0

|ψ̇ +M∇V (ψ)|2 dt

=
1

2

∫ T

0

∣
∣(ψ̇ −MT∇V (ψ)) + (M +MT

︸ ︷︷ ︸

=2I

)∇V (ψ)
∣
∣
2
dt

=
1

2

∫ T

0

(∣
∣ψ̇ −MT∇V (ψ)

∣
∣
2
+ 4
∣
∣∇V (ψ)

∣
∣
2

+ 4
〈
ψ̇ −MT∇V (ψ),∇V (ψ)

〉)

dt
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=
1

2

∫ T

0

(∣
∣ψ̇ −MT∇V (ψ)

∣
∣
2
+ 4∂tV (ψ)

+ 4
( ∣
∣∇V (ψ)

∣
∣
2 −

〈
MT∇V (ψ),∇V (ψ)

〉

︸ ︷︷ ︸

=0

))

dt.

Since 〈JTx, x〉 = 〈x, Jx〉 = 〈x,−JTx〉 and thus 〈JTx, x〉 = 0 for every x, the

third term in the last line vanishes. Therefore, if ψ(0) = x1 then

ST (ψ) =
1

2

∫ T

0

|ψ̇ −MT∇V (ψ)|2 dt+ 2V (ψ(T )), (5.11)

since V (ψ(0)) = V (x1) = 0.

Analytic solution: Endpoint constraints. To solve the minimization prob-

lem (5.1), we minimize ST (ψ) as given in (5.11) as follows: First we deter-

mine the optimal endpoint ψ(T ), say x⋆2, that minimizes V (ψ(T )) on the set

∂B by using a Lagrange multiplier. Then we make the integral term vanish

by setting ψ(t) := χ(T − t), with χ(t) starting at x⋆2 and following the ODE

χ̇ = −MT∇V (χ). Since limt→∞ χ(t) = x1, ψ will connect x1 to x⋆2 as T → ∞.

This shows that

inf
T>0

inf
ψ∈C̄B

x1
(0,T )

ST (ψ) = 2V (x⋆2). (5.12)

As an example in R
2, we consider V (x, y) = 1

2
x2 + y2 and

B := {(x, y) ∈ R
2
+ |xy ≥ 2}.
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To find x⋆2 =: (x, y), we define

F (x, y, λ) := 2V (x, y) − λ(xy − 2) = x2 + 2y2 + λ(xy − 2)

and set ∇x,y,λF (x, y, λ) = 0. We obtain

2x+ λy = 0 ∧ 4y + λx = 0 ∧ xy − 2 = 0

⇒ 2x+
(

− 4y

x

)

y = 0 ∧ y =
2

x

⇒ 2x− 16

x3
= 0 ∧ y =

2

x

and thus x⋆2 = (23/4, 21/4). This shows that the minimum value (5.12) and thus

the limit in (5.1) is 2V (x⋆2) = (23/4)2 + 2(21/4)2 = 4
√

2, independently of the

choice of M .

Analytic solution: Endpoint penalties. To minimize

ST (ψ) + f(ψ(T )) =
1

2

∫ T

0

|ψ̇ −MT∇V (ψ)|2 dt+
[
2V (ψ(T )) + f(ψ(T ))

]
, (5.13)

and thus solve the minimization problem (5.5) we proceed similarly: We first de-

termine the optimal endpoint x⋆2 by setting the derivative of 2V +f equal to zero,

then we make the integral part vanish by having ψ follow the flow −MT∇V (x)

backwards in time. This shows that

inf
T>0

inf
ψ∈C̄x1 (0,T )

(
ST (ψ) + f(ψ(T ))

)
= 2V (x⋆2) + f(x⋆2). (5.14)
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As an example, we take V (x) as before and f(x, y) = 1
2
(x−1)2 + 1

2
(y−1)2. Then

x⋆2 = (x, y) fulfills

0 = 2∇V (x, y) + ∇f(x, y) =

(
2x+ (x− 1)

4y + (y − 1)

)

⇒ x⋆2 = (1
3
, 1

5
),

and the right-hand side of (5.14) and thus the limit in (5.5) equals

2V (x⋆2) + f(x⋆2) =
(
(1

3
)2 + 2(1

5
)2
)

+
(

1
2
(1

3
− 1)2 + 1

2
(1

5
− 1)2

)
= 11

15
.

Numerical results using gMAM. To compare the output of the gMAM with

our analytical solutions, we chose M =
(

1 −1
1 1

)
. Figure 5.1 shows the minimiz-

ing path for the minimization problem (5.2) (blue curve with red dots that are

equidistant in time), obtained after 60 iterations of the gMAM using the gridsize

N = 1, 000 and the stepsize ∆τ = 0.2, on top of the analytic solution (black).

The green line in Figure 5.1 is the boundary of the set B. As we can see, the

curves match as much as one can expect from the chosen grid size (the black

curve is hardly visible on this plot).

Figure 5.2 shows the accuracy of the curve as a function of N (for values of

N between 50 and 50, 000), on doubly-logarithmic scale. The upper curve is the

error of the endpoint: it is a straight line with slope −1.01, indicating an error of

the order O(1/N). The lower curve is the error of the action; this slightly noisier

curve fits a straight line with slope −2.00 and thus indicates an error in the ac-

tion of the order O(1/N2). The runtime needed for the 60 iterations (no figure)
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increased linearly from 0.34 seconds for N = 50 to 138 seconds for N = 50, 000

(using MatLab 6.5 running under Windows XP on a 1.5 GHz Pentium 4).

Figures 5.3 and 5.4 show the corresponding graphs for the minimization prob-

lem (5.6). This time we used 40 iterations at ∆τ = 0.3, the choices for N stayed

the same. As one can see, the minimizing curve found by gMAM matches our ana-

lytical solution again, and the graphs displaying the accuracy very much resemble

the ones displayed in Figure 5.2 (here with slopes −1.02 and −2.02), indicating

again first-order accuracy in N for the endpoint and second-order accuracy for

the action (including the penalty f(ϕ(1))). The runtime increased linearly from

0.25 to 48 seconds. Notice that here the time for one iteration is shorter than in

the previous example because if one imposes a boundary constraint (which de-

pends on both components of the endpoint) then the linear system (3.6) cannot

be solved separately for each component of the path anymore.

5.4 Finance application: Valuation of equity in-

dex options

The basic strategy of the gMAM – minimizing a parametrization-free functional

by a two-step procedure consisting of one steepest-descent step and one reparam-

etrization step – can also be useful to address problems other than the double

minimization over T and ψ, as long as the problem at hand can be rephrased

in terms of a parametrization-free functional S̃. One situation in which this is
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Figure 5.1: Minimization with boundary constraint: the minimizing path.
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Figure 5.2: Minimization with boundary constraint: accuracy measurements.
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Figure 5.4: Minimization with penalty: accuracy measurements.
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possible is the computation of the short-time aymptotics of SDEs, or equivalently,

fixed-T action minimization without the presence of a drift term.

As an illustrative example we choose a typical question arising in mathemat-

ical finance: the valuation of a European option.

Finance introduction: European options. A European option is a contract

that gives its holder the right (but not the obligation) to buy (call option) or to

sell (put option) an equity from the seller of the option at a fixed future date (the

expiration date) at a set price (the strike price). In the case of a call option, if at

the expiration time the value of the underlying equity is above the strike price,

then the holder will exercise his option to buy the equity at the strike price, and

he has then the possibility of selling it again on the market at the higher market

price. If at the expiration time the value of the equity is below the strike price,

then he will instead choose not to exercise his right; in that case his loss is the

money that he had to pay to enter the contract. Put options on the other hand

are exercised if the price of the equity falls below the strike price; they are one

way to take advantage of a decline of the equity’s value.

The value of the option, i.e. the price that one has to pay to enter the contract,

has to reflect the probability that at the expiration time the value of the equity is

above (or below) the strike price. The seller of the contract will therefore typically

use a mathematical model describing the market to estimate this probability and

thus to compute the value of the option. If the expiration time and the variance

of the market price are small compared to the difference between the strike price

and the spot (current) price then the event that the price of the equity will indeed
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bridge this gap is a rare event, and large deviations theory can provide us with

analytic formulas for the asymptotics.

The gMAM for short-time asymptotics. Let us assume that the n-dimen-

sional process (Xt)t≥0 representing the values of the equities fulfills the SDE

dXt = b(Xt) dt+ σ(Xt) dWt, (5.15)

whereWt is an n-dimensional Brownian motion. We are interested in the behavior

of XεT for small ε > 0 and some fixed T > 0. The change of variables X̄t := Xεt

shows that the process (X̄t)t≥0 fulfills the SDE

dX̄t = εb(X̄t) dt+
√
εσ(X̄t) dWt,

and thus the asymptotic behavior of XεT = X̄T can be determined by large

deviations theory: for any regular Borel set B (which will denote the set on

which the option is exercised) we have

lim
ε→0+

ε log P(XεT ∈ B |X0 = x1) = lim
ε→0+

ε log P(X̄T ∈ B | X̄0 = x1)

= − inf
ψ∈C̄B

x1
(0,T )

ST (ψ), where (5.16)

ST (ψ) =
1

2

∫ T

0

|ψ̇|2A(ψ) dt

and A(x) = σ(x)σ(x)T . Notice that in contrast to the typical situation in which

we would apply the gMAM, i.e. the minimization over both T and ψ, in (5.16)
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T is kept fixed. But the fact that in the present case the drift b does not enter

the action ST (ψ) allows us to express (5.16) in terms of a parametrization-free

functional S̃ anyway, using a different trick: applying Hölder’s inequality, we

obtain the estimate

(
T · 2ST (ψ)

)1/2
=
(∫ T

0

12 dt
)1/2(

∫ T

0

|ψ̇|2A(ψ) dt
)1/2

(5.17)

≥
∫ T

0

1 · |ψ̇|A(ψ) dt (5.18)

⇒ ST (ψ) ≥ 1

2T

(∫ T

0

|ψ̇|A(ψ) dt
)2

=
1

2T

(∫

γ(ψ)

|dz|A(z)

)2

. (5.19)

Equality in (5.18) and thus in (5.19) is achieved if the two integrands in (5.17) are

positive multiples of each other, i.e. if ψ is parametrized such that |ψ̇|A(ψ) ≡ cst

almost everywhere, which is certainly possible for any T and any path γ(ψ).

Therefore we can rewrite (5.16) as

inf
ψ∈C̄B

x1
(0,T )

ST (ψ) = inf
ϕ∈C̄B

x1
(0,1)

inf
ψ∈C̄ϕ(0,T )

ST (ψ) = inf
ϕ∈C̄B

x1
(0,1)

1

2T

(∫

γ(ϕ)

|dz|A(z)

)2

=
1

2T

(

inf
ϕ∈C̄B

x1
(0,1)

∫

γ(ϕ)

|dz|A(z)

)2

,

and we conclude that

lim
ε→0+

ε log P(XεT ∈ B |X0 = x1) = − 1

2T

(

inf
ϕ∈C̄B

x1
(0,1)

S̃(ϕ)
)2

, (5.20)

where S̃(ϕ) =

∫ 1

0

|ϕ′|A(ϕ) dα. (5.21)
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Note that S̃(ϕ) was not computed from S(ψ) in the same way as Ŝ(ϕ) (since the

underlying problem here is different), therefore the corresponding Euler-Lagrange

equation is different from (3.2). One can however compute the variation of S̃(ϕ)

as given by (5.21) by hand and find that the (preconditioned) steepest-descent

flow for the minimization problem (5.20) is

ϕ̇ = −A−1(ϕ)|ϕ′|A(ϕ)DS̃(ϕ)

= ϕ′′ + A−1
[
(∇A ⋆ ϕ′) − 1

2
(∇A ⋆ ϕ′)T

]
ϕ′ − λ′

λ
ϕ′, (5.22)

where λ = |ϕ′|A(ϕ), and where we introduced the notation ∇A(x)⋆c for the matrix

(∇A(x) ⋆ c)i,j :=
[(
∂xj

A(x)
)
c
]

i
=

n∑

k=1

∂xj
A(x)ikck, 1 ≤ i, j ≤ n.

Example: Options on equity indices. Let us now consider the real-valued

process (Ct)t≥0 describing the total value of a basket of m assets with prices fk(t)

and constant weights wk (as done in [2]), i.e.

Ct =
m∑

k=1

wkfk(t),

where the prices fk follow the SABR model [15]

dfk = akf
β
k dWk,

dak = νkak dZk,

fk(0) = f 0
k , ak(0) = a0

k

(5.23)
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for all k = 1, . . . ,m. Here, ak is the volatility of the asset price fk, νk is the

volatility of ak, β > 0 is a parameter, Y := (W1, . . . ,Wm, Z1, . . . , Zm) is a Brow-

nian process with correlation coefficients ρij (i.e. E(dYi dYj) = ρij dt), and the

starting point (a0
1, . . . , a

0
n, f

0
1 , . . . , f

0
n) of the process is the spot configuration. For

simplicity we only consider the case β = 1.

To simplify the SDE (5.23) and thus the steepest-descent flow (5.22), we use

Itô’s formula by applying the change of variables f ′
k = log(fk/f

0
k ) and a′k =

log(ak/a
0
k), and we obtain

df ′
k = drift term + a′k dWk,

da′k = drift term + νk dZk,

f ′
k(0) = a′k(0) = 0

(5.24)

for all k = 1, . . . ,m. The 2m-dimensional process (Xt)t≥0 in this case is

Xt = (a′1, . . . , a
′
n, f

′
1, . . . , f

′
n)(t), X0 = x1 = 0,

and its diffusion matrix is given by Aij(x) = ρijσi(x)σj(x), for

σk =







a′k if 1 ≤ k ≤ m,

νk if m+ 1 ≤ k ≤ 2m.

(5.25)

The set B in formula (5.20) is

Bcall =
{

(a′1, . . . , a
′
n, f

′
1, . . . , f

′
n) ∈ R

2m
∣
∣
∣

n∑

k=1

wkf
0
ke

f ′k ≥ CS
}

,
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for a call option, or

Bput =
{

(a′1, . . . , a
′
n, f

′
1, . . . , f

′
n) ∈ R

2m
∣
∣
∣

n∑

k=1

wkf
0
ke

f ′k ≤ CS
}

,

for a put option, where CS is the strike price.

Results. We set ρij = 0 if 1 ≤ i ≤ m and m + 1 ≤ j ≤ 2m or vice versa.

In lack of real historical data to estimate the parameters, we also set ρij = δij

for m + 1 ≤ i, j ≤ 2m and νi = 1 for all 1 ≤ i ≤ m. As initial values, we set

a0
k = f 0

k = 1 for every k, every asset was assigned equal weight wk ≡ 1
m

, and as the

strike price we chose twice the spot price. We discretized our curves at N = 50

points and used the stepsize ∆τ = 0.003. We say that the algorithm converged

if the action does not change by more than 10−5 if we run the algorithm further.

We first tried our algorithm for a basket of size m = 2, with ρij = δij also

for 1 ≤ i, j ≤ m, i.e. for uncorrelated asset prices fk. Here the gMAM converged

after about 5,000 steps (≈ 45 seconds). We found two local minima of the action

S̃ (Figure 5.5 shows one of them): one minimum corresponding to the case in

which the price of the first asset rises drastically while the second one stays almost

stagnant, and by symmetry of the system another local minimum with the roles

of the two assets interchanged. Figure 5.5 also shows that the volatily of the price

that is responsible for the transition increases fast at the beginning, allowing for

easier fluctuations of the asset price.

When we increased the basket size to m = 100, it took about 23,000 iterations

(≈ 127 minutes) until the gMAM had reached convergence. We observed again
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that the optimal way to reach the strike price is that one asset price fk rises

whereas all other asset prices remain approximately the same (no figure).

We then chose again m = 2, but now we changed the correlations ρij, 1 ≤

i, j ≤ m, of the prices fk so that the two asset prices are closer correlated: we set

(ρij)1≤i,j≤m =

(

1 1

1 1.04

)

,

corresponding to the decomposition W1 = W̄1, W2 = W̄1 + .2W̄2 for independent

Brownian motions W̄1 and W̄2. In this case the convergence turned out to be a

bit slower than in the uncorrelated case, but after 32,000 steps (51
2

minutes) we

obtained a solution, as shown in Figure 5.6. As one would expect, the minimizing

path suggests that both prices have to rise simultaneously in this case.

Conclusions. Although the time until convergence for m = 100 seems large at

first, in practice this would only play a minor role: one would run the gMAM

only once until convergence and then use a continuity method by feeding the

gMAM with updated estimates for the volatilities and correlation coefficients as

time passes by. On the other hand, comparing our measurements to those in

Sections 4.1 and 4.3 suggests that one might be able to speed up the convergence

a lot more, for example by chosing another preconditioner. Also, when we did

further experiments we observed that stronger correlations between the various

components of (Xt)t≥0 can make the PDE very stiff and thus force us to decrease

the stepsize ∆τ in order to keep the scheme stable – further work at this end may

prove fruitful.
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Finally, while this section demonstrates that the gMAM is a promising tool to

address the problem of options valuation, tests on real-world data would be neces-

sary to check whether the first-order large deviations approximation is justifiable

in this case.

103



0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f ′

1

f ′

2

Asset prices

0 1 2 3 4 5 6

x 10
−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

a′

1

a′

2

Volatilities

Figure 5.5: One transition path for the basket size m = 2 and uncorrelated asset
prices. The first panel shows that the price f ′

2 increases while f ′
1 changes only very

little. The green line is the set of points corresponding to the strike price. The volatily
a′2 increases rapidly at the beginning, allowing for easier fluctuations of f ′

2.

104



0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f ′

1

f ′

2

Asset prices

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

a′

1

a′

2

Volatilities

Figure 5.6: A transition path for basket size m = 2 and correlated asset prices. The
prices of both assets as well as their volatilities increase simultaneously.

105



Chapter 6

Application: Synthetic Biology

6.1 Introduction to Synthetic Biology

Biology is currently undergoing a series of exciting innovations that not only

revolutionize the field itself with novel techniques for developing and produc-

ing medications or vaccines against the major diseases, but that will ultimately

change the way we think of life. With DNA sequencing and synthesis becoming

both cheaper and more reliable, one is now able to read out and study DNA se-

quences of existing organisms, manipulate and reassemble them in the computer

at will, and finally synthesize them and introduce them into living cells [10].

As error rates in DNA synthesis have been decreased to only 1 error in about

10000 bases and the maximum length for sequenced DNA has been pushed to up

to 35000 bases [4], one has now enough freedom to design the first simple genetic

networks that can perform basic tasks: logical building blocks for operations

such as AND and XOR that can be assembled to perform binary summation or
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counting, inverters that when connected properly form a one-bit-memory (the

genetic switch [13]) or a ring-oscillator [9], input-sensors that allow circuits to

react on the environment, e.g. on light [21] or heat, and output mechanisms that

can return the results of a logical operation, e.g. by making the cell glow [9, 26]

or even smell in various scents [27, 17].

The current stage of synthetic biology is comparable to the early years of

electrical engineering [3]: The basic building blocks have to be identified, con-

structed, studied, improved, and finally made available to a new generation of

“genetic engineers” who will not have to know the details of how the parts work,

but only how to assemble them correctly in order to fulfill a task of interest.

The long-term success of synthetic biology, going beyond initial toy projects and

leading towards the routine design of sophisticated genetic networks performing

complex logical tasks, will thus highly depend on the successful development of

a collection of reliable standard biological parts and devices.

At currently about 1$ per base, DNA synthesis is still too expensive to solely

use generous trial-and-error methods in order to improve the performance and

stability of the basic building blocks. Both financially and qualitatively one

will benefit from the aid of advanced mathematical and numerical tools, even if

“Moore’s law for synthetic biology” will remain valid for a bit longer.

But while both theory and numerics for the simulation and study of the short-

term behavior of genetic networks have been readily developed – useful models

are based on continuous-time Markov jump processes or on their approximations

by ordinary differential equations – the tools for the study of long-term behavior,

especially noise-driven system failure, require improvement in order to be used
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routinely and efficiently. This is the main objective of the work presented in this

chapter.

Significance of Rare Events in Biological Networks. All reactions in a

cell, such as transcription, translation, protein binding or protein degradation,

are stochastic: one cannot predict for sure how many reactions of a certain type

will happen within a given time interval, but only with which probability each

number of reactions will occur. While the probability for some typical behavior

of the cell may be close to 1, there is always a small probability that the cell will

behave very differently.

The probability of a whole sequence of such unlikely events to occur, ulti-

mately leading to unwanted behavior on the macroscopic scale (system failure),

is even smaller, but still nonzero. As a result, if one only waits long enough it will

eventually happen in any given cell, and if one observes thousands or millions of

cells then the expected time until one of them shows atypical behavior is even

shorter.

A genetic engineer who designs a new genetic network would like the expected

time until system failure to be much longer than the typical operation time of the

network. Part designers should therefore explore and exploit methods to increase

the stability of their parts. To do so, the first step is to understand which reactions

of the network are most likely to be responsible for system failure. Once this is

understood, one can modify this weak component, design backup mechanisms

that kick in once atypical behavior is detected, etc.
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6.2 The Genetic Switch

The considerations above apply to any network that stores and works with bi-

nary information, such as adders, subtracters, counters, or more complex logical

networks to be designed in the future, but as a simple example we consider here

the plasmid-based genetic switch which has been artificially engineered in [13].

Plasmids are typically short (1-400 kilobase pairs long) circular double-stran-

ded DNA molecules that are mainly found in bacterial cells. They are separate

from the main chromosomal DNA and capable of autonomous replication. Their

most important feature in the context of this mathematical treatment is that

they can exist hundreds or even thousands of times in each cell, since this allows

us to apply large deviations theory (which describes the limiting behavior as the

system size goes to ∞).

In the genetic switch, a plasmid contains two gene sites a and b that can be

transcribed and translated into proteins A and B. Those in turn can form poly-

mers that bind to the operator site of the respective other gene, preventing further

production of the corresponding protein. Other reactions are to reverse polymer

formation or protein binding, and the degradation of proteins. See Figure 4.16

for an illustration.

This setup leads to bistable behavior: If the cell is in a state with many

proteins A and only few proteins B then there are likely also many polymers

Al, the operator site of gene b will be blocked most of the time, and thus only

few new proteins B are being produced. Since there are only few proteins B,

it is unlikely that a polymer Bm will bind to the operator site of gene a, and
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the production rate of new proteins A will stay high. Therefore there will be a

stable state with many proteins A and few proteins B, and by symmetry of the

mechanism there is another stable state with few proteins A and many proteins

B. Bistability arises because the fluctuations leading to a switch from one stable

state to the other are rare events.

The cell is in one of these two stable states, and the network can thus be

considered as a one-bit memory. However, if a rare sequence of unlikely reactions

occurs, it is possible for the cell to spontaneously fall from one stable state into the

other, thus losing its information. Part designers want to make these unwanted

switches as rare as possible.

Biological Networks as Markov Jump Processes. A network such as the

genetic toggle switch illustrated in Figure 4.16 can be modeled as a Markov jump

process. Our state space variables are X1/2 = number of proteins A/B, X3/4 =

number of polymers Al/Bm, and X5/6 = number plasmids that are blocked on

gene sites a/b. The rescaled state vectors are the protein densities (x1, . . . , x6) :=

(εX1, . . . , εX6), where Ω := ε−1 is the system size parameter (in our case the

total number of plasmids in the cell). The dynamics is specified by the reaction

list,

Rj = (ε−1νj(x), εej), j = 1, . . . , J, (6.1)

where ε−1νj(x) are the rates, εej are the change (or stoichiometric) vectors, and

J is the total number of reactions (here J = 12): Given a state x ∈ D = R
n
+

(here n = 6), the occurrences of the reactions on an infinitesimal time interval of

length dt are independent of each other, and the probability for reaction Rj to
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happen during this time interval is given by ε−1νj(x)dt. The state of the system

after reaction Rj is x+ εej. The twelve reactions of the genetic switch and their

rate functions νj(x) are listed in Table 6.1.

Markov jump processes of the type above can be simulated by Gillespie’s

Stochastic Simulation Algorithm (SSA) [14]. However, the SSA is very inefficient

for the study of rare events because of the time scale separation inherent to those

events: by definition one would have to simulate the system for a very long time

until only one rare event is observed, which makes them virtually inaccessible

by direct numerical simulations. In addition, the results of SSA simulations are

reaction type rate state change of (X1, . . . , X6)

protein production ν1(x) = kA1 (1 − x6) e1 = (1, 0, 0, 0, 0, 0)
ν2(x) = kB1 (1 − x5) e2 = (0, 1, 0, 0, 0, 0)

protein degradation ν3(x) = kA2 x1 e3 = (−1, 0, 0, 0, 0, 0)
ν4(x) = kB2 x2 e4 = (0,−1, 0, 0, 0, 0)

polymer formation ν5(x) = kA3 x
l
1 e3 = (−l, 0, 1, 0, 0, 0)

ν6(x) = kB3 x
m
2 e4 = (0,−m, 0, 1, 0, 0)

polymer degradation ν7(x) = kA4 x3 e3 = (l, 0,−1, 0, 0, 0)
ν8(x) = kB4 x4 e4 = (0,m, 0,−1, 0, 0)

protein binding ν9(x) = kA5 x3(1 − x6) e3 = (0, 0,−1, 0, 0, 1)
ν10(x) = kB5 x4(1 − x5) e4 = (0, 0, 0,−1, 1, 0)

protein unbinding ν11(x) = kA6 x6 e3 = (0, 0, 1, 0, 0,−1)
ν12(x) = kB6 x5 e4 = (0, 0, 0, 1,−1, 0)

Table 6.1: The reactions of the genetic switch illustrated in Figure 4.16. The variables
are: X1/2 = number of proteins A/B, X3/4 = number of polymers Al/Bm, X5/6 =
number of plasmids that are blocked on gene sites a/b. For our example, we chose the
parameters symmetrically, kAi = kBi , motivated by values chosen in [32]: l = m = 2,
k1 = 1, k2 = .8, k3 = 5Vc, k4 = 5, k5 = 5Vc, k6 = 5, where VC = 2.
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typically noisy and difficult to interpret, especially if there are many species

involved in many reactions.

Large Deviations Theory for Networks. Large Deviations Theory (LDT,

[12, 29]) provides the right framework to bypass direct numerical simulations and

compute the pathways and rates of rare events in networks in the limit as the

system size Ω goes to infinity (i.e. as ε → 0). LDT characterizes the maximum

likelihood transition path leading from one given stable state in state space to

another as the minimizer ψ⋆ of the action functional

ST (ψ) =

∫ T

0

L
(
ψ(t), ψ̇(t)

)
dt, where (6.2)

L(x, y) = sup
θ∈Rn

(
〈y, θ〉 −H(x, θ)

)
and H(x, θ) =

J∑

j=1

νj(x)
(
e〈θ,ej〉 − 1

)

are the Lagrangian and the Hamiltonian of the theory, expressed in terms of the

rates νj(x) and the change vectors ej. The action (6.2) must be minimized over

all times T > 0 and over all paths ψ subject to the constraint that they connect

the two metastable states of interest. The rate at which this rare transition event

occurs is then to leading order given by exp(−ΩST ⋆(ψ⋆)).

Applying gMAM. However, since both start and end points are critical points,

we know from Lemma 3 that T ⋆ = ∞, so that no minimizer ψ⋆ exists (see the

discussion in Section 2.4). Instead, we now make use of the theory developed in

Chapter 2 and work with the geometric action Ŝ instead. Using the gMAM in

Section 3.2 (with the algorithm from Section 3.4 to compute ϑ̂(ϕ, ϕ′) in an inner
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loop), we solve the minimization problem (3.1), i.e. we minimize Ŝ(ϕ) among

all curves connecting the two stable states in question, thus neglecting the time

parametrization of the curve. The existance of a minimizer ϕ⋆ is made plausible

by Proposition 1 (iii).

Proposition 2 now tells us that transitions will most likely follow the curve

γ(ϕ⋆) (notice that Remark 3 (ii) states that in our case the second condition

in (2.15) is redundant). Information on the optimal time parametrization away

form the critical points can be recovered using the technique presented in Section

2.4. Finally, due to the equality of the expressions in (2.1) and (2.2) the rate for

such transitions is to leading order given by exp(−ΩŜ(ϕ⋆)).

The transition path. Figure 6.1 shows the maximum likelihood transition

path for the genetic switch model from the state with many proteins A and few

proteins B to the opposite state. The two panels show different projections of the

six-dimensional path onto the plane: In the first, the total densities of proteins

of the two types are plotted, including the proteins that have formed polymers

(i.e. x1 + lx3 over x2 +mx4). In the second, the variables x5 and x6 are shown,

i.e. the fractions of the operator sites that are blocked. The color of the paths

indicates the speed of the transition (red=slow, blue=fast).

As one can see, the most likely way for this transition to happen is that the

number of proteins A decreases and simultaneously the number of bound operator

sites a increases (so that fewer proteins A are can be produced), until the system

is in a symmetric state. From there it will fall into the other state simply by

following the flow (see Equation (1.13)).
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Figure 6.1: The maximum likelihood transition path of the genetic switch.
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6.3 A tool to identify sources for instability in

networks

While much insight can already be gained from plots of the type in Figure 6.1, it

provides only incomplete information about the mechanisms that lead to the rare

transition, i.e. what are the frequencies µj(t) at which the reactions Rj happen

during the transition. Knowing these frequencies would be helpful because com-

paring them to the rates νj(ψ
⋆(t)) that one would expect during typical behavior

when the process is in state ψ⋆(t) can help spot those reactions that behave more

atypical than others. These reactions are the ones that are most likely the reason

for system malfunction (i.e. the transition) and that would have to be the target

of further efforts in the network design process.

An easy way to spot the responsible reactions is to plot the function

log
(
µj(t)/νj(ψ

⋆(t))
)

for each j: the larger the amplitude of this graph, the more

atypical the corresponding reaction behaves during the transition. Notice also

that this resolves the problem of analyzing transition paths in higher dimensions:

with this approach we can simply plot J one-dimensional graphs into one panel,

one for each reaction.

Maximum likelihood reaction rates (MLRRs). Let us now prepare for

Lemma 9 in which we make the notion of the MLRRs µj(t) precise, and which

will tell us how to compute them.

We denote by E ∈ R
n×J the matrix whose columns contain the reaction

vectors ej. Let x1 be some vector in R
n, and let (N ε

t )t≥0 be the continuous-time
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Markov chain in R
J
+ starting from 0 and with reactions (ε−1νj(x1 + E · ), εuj),

where uj is the j-th unit vector in R
J . Let (Xε

t )t≥0 be the continuous-time Markov

process in R
n defined by Xε

t := x1 + EN ε
t . Then (Xε

t ) is a continuous-time

Markov chain process with reactions (ε−1νj(·), εej) as before (starting from x1),

and (N ε
t ) is the associated process that counts the number of reactions of each

type (rescaled by a factor of ε).

Thus we would like to know the most likely path of (N ε
t ) that one observes

when (Xε
t ) is making a rare transition. The slope of that path at each time t

would tell us the most likely number of reactions of each type per time during

the transition (again rescaled by ε), i.e. the MLRRs µj(t).

Note that although E is not an invertible matrix, for fixed ε > 0 we can still

recover (N ε
t ) from (Xε

t ) by comparing the jumps in the piecewise constant process

(Xε
t ) to the reaction vectors ej. In the limit as ε→ 0+ however this information

is getting lost: the optimal transition path ψ⋆ of (Xε
t ) (i.e. the minimizer of the

action ST associated with (Xε
t )) is an absolutely continuous function, and thus

there is no trivial way of computing from it the optimal transition path χ⋆ of

(N ε
t ). Instead, Lemma 9 will tell us how to find χ⋆, and it gives us a formula for

the MLRRs µj(t). Its proof is carried out later in Section 6.4.

In the following we will denote by Dd(0, T ) the Skorokhod space of functions

f : [0, T ] → D, i.e. the space of all such functions f that are right-continuous and

have left limits, equipped with the topology induced by the Skorokhod metric

dd(f, g) := inf
λ∈Λ

max

{

|f(t) − g(λ(t))|[0,T ], sup
s 6=t

∣
∣
∣ log

(λ(t) − λ(s)

t− s

)∣
∣
∣

}

,

Λ := {λ : [0, T ] → [0, T ] |λ continuous, strictly increasing, surjective},
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and we will denote by DJ
d (0, T ) the Skorokhod space of functions f : [0, T ] → R

J
+

(with analogously defined metric dJd (f, g)). (See e.g. [6, Section 8.6] or [29, p. 480-

481] for details about the Skorokhod space.)

Lemma 9. Let T > 0, let B be a closed subset of Dd(0, T ) consisting only of

functions starting from x1. Assume that B is regular with respect to the action

ST associated to the process (Xε
t ), and that the minimizer

ψ⋆ = argmin
ψ∈B

ST (ψ)

exists and is unique. Define the MLRRs µj : [0, T ] → (0,∞) and the path

χ⋆ : [0, T ] → R
J by

µj(t) := νj(ψ
⋆(t)) exp

(〈
θ⋆
(
ψ⋆(t), ψ⋆′(t)

)
, ej
〉)

, (6.3)

χ⋆j(t) =

∫ t

0

µj(τ) dτ, (6.4)

for every j = 1, . . . , J and every t ∈ [0, T ], where θ⋆(x, y) is defined implicitly by

(1.23), i.e. by the equation y =
∑J

j=1 νj(x)e
〈θ⋆(x,y),ej〉ej.

Then for every η > 0 we have

lim
ε→0+

P
(
|N ε

t − χ⋆(t)|[0,T ] < η
∣
∣Xε ∈ B

)
= 1, (6.5)

Equations (6.5) and (6.4) tell us that if the event B occurs then dN ε
j ≈

dχ⋆j ≈ µj(t) dt for small ε, whereas during typical behavior we would expect that

dN ε
j ≈ νj(ψ

⋆(t)) dt. Using (6.3), the logarithm of the ratio of these two terms is
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given by

log
µj

νj(ψ⋆)
= 〈θ⋆(ψ⋆, ψ⋆′), ej〉, j = 1, . . . , J, t ∈ [0, T ]. (6.6)

In short, our diagnostic plot explained at the beginning of this section consists

of the components of the vector function

t 7→
(

log
µj

νj(ψ⋆)

)

j=1,...,J
= ET θ⋆(ψ⋆, ψ⋆′). (6.7)

If in addition T is the optimal time to traverse γ(ψ⋆), i.e. T = T ⋆(ϕ⋆), where

γ(ϕ⋆) = γ(ψ⋆), then θ⋆(ψ⋆(t), ψ⋆′(t)) = ϑ̂(ϕ⋆, ϕ⋆′)|α=α(t), and we obtain a time-

rescaled version of (6.7) by plotting instead

α 7→
(

log
µj

νj(ψ⋆)

∣
∣
∣
t=t(α)

)

j=1,...,J
= ET ϑ̂(ϕ⋆, ϕ⋆′). (6.8)

As we see, after using the gMAM to find ϕ⋆, the computation of the diagnostic

plot comes entirely for free.

We have thus discovered another interpretation of ϑ̂(x, y): it is a measure of

the “unlikeliness” of moving into the direction y when the system is in state x.

Results. Figure 6.2 shows the MLRRs for the genetic switch model from Sec-

tion 6.2 in two ways: In the first panel one can see a plot of the functions

α 7→ µj(t(α)), in the second panel they are plotted in relation to the typical rates

νj(ψ
⋆(t)), using formula (6.8). While the first one can be used to see how active

the various reactions are during the transition, the second one is a measure of
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Figure 6.2: (color plot) The maximum likelihood reaction rates, as laid out in
Section 6.2. The upper panel shows the values of the rates µj(t) for all 12 reactions
(see the lower panel for the legend). The lower panel shows their relations to the rates
during typical behavior, given by the logarithm of their ratios: Values greater or lower
than 0 indicate abnormally high or low reaction rates, respectively.
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how atypical the various reactions behave.

At this point we will not draw any conclusions from these plots since our

parameters do not correspond to those of any actual biological organism. Note

however that in the second panel one can see that all reactions behave normally

during the second half of the transition. This is a feature that is common among

all networks, caused by the fact that the system has entered the domain of at-

traction to the second stable state and can just follow the flow from there on.

6.4 Proof of Lemma 9

Proof of Lemma 9. Let S+
T denote the action associated with the process (N ε

t ),

and let

B+ := {χ ∈ DJ
d (0, T ) |χ(0) = 0, x1 + Eχ ∈ B}.

Observe that B+ is a closed subset of DJ
d (0, T ) since it is the pre-image of the

closed set {0} × B under the continuous mapping F : DJ
d (0, T ) → R ×Dd(0, T ),

F (χ) := (χ(0), x1 + Eχ). This notation allows us to rewrite (6.5) as

lim
ε→0+

P
(
|N ε

t − χ⋆(t)|[0,T ] < η
∣
∣N ε ∈ B+

)
= 1 (6.9)

for every η > 0. The continuity of χ⋆ on [0, T ] now enables us to replace

|N ε
t − χ⋆(t)|[0,T ] by dd(N

ε, χ⋆): if η is small and dd(N
ε, χ⋆) < η then there exists

a rescaling λ ∈ Λ such that |λ(t) − t|[0,T ] < 2Tη and |N ε
t − χ⋆(λ(t))|[0,T ] < 2η,

and we find that
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|N ε
t − χ⋆(t)|[0,T ] ≤ |N ε

t − χ⋆(λ(t))|[0,T ] + |χ⋆(λ(t)) − χ⋆(t)|[0,T ] < 2η + δ(η),

for some function δ(η) with limη→0+ δ(η) = 0 (obtained using the uniform con-

tinuity of χ⋆). We conclude that if dd(N
ε, χ⋆) is small then |N ε

t − χ⋆(t)|[0,T ] is

small. Therefore, (6.9) and thus (6.5) follows if we can show that

lim
ε→0+

P
(
dd(N

ε, χ⋆) < η
∣
∣N ε ∈ B+

)
= 1 (6.10)

for all η > 0. Finally, we will see at the end of this proof that B+ is regular

with respect to S+
T , so using [12, Theorem 3.4] and the closedness of B+, it only

remains to show that χ⋆ as given by (6.3) - (6.4) is the unique minimizer of S+
T

over the set B+.

Do to so, observe first that if we denote the local actions of ST and S+
T by ℓ and

ℓ+, respectively, then by considering Θ = ET θ⋆ for θ⋆ = θ⋆
(
x1 +Eχ, (x1 +Eχ)̇

)

one can show the estimate

ℓ+(χ, χ̇) = sup
Θ∈RJ

(

〈Θ, χ̇〉 −
J∑

j=1

νj(x1 + Eχ)
(
e〈Θ,uj〉 − 1

))

(6.11)

≥
〈
θ⋆, Eχ̇

〉
−

J∑

j=1

νj(x1 + Eχ)
(
e〈θ

⋆,Euj〉 − 1
)

(6.12)

=
〈
θ⋆, (x1 + Eχ)̇

〉
−

J∑

j=1

νj(x1 + Eχ)
(
e〈θ

⋆,ej〉 − 1
)

= sup
θ∈Rn

(

〈θ, (x1 + Eχ)̇ 〉 −
J∑

j=1

νj(x1 + Eχ)
(
e〈θ,ej〉 − 1

))

= ℓ
(
x1 + Eχ, (x1 + Eχ)̇

)
.
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We have equality in (6.12) if and only if the maximizing Θ in (6.11) is Θ = ET θ⋆,

i.e. if

χ̇ =
J∑

j=1

νj(x1 + Eχ)e〈Θ,uj〉uj

∣
∣
∣
Θ=ET θ⋆

=
J∑

j=1

νj(x1 + Eχ)e〈θ
⋆,ej〉uj = µx1+Eχ,

where for every absolutely continuous function ψ ∈ B we define the vector func-

tion µψ(t) by

µψj := νj(ψ)e〈θ
⋆(ψ,ψ̇),ej〉, j = 1, . . . , J.

Integrating the estimate for the local actions above from 0 to T , we have

∀χ ∈ B+ : S+
T (χ) ≥ ST (x1 + Eχ) ≥ inf

ψ∈B
ST (ψ) = ST (ψ⋆) (6.13)

(note that if χ is not absolutely continuous then (6.13) is trivially true since the

left hand side equals ∞). Equality holds in the second and first step in (6.13),

respectively, if and only if

x1 + Eχ = ψ⋆ ∀t ∈ [0, T ] and (6.14)

χ̇ = µx1+Eχ = µψ
⋆

for a.e. t ∈ [0, T ] (6.15)

(using also the uniqueness of the minimizer ψ⋆). This shows that χ⋆ as defined

by (6.3) - (6.4) is the unique minimizer of S+
T over B+ if and only if it is the

unique function in B+ fulfilling (6.14) and (6.15). That in turn is indeed the

case: Clearly, there can only be one function in B+ fulfilling (6.15), which shows

uniqueness. On the other hand, χ⋆ fulfills (6.15) by definition, and it also fulfills
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(6.14) since

(x1 + Eχ⋆)˙ = Eχ̇⋆ = Eµ(t) = E

J∑

j=1

νj(ψ
⋆)e〈θ

⋆(ψ⋆,ψ̇⋆),ej〉uj

=
J∑

j=1

νj(ψ
⋆)e〈θ

⋆(ψ⋆,ψ̇⋆),ej〉ej = ψ̇⋆

for a.e. t ∈ [0, T ] by definition of θ⋆, and since (x1 + Eχ⋆)|t=0 = x1 + E0 = x1 =

ψ⋆(0). Finally, χ⋆ is in B+ because it is continuous and because it fulfills (6.14),

where ψ⋆ ∈ B. This terminates the proof that χ⋆ is the unique minimizer of S+
T

over B+.

To see that B+ is regular with respect to S+
T , first repeat the argument above

to show that for every absolutely continuous ψ ∈ B0 there exists a (unique) χ ∈

B+, given by χ(t) :=
∫ t

0
µψ(τ) dτ , that fulfills ψ = x1 + Eχ and S+

T (χ) = ST (ψ).

In this case χ is in fact in B0
+: if δ > 0 and χ̃ ∈ DJ

d (0, T ) is such that dJd (χ̃, χ) < δ,

then

dd(x1 + Eχ̃, ψ) = dd(x1 + Eχ̃, x1 + Eχ) = dd(Eχ̃,Eχ) ≤ max(|E|, 1)δ,

and thus for small enough δ we have x1 + Eχ̃ ∈ B, i.e. χ̃ ∈ B+. Therefore we

can conclude that

inf
χ∈B0

+

S+
T (χ) ≤ inf

ψ∈B0
ST (ψ) = ST (ψ⋆)

(using the regularity of B). Since we also know from (6.13) that

inf
χ∈B+

S+
T (χ) ≥ ST (ψ⋆), (6.16)
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this shows that infχ∈B0
+
S+
T (χ) ≤ infχ∈B+ S

+
T (χ), and therefore (since B+ is closed)

that B+ is regular with respect to S+
T .
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Chapter 7

Conclusions

Summary. We have proposed a variant of the MAM, the geometric minimum

action method (gMAM), which is tailored to the double minimization problem

required to compute the quasipotential V (x1, x2) in Freidlin-Wentzell theory of

large deviations. The key idea behind the gMAM is to reformulate of the Freidlin-

Wentzell action functional on the space of curves. With this reformulation, we

guarantee that the new action will have minimizers (that is, curves) in a broader

class of situations, in particular when the points x1 and x2 in V (x1, x2) are stable

equilibrium points of the deterministic dynamics (in contrast, the original action

minimized both over the paths and their length in time fails to have a minimizer

in this case). The corresponding minimizer of the action is the curve of maximum

likelihood by which the transitions between these stable equilibrium points occur

due to the presence of the small noise.

We demonstrated on several examples that the gMAM adjusts easily to a

variety of situations, such as different types of dynamics (SDE, SPDE, continuous-
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time Markov chains) or problems with endpoint constraints or penalties, and

we showed how the gMAM can be useful also for the determination of short-

term asymptotics of an SDE (Section 5.4). We finally dedicated one chapter to

potential applications in the field of synthetic biology, and we built a tool on

top of the gMAM that can help detect the sources of instabilities in (genetic)

networks.

Future work. Theoretical aspects. We believe that the potential uses of our

geometric action Ŝ(ϕ) have not yet been fully exploited in this thesis. In par-

ticular, it may be possible to prove a large deviations principle on the space of

curves. While the associated action would much likely be Ŝ, the appropriate

function space and the precise form of the metric defined on it (which will be

closely related to the Fréchet distance) are yet to be found. Questions that one

may address with such a large deviations principle are those about rare events

that do not depend on the time-parametrization of the random path, such as the

rare event that a process hits a given set A before it hits another set B to which

the process is attracted. The search for a large deviations principle based on Ŝ

will certainly be one of our points of focus in the close future.

Algorithmical aspects. While our rather simple approach to minimize Ŝ(ϕ)

via preconditioned steepest descent and reparametrization has already carried

us quite far, there will be ways to improve upon our scheme. In particular, we

have not yet investigated the use of quasi-Newton methods such as BFGS, or

of multiscale methods that adjust the number of grid-points as the algorithm

progresses. Also, in Sections 5.4 and 6.2 we noticed that if the parameters of
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the model single out a submanifold of the state space that the process is very

unlikely to leave then this can lead to a very stiff steepest-descent PDE and force

us to drastically reduce the stepsize ∆τ . Since this situation is likely to arise

in higher-dimensional continuous-time Markov chains whose reaction rates have

different orders of magnitude, resolving this issue will be important for the use

of the gMAM in the context of Chapter 6.

Reaction-diffusion systems. In this thesis our work on the Maier-Stein model

mainly emphasized algorithmical aspects, i.e. we wanted to demonstrate that the

gMAM can indeed be applied even to two-dimensional SPDEs using only MatLab

on a regular PC. It will now be a natural next step to actually investigate several

interesting aspects of this model, especially the role that the v-field plays in the

transition. We already saw that the v-field assists in the nucleation part of the

process, i.e. it is nonzero during the initial phase of the transition when the u-field

leaves the stable point. Our expectation that the v-field would also assist in the

domain wall propagation in the two-dimensional SPDE however turned out to

be wrong as it seems: Figure 4.13 illustrates that the v-field vanishes long before

the process has reached the saddle point. Further questions to investigate are the

analytical computation of the sharp-interface-limit as κ→ 0+.

Synthetic biology. In this thesis a lot of work has been done to open the

door to potentially useful applications of the gMAM to the newly arising field of

synthetic biology. In lack of time however so far we could not apply the tools

that we have developed to actual biological systems from the literature, with real

data. Our goal for the close future is to get the attention of scientists from other

fields and to explore possible ways of collaboration with genetic engineers.
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Other applications. Finally, the potential use of the gMAM is not confined to

the realm of large deviations theory. In particular, all our calculations (including

the proof of Proposition 1) rely only on the Assumptions 1–3 for the Hamilto-

nian H(x, θ). One examplary problem outside of large deviations theory that

still fits into the framework of this thesis is the determination of the instanton by

which quantum tunneling arises (for background on this problem see e.g. [20, 30]).

The relevant minimization problem in this case is

V (x1, x2) = inf
T>0

inf
ψ∈C̄

x2
x1

(0,T )

∫ T

0

(
1
2
|ψ̇(t)|2 + U(ψ(t))

)
dt. (7.1)

Here x1 and x2 are minima of the potential U ≥ 0, and it is assumed that

U(x1) = U(x2) = 0. Hence x1 and x2 are critical points according to our definition

(1.24). It is well-known [30] that this minimization problem can be recast into a

geodesic problem in terms of the Agmon distance, i.e. V (x1, x2) can be expressed

as

V (x1, x2) = inf
ϕ∈C̄

x2
x1

(0,1)
2

∫ 1

0

√

U(ϕ(α)) |ϕ′(α)| dα. (7.2)

The instanton is the minimizer of this action. The gMAM can be straightfor-

wardly applied to (7.2) since the corresponding Hamiltonian H(x, θ) = 1
2
|θ|2 −

U(x) fulfills the Assumptions 1–3 of our paper.

Other uses of the gMAM include similar problems involving finding geodesics

in high-dimensional space with Riemannian metric.
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Appendix A

Three technical lemmas

The goal in Appendix A is to prove Lemmas 10 and 12 which are needed in the

proof of Proposition 1 (i).

Lemma 10. Let ψ1 ∈ C̄(0, T1) and ψ2 ∈ C̄(0, T2) with γ(ψ1) = γ(ψ2), and let

the local action ℓ : D×R
n → [0,∞) have the property that for all x ∈ D, y ∈ R

n

and c ≥ 0 we have ℓ(x, cy) = cℓ(x, y). Then

∫ T1

0

ℓ(ψ1, ψ
′
1) dt =

∫ T2

0

ℓ(ψ2, ψ
′
2) dt.

Proof. Let ψ1(t) = ϕ(α(t)) for all t ∈ [0, T1], some ϕ ∈ C̄(0, 1) with |ϕ′(α)| ≡ cst

a.e., and for some absolutely continuous rescaling α : [0, 1] → [0, T1] with α′ ≥ 0

almost everywhere. Then for all t ∈ [0, T1] we have ψ̇1(t) = ϕ′(α(t))α′(t), and we

can compute

∫ T1

0

ℓ(ψ1, ψ̇1) dt =

∫ T1

0

ℓ
(

ϕ
(
α(t)

)
, ϕ′
(
α(t)

)
α′(t)

)

dt
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=

∫ T1

0

ℓ
(

ϕ
(
α(t)

)
, ϕ′
(
α(t)

))

α′(t) dt

=

∫ 1

0

ℓ
(
ϕ(α), ϕ′(α)

)
dα.

Since the same calculation can be made for ψ2, we are done.

To prepare for the proof of Lemma 12, we need to show some technical prop-

erties of H and θ⋆ first.

Lemma 11. (i) The following equalities hold:

Ly(x, y) = θ⋆(x, y), (A.1)

θ⋆y(x, y) = H−1
θθ (x, θ⋆(x, y)) = Lyy(x, y). (A.2)

(ii) Assumption 3 implies the limits

lim
θ→∞

H(x, θ) = ∞ and (A.3)

lim
y→∞

θ⋆(x, y) = ∞, (A.4)

uniformly in x on compact sets.

Proof. (i) By differentiating (1.22) with respect to y and using (1.23), we obtain

Ly(x, y) = θ⋆(x, y) +
(
θ⋆y(x, y))

T (y −Hθ(x, θ
⋆(x, y))

)
= θ⋆(x, y),
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Differentiating (1.23) with respect to y leads us to

Hθθ(x, θ
⋆(x, y)) θ⋆y(x, y) = I

and thus

H−1
θθ (x, θ⋆(x, y)) = θ⋆y(x, y) = Lyy(x, y).

(ii) Denoting êθ := θ/|θ|, for any compact set K ⊂ D Assumption 3 implies that

〈Hθ(x, θ), êθ〉 =

∫ |θ|

0

〈êθ, Hθθ(x, τ êθ)êθ〉 dτ + 〈Hθ(x, 0), êθ〉

≥ m(x)|θ| − sup
x∈K

|Hθ(x, 0)| ≥ mK |θ| − CK . (A.5)

Performing one more integration, we find

H(x, θ) =

∫ |θ|

0

〈Hθ(x, τ êθ), êθ〉 dτ +H(x, 0)

≥
∫ |θ|

0

(mKτ − CK) dτ − C ′
K =

1

2
mK |θ|2 − CK |θ| − C ′

K ,

proving (A.3).

To prove (A.4), assume that it is not true. Then there exists a sequence (yk)

with yk → ∞ and a bounded sequence (xk) such that the sequence (θ⋆(xk, yk)) is

bounded. But continuity of Hθ(·, ·) then implies that also yk = Hθ(xk, θ
⋆(xk, yk))

stays bounded, and we have a contradiction.

Now we are ready to prove Lemma 12.

Lemma 12. For the functions λk defined in the proof of Proposition 1 we have
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|λk|∞ <∞ and

sup
k∈N

|L(ϕ, ϕ′λk)/λk|∞ <∞, (A.6)

where | · |∞ denotes the L∞-norm on [0, 1].

Proof. First let us show that M := |λ(ϕ, ϕ′)|∞ <∞. To do so, suppose M = ∞.

Then for every l ∈ N the set {α ∈ [0, 1] |λ(ϕ, ϕ′) > l} would have non-zero mea-

sure, and we could construct a sequence (αl) such that liml→∞ λ(ϕ(αl), ϕ
′(αl)) =

∞ and |ϕ′(αl)| = Lϕ for every l ∈ N, where Lϕ > 0 is the constant such that

|ϕ′| ≡ Lϕ almost everywhere. Now comparing (1.23) with (2.7), we see that

ϑ̂(ϕ, ϕ′) = θ⋆(ϕ, ϕ′λ), so that

0 ≡ H
(
ϕ, ϑ̂(ϕ, ϕ′)

)∣
∣
α=αl

= H
(
ϕ, θ⋆(ϕ, ϕ′λ)

)∣
∣
α=αl

→ ∞ as l → ∞

by Lemma 11 (ii), and we would have a contradiction. This shows that M <∞,

and thus also that |λk|∞ ≤ max{M, 1
k
} <∞. Now we can begin our estimate by

showing that

|H(ϕ, θ⋆(ϕ, ϕ′λk))| ≤
∣
∣H(ϕ, θ⋆(ϕ, ϕ′λ))

∣
∣

+

∫ λk

λ

∣
∣∂τH(ϕ, θ⋆(ϕ, τϕ′))

∣
∣ dτ

= 0 +

∫ λk

λ

∣
∣
∣

〈
Hθ

(
ϕ, θ⋆(ϕ, τϕ′)

)
, θ⋆y(ϕ, τϕ

′)ϕ′
〉
∣
∣
∣ dτ

=

∫ λk

λ

τ
∣
∣
∣

〈
ϕ′, H−1

θθ

(
ϕ, θ⋆(ϕ, τϕ′)

)
ϕ′
〉
∣
∣
∣ dτ

≤ L2
ϕ

mK

∫ λk

λ

τ dτ =
L2
ϕ

2mK

(

λ2
k − λ2

)

≤ L2
ϕλ

2
k

2mK

,

132



where in the third and fourth step we used (1.23), (A.2), and Assumption 3 with

K := γ(ϕ) and ξ = H−1/2ϕ′. Thus

∣
∣H
(
ϕ, θ⋆(ϕ, ϕ′λk)

)
/λk
∣
∣ ≤ L2

ϕλk

2mK

≤ L2
ϕ max{1,M}

2mK

=: C <∞,

and we obtain the bound

|L(ϕ, ϕ′λk)/λk| ≤
∣
∣〈θ⋆(ϕ, ϕ′λk), ϕ

′〉
∣
∣+
∣
∣H(ϕ, θ⋆(ϕ, ϕ′λk))/λk

∣
∣

≤ Lϕ max
{

|θ⋆(x, y)|
∣
∣
∣ x ∈ γ(ϕ), |y| ≤ Lϕ max{1,M}

}

+ C

< ∞.
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Appendix B

Proofs of Lemmas 1 and 3

Proof of Lemma 1. (i) and (ii): If λ(x, y) = 0 then the second equation in (2.7)

tells us that ϑ̂(x, y) is a minimizer of H(x, ·) (which by Assumption 3 is unique).

Because of the first equation in (2.7) we thus have infθ∈Rn H(x, θ) = 0, and

together with Assumption 1 this implies that H(x, 0) = 0. But this means that

0 minimizes H(x, ·), so we must have ϑ̂(x, y) = 0. Now the second equation in

(2.7) finally says that Hθ(x, 0) = 0, and 0 must be a critical point.

To show the reverse direction, observe that if x is a critical point then (λ, ϑ̂) =

(0, 0) solves (2.7).

(iii): Let x ∈ D be a critical point. By definition (1.23) of θ⋆, Hθ(x, 0) = 0 tells

us that θ⋆(x, 0) = 0. Therefore x fulfills L(x, 0) = 〈θ⋆(x, 0), 0〉 −H(x, θ⋆(x, 0)) =

0−H(x, 0) = 0, and we can apply l’Hospital’s rule and use (A.1) to find the limit

lim
λ→0+

L(x, λy)/λ = 〈y, Ly(x, 0)〉 = 〈y, θ⋆(x, 0)〉 = 0.

(iv): For the representation (2.5) this follows from part (ii), for the representation
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(2.6) it follows from parts (i) and (iii) combined. For the representation (2.4),

observe that if ϕ is a critical point then ϑ = 0 is the minimum of H(ϕ, ·), and

that thus we have H(ϕ, ϑ) = 0 only for ϑ = 0.

Proof of Lemma 3. (i) Let Lϕ be the constant such that |ϕ′| ≡ Lϕ a.e., and let

α ∈ [0, 1] such that |ϕ′(α)| = Lϕ. Denote ϕ := ϕ(α), ϕ′ := ϕ′(α), ϑ̂ := ϑ̂(ϕ, ϕ′),

λ := λ(ϕ, ϕ′), and finally ϕc := ϕ(αc).

Since ϕc is a critical point, we have Hθ(ϕc, 0) = 0 and H(ϕc, 0) = 0, and

the latter equality together with Assumption 1 tells us that also Hx(ϕc, 0) = 0.

Thus if we expand H(ϕ, ϑ̂), which is zero by definition of ϑ̂, around the point

(x, θ) = (ϕc, 0), the zeroth- and first-order terms vanish, and we obtain

0 = H(ϕ, ϑ̂)

= 1
2
〈ϕ− ϕc, Hxx(x̃, θ̃)(ϕ− ϕc)〉 + 〈ϑ̂, Hθx(x̃, θ̃)(ϕ− ϕc)〉 + 1

2
〈ϑ̂, Hθθ(x̃, θ̃)ϑ̂〉

for some point (x̃, θ̃) on the straight line between (ϕc, 0) and (ϕ, ϑ̂). Note that

ϕ is in the compact set γ(ϕ), and so Equation (A.3) of Lemma 11 and the first

equation in (2.7) tell us that also ϑ̂ must lie within some compact set independent

of α. Since |x̃−ϕc| ≤ |ϕ−ϕc| and |θ̃| ≤ |ϑ̂|, this means that also (x̃, θ̃) is within

some compact set K×K ′ ⊂ D×R
n independent of α, and applying Assumptions

2 and 3 we find

1
2
mK |ϑ̂|2 ≤ 1

2
〈ϑ̂, Hθθ(x̃, θ̃)ϑ̂〉

= −1
2
〈ϕ− ϕc, Hxx(x̃, θ̃)(ϕ− ϕc)〉 − 〈ϑ̂, Hθx(x̃, θ̃)(ϕ− ϕc)〉
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≤ C
(
|ϕ− ϕc|2 + |ϕ− ϕc| |ϑ̂|

)

≤ C
(
|ϕ− ϕc|2 + C

mK
|ϕ− ϕc|2 + mK

4C
|ϑ̂|2
)

by Cauchy’s inequality. Therefore we have |ϑ̂| ≤ C ′|ϕ − ϕc| for some constant

C ′ > 0, and expanding around (ϕc, 0) again we conclude that

λ = 1
Lϕ

|λϕ′| = 1
Lϕ

|Hθ(ϕ, ϑ̂)|

= 1
Lϕ

∣
∣Hθ(ϕc, 0)
︸ ︷︷ ︸

=0

+Hθx(x̃
′, θ̃′)(ϕ− ϕc) +Hθθ(x̃

′, θ̃′)ϑ̂
∣
∣

≤ C ′′(|ϕ− ϕc| + |ϑ̂|)

≤ C ′′(1 + C ′)|ϕ− ϕc| ≤ C ′′(1 + C ′)Lϕ|α− αc|.

(ii) This is now a direct consequence of (i) since λ ≤ C|α − αc| implies for

arbitrarily small ǫ > 0 that

∫

|α−αc|≤ǫ

dα

λ
≥ 1

C

∫

|α−αc|≤ǫ

dα

|α− αc|
= ∞.

136



Appendix C

Proof of Lemma 2

Proof of Lemma 2. (i) In order to apply Arzèla-Ascoli’s Theorem, we quickly

check that the set CX,M is uniformly bounded and uniformly equicontinuous: For

all ϕ ∈ CX,M and all α ∈ [0, 1] we have

|ϕ(α)| =
∣
∣
∣ϕ(0) +

∫ α

0

ϕ′(a) da
∣
∣
∣ ≤ |ϕ(0)| +

∫ α

0

|ϕ′(a)| da ≤ sup
x∈X

|x| +M

and

|ϕ(α+ h) − ϕ(α)| =
∣
∣
∣

∫ α+h

α

ϕ′(a) da
∣
∣
∣ ≤

∫ α+h

α

|ϕ′(a)| da ≤Mh.

This proves precompactness of the set CX,M . To prove that CX,M is also closed,

take any sequence (ϕn) in CX,M that converges uniformly to some ϕ ∈ C(0, 1).

We have to show that ϕ ∈ CX,M . Clearly, ϕ(0) ∈ X. Furthermore, for every

a, b ∈ [0, 1], a < b, we have

sup
a≤α0<···<αN≤b

N∑

i=1

|ϕ(αi) − ϕ(αi−1)| = sup
a≤α0<···<αN≤b

lim
n→∞

N∑

i=1

|ϕn(αi) − ϕn(αi−1)|
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≤ lim inf
n→∞

sup
a≤α0<···<αN≤b

N∑

i=1

|ϕn(αi) − ϕn(αi−1)|

= lim inf
n→∞

∫ b

a

|ϕ′
n(α)| dα ≤M(b− a) <∞.

This shows that ϕ is absolutely continuous and that |ϕ′| ≤M almost everywhere.

Therefore CX,M is closed, and since it is also precompact, it must be compact.

(ii) now follows directly from (i) by observing that Cx,y
M is a closed subset of

CX,M , for X := {x}.

(iii) We want to show that for any sequence (ϕn) in CX,M converging to some

ϕ ∈ CX,M we have Ŝ(ϕ) ≤ lim infn→∞ Ŝ(ϕn). We can follow exactly the lines

of the proof of [29, Lemma 5.42], applied to convergence in | · |[0,1] (which in

[29] is denoted by dc), except for two modifications: First, since we do not have

the equivalent of [29, Lemmas 5.17 and 5.18] (the integrand of Ŝ increases only

linearly in |ϕ′|), we have to restrict Ŝ to CX,M , which guarantees uniform equicon-

tinuity of the sequence (ϕn), as shown in part (i). Second, we have to adjust the

definition of the lower bound ℓδ(x, y) for the local action ℓ(x, y) to our case and

show that our function ℓδ still fulfills the required properties, i.e. weak convexity

in y and lower semicontinuity in the limit (x, y, δ) → (x0, y0, 0+), although the

technique in [29, Lemma 5.40] to prove the latter fails in our case (since our

equivalent of gδ(x, θ) is not continuous).

For every x ∈ D, y ∈ R
n and δ > 0 we define

ℓδ(x, y) := sup
{
〈y, θ〉 | θ ∈ R

n s.t. ∀z ∈ D : |z − x| ≤ δ ⇒ H(z, θ) ≤ 0
}
.
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Then for every x̄ ∈ D with |x̄− x| ≤ δ we have

ℓδ(x, y) ≤ sup
θ∈R

n

H(x̄,θ)≤0

〈y, θ〉 = sup
θ∈R

n

H(x̄,θ)=0

〈y, θ〉 =: ℓ(x̄, y), (C.1)

where ℓ is our local action from representation (2.4). Clearly, ℓδ(x, y) is convex in

y as the supremum of linear functions. To show lower semicontinuity of ℓδ(x, y),

consider first the cases when either x0 is a critical point or when y0 = 0. If x0 is

a critical point then the local action ℓ vanishes at (x0, y0) by Lemma 1; if y0 = 0

then the local action ℓ vanishes by its definition in (C.1). Thus by Assumption 1

we have

ℓδ(x, y) ≥ 〈y, 0〉 = 0 = ℓ(x0, y0) ∀x, y, δ,

so that

lim inf
(x,y,δ)→(x0,y0,0+)

ℓδ(x, y) ≥ ℓ(x0, y0). (C.2)

In all other cases (i.e. x0 is not a critical point and y0 6= 0) we have Hθ(x0, ϑ̂) =

λ(x0, y0)y0 6= 0 (for ϑ̂ := ϑ̂(x0, y0)) by Lemma 1 (i). Since by definition of ϑ̂ we

have H(x0, ϑ̂) = 0, for every ε > 0 there exists a θ̃ ∈ R
n with |θ̃ − ϑ̂| < ε such

that H(x0, θ̃) < 0. By continuity of H(·, θ̃), there exists an η > 0 such that for

all z ∈ D with |z − x0| ≤ η we have H(z, θ̃) ≤ 0. Let δ + |x− x0| ≤ η. Since

|z − x| ≤ δ ⇒ |z − x0| ≤ δ + |x− x0| ≤ η,

we then have
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ℓδ(x, y) ≥ sup{〈y, θ〉 | θ ∈ R
n s.t. ∀z ∈ D : |z − x0| ≤ η ⇒ H(z, θ) ≤ 0}

≥ 〈y, θ̃〉

= 〈y0, ϑ̂〉 + 〈y − y0, ϑ̂〉 + 〈y, θ̃ − ϑ̂〉

≥ ℓ(x0, y0) − |y − y0||ϑ̂| − |y|ε,

where in the last step we used representation (2.5) of the local action ℓ(x0, y0).

Taking the lim inf as (x, y, δ) → (x0, y0, 0+) and then letting ε → 0, we see that

(C.2) holds also in this case, terminating the proof of part (iii).

(iv) LetK be a non-empty closed subset of CX,M , and let (ϕn) be a sequence in

K such that limn→∞ Ŝ(ϕn) = infϕ∈K Ŝ(ϕ). Since CX,M is compact, K is compact

as well, and thus there exists a subsequence (ϕnk
) which converges uniformly to

some ϕ⋆ ∈ K as k → ∞. Because of the lower-semicontinuity of Ŝ we have

Ŝ(ϕ⋆) ≤ lim inf
k→∞

Ŝ(ϕnk
) = inf

ϕ∈K
Ŝ(ϕ)

and thus Ŝ(ϕ⋆) = infϕ∈K Ŝ(ϕ).
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Appendix D

Proof of Proposition 2

In this Appendix we will prove the technical details of Steps 1-3 that we omitted

in the proof of Proposition 2 in Section 2.2. Let us begin with

Step 1: There exists an η̃ > 0 such that for small enough δ

ρ(Xε|[0,T ], ϕ
⋆) ≤ η̃ and τδ(X

ε) ≤ T ⇒ ρ(Xε|[0,τδ(Xε)], ϕ
⋆) ≤ η. (D.1)

Proof. Without loss of generality we may assume that |ϕ⋆′| ≡ cst a.e. on [0, 1].

Let α0 ∈ (0, 1) be large enough so that
∫ 1

α0
|ϕ⋆′| dα ≤ 1

2
η, and let

0 < η̃ :=
1

4
inf

0≤α≤α0

|ϕ⋆(α) − x2|

≤ 1

4
|ϕ⋆(α0) − x2| =

1

4

∣
∣
∣
∣

∫ 1

α0

ϕ⋆′ dα

∣
∣
∣
∣
≤ 1

4

∫ 1

α0

|ϕ⋆′| dα ≤ η

8
. (D.2)

Let δ ≤ η̃. From the definition of the Fréchet distance, there are two weakly

increasing surjective continuous functions t(s) : [0, 1] → [0, T ] and α(s) : [0, 1] →
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[0, 1] such that
∣
∣Xε(t(s)) − ϕ⋆(α(s))

∣
∣
[0,1]

≤ 2η̃. (D.3)

Let s0 ∈ [0, 1] be such that t(s0) = τδ := τδ(X
ε), and define t̃(s) := t(s)∧ τδ. (We

write a ∨ b and a ∧ b to denote the maximum and the minimum of two numbers

a and b, respectively.) Then

ρ(Xε|[0,τδ ], ϕ
⋆) ≤ |Xε(t̃(s)) − ϕ⋆(α(s))|[0,1]

= |Xε(t̃(s)) − ϕ⋆(α(s))|[0,s0] ∨ |Xε(t̃(s)) − ϕ⋆(α(s))|[s0,1]

= |Xε(t(s)) − ϕ⋆(α(s))|[0,s0] ∨ |Xε(τδ) − ϕ⋆(α(s))|[s0,1]

≤ 2η̃ ∨
(

|Xε(τδ) − x2| + |ϕ⋆(α(s)) − x2|[s0,1]
)

. (D.4)

To estimate the second norm in the last expression, observe that (using t(s0) = τδ

and (D.3)) we have

|ϕ⋆(α(s0)) − x2| ≤ |Xε(t(s0)) − x2| + |Xε(t(s0)) − ϕ⋆(α(s0))|

≤ δ + 2η̃ ≤ 3η̃ < 4η̃ = inf
0≤α≤α0

|ϕ⋆(α) − x2|,

so that α(s0) > α0 necessarily. Therefore by monotonicity of α(·), for all s ∈ [s0, 1]

we have α(s) ≥ α(s0) > α0 and thus

|ϕ⋆(α(s)) − x2| =
∣
∣
∣

∫ 1

α(s)

ϕ⋆′ dα
∣
∣
∣ ≤

∫ 1

α0

|ϕ⋆′| dα ≤ η

2
.
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We can now continue our estimate (D.4) and conclude that

ρ(Xε|[0,τδ ], ϕ
⋆) ≤ 2η̃ ∨ (δ + η

2
) ≤ 2η̃ ∨ (η̃ + η

2
) ≤ η

4
∨ (η

8
+ η

2
) < η

by (D.2), proving Step 1.

Step 2: lim(T,δ)→(T ⋆,0+) ρ(ψδ,T , ϕ
⋆) = 0.

Proof. It suffices to show that any sequence (ψk)k∈N := (ψδk,Tk
)k∈N, where δk →

0+ and Tk → T ⋆, has a subsequence (ψkl
)l∈N such that liml→∞ ρ(ψkl

, ϕ⋆) = 0.

To show this, let (ψk) be such a sequence, and let us denote by ϕk the

reparametrization of ψk (i.e. γ(ϕk) = γ(ψk)) such that |ϕ′
k(α)| ≡ cstk for al-

most every α ∈ [0, 1]. The curve γ(ϕk) starts from x1, and by the assumption of

Proposition 2 it has bounded length in the limit,

M := lim sup
k→∞

∫ 1

0

|ϕ′
k| dα ≤ lim sup

(T,δ)→(T ⋆,0+)

∫ T

0

|ψ̇δ,T | dt <∞,

so ϕk is in the compact set C{x1},2M defined in Lemma 2 (i) if k is sufficiently large.

Thus there exists a subsequence (ϕkl
)l∈N that converges uniformly to some limit

ϕ̃⋆ ∈ C{x1},2M . In particular, we have ρ(ψkl
, ϕ̃⋆) = ρ(ϕkl

, ϕ̃⋆) ≤ |ϕkl
− ϕ̃⋆|[0,1] → 0

as l → ∞.

In the remaining part of the proof we will show that γ(ϕ̃⋆) = γ(ϕ⋆), so that

ρ(ψkl
, ϕ⋆)

= ρ(ψkl
, ϕ̃⋆) → 0 as l → ∞. By lower semi-continuity of Ŝ we have

Ŝ(ϕ̃⋆) ≤ lim inf
l→∞

Ŝ(ϕkl
) = lim inf

l→∞
inf
T>0

inf
ψ∈C̄ϕkl

(0,T )
ST (ψ)
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≤ lim inf
l→∞

STkl
(ψkl

) = lim inf
l→∞

inf
ψ∈C̄x1 (0,Tkl

)

τδkl
(ψ)≤Tkl

STkl
(ψ). (D.5)

We want to show that the right-hand side is less than or equal to Ŝ(ϕ⋆). Consider

first the case when Tkl
< T ⋆ for all l. Let (T̃r, ψ̃r)r∈(0,∞) be the approximating

sequence defined the proof of Proposition 1 (i) (only here with r ∈ (0,∞)),

i.e. such that ∀r > 0 : γ(ψ̃r) = γ(ϕ⋆), limr→∞ ST̃r
(ψ̃r) = Ŝ(ϕ⋆) and limr→∞ T̃r =

T ⋆. Using the notation λ = λ(ϕ⋆, ϕ⋆′) and letting λr = λ ∨ 1
r
, we find that for

∀r1, r2 > 0:

|T̃r1 − T̃r2 | ≤
∫ 1

0

∣
∣
∣

1

λr1
− 1

λr2

∣
∣
∣ dα ≤

∣
∣
∣

1

λr1
− 1

λr2

∣
∣
∣
[0,1]

=
∣
∣( 1
λ
∧ r1) − ( 1

λ
∧ r2)

∣
∣
[0,1]

≤ |r1 − r2|.

As a result, the function r 7→ T̃r is continuous, and we can choose a sequence (rl)

such that T̃rl = Tkl
for ∀l ∈ N. Now since ψ̃rl(T̃rl) = ϕ⋆(1) = x2 ∈ Bδk(x2), we

can complete the estimate (D.5) as follows:

Ŝ(ϕ̃⋆) ≤ lim inf
l→∞

inf
ψ∈C̄x1 (0,Tkl

)

τδkl
(ψ)≤Tkl

STkl
(ψ) ≤ lim inf

l→∞
STkl

(ψ̃rl)

= lim inf
l→∞

ST̃rl
(ψ̃rl) = Ŝ(ϕ⋆) = inf

ϕ∈C̄
x2
x1

(0,1)
Ŝ(ϕ). (D.6)

If Tkl
≥ T ⋆ for some l, then we can define the path ψ̃rl by first following the path

ψ⋆ = ψ̃r=∞ in time T ⋆ (which in this case is well-defined since T ⋆ <∞) and then

staying at x2 for the remaining time ∆l := Tkl
−T ⋆. As l → ∞, we have ∆l → 0,

and thus the additional action on the second part of the path goes to 0 as well,
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so that ST̃rl
(ψ̃rl) → Ŝ(ϕ⋆) still, and (D.6) remains valid also in this case.

Since by assumption of Proposition 2 we have

ϕ̃⋆(1) = lim
l→∞

ϕkl
(1) = lim

l→∞
ψδkl

,Tkl
(Tkl

) = x2,

ϕ̃⋆ is in C̄x2
x1

(0, 1), and so from (D.6) we can conclude that

Ŝ(ϕ̃⋆) = inf
ϕ∈C̄

x2
x1

(0,1)
Ŝ(ϕ) = Ŝ(ϕ⋆).

The uniqueness of the minimizing curve ϕ⋆ now implies that γ(ϕ̃⋆) = γ(ϕ⋆),

terminating the proof.

Step 3: For all T, δ > 0 the set of paths {ψ ∈ C̄x1(0, T ) | τδ(ψ) ≤ T} is regular

with respect to ST .

Proof. First, note that the set {τδ ≤ T} := {ψ ∈ C̄x1(0, T ) | τδ(ψ) ≤ T} is

closed since its complement {τδ ≤ T}c = {τδ > T} = {ψ | γ(ψ) ∩ Bδ(x2) = ∅}

is open. Since closing the latter set amounts to replacing the closed ball Bδ(x2)

by the corresponding open ball, we find that the interior of the set {τδ ≤ T} is

{τδ ≤ T}0 = {τ 0
δ ≤ T}, where τ 0

δ denotes the infimum of all times at which the

path is inside the open ball with radius δ around x2. Thus we must show

inf
ψ∈C̄x1 (0,T )
τδ(ψ)≤T

ST (ψ) ≥ inf
ψ∈C̄x1 (0,T )

τ0
δ (ψ)≤T

ST (ψ),

since the relation ≤ is clear. We will show that for every ψ ∈ {τδ ≤ T} we can

construct functions ψ̃r ∈ {τ 0
δ ≤ T}, r > 0, such that |ST (ψ̃r) − ST (ψ)| becomes
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arbitrarily small as r → 0+. The function ψ̃r will be constructed in such a way

that it traverses γ(ψ) at a slightly higher speed than ψ, and we will use the time

we saved to make a small excursion from the point where ψ touches the outside

of the ball Bδ(x2) into its interior and back, so that in fact τ 0
δ (ψ̃) ≤ T . In order

to show that the action ST (ψ̃r) differs only slightly from ST (ψ), it turns out that

one can speed up the path ψ only at places where |ψ̇| is bounded away from ∞.

To do so, we pick some M > essinf0≤t≤T |ψ̇(t)|, for every r ∈ (0, 1
2
) define the

time-rescaling Gr via its inverse by

G−1
r (t) :=

∫ t

0

(1 − r1|ψ̇|≤M) dτ, G−1
r : [0, T ] → [0, Tr], Tr := G−1

r (T ) < T,

where 1|ψ̇|≤M denotes the indicator function on the set {t ∈ [0, T ]; |ψ̇(t)| ≤ M},

and set ψr(s) := ψ(Gr(s)). Using

G′
r(s) = 1/(G−1

r )′(Gr(s)) =
[
1 − r1|ψ̇|≤M(Gr(s))

]−1
,

we find that

STr
(ψr) =

∫ Tr

0

L(ψr(s), ψ̇r(s)) ds

=

∫ Tr

0

L
(

ψ(Gr(s)), ψ̇(Gr(s))/
[
1 − r1|ψ̇|≤M(Gr(s))

])

ds

=

∫ T

0

L
(

ψ(t), ψ̇(t)/
[
1 − r1|ψ̇|≤M(t)

])[
1 − r1|ψ̇|≤M(t)

]
dt.

As r → 0+, the integrand in the last integral converges pointwise to L(ψ(t), ψ̇(t)).

To show that one can exchange limit and integral, observe that on {t ∈ [0, T ] :
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|ψ̇(t)| > M} the integrand equals L(ψ, ψ̇) before taking the limit, and that on

{t ∈ [0, T ] : |ψ̇(t)| ≤ M} we can use the bounded convergence theorem since (i)

1
2
≤ (1 − r1|ψ̇|≤M) ≤ 1, (ii) ψ(t) traverses the compact set γ(ψ), and (iii) L(x, y)

is continuous. Thus limr→0+ STr
(ψr) = ST (ψ).

Now let νr := 1
2
(T − Tr) = r

2

∫ T

0
1|ψ̇|≤M dt > 0, and pick a point xδ ∈ γ(ψ) ∩

∂Bδ(x2) at which ψ touches the boundary of Bδ(x2). Consider

χ+
νr

(t) := xδ + t(x2 − xδ) and χ−
νr

(t) := xδ + (νr − t)(x2 − xδ)

(for 0 ≤ t ≤ νr): χ
+
νr

starts at xδ and enters the ball Bδ(x2) in the direction of its

center x2, χ
−
νr

then goes back the opposite way. The corresponding actions

Sνr
(χ+

νr
) =

∫ νr

0

L
(
xδ + t(x2 − xδ), x2 − xδ

)
dt and

Sνr
(χ−

νr
) =

∫ νr

0

L
(
xδ + (νr − t)(x2 − xδ), xδ − x2

)
dt

=

∫ νr

0

L
(
xδ + s(x2 − xδ), xδ − x2

)
ds

converge to zero as r → 0+ (and thus νr → 0+). We can now define ψ̃r by piecing

ψr, χ
+
νr

and χ−
νr

together in such a way that ψ̃r moves from x1 to xδ along ψr, briefly

enters and exits the interior of Bδ(x2) via χ+
νr

and χ−
νr

, and continues along the

remaining part of ψr. The total time for this path is Tr+2νr = Tr+(T−Tr) = T ,

and the total action is

ST (ψ̃r) = STr
(ψr) + Sνr

(χ+
νr

) + Sνr
(χ−

νr
) → ST (ψ) + 0 + 0

as r → 0. Since τ 0
δ (ψ̃r) ≤ T for every r ∈ (0, 1

2
), this completes the proof.
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Appendix E

Proof of Proposition 4

In the following Lemma we will compute the derivatives of ϑ̂(x, y) and λ(x, y)

which we will need later in the proof of Proposition 4 to compute the Euler-

Lagrange equation for Ŝ.

Lemma 13 (Derivatives of ϑ̂ and λ). For all x ∈ D and y ∈ R
n \ {0} we have

ϑ̂x(x, y) = −H−1
θθ

(

PyHθx + λ−1 y ⊗Hx

〈y,H−1
θθ y〉

)

, (E.1)

ϑ̂y(x, y) = λH−1
θθ Py, (E.2)

ϑ̂y(x, y)
Ty = 0, (E.3)

λx(x, y) =
λHxθH

−1
θθ y −Hx

λ〈y,H−1
θθ y〉

, (E.4)

λy(x, y) = − λH−1
θθ y

〈y,H−1
θθ y〉

, (E.5)

where we abbreviate

Py := I − y ⊗H−1
θθ y

〈y,H−1
θθ y〉

, (E.6)
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and where Hx, Hθx, Hxθ and Hθθ are evaluated at the point (x, ϑ̂(x, y)).

Proof. All formulae can be obtained by implicit differentiation of the Equations

(2.7), where λ = λ(x, y) and ϑ̂ = ϑ̂(x, y).

First we differentiate H(x, ϑ̂(x, y)) = 0 both with respect to x and y to obtain

HT
x +HT

θ ϑ̂x = HT
x + λyT ϑ̂x = 0, HT

θ ϑ̂y = λyT ϑ̂y = 0. (E.7)

From the second equation we see that (E.3) holds since λ = 0 only if x is a critical

point and since ϑ̂y is continuous.

Differentiating the second equation in (2.7), Hθ(x, ϑ̂(x, y)) = λy, with respect

to x and y, we obtain

Hθx +Hθθϑ̂x = yλTx , Hθθϑ̂y = λI + yλTy . (E.8)

Left-multiplying both equations by λyTH−1
θθ and using Equations (E.7), we con-

clude

λyTH−1
θθ Hθx −HT

x = λ〈y,H−1
θθ y〉λTx ,

0 = λ2yTH−1
θθ + λ〈y,H−1

θθ y〉λTy ,

which we can solve for λTx and λTy :

λTx =
λyTH−1

θθ Hθx −HT
x

λ〈y,H−1
θθ y〉

, λTy = − λyTH−1
θθ

〈y,H−1
θθ y〉

, (E.9)

proving (E.4) and (E.5). We can now solve Equations (E.8) for ϑ̂x and ϑ̂y and
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plug in Equations (E.9) to obtain

ϑ̂x = H−1
θθ (yλTx −Hθx)

= H−1
θθ

(λyyTH−1
θθ Hθx − yHT

x

λ〈y,H−1
θθ y〉

−Hθx

)

= −H−1
θθ

(

PyHθx + λ−1 yHT
x

〈y,H−1
θθ y〉

)

,

ϑ̂y = H−1
θθ (λI + yλTy )

= H−1
θθ λ

(

I − yyTH−1
θθ

〈y,H−1
θθ y〉

)

= λH−1
θθ Py,

where

Py = I − yyTH−1
θθ

〈y,H−1
θθ y〉

= I − y ⊗H−1
θθ y

〈y,H−1
θθ y〉

.

This proves (E.1) and (E.2) and we are done.

Proof of Proposition 4. Starting from the representation (2.5) of the action Ŝ, we

obtain

DŜ(ϕ) = ϑ̂Txϕ
′ − ∂α(ϑ̂+ ϑ̂Ty ϕ

′)

= ϑ̂Txϕ
′ − ϑ̂xϕ

′ − ϑ̂yϕ
′′ − ∂α(ϑ̂

T
y ϕ

′)

= (ϑ̂Tx − ϑ̂x)ϕ
′ − ϑ̂yϕ

′′ − ∂α(ϑ̂
T
y ϕ

′). (E.10)

(E.3) in Lemma 13 says that the last term in (E.10) vanishes. We can then apply

the formulae (E.1) and (E.2) for the derivatives of ϑ̂ to obtain

λHθθDŜ(ϕ) = λHθθ

(
(ϑ̂Tx − ϑ̂x)ϕ

′ − ϑ̂yϕ
′′)
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=
(

Pϕ′λHθx +
ϕ′HT

x

〈ϕ′, H−1
θθ ϕ

′〉 − λHθθH
T
θxP

T
ϕ′H−1

θθ

− HθθHxϕ
′TH−1

θθ

〈ϕ′, H−1
θθ ϕ

′〉
)

ϕ′ − λ2Pϕ′ϕ′′

=
(

Pϕ′λHθx +
ϕ′HT

x

〈ϕ′, H−1
θθ ϕ

′〉
)

ϕ′ − 0 −HθθHx − λ2Pϕ′ϕ′′

= Pϕ′

(
− λ2ϕ′′ + λHθxϕ

′ −HθθHx

)
.

The relation λ = 〈Hθ, ϕ
′〉/|ϕ′|2 follows directly from (2.7). To show the second

representation of this term, we use (E.4) and (E.5) to compute:

λλ′ϕ′ = λ
(
∂αλ(ϕ, ϕ′)

)
ϕ′

=
(
〈λλx, ϕ′〉 + 〈λλy, ϕ′′〉

)
ϕ′

=
〈λHxθH

−1
θθ ϕ

′ −Hx, ϕ
′〉 − 〈λ2H−1

θθ ϕ
′, ϕ′′〉

〈ϕ′, H−1
θθ ϕ

′〉 ϕ′

=
〈λHθxϕ

′ −HθθHx − λ2ϕ′′, H−1
θθ ϕ

′〉
〈ϕ′, H−1

θθ ϕ
′〉 ϕ′

=
ϕ′ ⊗H−1

θθ ϕ
′

〈ϕ′, H−1
θθ ϕ

′〉
(
− λ2ϕ′′ + λHθxϕ

′ −HθθHx

)

=
(
I − Pϕ′

)(
− λ2ϕ′′ + λHθxϕ

′ −HθθHx

)
.
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Appendix F

The update formula for the inner

loop

Computing Step 2: Given a vector ϑ̂p and

h = h(ϑ̂p), hθ = hθ(ϑ̂
p) and hθθ = hθθ(ϑ̂

p),

we must find θ0, A and c such that the quadratic function

f(θ) := 1
2
〈θ − θ0, A(θ − θ0)〉 + c

fulfills

f(ϑ̂p) = h, fθ(ϑ̂
p) = hθ and fθθ(ϑ̂

p) = hθθ. (F.1)

Clearly, the last equation in (F.1) implies A = hθθ. From the second equation in

(F.1) we obtain
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A(ϑ̂p − θ0) = hθ ⇔ ϑ̂p − θ0 = A−1hθ = h−1
θθ hθ.

Finally, the first equation in (F.1) tells us that

h = 1
2
〈ϑ̂p − θ0, A(ϑ̂p − θ0)〉 + c = 1

2
〈A−1hθ, AA

−1hθ〉 + c

= 1
2
〈hθ, A−1hθ〉 + c

⇔ c = h− 1
2
〈hθ, A−1hθ〉 = h− 1

2
〈hθ, h−1

θθ hθ〉.

Summarizing, f is given by

f(θ) = 1
2
〈θ − θ0, hθθ(θ − θ0)〉 + [h− 1

2
〈hθ, h−1

θθ hθ〉],

where θ0 = ϑ̂p − h−1
θθ hθ. Thus, if f(θ0) = h − 1

2
〈hθ, h−1

θθ hθ〉 ≥ 0 then we return

ϑ̂p+1 = θ0.

Computing Step 3: Suppose now that f(θ0) < 0 (i.e. the region {f < 0} is

non-empty), and let some direction ϕ′ be given. We must find the point ϑ̂p+1

such that

f(ϑ̂p+1) = 0 and fθ(ϑ̂
p+1) = λϕ′ for some λ ≥ 0. (F.2)

The second equation in (F.2) is equivalent to

hθθ(ϑ̂
p+1 − θ0) = λϕ′ ⇔ ϑ̂p+1 = θ0 + λh−1

θθ ϕ
′.
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To obtain λ, we then use the first equation in (F.2):

0 = f(ϑ̂p+1)

= 1
2
〈ϑ̂p+1 − θ0, hθθ(ϑ̂

p+1 − θ0)〉 + [h− 1
2
〈hθ, h−1

θθ hθ〉]

= 1
2
λ2〈h−1

θθ ϕ
′, hθθh

−1
θθ ϕ

′〉 + [h− 1
2
〈hθ, h−1

θθ hθ〉]

⇒ λ = +

(

〈hθ, h−1
θθ hθ〉 − 2h

〈ϕ′, h−1
θθ ϕ

′〉

)1/2

since we are interested in the non-negative solution λ. The point we are looking

for is thus

ϑ̂p+1 = θ0 +

(

〈hθ, h−1
θθ hθ〉 − 2h

〈ϕ′, h−1
θθ ϕ

′〉

)1/2

+

h−1
θθ ϕ

′

= ϑ̂p + h−1
θθ

(
λ̃(ϑ̂p)ϕ′ − hθ

)
with λ̃(ϑ̂p) :=

(

〈hθ, h−1
θθ hθ〉 − 2h

〈ϕ′, h−1
θθ ϕ

′〉

)1/2

+

.
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