The Geometric Phase in Quantum Systems

Foundations, Mathematical Concepts, and Applications in Molecular and Condensed Matter Physics

With 56 Figures

Table of Contents

1.	Int	roduction	1
2.	Qua	antal Phase Factors for Adiabatic Changes	5
	2.1	Introduction	5
	2.2	Adiabatic Approximation	10
	2.3	Berry's Adiabatic Phase	14
	2.4	Topological Phases and the Aharonov–Bohm Effect	22
	Pro	blems	29
3.	Spi	nning Quantum System in an External Magnetic Field	31
	3.1	Introduction	31
	3.2 3.3	The Parameterization of the Basis Vectors Mead–Berry Connection and Berry Phase	31
	0.0	for Adiabatic Evolutions – Magnetic Monopole Potentials	36
	3.4	The Exact Solution of the Schrödinger Equation	42
	3.5	Dynamical and Geometrical Phase Factors	
	~ .	for Non-Adiabatic Evolution	48
	Pro	blems	52
4.	Qua	antal Phases for General Cyclic Evolution	53
	4.1	Introduction	53
	4.2	Aharonov–Anandan Phase	53
	4.3	Exact Cyclic Evolution for Periodic Hamiltonians	60
	Pro	blems	64
5.	Fiber Bundles and Gauge Theories		65
	5.1	Introduction	65
	5.2	From Quantal Phases to Fiber Bundles	65
	5.3	An Elementary Introduction to Fiber Bundles	67
	5.4	Geometry of Principal Bundles and the Concept of Holonomy	76
	5.5	Gauge Theories	87
	5.6	Mathematical Foundations of Gauge Theories and Geometry of Vector Bundles	95
	Pro	blems	

XII Table of Contents

6.	Mathematical Structure of the Geometric Phase I:			
	The	Abelian Phase		
	6.1	Introduction	107	
	6.2	Holonomy Interpretations of the Geometric Phase	107	
	6.3	Classification of $U(1)$ Principal Bundles and the Relation		
		Between the Berry–Simon and Aharonov–Anandan		
		Interpretations of the Adiabatic Phase	113	
	6.4	Holonomy Interpretation of the Non-Adiabatic Phase		
		Using a Bundle over the Parameter Space	118	
	6.5	Spinning Quantum System and Topological Aspects		
		of the Geometric Phase		
	Pro	blems	126	
7.	Mathematical Structure of the Geometric Phase II:			
	\mathbf{The}	e Non-Abelian Phase	129	
	7.1	Introduction	129	
	7.2	The Non-Abelian Adiabatic Phase	129	
	7.3	The Non-Abelian Geometric Phase	136	
	7.4	Holonomy Interpretations of the Non-Abelian Phase	139	
	7.5	Classification of $U(N)$ Principal Bundles and the Relation		
		Between the Berry–Simon and Aharonov–Anandan		
		Interpretations of Non-Abelian Phase		
	Pro	blems	145	
8.	AQ	Quantum Physical System in a Quantum Environment –		
	The	e Gauge Theory of Molecular Physics		
	8.1	Introduction		
	8.2	The Hamiltonian of Molecular Systems		
	8.3	The Born–Oppenheimer Method		
	8.4	The Gauge Theory of Molecular Physics		
	8.5	The Electronic States of Diatomic Molecule		
	8.6	The Monopole of the Diatomic Molecule		
	Pro	blems	191	
9.	Crossing of Potential Energy Surfaces			
	and	the Molecular Aharonov–Bohm Effect	195	
	9.1	Introduction		
	9.2	Crossing of Potential Energy Surfaces		
	9.3	Conical Intersections and Sign-Change of Wave Functions		
	9.4	Conical Intersections in Jahn–Teller Systems	209	
	9.5	Symmetry of the Ground State in Jahn–Teller Systems	213	
	9.6	Geometric Phase in Two Kramers Doublet Systems	219	
	9.7	Adiabatic-Diabatic Transformation	222	

10.	Experimental Detection of Geometric Phases I:		
	Quantum Systems in Classical Environments	225	
	10.1 Introduction	225	
	10.2 The Spin Berry Phase Controlled by Magnetic Fields	225	
	10.2.1 Spins in Magnetic Fields: The Laboratory Frame	225	
	10.2.2 Spins in Magnetic Fields: The Rotating Frame	231	
	10.2.3 Adiabatic Reorientation in Zero Field	237	
	10.3 Observation of the Aharonov–Anandan Phase		
	Through the Cyclic Evolution of Quantum States	248	
	Problems	252	
11.	Experimental Detection of Geometric Phases II:	055	
	Quantum Systems in Quantum Environments		
	11.1 Introduction		
	11.2 Internal Rotors Coupled to External Rotors		
	11.3 Electronic–Rotational Coupling		
	11.4 Vibronic Problems in Jahn–Teller Systems		
	11.4.1 Transition Metal Ions in Crystals		
	11.4.2 Hydrocarbon Radicals11.4.3 Alkali Metal Trimers		
	11.4.5 Alkali Metal Triners		
	11.5 The Geometric Phase in Chemical Reactions	210	
12.	Geometric Phase in Condensed Matter I: Bloch Bands	277	
	12.1 Introduction		
	12.2 Bloch Theory		
	12.2.1 One-Dimensional Case		
	12.2.2 Three-Dimensional Case	280	
	12.2.3 Band Structure Calculation	281	
	12.3 Semiclassical Dynamics	283	
	12.3.1 Equations of Motion	283	
	12.3.2 Symmetry Analysis	285	
	12.3.3 Derivation of the Semiclassical Formulas	286	
	12.3.4 Time-Dependent Bands	287	
	12.4 Applications of Semiclassical Dynamics	288	
	12.4.1 Uniform DC Electric Field		
	12.4.2 Uniform and Constant Magnetic Field	289	
	12.4.3 Perpendicular Electric and Magnetic Fields	290	
		290	
	12.5 Wannier Functions		
	12.5.1 General Properties		
	12.5.2 Localization Properties		
	12.6 Some Issues on Band Insulators		
	12.6.1 Quantized Adiabatic Particle Transport		
	12.6.2 Polarization		
	Problems	299	

13.		metric Phase in Condensed Matter II:	
	The	Quantum Hall Effect	301
		Introduction	
	13.2	Basics of the Quantum Hall Effect	302
		13.2.1 The Hall Effect	
		13.2.2 The Quantum Hall Effect	302
		13.2.3 The Ideal Model	304
		13.2.4 Corrections to Quantization	305
	13.3	Magnetic Bands in Periodic Potentials	307
		13.3.1 Single-Band Approximation in a Weak Magnetic Field	307
		13.3.2 Harper's Equation and Hofstadter's Butterfly	309
		13.3.3 Magnetic Translations	311
		13.3.4 Quantized Hall Conductivity	314
		13.3.5 Evaluation of the Chern Number	316
		13.3.6 Semiclassical Dynamics and Quantization	318
		13.3.7 Structure of Magnetic Bands and Hyperorbit Levels	321
		13.3.8 Hierarchical Structure of the Butterfly	325
		13.3.9 Quantization of Hyperorbits	
		and Rule of Band Splitting	
	13.4	Quantization of Hall Conductance in Disordered Systems	
		13.4.1 Spectrum and Wave Functions	
		13.4.2 Perturbation and Scattering Theory	
		13.4.3 Laughlin's Gauge Argument	
		13.4.4 Hall Conductance as a Topological Invariant	333
T 4	a.		
14.		ometric Phase in Condensed Matter III:	997
		ny-Body Systems	
		Introduction	
	14.2	Fractional Quantum Hall Systems	
		14.2.1 Laughlin Wave Function	
		14.2.2 Fractional Charged Excitations	
		14.2.3 Fractional Statistics	
	149	14.2.4 Degeneracy and Fractional Quantization	
	14.0	Spin-Wave Dynamics in Itinerant Magnets	
		14.3.1 General Formulation	
		14.3.2 Tight-Binding Limit and Beyond14.3.3 Spin Wave Spectrum	
	111	Geometric Phase in Doubly-Degenerate Electronic Bands	
		blem	
	FIO	olem	009
A.	An	Elementary Introduction to Manifolds and Lie Groups	361
• • •	A.1	Introduction	
	A.2	Differentiable Manifolds	
	A.3		
			000

B. A Brief Review of Point Groups of Molecules with Application to Jahn–Teller Systems	• • •	407
References	•••	429
Index	• • •	437