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Introduction

This paper has twin aims. On the one hand we prove the local Langlands
conjecture for GL,, over a p-adic field. On the other hand in many cases we
are able to identify the action of the decomposition group at a prime of bad
reduction on the [-adic cohomology of the “simple” Shimura varieties studied
by Kottwitz in [Ko4]. These two problems go hand in hand.

The local Langlands conjecture is one of those hydra like conjectures which
seems to grow as it gets proved. However the generally accepted formulation
seems to be the following (see [He2]). Let K be a finite extension of Q,. Fix a
non-trivial additive character 1) : K — C*. We will denote the absolute value
on K which takes uniformisers to the reciprocal of the number of elements in
the residue field by | |x. We will let Wy denote its Weil group. Recall that
local class field theory gives us a canonical isomorphism

Art gt K — Wi

(Normalised so that geometric Frobenius elements correspond to uniformisers.)
The local Langlands conjecture provides some sort of description of the whole
of Wi in the same spirit.

We will let Irr(G L, (K)) denote the set of isomorphism classes or irreducible
admissible representations of GL,(K) over C (or what comes to the same
thing: irreducible smooth representations). If [m] € Irr(GL,, (K)) and [ms] €
Irr(G Ly, (K)) then there is an L-factor L(m; X s, s) and an epsilon factor
e(m X ma, ,1) associated to the pair m, my (see for instance [JPSS]).

On the other hand let WDRep,,(Wx) denote the set of isomorphism classes
of m-dimensional Frobenius semi-simple Weil-Deligne representations of the
Weil group, Wk, of K over C. By a Frobenius semi-simple Weil-Deligne
representation of Wy over C we mean a pair (r, N) where r is a semi-simple
representation of Wy on a finite dimensional complex vector space , V', which
is trivial on an open subgroup and an element N € End ¢ (V') such that

r(o)Nr(o)™t = |Art ;(1(0)|KN

for all o € Wg. Again if [(r, N)] € WDRep,,,(Wg) then there is an L-factor
L((r,N),s) and an epsilon factor €((r, N), s,1) associated to (r, N) (see for
instance [Tat2] and section 12 of this paper for the precise normalisations we
are using).
By a local Langlands correspondence for K we shall mean a collection of
bijections
reck : Irr(GL,(K)) — WDRep,,(Wk)

for every n > 1 satisfying the following properties.
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1. If 7 € Ir(G Ly (K)) then reck(m) = mo Art ;.
2. If [m] € Irr(GL,,, (K)) and [ms] € Irt(GL,,(K)) then

L(m X mg,8) = L(reck(m) @ recg(ma), s)

and
€(m X ma, 8,1) = €(reck (m) @ reck (ms), s,1).

3. If [r] € Irr(GL,(K)) and x € Irr(GLy(K)) then reck(m @ (x o det)) =
reci (m) @ reck (x)-

4. If [r] € Irr(GL,(K)) and 7 has central character x then detrecg(m) =
recr (x)-

5. If [r] € Irr(GL,(K)) then reck(n") = reck(m)" (where V denotes con-
tragredient).

Henniart showed (see [Heb|) that there is at most one set of bijections recy
with these properties. The commonest formulation of the local Langlands
conjecture for GL,, is the following theorem.

Theorem A A local Langlands correspondence reck exists for any finite ex-
tension K/Q,.

However it seems to us that one would really like more than this simple
existence theorem. On the one hand it would be very useful if one had some
sort of explicit description of this map recgx. Our methods shed no light on
this. One might well hope that the methods of Bushnell, Henniart and Kutzko
will lead to an explicit version of this theorem. On the other hand one would
also like to know that the local reciprocity map recy is compatible with global
reciprocity maps whenever the global map is known to exist. Our methods
do not resolve this latter question but they do shed considerable light on it.
For instance in the cases considered by Clozel in [Cl1] we settle this question
affirmatively up to semisimplification (in particular we do not identify the two
N’s).

Maybe a remark on the history of this problem is in order. The exis-
tence of recg|ne(crL, (k) With the desired properties follows from local class
field theory (due originally to Hasse [Has]), but this preceded the general con-
jecture. The key generalisation to n > 1 is due to Langlands (see [Lan]), who
formulated some much more wide ranging, if less precise, conjectures. The
formulation in the form described here, with its emphasis on epsilon factors
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of pairs, seems to be due to Henniart (see [He2]). Henniart’s formulation has
the advantage that there is a most one such correspondence, but as remarked
above it limits somewhat the scope of Langlands’ original desirata. The exis-
tence of recx |ne(crL(k)) With the desired properties was established by Kutzko
([Ku]), following earlier partial work by a number of people. The existence of
rec K|Irr(G Ls(k)) With almost all the desired properties was established by Hen-
niart ([Hel]). In particular, his correspondence had enough of these properties
to characterise it uniquely. Both the work of Kutzko and Henniart relied on
a detailed classification of all elements of Irr(GL,(K)). These methods have
since been pushed much further, but to date have not provided a construction
of reck which demonstrably has the desired properties on Irr(G L, (K)) for any
n > 3. In the case of completions of functions fields of transcendence degree 1
over finite fields, the corresponding theorem was proved by Laumon, Rapoport
and Stuhler ([LRS]).

We will let Cusp (GL,(K)) denote the subset of Irr(GL,(K)) consisting
of equivalence classes of supercuspidal representations. Let Rep,, (W) denote
the subset of WDRep,, (W) consisting of equivalence classes of pairs (r, N)
with N = 0. Also let Irr,(Wg) denote the subset of Rep,, (W) consisting of
equivalence classes of pairs (r,0) with r irreducible. It follows from important
work of Zelevinsky [Z] that it suffices to construct bijections

recg : Cusp (GL,(K)) — Irr,,(Wk)

with the properties listed above (see [He2].) In a key breakthrough, Henniart
[He4] showed that there did exist bijections

reck : Cusp (GL,(K)) — Irr,,(Wk),

which preserved conductors and were compatible with twists by unramified
characters. He was however unable to show that these bijections had enough
of the other desired properties to characterise them uniquely. The usefulness
of this result is that it allows one to use counting arguments, for instance
any injection Cusp (GL,(K)) — Irr,(Wk) satistfying the desired properties
must be a bijection. (This result is usually referred to as the numerical local
Langlands theorem.)
We will give a natural construction of a map

recg : Cusp (GL,(K)) — Trr,(Wx),

which we will show is compatible with the association of [-adic representa-
tions to many automorphic forms on certain unitary groups. Using this global



compatibility and some instances of non-Galois automorphic induction dis-
covered by one of us (M.H., see [Har2]) we will see that there is a subset
Cusp (GL,(K)) C Cusp (GL,(K)) such that

rec : Cusp (GL,(K)) — Irr,(Wk)

and such that recg|cusp(Gr, (k) has all the desired properties. The subset
Cusp (GL,(K)) may be described as those elements of Cusp (GL,(K)) which
become unramified after some series of cyclic base changes. Appealing to
Henniart’s numerical local Langlands theorem ([He4]) we can conclude that
Cusp (GL,(K)) = Cusp (GL,(K))" and so deduce theorem A.

One of us (M.H. see [Harl]) had previously given a different construction
of a map

recy : Cusp (GL,(K)) — Trr,,(Wk).

In some cases he was able to show its compatibility with the association of [-
adic representations to certain classes of automorphic forms on unitary groups.
As a result he could deduce the local Langlands conjecture only for p > n (see
[BHK] and [Har2]). A posteriori we can show that rec}, = reck. Since the
distribution of a preliminary version of this paper, but before the distribution
of the final version, Henniart [He6] has given a much simpler proof of theorem
A by making much cleverer use of the non-Galois automorphic induction of
[Har2] and of his own numerical local Langlands theorem [He4]. He does not
need the a priori construction of a map recy compatible with some instances of
the global correspondence, and thus he is able to by-pass all the main results in
this paper. For the reader interested only in theorem A his is clearly the better
proof. None the less we believe the results of this paper are still important as
they establish many instances of compatibility between the global and local
correspondences.
Let us now explain our construction of maps

recg : Cusp (GL,(K)) — Rep,,(Wk).

To this end choose a prime [ # p and fix an isomorphism C = Qf¢. Let k
denote the residue field of K. For any g > 1 there is, up to isomorphism,
a unique one-dimensional formal Ox-module Xg ,/k% of Og-height g. Then
End o, (Xk,) ®2z Q = D, the division algebra with centre K and Hasse
invariant 1/g. Drinfeld showed that the functor which associates to any Ar-
tinian local Og-algebra A with residue field £ the set of isomorphism classes
of deformations of ¥k, to A is prorepresented by a complete noetherian lo-
cal Ok algebra Rg , with residue field k. (In fact he showed that Ry, is



a formal power series ring in g — 1 variables over the ring of integers of the
completion of the maximal unramified extension of K.) We will let X, de-
note the universal deformation of ¥ , over Rg ,. (In the case g = 1 one just
obtains the base change to the ring of integers of the completion of the maxi-
mal unramified extension of K of any Lubin-Tate formal O module over K.)
Drinfeld further showed that for any integer m > 0 there is a finite flat R ,-
algebra Ry g, over which ¥ kg has a universal Drinfeld level p™-structure. We
will consider the direct limit over m of the formal vanishing cycle sheaves of
Spf Ri.gm with coefficients in Qf°. This gives a collection {¥%, '} of infinite-
dimensional Q¢ vector spaces with natural admissible actions of the subgroup
of GLy(K) x Dp, x Wi consisting of elements (7,4, o) such that

| det || det 4| A1t o] = 1.

For any irreducible representation p of Dy we set

@(,z,g(ﬂ) = Hom ogKg(Pa 3{71,9)-
This becomes an admissible GL,(K) x Wg-module. In the case g = 1 we
have Wy, = (0) for i > 0, while it follows from the theory of Lubin-Tate
formal groups (see [LT]) that W%, (p) = Q¢ with an action of K* x W via
p~! x (po Art¢') (see section 3.4 of [Car3]).

To describe Wi, (p) in greater generality we must recall that Deligne,
Kazhdan and Vigneras (see [DKV]) and Rogawski ([Rog2]) have given a bijec-
tion between irreducible representations of DIX(7 , and (quasi-)square integrable
irreducible admissible representations of GL,(K) characterised by a natural
character identity (see appendix IV). This generalises work of Jacquet and
Langlands in the case g = 2 so we will denote the correspondence p — JL (p).
Carayol essentially conjectured ([Car3]) that if JL (p) is supercuspidal then

Wi ty(p) = L (p)” X rec (JL (p) © | det|179).

We do not quite prove this (though it may be possible by our methods to
do so). However motivated by Carayol’s conjecture our first main theorem
is the following. To state it let [V 4(p)] denote the virtual representation

(=171 2 (1) Wiy 4 ()],

Theorem B If w is an irreducible supercuspidal representation of GL4(K)
then there is a (true) representation

ri(m) : Wi — GLg(Q[),
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such that in the Grothendieck group
(Wi 1,9 (JL ()] = [r @ mi(m)].
In the case n = 1 Lubin-Tate theory allows one to identify
ri(m) =n"to Art it
We use this theorem to define
recg : Cusp (GLy(K)) — Rep,(Wk)
by the formula

recg(m) =r(r' @ (] |o det)(l—g)/Q).

It will also be convenient for us to extend r; to all irreducible admissible
representations of GL,(K) as follows. If 7 is an irreducible admissible repre-
sentation of GL,(K), then we can find positive integers g, ..., g which sum to
g and irreducible supercuspidal representations m; of GL,, (K) such that 7 is
a subquotient of n-Ind (m; X ... X m;), where we are using the usual normalised
induction (see appendix I). Then we set

t

ri(m) = @ ri(m) @ |Art '

i=1

(9:—9)/2

This is well defined and
recy (m) = (' @ (] |o det)(l_g)/2),N),

for some N.

Our second key result is that r; is compatible with many instances of the
global Langlands correspondence. The following theorem strengthens a theo-
rem of Clozel [Cl1] (in which he only identifies [R(II)|w,, ] for all but finitely
many places y, and specifically for none of the bad places).

Theorem C Suppose that L is a CM field and that 11 is a cuspidal automor-
phic representation of GLy(AL) satisfying the following conditions:

o IV =TI

e Il has the same infinitesimal character as some algebraic representation
over C of the restriction of scalars from L to Q of GL,,



e and for some finite place x of L the representation 11, is square integrable.

Then there is a non-zero integer a(Il) and a continuous representation R(II)
of Gal (L*/L) over Q¢ such that for any finite place y of L not dividing | we
have

[R(ID)|wy, | = a(I)[r(TL,)].

In the case n = 2 and K = Q, and F'* = Q both theorems B and C were
essentially proved by Deligne in his beautiful letter [De2]. (The argument was
completed by Brylinski [Bry].) Carayol [Car2] generalised Deligne’s method
to essentially prove both theorems B and C in the general n = 2 case. We will
simply generalise Deligne’s approach to n > 2. The combination of theorems B
and C, Henniart’s numerical local Langlands theorem [He4] and the non-Galois
automorphic induction of [Har2] suffice to prove theorem A.

Both theorems B and C follow without great difficulty from an analysis
of the bad reduction of certain Shimura varieties. We will next explain this
analysis. Unfortunately we must first establish some notation. Let E denote
an imaginary quadratic field in which p splits: p = uu®. Let F* denote a
totally real field of degree d and set ' = EF™. Fix a place w of F' above u.
Let B be a division algebra with centre F' such that

e the opposite algebra B°P is isomorphic to B ®p . L]

B is split at w;

at any place x of F' which is not split over F'*, B, is split;

at any place x of F which is split over F'* either B, is split or B, is a
division algebra,

if n is even then 1+ dn/2 is congruent modulo 2 to the number of places
of F above which B is ramified.

Let n denote [B : F]*/2. We can pick a positive involution of the second kind
* on B (Le. *|p = cand tr gjg(zz*) > 0 for all nonzero x € B). If § € B*=*
then we will let

e (G denote the algebraic group with G(Q) the subgroup of elements = €
(B°P)* so that x*fBx = v(x)f for some v(z) € Q*,

e v: G — (G, the corresponding character,

e (51 the kernel of v,



e and ( , ) the pairing on B defined by
(@,y) = (tr pyg o tr /r)(@BY").

We can and will choose 3 such that

e (5 is quasi-split at all rational primes x which do not split in E
e and Gl( ) U(n -1 1) U(n)[FJr:@}_l

If U € G(A*) is an open compact subgroup we will consider the following
moduli problem. If S is a connected F-scheme and s is a closed geometric
point of S then we consider equivalence classes of quadruples (A, A, 4,7) where

2

e A is an abelian scheme of dimension [F : Q]n?;
e \: A— AV is a polarisation;
e i: B— End(A)®z Q such that Ao i(b) = i(b*)¥ o A for all b € B and

such that

tr (b Lie(a)) = (cotr pyp o tr g/p)(nb) 4+ tr g/p(b) — (cotr g;p)(b)

for all b € B;

77 is a m (S, s)-invariant U-orbit of isomorphisms of B ®g A*-modules
n:V ®gA® — VA, which take the standard pairing ( , ) on V to a
scalar multiple of the \-Weil pairing on V' A,.

We consider two such quadruples equivalent if the abelian varieties are isoge-
nous in a way that preserves the rest of the structure (but only need preserve
the polarisation up to @* multiples). The set of equivalence classes is canon-
ically independent of the choice of s. If U is sufficiently small this moduli
problem is represented by a smooth proper scheme of finite type Xy /F.

If £ is a representation of the algebraic group G over Q7 then we can define
a lisse Qf¢ sheaf L¢ on Xy. Then we will consider the Qf-vector spaces

H'(X, L) = lim H! (Xy x F, Le).

This is naturally an admissible G(A>) x Gal (F*¢/F)-module. In fact we can
write

H{(X, L) = @w@Rz



where 7 runs over irreducible admissible representations of G(A>) and R ()
is a finite dimensional continuous representation of Gal (Q*/Q). We will focus
on the virtual representation

[Re(m)] = (=1)""' Y (—1)[Re(m)).

i

Kottwitz (see [Ko4]) determined tr [R¢(m)|(Frob,) in terms of p for all but
finitely many places = of F. He thus completely determined the virtual rep-
resentation [Re(m)]. We will extend Kottwitz’s description to all places = I of
F (see corollary 11.12).

We have an isomorphism

G(Q,) = B x [ [(B)*

z|u

and hence a decomposition

G(A®) = G(A™P) x Ej. x [ [(B»)*

z|u

Thus we may decompose an irreducible admissible representation 7 of G(A>)
as
TP @ m, ®®7Tx-
z|u

For h =1,...,n we will let P,* denote the parabolic subgroup of GL,(F,,)
consisting of block lower triangular matrices with an (n — h) x (n — h)-block
in the top left and an h x h block in the bottom right. It has Levi com-
ponent GL,_p(Fy,) X GLy(F,). Let N;* denote its unipotent radical. Sup-
pose that p is an irreducible representation of D . We will let ¢y, p)v €
C>*(GL,-p(F,)) denote a pseudo-coefficient for JL( )V (so that @y, (v is
compactly supported mod centre, and for any irreducible tempered admissi-
ble representation o of GL,,_,,(F,) with the same central character as JL (p)¥
we have tr a(p (p)v) = vol(Dg, ,,/F.) if a = JL(p)" and = 0 otherwise).
Then we define a homomorphism

n-red(") : Groth (GL,(F,)) — Groth (GL4(F,))
as a composite
Groth (GL,(F,)) — Groth (GL,_p(F,) X GLy(F,)) — Groth (GL,(F,)),

where



e the first map takes the class, [r], of an irreducible admissible represen-
tation, 7, to the class, [Jyor(7)], of its normalised Jacquet module (see
appendix I),

e and the second map takes the class, [a ® /], to

— vol(Dg. ./ FX) traegw pv) times [3] if the central characters
of aw and JL (p)" are equal,

— and to 0 otherwise.

Our key technical result is the following theorem relating R¢(7) and [Y 5, ;]
for 1 < g <n. From it both theorem B and theorem C follow without undue
difficulty. (As does corollary 11.12.)

Theorem D Suppose that m is an irreducible admissible representation of
G(A™) such that myo|yx = 1. Then

nfmo][Re(m)lwy,] = (dim[Re(m)]) 52g 3, n-Ind G5 (n-red " [, ])
(0 ry 1 (p) @ (8 2 ) 0 At oDl ])

where p runs over irreducible admissible representations of Dy, . _,.

Almost all of this paper is devoted to proving this theorem. In the rest of
this introduction we will give a very brief sketch of the strategy. We caution
the reader that in the rest of this introduction we will not make precise math-
ematical statements, but rather comments that we hope will convey an idea of
our methods. We refer the reader to the body of our article for the accurate
formulation of these ideas.

We compute the cohomology groups H, (X x F2, L) via vanishing cycle
sheaves on the special fibre X of X;. Thus we are led to try to compute the
cohomology groups

Hey (Xy x k(w)™, R70,(Q°) ® Le),

where k(w) denotes the residue field of w. The first key idea is to introduce a
certain stratification on Xy and compute stratum by stratum. Consider the
w™> torsion points on the universal abelian variety over Xy. It has an action
of B, = M,(F,). Applying the idempotent (e;;) € M, (F,) with e;; =1 and
e;; = 0 otherwise, we obtain a divisible Op, -module G/ Xy of Op, -height n and

of dimension 1. For h =0, ...,n—1 we will let ng) denote the (h-dimensional)
locally closed reduced subscheme of X where the maximal etale quotient of
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G has Op, -height h. (Then the closure of Yg}) is the union of the Yg” for
h' < h.) It will suffice to compute

HIXW 5 k(w)™, RV, (Q) @ Le).

Next we restrict to U of the form U x U,, where Op, . C U" C G(A>P) x
Eje X [Ljuarn(B?)* and Uy C GLy(Fy). If Uy is the group of matrices in
GL,(Op,) congruent to 1 modulo w™ we will write U = U*(m). To analyse
Y(Uh()m) we introduce an analogue of Igusa curves in this setting: we call them
lgusa varieties of the first kind. More precisely [ ‘hj)m will denote the etale

cover of ng()o) which parametrises isomorphisms
(Or, /w™)" = G [w™].

One can define this Igusa variety of the first kind not only as a variety in char-

acteristic p but as a formal scheme. Thus we obtain formal schemes (7, [(]}L)m)A(t)

with special fibre I, (@,m over which there is a universal deformation of the for-
mal O, -module G together with its Drinfeld level w'-structure.

One can show that Ygl()m) is a disjoint union of copies of I (ii)m except that

the structure map down to Ygl()o) is twisted by a power of Frobenius. If P,
denotes the opposite parabolic to P;* then one can obtain an isomorphism

i, (X % k(w)ee, R0, (QF) ® L) =

Ind " i, HI(I) L % k(w)e, RIW, (QF) ® L),

)
Thus it will suffice to compute
% h ac j ac
HI(I, % k(w)™, BRI, (Qf°) ® Le).

,m

(I N (E)

The next step is to understand the vanishing cycle sheaves

B Q@) o,

vw,

To do so we introduce a second generalisation of Igusa varieties, which we will
call Igusa varieties of the second kind. More specifically we let J(@7m7s/ll(]}fz,m X
k(w)® denote the moduli space for isomorphisms

o Yp, non|w’] = Qo[ws],
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which for every s’ > s lift etale locally to isomorphisms of the w*-division
schemes. As s varies we get a system of finite etale Galois covers and the
system has Galois group OX e It is perhaps worth noting three things.
One is that we need now the technical condition that the isomorphism must
lift locally - this is because Aut (Xp, ,—n) — Aut (Xp, n—n[w®]) is not usually
surjective. Secondly we remark that if one looked at a similar construction in
the case of the ordinary locus of a modular curve one would just obtain the
familiar Igusa curves. This is because in that case there is a duality between
the connected and etale part of the analogue of G (i.e. the p-divisible group of
the universal elliptic curve). To the best of our knowledge, for n — h > 1 the
varieties JL(,@ do not occur in the reduction of any Shimura variety. They
seem to naturally exist only in characteristic p.

The idea is now that over the ° pro object” lim.4J, ()

w.m,s We have an iso-
morphism G = Yp, ,,_, and R, (Q) becomes the constant

(I[(]hu))’m)/\(er/th)n
sheaf R W, (QF)(spt Rr, »ns)y- If One descends this isomorphism back down to

I l(thZ,s one obtains an isomorphism
lizn R, (Q?C)(I% DO @ F(YE, t-nlP));
P

where p runs over irreducible representatmns of DF nh (up to unramified
twist). If .7-“ is the hsse Qj“-sheaf on I Uw’m associated to the representation p
of Gal (J /I @) then the sheaf ]—"(\I’%ml’nfh[p]) is closely related to

Uw,m,o0
Fp® ‘I’jw,z,n_h(p),

where now the rather mysterious action of

GLy 1t (Opw) X Ip,

is concentrated on the constant sheaf ‘Ij{%,l,n—h(m' At least in our unskilled
hands it took some effort to make sense of the non-mathematical ideas of this
paragraph. We are very grateful to Berkovich for providing a key step in the
argument.

In this way we obtain an isomorphism

lim _, Hl(X( < K, RIU(Q)) @ L)) =

@, Ind G- (hm_,m H(Ig X ()", Le ® Fy) © Wy (p) S0P/l

for some explicit integers e[p]|(n — h) (see section 3). (Here we are using
unnormalised induction.) To complete the proof of theorem D it remains to
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compute '
lim HA(I{,,, % k(w)™, Le @ F)

as a G(A™P) x Eje X Z X GLp(Fy) X [1,jy.00 (Bs?) *-module.

At this point we return to Langlands’ idea of using the Lefschetz trace
formula to calculate the trace of the action of correspondences on Shimura
varieties in characteristic p. In our case we use Fujiwara’s “Deligne conjecture”
to compute the trace of a Hecke operator acting on

lim HE (112, % k()" Le @ Fr)
in terms of data at fixed points. For this to be applicable there is a condition
on the Hecke operator which corresponds to it being sufficiently twisted by
Frobenius. Following Kottwitz we combine the results of Honda and Tate
with some group theory (which we need in order to understand polarisations)
to describe the points of 1 (]Z)m X k(w)®. We find an expression for the sum of
the terms at fixed points in terms of orbital integrals in the group

GA®T) x B x Df, oy x GIn(Fa) - [T (B9

z|u, AW

Unlike Kottwitz’s work there is no distinguished Frobenius element and we
use a classification of points over k(w)® rather than over finite extensions of
k(w). We are able to manipulate this expression so that it becomes a sum
of orbital integrals in G(A). In doing so we use again the condition that the
Hecke operator “was sufficiently twisted by Frobenius” (cf [Cas]). Next we
apply the trace formula on Xy x F¢ to relate traces of Hecke operators on

Y (U im I, x k(w)™, Le @ F)]

)

with traces of related Hecke operators on

> (1) lim Hyy (Xu x Fee, Le)].

i

From this comparison it is not hard to deduce theorem D.

We remark that we recover in this way some of Kottwitz’s results from
[Ko4]. Although we have borrowed many of Kottwitz’s ideas our argument in
the case of overlap does seem to be somewhat different. For instance we make
no appeal to the fundamental lemma for stable base change (at this point in
the argument).
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cohomology of these same Shimura varieties will be clear to the reader. We
have borrowed many of his ideas.

Our work would have been impossible without Berkovich’s vanishing cycles
for formal schemes. We are extremely grateful to him for a number of things.
Firstly for the help he has given us in understanding his results and in writing
appendix II. Secondly because he found a proof of a key result we needed,
which he kindly wrote it up in an appendix to this paper [Berk4].

Finally we would like to acknowledge our debt to the work of Carayol,
Deligne and Drinfeld; on whose ideas the present paper is based. In particular
we owe a very great debt to Deligne: our paper is simply the natural general-
isation of the arguments of his beautiful letter [De2] from modular curves to
the unitary group Shimura varieties we consider.

1 Notation

In this section we will introduce some notation which we will use throughout
this paper. The reader should also consult appendix I for some basic group
theory notation.

We will let p and [ denote distinct rational primes, Z ) ring of elements of Q
with denominator coprime to p, val, the p-adic valuation (so that val ,(p) =1
and | |, the p-adic absolute value (so that |p|, = 1/p).

If X is a scheme and z is a point of X we will let k(x) denote the residue
field at . We will let Ox, denote the local ring of X at z and we will
let O%, denote its completion at its maximal ideal. If Y C X is a locally
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closed subscheme we will let X{* denote the completion of X along Y. For
instance X = Spf O% .. If X' is a locally noetherian formal scheme then &'
has a unique largest ideal of definition Z. The formal scheme with the same
underlying topological space as X and with structure sheaf Oy /7 is in fact a
scheme which we will refer to as the reduced subscheme of X', and will denote
Xred, (See section 10.5 of [EGAI].)

If k is a field and A/k is an abelian variety we will let T'A denote the Tate
module of A, i.e.

TA = lim A[N](k),

where the limit is over all positive integers N. We will also introduce the
characteristic zero version of the Tate module

VA=TA®;Q.

If S is a finite set of rational primes we will let T7°A and VA denote the
“away from S” Tate modules, i.e.

TSA = lim A[N] (k")

where the limit is over all positive integers coprime to S, and VA = T9 A®,;Q.
We similarly define the “at S” Tate modules TsA and VsA.

If Aand A’/S are abelian schemes then by an isogeny o : A — A’ we shall
mean an invertible element of Hom (A4, A")®7Q. We will denote Hom (A, A)®y,
Q by End°(A). By a polarisation A of A we shall mean a homomorphism
A: A — AY such that for each geometric point s of S the homomorphism A,
is a polarisation in the usual sense. If p is a rational prime then by a prime-
to-p-isogeny we shall mean an invertible element of Hom (A, A") ®z Z,). By a
prime-to-p-polarisation of A we shall mean a polarisation A\ : A — AY which
is also a prime-to-p-isogeny.

If L'/ L is a finite field extension we will let N,/ denote the norm from L'
to L.

If R is an F-algebra we will let Fr : R — R denote the Frobenius morphism
which takes z € R to 27 € R. If X/F, is a scheme we will let Fr* : X — X
denote the Frobenius morphism induced by Fr on structure sheaves. If Y — X
is a morphism of schemes over F, then we will let Y/(? (or simply Y® | if no
confusion seems likely to arise) denote the pull back of Y by Fr* : X — X.
We will also let Fy,x : Y — Y/(;) (or simply F: Y — Y® when no confusion
seems likely to arise) denote the relative Frobenius, i.e. the morphism that
arises from Fr : Y — Y and the universal property of the pull back Y/(?. If
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Y/X is a finite flat group scheme then we will let V' : Y®?) — Y denote the dual
of F:YV = YV® =Y®V where YV is the Cartier dual of Y. This definition
then extends to p-divisible groups Y/X. The morphism V : Y®) — Y induces
a morphism of quasi-coherent sheaves of Ox-modules

V. : (Fr*)*LieY = LieY™® — LieY.

Combining this with the natural map Fr: LieY — (Fr*)*LieY we get a map,
which we will also denote V,, from LieY to itself over X, which satisfies

Vi(zy) = 2"Vi(y)

for x a section of Ox and for y a section of LieY .

If k/F, is a finite extension we will let Frob,, € Gal (k*/k) denote Fr~ ",
i.e. it will denote a geometric Frobenius element.

We will let K denote a p-adic field, i.e. a finite extension of Q,. We will
let vg : K* — 7Z denote its unique valuation which is normalised to send
uniformisers to 1. We will let Ok denote its ring of integers, px the unique
maximal ideal of O and k(vg) = k(px) = Ok /oK its residue field. We will
often use wy to denote a uniformiser in Og. We will define an absolute value
[ Jic =1 [ on K by

2| = (Fk(vk)) 7,

for v € K*. We will let C,,, = C,, denote the completion of the algebraic
closure of K. We will let K™ denote the maximal unramified extension of K
and we will let K™ denote the completion of K™.

We will let Ix C Gal (K*/K) denote the inertia subgroup, so that

Gal (K*/K)/Ix = Gal (K™ /K) = Gal (k(vg )™ /k(vk)).

We will let Wy C Gal (K*/K) denote the Weil group, i.e. the inverse image
in Gal (K*/K) of Frob%(vK) C Gal (k(vk)*™/k(vk)). We will write Frob,,. for
Froby,), and will without comment think of it as an element of Wy /Ix. If
o € Wi then we define vg (o) by ol = Frobgg(”). We will let fx = fo, =
[k(vk) : Fpl and ex = ey, = [K : Qp]/fxk. If g is a positive integer we will let
Dk 4 denote the division algebra with centre K and Hasse invariant 1/g. The
algebra D 4 has a unique maximal order, which we will denote Op,. .. We will
also let det denote the reduced norm from Dg , to K and Ik, a uniformiser
in ODK,g‘
Local class field theory gives us a canonical isomorphism

Art g 0 K =5 Wb,
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There is a choice of sign in the definition of Art . We will choose a normalisa-
tion which makes uniformisers and geometric Frobenius elements correspond.
If 0 € Wg we will define

olx = |Art lox = pIxoxt®),

We will let ¢ denote the non-trivial element of Gal (C/R). We take Art :
C* — Gal (C/C) to be the trivial homomorphism and we take

Artg : R¥/R%, = Gal (C/R)

to be the unique isomorphism. We take | |g to be the usual absolute value
and | |c to be the square of the usual absolute value, i.e. |z|c = |22°|g.

If L is a number field we will let A; denote the adeles of L. If S is a finite
set of places of L we decompose Ap = A7 x Lg where A7 denotes the adeles

away from S and where Lg = [],.¢ L.. Also let Ki denote

z€eS
: S(L!
lim —>AL/( ),

where L' runs over finite extensions of L and where S(L’) is the set of places
of L' above S. The product of the normalised absolute values gives a homo-
morphism

=110 e s A — RZ,.

Global class field theory tells us that the product of the local Artin maps
gives an isomorphism

Art o L\AF/(LX)? > Gal (L*/L)™,

where (L)% denotes the connected component of the identity in LX.
Suppose that ¢ : Q¢ = C. If

YA /L — C*

is a continuous character, we will call ¢ algebraic if we can find integers n, for
each embedding ¢ : L — C such that

Yleer = [ [(e @ 1)

(e

In this case there is a unique continuous character

rec;,(¢) = rec(v) : Gal (L*/L) — (Q)*
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such that for any finite place z fl of L we have
vorec,(P) o Artp, = [ x.
More explicitly rec;, (1)) = 9’ o Art ;' where
W LNAL/(L)" — (@)
is defined by

V() = (@) [ o ® D(ae) ™) [ [ (o o) ® 1))

g o

If M is any Gal (L*/L)-module we will let
ker' (L, M)

denote the subset of H'(L, M) of elements that become trivial in H'(L,, M)
for every place x of L.

If L is a CM field we will let ¢ denote complex conjugation on L, i.e. the
unique automorphism of L which coincides with complex conjugation on C for
any embedding L — C.

Let € € M, (Z) denote the idempotent

1 00 0
000 0
000 0
000 ...0

Thus for any ring R we have isomorphisms
e M,(R)e = R" via the map sending z to its first column;
e =M, (R) = (R")Y via the map sending z to its first row;

e the map M, (R)e ®g eM,(R) — M,(R) sending zc ® ey to zey is an
isomorphism.

Suppose that L is a field of characteristic 0 and that C' is a finite di-
mensional semi-simple L-algebra. Suppose that x is an involution on C (i.e.
x 1 C' — C satisfies (z + y)* = z* + y*, (zy)* = y*z* and x> = 1) such that
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x| # 1. Set LT = L*='. Suppose that W is a C-module which is finite
dimensional over L. We will call a non-degenerate L™-alternating pairing

(, VW xW— LT

x-Hermitian if

vz, y) = (2,77y)
for all z,y € W and all v € C. We will call two such pairings ( , ) and ( , )
equivalent if we can find § € End ¢(W)* and p € (L*)* such that

<$, Z/>1 = :U<5$7 5?/)

for all z,y € W. We may classify equivalence classes of non-degenerate L*-
alternating *-Hermitian pairings W x W — L7 as follows.

Fix one such pairing ( , )o (if one exists). We will denote by %, the invo-
lution on End p+ (W) such that

(0z,y) = (x,87y)

for all z,y € W and all 6 € End +(W). Note that #¢|c = * and that xq
preserves End ¢(W). Define a reductive algebraic group H/L™ by setting, for
any Lt-algebra R, H(R) equal to the set of § € (End ¢(W)®p+ R)* such that

d6* € R,
Note that if R is an L-algebra then

End (W) @1+ R (End (W) @1+ L) @, R
Endc(W> X, R D End C(W) ®L7*\L R

and #( interchanges the two factors. Then H(R) consists of the set of pairs

(z, \x*), where x € (End (W) ®, R)* and A € R*, i.e.
H(R) = (End (W) ®, R)* x R*.
By Hilbert 90 we see that H'(L, H) = (0) and so
HY(Gal(L/L"), H(L)) — H'(L*, H).

We can describe H'(Gal (L/L"), H(L)) as the set of equivalence classes of
pairs (\,7) € L™ x End ¢(W)* such that A has norm 1 down to Lt and such
that

7= Ay

19



We consider (A,7) and (X,v') equivalent if there exists p € L* and 0 €
End ¢(W)* such that

(N,7) = (An/p*, =" 670™).
Applying Hilbert 90 to L/L* we see that H'(Gal (L/L"), H(L)) is also in
bijection with equivalence classes of

v € End ¢(W)* N End o(W)*=!,

where we consider v and «/ equivalent if there exists p € (LT)* and § €
End ¢(W)* such that
v = pdgammad™.

Any non-degenerate, LT-alternating, *-Hermitian form W x W — L7 is of
the form

<l’, y>5 = <5ZE, 5,7])0
for some 0 € End ;+(W)* with

506 € End o(W)™=",

Moreover ( , )s and ( , )& are equivalent if and only if there exists 7 €
End ¢(W)* and A € (LT)* such that

(07)700" = Ay (6708).

Note that any element v € End ¢(W)*=! can be written §*§ for some
d € End p+(W). (If we choose an LT-basis of W we get an isomorphism of
End ;+ (W) with Msn (L) for some integer N. Moreover ( , ) is represented
by an anti-symmetric matrix J € GLon(L™) and if 0 € Moy (L) then 6% =
J718'J (where t denotes the transpose). Thus if 6* = § we see that J§ is
antisymmetric and hence that

J5 = (8)'J8

for some ¢ € GLyn(L). Thus 6 = (0")*¢".) We deduce that the correspon-
dence which associates ( , )s with 6™ sets up a bijection between

e equivalence classes of non-degenerate Lt-alternating x-Hermitian forms
on W

o and H(L*, H).
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Suppose now that L is a number field. Suppose that two classes 1,1 €
HY(L*, H) correspond to non-degenerate LT-alternating *-Hermitian forms
(, )1 and (, ). Then the same arguments show that ( , ); and ( , )
become equivalent over A7, (with the same definition of equivalence as over
a field) if and only if ¢; and 1, have the same image in H 1(L+,Ki+).

We will call an L*-bilinear pairing

(, ) WxW—1L

s-symmetric if ( , ) is L-linear in the first variable and satisfies

(y, ) = (2,9)"

for all z,y € W. We will call this pairing non-degenerate if (x,y) = 0 for all
y € W implies that x = 0. We will call it 8-Hermitian if

(vz,y) = (2,7"y)

for all z,y € W and all v € C'. We call two *-Hermitian *-symmetric pairings
(, )rand (, )2 equivalent if there exists § € End (W) and A € (L1)* such

that
(@, y)2 = Ayz, 7y)
for all x,y € W.

Suppose that L = L*(y/a) where \/a’ = a € L*. Then there is a bijec-
tion between equivalence classes of non-degenerate, *-Hermitian, x-symmetric
pairings W x W — L and equivalence classes of non-degenerate, *-Hermitian,
Lt-alternating pairings W x W — L% given as follows. If {( | ) is a non-
degenerate, x-Hermitian, L™ -alternating pairing W x W — L7 then associate
to the equivalence class of { , ) the equivalence class of the non-degenerate,
x-Hermitian, x-symmetric pairing given by

(z,y) = (Vaz,y) + Val(z,y).

conversely if ( , ) is a non-degenerate, x-Hermitian, x-symmetric pairing W x
W — L7 then associate to the equivalence class of ( , ) the equivalence class
of the non-degenerate, *-Hermitian, L*-alternating pairing given by

(x,y) = tr L/L+\/a(x, ).

This bijection is independent of the choice of \/a € L.
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Suppose that L =C, LT =R, C = C!, x = ¢/ and W = (C")!. Then any
non-degenerate x-Hermitian, x-symmetric pairing W x W — C is of the form

(fz‘)z‘el X (?ji)iel — 252%@7
el

where J; is the diagonal n X n-matrix with 1 on the diagonal a; times and —1 on
the diagonal b; = n—a; times. This establishes a bijection between equivalence
classes of non-degenerate, x-Hermitian, x-symmetric pairings WtimesW — C
and equivalence classes of I-tuples ((a;, b;))ier of pairs of non-negative integers
(a;,b;) with a; + b; = n for all i@ € I. We call the I-tuples ((a;,b;))ics and
((bs, a;))ier equivalent, but consider no other pairs of I-tuples equivalent. We
deduce that equivalence classes of non-degenerate, x-Hermitian, R-alternating
pairings W x W — R are also parametrised by such equivalence classes of
I-tuples.

Now suppose that L = C, LT = R, C = M,(C)!, (v;)* = (77") and W =
C. Then equivalence classes of non-degenerate, x-Hermitian, R-alternating
pairings W x W — R are still parametrised by equivalence classes of I-tuples
((ai, b;))ier of pairs of non-negative integers (a;, b;) with a; + b; = n for all
i € 1. again we call the I-tuples ((a;, b;))ier and ((b;, a;))ier equivalent, but
consider no other pairs of I-tuples equivalent. To see this one can note that
to give a non-degenerate, *-Hermitian, R-alternating form W x W — R is
the same as giving a non-degenerate, *-Hermitian for C!, R-alternating form
eW x eW — R. The equivalence sends ( , ) to the I-tuple parametrising

< ) >|eW><aW~

Now suppose that L is an imaginary quadratic field, that M is a totally
real field, that C is a central simple LM-algebra with dimz,; C = n?, that *
is an involution of the second kind on C' (i.e. *|ra = ¢), that * is positive (i.e.
tr Laotr o/oa (vy*) > 0 for all non-zero v € C) and that W = C. Then the
5-tuple (Lo, LY, Coo, %, W) is isomorphic to the 5-tuple

((C,R, Mﬂ(@)Hom(M,R), ('YT) N (’Yﬁ’t),Mn(C)Hom(M’R)).

In particular we see that equivalence classes of non-degenerate, *-Hermitian,
R-alternating pairings W, x W, — R are parametrised by equivalence classes
of Hom (M, R)-tuples as above.

We will let E denote an imaginary quadratic field in which p splits. We
will let ¢ denote complex conjugation in Gal (£/Q). We will choose a prime u
of E above p. We will also let F*/Q denote a totally real field of degree d. We
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will set ' = E.F* so that F is a CM-field with maximal totally real subfield
FT. Let w = wy, wo, ..., w, denote the places of F' above v and let v = vy, ..., v,
denote their restrictions to F'*. We will denote [k(w;) : F,)] by fi;. We will let
B/F denote a division algebra of dimension n* such that

e [ is the centre of B;

e the opposite algebra B is isomorphic to B Qg E;

e B s split at w;

e at any place x of F' which is not split over F*, B, is split;

e at any place x of F which is split over F* either B, is split or B, is a
division algebra,

e ifn is even then 1+ dn/2 is congruent modulo 2 to the number of places
of F' above which B is ramified.

We will let tr g/ denote the reduced trace and detp,r the reduced norm
for B/F. When no confusion seems likely to arise we may drop the subscripts.
Define n € Z~q by [B : F] = n®.

We may pick an involution of the second kind * on B. (That we may
chose such an involution follows from the second and fourth of the above
assumptions on B. More precisely lemma 8.1 of [Sc|] defines homomorphism
Br (F)°P=¢ — (F7)* /N(F*) and shows that B has an involution of the second
kind if and only if [B] is in the kernel of this homomorphism. But [B] is in
the kernel if and only if [B,] is in the kernel for all places x of F' which are
non split over F'*.) We may and will further assume that * is positive, i.e.
for all nonzero x € B we have (tr p/g o tr g/p)(xz*) > 0. (To see that we may
suppose that * is positive one may argue as follows. The involutions of the
second kind on B are exactly the maps of the form

x — b bl

where b € B* and b*b~! € F. By Hilbert’s theorem 90 we may alter any such
b by an element of F'* so that b* = b. Thus we may suppose that b* = b. By
lemma 2.8 of [Ko3] the set of invertible b € (B*~! ®gR) such that z — bz*b™*
is positive is a non-empty open set. Thus we can find an invertible b € B*=!
such that x +— bx*b~! is positive.)

We will let V' denote the B ®r B°® module B. We will be interested in
alternating pairings V' x V' — Q which are x-Hermitian for the action of B on
V. Any such pairing is of the form

(w1, 12)p = (t1 pyg 0 tr p/r)(T1673),
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for some § € B*=7!. Define an involution of the second kind #3 on B by
278 = Bz*3~ 1. Then we have that

((by @ bo)ary, w2) = (w1, (0} @ by ")2)

for all 1,29 € V, by € B and by € B°P. Also let G/Q be the algebraic group
whose R-points (for any Q-algebra R) are the set of pairs

(A, 9) € R* x (B® ®g R)™

such that
99" = X,

This comes with a homomorphism v : Gg — G,,, which sends (), g) to A\. We
will let G5; denote the kernel of v. Note that the structure map Gg; — Spec Q
factors through Spec F so we may also consider G5 as an algebraic group
over F't.

Choose a distinguished embedding 1y : F — C.

Lemma 1.1 We can choose an element 0 # 3 € B*=! such that

1. if © 1s a rational prime which is not split in E then Gg is quasisplit at
x?

2. and if T+ FT — R then Gg; Xp+ . R is isomorphic to U(1l,n — 1) if
T =1 and U(n) otherwise.

Proof: Choose 0 # 3y € B*~~! and suppose that if z is an infinite place of F'T
then Ggy1(F)) = U(pos, qoz). We will look for an element o € B, such that
the element § = a3, satisfies the conditions of the lemma. Firstly we require

that
o = q.

Thus « defines a class in H'(F/FT, PG, 1), where PG, 1 is the adjoint group
of Gg,1. Every class in H'(F/FT, PGy, 1) arises in this way. (By definition
such a class is represented by o € (B°)* such that aa™#% = X\ € F*. Then
A has norm 1 in F* and so by Hilbert’s theorem 90 can be written as u¢/pu.
Then pa represents the same class as « and pa = (pa)#s.) Moreover Gup, 1
is the inner form of Gy, ; classified by

[a] € H'(F', PG, 1)

If x is a place of F'* which splits in F' and if y is a place of F' above x then
we have natural maps

H1<F;7PGBO;1) = Hl(Fy’PG@JJ) = H2(Fy7:un) = Z/TLZ.
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If x is a finite place of F'" which does not split in F' then according to section
2 of [Cl1] we have
HY(F}, PGg,1) = Z/2Z.

Moreover if z is an infinite place then H'(F,", PG, 1) is in bijection with the
set of unordered pairs of non-negative integers {p., ¢} with p, + ¢, = n. In
both these cases the map

Hl(F:;rv PGﬁo,l) - Hl(Flvv PGﬁoJ)
is trivial. Clozel also shows (lemma 2.1 of [Cl1]) that if n is odd then the map

Hl(F+>PGﬁo,1) - @Hl(F;’PGﬁo,l)

is surjective. If on the other hand n is even he shows there is a map

@ H(F) . PGsy1) — Z/2Z

whose kernel coincides with the image of H'(F'*, PGg,1). Clozel describes
this map as the sum of the natural maps

HYF PGg, 1) — 7)27
if x is finite; and the map
HYF, PGg, 1) — 7.)27

which sends {ps, ¢z} to p.o — p, mod 2, if x is infinite. (See section 2 of [Cl1],
particularly lemma 2.2.)

Suppose that B is ramified above s places of F'* which split in F. If x is
a place of F'* which does not split in F' let u, € H'(F,", PG, 1) denote the
class of the quasi-split inner form of PGy, over F; . If n is even then we see
that

5+nd/2+2px,o+ Z u, = 0 mod 2.
Let A=7Z/Z if n is odd and A = Z/2Z if n is even. Also suppose that B
is ramified above s places of F'* which split in F. Then we see that we get
maps

HI(F/F+7PG/3071) - @Hl(FiﬂpG%J) — 4,
where x runs over places of ' which do not split in F', where the second

map is as described above and where the sequence is exact in the middle. The
lemma requires us to find a class in H'(F/F*, PG, 1) which maps to
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e wu, if x is a finite place of F'* which does not split in F,

e {1,n — 1} if x is an infinite place corresponding to 7y : F'™ — R,

e and {0,n} if z is any other infinite place of F'T.
If n is odd this will be possible. If n is even this is possible if

1+ Zux+2px7050mod2,
x foo a|oo
ie. if
1 =s+nd/2 mod 2.

The lemma follows. O

Now fix B as in the lemma. We will drop the subscript 3 from #, G' and

(G1. Note that the corresponding alternating form on V',

(Q?l, .TQ) = (tI‘ F/Q otr B/p)(l'lﬁl';),

has parameters (n,0) at any embedding 7 # 75 and (n — 1, 1) at 7.
If R is an E-algebra then G(R) can be identified with the set of pairs

(g1,92) € (B® ®g R) x (B® ®p. R)

such that
(9193 . 9297 ) € R*.

Thus we have
G(R) 2 (B®®p R)* x R*

where
(91, 92) — (91,9195 )

and inversely
(9:v) — (g.vg™").

In particular we get an isomorphism
RSG(G xq E) =2 RS§(Gy,) x Hpor,

where RS denotes Weil’s restriction of scalars and where Hpor /Q is the alge-
braic group defined by

Hpo(R) = (B ®q R)".
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Suppose that = is a place of Q which splits as x = yy© in E. Then the
choice of a place y|z allows us to consider Q, — E, as an E-algebra and hence
to identify

G(Q.) = (BP)" x Q.

In particular, we get an isomorphism
G(Q) = Q@ x [[(B2)
i=1
which sends g to (v(9), g1, ..., 9r). We will often let

(907917 "'7g7') € Q; X H(BZE)X

i=1

denote a typical element of G(Q,). Similarly we will decompose a typical
element g € G(A) as (gz)artp X (9p,0) Guor» s Gu,) With gz € G(Qy), gpo € Q)
and g,, € By; or as g X g0 X gu X gy, Where g7 = (gu)artp; G = Gu, and
9y = (Guss s Gu, ). We will let G(A™) denote the subgroup of G(A) consisting
of elements with g, = 1 and g,, = 1. Similarly if 7 is an irreducible admissible
representation of G(A) over an algebraically closed field of characteristic 0 we
may decompose it T = PR, = TP R, QT 1Q... QT = TP R, 0@, @, =
™ ® Tpo @ Ty Note that m,0 = Vx| px .

Fix a maximal order A; = Op,, in B, for each ¢ = 1,...,r. Our pairing
(1, ) gives a perfect duality between V,,, and V.. Let Ay C Ve denote the
dual of A; C V,,,. Then if

A=ProPAr CcVagQ,

=1 i=1

we see that A is a Z,-lattice in V ®¢ Q, and that the pairing ( , ) on V
restricts to give a perfect pairing A X A — Z,,.

There is a unique maximal Z)-order Op C B such that O = Op and
Opw, = Og,, for i = 1,..,r. Then Op, equals the set of elements of B,
which carry A into itself. On the other hand the stabiliser of A in G(Q,) is
Zy x iy O]éwlr

Fix an isomorphism Opg, = M,,(OF,,). Composing this with the transpose
map ¢t we also get an isomorphism O%‘; = M,(OFy). Moreover we get an
isomorphism

ehy = (OF,,)".
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The action of g € M, (Op,) = (O ) on this module is via right multiplication
by ¢'. We will write Aj; as an abbreviation for eA;. We get an identification

A= (0O}, ®An) @ (0F, ® An)Y) & PN @ A).
i=2
Under this identification (go, g1, ..., gr) € G(Q,) acts as

(1eg)egplogh)’)e @(gi @ go(g; 1))

Fix a square root
1/2 ac
1K (B — Q)

of | |x : K* — Qf, ie. fix a square root of p/& in Q. If fx is even we
assume that this square root is chosen to be p/%/2. Also choose 1 : e = C,
such that 20| |2 is valued in RZ,. We apologise for making such an ugly
choice. The reader will see that all our main results are independent of the
choice of 72, but it would require a lot of extra notation to make the proofs free
of such a choice. Some of our main results do involve the choice of | |'/2, but
in each case this choice is involved in more than one place and all that matters
is that the same choice is made at each place.

We will let ¢ denote an irreducible representation of the algebraic group G
on a finite dimensional Qf¢ vector space We.

2 Barsotti-Tate groups

For the definition of a Barsotti-Tate group over a scheme S we refer the reader
to section 2 of chapter I of [Me]. Suppose that S is a O scheme, then by
a Barsotti-Tate Og-module H/S we shall mean a Barsotti-Tate group H/S
together with an embedding O < End (H) (ring morphisms are assumed
to send the multiplicative identity to itself) such that the induced action of
Ok on Lie H coincides with the action coming from the structural morphism
H — S — SpecOg. We call a Barsotti-Tate Og-module H ind-etale if
the underlying Barsotti-Tate group is ind-etale (see example 3.7 of chapter
I of [Me]). There is an equivalence of categories between ind-etale Barsotti-
Tate Ox-modules and finite, torsion free lisse etale Ok-sheaves on S (see
example 3.7 of chapter I of [Me]). If S is connected we define the height of a
Barsotti-Tate Ox-module H to be the unique integer h(H) such that H[pl;]

has rank q%H) for all n > 1. The usual height of H as a Barsotti-Tate group is
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h(H)[K : Q,]. In general we will let H" denote the unique Barsotti-Tate Q-
module such that HY[p"] is the Cartier dual of H[p"] for all p and such that the

inclusions HY[p"] — H"[p®] for s > r are the Cartier duals of H [p®] LAY [p"].
We will refer to HY as the Cartier dual of H.

Now suppose that p is locally nilpotent on S. We will call a Barsotti-
Tate Og-module H formal if the p-torsion H[p] in H is radicial. There is an
equivalence of categories between the category of formal Barsotti-Tate Og-
module and the category of formal Lie groups ©/S together with a morphism
Ok — End (©) such that

e O[p| is finite and locally free;
e p: 0O — O is an epimorphism,;

e the induced action of Ok on Lie© coincides with the action coming from
the structural morphism © — S — Spec Ok.

(This follows from corollary 4.5 of chapter II of [Me].)

Let X be a locally noetherian formal scheme with ideal of definition Z.
We will let &, denote the scheme with underlying topological space X and
structure sheaf Oy /Z". By a Barsotti-Tate Ox-module H over the locally
noetherian formal scheme X we shall mean a system of Barsotti-Tate Og-
modules H,, over the schemes &, together with compatible isomorphisms

Hn XXn Xm = Xm

whenever m < n. This definition is easily checked to be canonically inde-
pendent of the choice of ideal of definition Z. We will call H ind-etale (resp.
formal) if each H,, is ind-etale (resp. formal). Note that in fact H is ind-
etale (resp. formal) if and only if H; is ind-etale (resp. formal, see paragraph
3.2 of chapter II of [Me]). If A is a noetherian ring complete with respect
to the I-adic topology for some ideal I, then there is a natural functor from
Barsotti-Tate Ox-modules H/Spec A to Barsotti-Tate Ox-modules H/Spf A.
It follows from lemma 4.16 of chapter II of [Me] that if / contains some power
of p then this is in fact an equivalence of categories which preserves exact
sequences. We remark that H/Spf A may be formal while the corresponding
Barsotti-Tate Og-module H/Spec A is not.

Lemma 2.1 Suppose that p is locally nilpotent on a locally noetherian scheme

S and that H/S is a Barsotti-Tate Ox-module. Then for h € Zsy we can find
reduced closed subschemes S™ C S such that
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1. St > glh=1l.

2. the codimension of any component of S in any component of S
which contains it is at most 1;

3. for any geometric point s of S we have that s lies in S™ if and only if
#H|p|(k(s)) < pltel;

4. on SW = S _ SIh=1 there is a short exact sequence of Barsotti- Tate
Ox -module
(0) — H° — H — H® — (0)

where H® is a formal Barsotti-Tate O -module and where H is an
ind-etale Barsotti-Tate Ok -module of height h.

Proof: By proposition 4.9 of [Me] it suffices to show that for g € Z=° we
can find closed subschemes S, C S such that

1S, DS, i

2. if s is a geometric point of S then s lies in S}, if and only if # H|[p](k(s)) <
P

3. the codimension of any component of S;_; in any component of S, which
contains it is at most 1.

The question is local on S so we may assume that S = Spec R for a
noetherian ring R. We may further assume that S is reduced. By a simple
inductive argument it suffices in fact to show that if for any geometric point s
of S we have #H[p|(k(s)) < p? then we can find a reduced closed subscheme
S’ C S such that

1. a geometric point s of S lies in S if and only if #h[p](k(s)) < p%;

2. any irreducible component of S’ has codimension at most one in any
irreducible component of .S containing it.

Finally we may assume that S is in fact integral.

We now follow the arguments of page 97 of [O]. Let H/S denote the locally
free sheaf Lie (H[p]Y) = Lie H" (the equality here follows from remark 3.3.20
of chapter IT of [Me] because p = 0 on S). For any geometric point s of S there
is a canonical perfect pairing between HY*=! and H,[p](k(s)). (This seems to
be well known, but we know of no reference for the statement in exactly this
form, so we will sketch the proof. On page 138 of [Mul] we see that we can
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identify H, with Hom (H;[p|, G,) and that V, then becomes identified with the
map ¢ — ¢ o Fr*. We get a pairing

H[pl(k(s)) x Hs —  k(s)

T X ¢ — ¢oux,

where ¢ € Hom (H,[p],G,) and ¢ o x € G,(k(s)) = k(s). We see that it
restricts to a pairing

Hy[p](k(s)) x M= — Ty

If pox =0 for all z € Hy[p|(k(s)) then ¢ factors through the local ring of G,
at 0. If moreover ¢ o Fr* = ¢ then we see that ¢ = 0. Thus our pairing gives
an injection

M.~ < Hom (H;[p](k(s)), ).

To show this is in fact an isomorphism one can count orders. Suppose that
#H,[p](k(s)) = p". Then we have an embedding ! — H[p|" and so an
embedding Lie ut < H,. But (Liep,)"*=" has order p (as follows easily from
the results on page 143 of [Mul]), and so

#H > p" = H[p(k(s)).

The perfection of our pairing follows at once.)
Again shrinking S we may assume that in fact H is free. Choose a basis
e, ..., ey, and suppose that Vie; = Zj v; je;. Then

V:k Z €Tr;e; = Z vai,jej.
i i
Let H"*=! denote the subscheme of Aff; defined by the equations

T; = Z vt
i,J

for j = 1,....,m. Then H"*=1/S is quasi-finite and etale (as the Jacobian is
the identity matrix). Generically H"*=!/S has degree < p?. We may suppose
that in fact generically the degree equals p?. The locus where the degree
drops is closed (as the degree is locally constant). We must show that it
has codimension 1. Let T' denote the normalisation of .S in a finite separable
extension of the fraction field of R over which H"*=! has p? points. As T'/S is
finite, it suffices to prove the result for T'. Let z1, ..., 2,0 denote the sections of
HY*=! over the generic point of 7. Then 1" is simply the locus where some z;
is not regular. But the locus where any given x; is not regular has codimension
1 because T'is normal. O
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Corollary 2.2 Suppose that H/X is a Barsotti-Tate Ok -module over a lo-
cally noetherian formal scheme. Suppose also that p = 0 on X™¢ and that the
function from geometric points of X™ to integers

s — #H[p](k(s))
1s constant. Then there is an exact sequence of Barsotti-Tate Og-modules
0) — H® — H — H" — (0)
over X with H° formal and H®* ind-etale.

For any g > 1 there is a unique 1-dimensional formal Barsotti-Tate Og-
module Y, over k(vg)® of height g. In fact if k is any separably closed field
containing k(vk) then any one-dimensional Barsotti-Tate Ox-module over k
is of the form Y, x (K/Ok)" for some g and h. (If H/k(vk)™ is a one-
dimensional Barsotti-Tate Ox-module over k we have an exact sequence

(0) — H° — H — H® — (0),

where H? is formal and H®' is ind-etale. By proposition 1.7 of [Dr] we see
that H® = Yg,. It only remains to find a splitting H* — H, but this is
the same as finding a splitting H**(k) — H(k). Finally note that H(k) —
H*(k) is an isomorphism.) Moreover End (X 4/k) = End (Xk 4/k(vk)®c) =
Opy,, (proposition 1.7 of [Dr]). We can extend the (left)-action of OF, —on
YK.g/k(vK)® to an action of Dy - on Xk ,/k(vk), such that for § € Dy

)

EK,g — ZK,g
! !
(FI‘Ob:K )vK(dct 5)
Spec k(v ) — Spec k(v )

commutes. To see this one need only consider the case vk (detd) > 0: for
vi(det §) < 0 we define the action of § to be the inverse of the action of 5.
If vg (det d) > 0 then the kernel of 6 € End (X ) is the same as the kernel of
[Irvi(detd) . Skg — Z(vaK(detti)) Thus § induces a map E(fKUK(det5)) — Yy
We define our seml—hnear action of § as the top row of the followmg diagram

YKg — Eg;KUK(det RN YK,
l l !
(HOb:K)UK(det 8)
Spec k(vg ) — Speck(vk)® = Speck(vg)™
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where the left hand square is a pullback.

Consider the functor from Artinian local Og-algebras with residue field
k(vk)® to sets which sends A to the set of isomorphism classes of pairs (H, j)
where H/Spec A is a Barsotti-Tate Ox-module and j : Yx, — H x4 k(px ).
This functor is pro-represented by a complete noetherian local ring Ry , with
residue field k(px)* and in fact Rg 4 = Opw (T3, ..., Ty]] (proposition 4.2 of
[Dr]). The universal deformation exists over Spec Ry, (not just over Spf Ry g,
see lemma 4.16 of chapter II of [Me]). We will denote this universal deformation
by (iK,g,fj)/Spec Rkg. Note that R, has a continuous left action of OF .

(If 0 € Opy, then the push forward of (iKg,}) along 0 : Rx, — Rk, is
(EK,QJO §).) We will let Ry, denote Ry Xw k(o)) k(9x)%.

Set Hy = i, X (K/Ok)" a Barsotti-Tate Ox-module over k(vg)®. Let
T Hy denote its Tate module, i.e. THy = Hom o, (K/Ox, Ho(k(vk)®)) = OF.
Now consider the functor from Artinian local Og-algebras with residue field
k(v ) to sets which sends A to the set of isomorphism classes of pairs (H, j)
where H/Spec A is a Barsotti-Tate Ox-module and j : Hy — H x 4 k(px)®.
This functor is again pro-represented, this time by Hom (THO,iKvg). By

Hom (T Hy, Xk 4) we mean the R ,-formal scheme such that for any Artinian
local R 4 algebra S we have

Hom (T Hy, Sk 4)(S) = Hom o, (T'Hy, Sk 4(5)).

Noncanonically we have Hom (7' Hy, 5 Kg) = if}w, where the fibre product is
taken over Spf Rk ,. We also have, again noncanonically, Hom (7 Hy, 5 Kg) =
Spf Ozue|[[T3, ..., Ty4s)]. The universal deformation of Hy over Hom (T'Hy, X 4)

is then the extension of 3 k.9 by (K/Ok)" classified by the tautological class
in

Hom (T'Hy, S4)(S) = Hom (T Hy, Y 4(S)) N
Ext (THy ®0, (K/Ok),Yk4(S)) = Ext (T Hy ®0, (K/Ok),Sk4),

where S = Hom (T Hy, iK’g). (See proposition 4.5 of [Dr] and its proof.)

Lemma 2.3 Suppose that S/k(vk)®™ is reduced of finite type. Suppose also
that H/S is a one-dimensional Barsotti-Tate O -module. Suppose moreover
that over S there is an exact sequence of Barsotti-Tate Og-modules

(0) — H° — H — H® — (0),

where H®® has constant height h and H° has constant height g. Let s be a
closed point of S and choose an isomorphism j : Y, — H.
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1. Then we get a morphism S} — Spf Ry, which in fact factors through
k)(’UK)aC.

2. We also get a morphism S} — Hom (THs,iK,g) which in fact factors
through Hom (T'H,, Y ;) C Hom (THy, Xk 4)-

Proof: The statements are easily seen to be equivalent. We will prove the
first one. Write Riy = Ogul[T, ..., Tg]], let P be a minimal prime of Og
and let k denote the field of fractions of the image Ry, — Og,/P. As S is
reduced, it suffices to show that 75, ...,7, map to 0 in k. Suppose not.

For the rest of this proof we will use without comment the notation of [Dr].

We can arrange that iKﬁg corresponds to a morphism Ap,. = Oklg1, 92, ...] —
Ry, which

e sends Gpixi_q t0 Tipy for1 <i<g-—1;

e and sends g; to zero for 1 < j < p/®9 — 1 and j # p/&* — 1 for some i in
the above range.

(See the proof of proposition 4.2 of [Dr].) Choose ¢ minimal such that 7; does
not map to zero in k. Then H°x sk corresponds to a morphism Ap, — k which
sends g; to 0 for j = 1,2,...,p/ 0~ — 2 and sends g -1y to something
nonzero. Thus H® xg k has height i — 1 < ¢ (see the proof of proposition 1.6
of [Dr]). This contradicts the fact that H x g Speck is a formal Barsotti-Tate
Og-module of height g (because H/S is a formal Barsotti-Tate Og-module
of height ¢). O

Corollary 2.4 Suppose that S/k(vi)* is a smooth scheme of finite type. Sup-
pose that H/S is a one-dimensional Barsotti-Tate Og-module of constant
height g. Suppose moreover that for each closed point s of S the formal
completion S is isomorphic to the equidimensional universal formal defor-
mation space of Hs. Then for h = 0,...,g — 1 the locally closed subscheme
S = gl _ Slh=1 of S s either empty or smooth of dimension h. If s is
a closed point of S™ and if j : Yk 4 n — HY then we get an identification
S >~ Hom (T Hs, iKg_h) X o, k(vi) and under this identification (S™)" c S?
corresponds to Hom (T'Hy, X 4—p) C Hom (T'H,, EN]Kﬁg_h) Xox k(vi).

Proof: Because the formal completion of S at any closed point is isomor-
phic to k(vk)*[[T%, ..., Ty]], every component of S has dimension g — 1. We
must have S = S9~1. Hence by lemma 2.1 every irreducible component of S
has dimension at least h. Thus the same is true for S®. On the other hand
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by the previous lemma if s is any closed point of S™ then the formal com-

pletion (S™)” corresponds to a sub-formal scheme of Hom (T'H,, Yk, 5) C

Hom (THS,EK,g,h). Thus we must have (S™)» = Hom (T Hy, Y ,-1) and,
assuming such a closed point exists, we have that S is smooth at s of di-
mension h. O

The functor on schemes S/k(vk)® which sends S to Aut (Xx 4[pR]/S) is
represented by a scheme Aut (X 4[p%]) of finite type over k(v )*. (To see this
simply think of these automorphisms as maps on sheaves of Hopf algebras.) If
mq > mey there is a natural morphism

Aut (X [p']) — Aut (Exg[0x"])-

We will let Aut'(Xx,[p]) denote the intersection of the scheme theoretic
images of Aut (S ,[pF]) in Aut (S 4[p7]) as m’ varies over integers greater
than or equal to m.

Lemma 2.5 Aut' (S [p%]) is zero dimensional and

Aut ! (g 4[pR])"™ = (Opy, /9K Opy )"

Proof: From the definitions we see that the scheme theoretic image of the
morphism
Aut ! (B [piH]) — Aut ' (Srglok])

is just Aut' (S ,[pm]). Suppose first that Aut'(Sx ,[p]) has an irreducible
component V,,, of dimension > 0. Then we can find irreducible components
Vi of Aut (g 4[95]) for m’ > m such that whenever m” > m’ > m then
Vi maps to V,, and is dominating. Let k(V;,/) denote the function field of
vred so that whenever m” > m/ > m we have k(V,) < k(Vy). Let k be
algebraically closed extension field of k(vg)* of uncountable transcendence
degree. Then there are uncountably many maps k(V,,) — k and each can
be extended into a compatible series of injections k(V,,) — k for m’ > m.
Thus Aut'(Zg,4[p%])(k) has uncountably many points which can be lifted
compatibly to each Aut' (S [p%])(k) with m’ > m. This implies that the
image of
Aut (Zg4/k) — Aut (Sx4[pK]/k)

is uncountably infinite. On the other hand it follows from proposition 1.7 of
[Dr] that this image is just (Op, /9% Op,)*, which is finite. This contra-
diction shows that Aut'(Xk 4[p%]) is zero dimensional.
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As each Aut' (S ,[p]) is zero dimensional and as for m’ > m the mor-
phism
Aut I(EK,Q[K‘)? ]) — Aut I(ZK@[@ED

is dominating we see that for m’ > m
Aut ! (Zreg[0R 1) (k) ) — Aut (T [0R]) (k(vr) ™).
It follows that Aut'(Xx ,[eR])(k(vk)®) equals the image of
Aut (g g/k(vk)™) — Aut (Ex[pK]/F(vk)™).

Again by proposition 1.7 of [Dr] this is just (Op,  /9%Op, ,)* and so the
lemma follows. O

We remark that for m > 1 the scheme Aut (X 4[p}]) has dimension > 0.
By an explicit calculation with Dieudonne modules we checked in an earlier
version of this paper that Aut'(Xg ,[p7])™? coincides with the reduced sub-
scheme of the image of Aut (X ,[p™]) — Aut (Zk 4[p7]). However we will
not actually need that stronger result here, so we do not reproduce the argu-
ment.

Now suppose that S is a reduced k(vg)*-scheme and that H/S is a one-
dimensional formal Barsotti-Tate Ox-module of constant height g. We want
to investigate how far H differs from Y g 4 Xgpec k(v )ec S. Consider the functor

on S-schemes which sends 7'/S to the set of isomorphisms (over T')

J 1 YglOR] Xspeck(ugyae T — Hpg] X5 T.

It is easy to see that this functor is represented by a scheme X,,,(H/S) of finite
type over S. (Think about j as a map of sheaves of Hopf algebras on 7'.) Then
we define Y,,,(H/S) to be the intersection of the scheme theoretic images of
the

X (H/S) — X, (H/S)

for m’ > m. Finally we set J™(H/S) = Y,,(H/S)"*!. We will also let j™V
denote the universal isomorphism

-univ
J

gl — HIp]
over J™(H/S).

For instance

T (S g/ k(vi)*) = Aut ! (S g[p])"™ = (Opye, /9K Opy,) -
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In fact if S/k(vk)® is any reduced scheme then

M (S g/S) = (J'™ (Bk g/ k(v)*) x S)* = ((Opy, /9RODyc ) 5 )
= (ODK,g/pTI?ODK,g)g'

Each of the schemes X,,(H/S), Y;,(H/S) and J'™(H/S) has a natural
right action of (Op,,/¢%Op,,)*. (0 € Op, takes j to jod.) If S =
T X$peck(vi) SPeEC k(vK)“C for a reduced scheme T/k(vK) and if H = Hy xp S
for a formal Barsotti-Tate Ox-module H,/T, then this action extends to one
of Di ,/(1+9%Op, ) on each of X,,(H/S), Y;,(H/S) and J™(H/S) thought
of as T-schemes. More precisely if 6 € D kg We get a commutative diagram

J) (H/S) — J(H/S)
| !
(1xFroby, )~ v (det 8)
T x Spec k(vg)* - T x Spec k(vg)*

commutes. (Let X/S denote the pull back of X,,(H/S) by

(1xFrobj ) K (det9)
T x Spec k(vg)* e T x Spec k(vg)*

FrevK (det d))

Then over X we get an isomorphism 5’ : Zg(g (7] = HpW]. On the

other hand ¢ gives an isomorphism

5 ZKg -~ Z%ngUK(deté)).
Thus over X we get
J'00: Tglek] = Hlpk].
This induces a map over S from X to X,,(H/S). Composing this with the

inverse of the pull back of (1 x Frob;, )”K (det 9) e get the desired automorphism
of X,,(H/S). The following dlagram

| ! l
T x Speck(vg)®™ «— T x Speck(vg)®™ = T x Speck(vg)*

(where the leftwards arrow on the bottom row is (1xFrob} )Ux(dt9)) illustrates
this construction.)

Before going on to the main result of this section let us take the opportunity
to record a simple result in commutative algebra for which we do not know a
reference.
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Lemma 2.6 Let k be a perfect field, A/k a k-algebra of finite type, m a mazx-
imal ideal of A and B/A a finite A-algebra.

1. Suppose also that B is reduced. Then the completion By, of B with respect
to the ideal mB 1is also reduced.

2. More generally if N is the nilradical of B then N}, is the nilradical of
By,

Proof: Consider the first part of the lemma. B has finitely many maximal
ideals nq, ..., n, above m and we have that

Bl =B, &..® B,

(see corollary 2 of section 7 of chapter VIII of [ZS]). Thus we can reduce to
the case B = A.

Note that as A is reduced the same is true of the localisation A,. Let
Q1, ..., Qs denote the minimal primes of A,. As A, is reduced we have a finite
embedding

A = (An/Q1) @ ...  (An/Qs)-
Hence we also have an embedding

A= (An/Q1)" & . @ (An/Qs)"

(use theorem 16 of section 6 of chapter VIII of [ZS] and the flatness of A} /An).
Thus we may suppose that Ay, is an integral domain. In this case the result
follows from lemmas 1 and 4 of section 13 of chapter VIII of [ZS].

For the second part consider the exact sequence

(0)— N — B — B'—(0).

Again using theorem 16 of section 6 of chapter VIII of [ZS] and the flatness of
AN A, we see that

(0) — Np — By — (B')y — (0)

m

is also exact. By the first part of this lemma we know that (B’)} is reduced
and the second part follows. O

The following proposition is of key importance for us.
Proposition 2.7 Suppose that S/k(vk)® is a reduced scheme of finite type
and let H/S be a one-dimensional formal Barsotti-Tate Ox-module of con-
stant height g. Then for each m > 1, J™(H/S)/S is finite etale and Ga-

lois with Galois group (Opy,/9%Opy,)*. (N.B. We are not asserting that
JM(H/S) is connected.)
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Proof: 1t suffices to show that for any closed point s of S

e the group (Op,.,/9#Op, ) has a faithful and transitive action on the
points of J™(H/S),;

e and if ¢ is any point of J™ (H/S), then J™ (H/S)} = SN,

(See for instance theorem 3 of section 5 of chapter 3 of [Mu2].) Equivalently
it suffices to check that for all closed points s of S we have

JU(H/S) x5 Spec 0%, 2= (Op,. , /98 OD )3 e on.
We note that by lemma 2.3
H x5 Spec O , = Y g Xgpeck(vx )2 Spec O .
Because Spec (’)Q,S is flat we see that for any closed point s of S we have
Yo (H/S) x5 Spec Og , = Yo, (H/Spec O ,).

(The formation of scheme theoretic images commutes with flat base change.)
Thus by lemma 2.3 we see that

Vi(H/S) x5 Spec O, = Yin(Sxg/Spec 04,) = Aut (S [wpt]) x Spec OF,

is finite and flat over Spec Og,. We conclude that Y, (H/S) is finite and flat
over S. (Use the fact that Og is faithfully flat over Og,. More precisely it
suffices to show that for any closed point s of S the ring Oy, (r/s) ®og Os,s is
finite and free over Og,. We have seen that this is true after tensoring with
OQ,S. Thus we can find a morphism of Og ;-modules (9&5 — Oy, (1/5) ®0s Oss
which becomes an isomorphism after tensoring with Og,. Faithful flatness
implies that Og‘,s = OYm(H/S) ®OS 0378.)

Thus J™ (H/S) is finite over S. The previous lemma then shows that for
any closed point s of .S

JM(H/S) x5 Spec O, — J'™(H/Spec 0% ,).
Thus by lemma 2.3 we have that
J(m)(H/S) XS Spec Og'\,s = ‘](m)<2K,g/SpeC Oé\,s) = (ODK,g/p%ODK,g>§peCO§S’

This proves the proposition. O

Although we will not need it in this paper, it may be of interest to point
out the following corollary of the proceeding proposition.
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Corollary 2.8 Suppose that S/k(vk)® is a reduced, connected scheme of fi-
nite type, and suppose that s is a geometric point of S. If H/S is a one-
dimensional formal Barsotti-Tate Ok -module of height g then it gives rise to
a continuous homomorphism

prr s 7E(S,5) — OF
This gives rise to a bijection between isomorphism classes of one-dimensional
formal Barsotti-Tate Ox-module of height g on S and conjugacy classes of
continuous homomorphisms

al

p:me(S,s) — Op, .

Proof: As we will not use this result elsewhere in this paper we will simply
sketch the proof.

First we explain the construction of py from H. Choose a compatible
system of geometric points s,, of J™(H/S) above s (i.e. if m’ > m then
Spy maps to s, under J")(H/S) — J(H/S)). If 0 € 7%(S,s) then
0Sm = PHm(0)sm for some (unique) element ppm(0) € (Opy,/9RODy,)"
Moreover for m' > m we have py v (0) = pum(c) mod pi. We set

pir = lim i TS, 8) = OF

It is a continuous homomorphism. The construction appears to depend on
the choice of the system {s,,}, but a different choice simply changes pgy by
conjugation in OLX‘)KJ‘

Next we explain how one goes from a continuous homomorphism

p: W'j‘lg(S, s) — OIX?K,g

to a one-dimensional formal Barsotti-Tate Ox-module H,/S. The reduction
p mod E gives rise to a Galois finite etale cover (not necessarily connected)
S — S with Galois group (Op,,/9%Op,,)*. Consider

2]{79[@%] X Sm — Sm

with the diagonal action of (Op,.,/9%Op,,)*. We may quotient out by the
action of this finite group and we obtain a finite flat group scheme H,,/S. We
set H, =lim_, H,,.

We leave the reader both to check that H,/S is a one-dimensional formal
Barsotti-Tate Og-module, and that these two constructions are inverse to each
other. O
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We end this section with some results about lifting extensions of Barsotti-
Tate Ox-modules. We are very grateful to Johan de Jong for explaining to us
how to prove corollary 2.10 below.

Lemma 2.9 Let A be a noetherian ring and J an ideal of A which contains
some power of p and which satisfies J* = (0). Suppose that over Spec A/J we
have an exact sequence of Barsotti-Tate Og-modules

(O)—>H0—>H—>Het—>(0)

with H® formal and H® ind-ctale. Suppose moreover that H® is a lift of H®
to a Barsotti-Tate Ok -module over Spec A. Then there is an exact sequence

(0) — H® — H — H® — (0)

of Barsotti-Tate Ok -modules over Spec A, which reduces modulo J to the above
exact sequence.

Proof: For the proof we use Grothendieck-Messing Dieudonne theory (see
[Me] as completed by [I]). This associates to

(0) — H° — H — H* — (0)
an exact sequence of crystals in finite locally free modules
(0) — D(H’) — D(H) — D(H") — (0)

on Spec A/J. (For exactness use [BBM] combined with the compatibility of
the theories in [Me] and [BBM], which is proved in [BM].) Moreover we have
locally free submodules V(H?) C D(H) 4,y (vesp. V(H) C D(H)ay,, resp.
V(H®) = D(H®)a,;) with locally free quotients. To H" we may associate
a locally free submodule V(H®) C D(H®) 4 with a locally free quotient and
with V(H°)/JV(H®) = V(H°). We will look for a locally free submodule
V' C D(H)4 with locally free quotient such that

e V(H =V,
o V —» D(H®),,
o and V/JV = V(H).
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Assuming we can find such a V we would get a complex of Barsotti-Tate
Ox-modules B B B
(0) — H° — H — H®" — (0)

lifting
0) — H — H — H — (0).

It follows from lemma 4.10 chapter II of [Me] that the lifted sequence is in fact
exact.

It remains to construct such a V. This is equivalent to constructing a
splitting for the exact sequence

(0) — D(H)a/V(H’) — D(H)a/V(H’) — D(H*")4 — (0)
above the splitting of
(0) — D(H")a74/V(H") — D(H)as/V(H") — D(H®) 47, — (0)

provided by V(H)/V(H®). As D(H®), is locally free we can find such a
splitting Zariski locally on Spec A. It is not unique but determined up to an
element of B

Hom (D(H®) a4, J(D(H®)/V (H))).

Thus the obstruction to the existence of a global splitting lies in
H?(Spec A/J, Hom (D(H®) 5, J(D(H®)/V (H°)))).

Because Spec A/J is affine this group vanishes and so we can find such a
splitting globally. O

As an immediate consequence we obtain the following corollary.

Corollary 2.10 Let A be a noetherian ring complete with respect to the topol-
oqy defined by an ideal I. Suppose that I contains a power of p. Suppose also
that over Spec A/I we have an exact sequence of Barsotti-Tate O -modules

(0) — H° — H — H* — (0)

with H® formal and H® ind-etale. Suppose moreover that H® is a lift of H°
to a Barsotti-Tate Ok -module over Spf A. Then there is an exact sequence

(O)—>f[0—>f[—>f[et—>(0)

of Barsotti-Tate O -modules over Spf A, which reduces modulo I to the pre-
vious exact sequence.
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3 Drinfeld level structures

Suppose that H/S is a Barsotti-Tate Ox-module of constant height h over a
scheme S. By a Drinfeld pl-structure on H/S we shall mean a morphism of
abelian groups

o (px"/Ox)" — H[p](S)
such that the set of a(x) for z € (pg"/Ok)" forms a full set of sections of

H[p] in the sense of [KM] section 1.8. We will collect together here some of
the basic properties of Drinfeld level structures.

Lemma 3.1 In this lemma S will denote an O-scheme and H/S will be a
Barsotti-Tate O -module of constant height h.

1. Suppose that o : (9" /Or)" — H[pR](S) is a Drinfeld o-structure
and that T'/S is any scheme. Then the composite

ar: (px™"/Ok)" — H[pg](S) — H[pR)(T)
1s a Drinfeld ojt-structure for H xg T

2. Suppose that S/F, is reduced. If H/S is one-dimensional and formal
then H contains a unique finite flat subgroup scheme of any order p®,
namely the kernel of F*.

3. Suppose that S/F, is reduced. If H/S is one-dimensional and formal
then there is a unique Drinfeld ©}-structure on H/S, namely the trivial
homomorphism

o™ (" /OK)" — H(S)

r — 0

for all x € (p™/Ok)". (We will refer to this as the trivial Drinfeld
o -structure. )

4. Suppose that there is an exact sequence of Barsotti-Tate Ok -modules
(0) — H° — H — H® — (0),
over S with H® formal, H®® ind-etale and both of constant height. Then
ot (9" /Ox)" — HIpR)(S)

s a Drinfeld pit-structure if and only if there is a direct summand O -
submodule M C (pi™/Ok)" such that
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o aly : M — HO[P(S) is a Drinfeld o-structure,

e « induces an isomorphism
a: ((pg"/Ok)" [M)s = H*[p].

5. Suppose that S is reduced and that p =0 on S. Suppose also that there
1s an exact sequence of Barsotti-Tate Ok -modules

(0) — H" — H — H* — (0),

over S with H® formal, H® ind-etale and both of constant height. If
H/S admits a Drinfeld oi-level structure (with m > 1) then there is a
unique splitting

Hlp] = HOpi] x H* (o]

over S. On the other hand if there is a splitting H|p] = H°[ph] x
He[p]/S then to give a Drinfeld pW-structure o : (px"/Or)" —
H[p](S) is the same as giving a direct summand M C (p™/Ok)"
and an isomorphism

((px™/Ok)" /M) s = H*[p}].

6. For any m > 0 there is a scheme S(m) which is finite over S and a
Drinfeld o%-structure

"™ (" /O ) — H[pR](S(m))

on Hx S(m), which is universal in the sense that if T'/S is any S-scheme
and if

a: (p"/Ok)" — H[pR)(T)

is any Drinfeld pF-structure on H x T then T" — S factors uniquely
through S(m) in such a way that o™ pulls back to a. Moreover S(m)/S
has a right action of GL,(Ok /o), which can be characterised as follows.
If g € GLy(Ox /%) then under the morphism g : S(m) — S(m), o™V
pulls back to o™ o g.

7. Suppose that S = Spec R with R a noetherian local ring and that H/S
is one-dimensional and formal. Then H = Spf R[[T]]. Choose a uni-
formiser wr € Ok and let fon(T) € R[[T]] be the power series repre-
senting multiplication by @@ (i.e. fom(T) = (wg)*(T)). Suppose that
a: (" /Or)" — H[pT]|(R). Then the following are equivalent
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o « is a Drinfeld ©}t-level structure,

o [I.(T = T(a(x)))| fop(T),
o fom(T) =g(T)[[,(T —T(a(x))) for some unit g(T') € R[[T]]*.

Proof: 1. This follows from proposition 1.9.1 of [KM].

2. We may suppose that S is connected. From the discussion on page 26 of
[Me] we see that ker F* locally isomorphic to Spec Og[T]/(T?"). Thus ker F'®
is indeed a finite flat group scheme of rank p®. If A C H is any finite flat
subgroup scheme then we will show that A = ker F*® for some s. Choose s
maximal such that ker F* C A. We must show we actually have equality.
Modding out by ker F* we may suppose that s = 0. We must show that
A = (0). If for any point s of S, ker F'|4, = (0) then as A, is connected we
must have A; = (0). As S is connected the rank of A is constant and we would
then have that A = (0) as desired. Thus suppose that for all points s of S
we have that (ker Fiy)s # (0). As ker F' is finite flat of rank p we see that we
must have (ker Fjy)s = (ker F)s for all points s of S. Over S we have ker F'|4
is a closed subscheme of ker F' which becomes equal to ker F' when pulled back
to any point of S. As S is reduced we must have ker F' = ker F|4 C A, a
contradiction.

3. To see that there is no more than one Drinfeld p}-structure it suffices to
check that H|[p}](S) = {0}. This follows because S is reduced and H[p}]/S
is radicial (see proposition 4.4 of chapter II of [Me]). (If f : T'— S is finite
and radicial and if S is reduced then there is at most one section to f. To see
this one reduces to the case that S = Spec A and T' = Spec B. We are looking
for sections to f*: A — B. Suppose ¢g; and g5 are two such sections. As S is
reduced we can embed A into a product of fields. Thus if g # g; we can find
a field k£ and a homomorphism ¢* : A — k such that ¢* o g7 # ¢* 0 g;. On the
other hand we must have gy o f* = g;o f* and so ¢*ogjo f* = ¢p*og;o f*. This
contradicts the fact that f is radicial. (The finiteness hypothesis is presumably
unnecessary, but this additional hypothesis does us no harm.))

It remains to show that o™V is indeed a Drinfeld pp-structure. We must
have that H[pW] = ker F/x" and hence H[pp] is locally isomorphic to
Og[T)/ (TP "™, It f € Og[T]/(TP*"™") and we write f = fo + AT + ... +
fprhmilTprhm_l, then the norm down to Og of f is é’thm — f(0)P"*"" This
verifies condition (2) on page 33 of [KM].

4. This follows from proposition 1.11.2 and lemma 1.8.3 of [KM].
5. Suppose that « : (p™/Okx)" — H|[p#|(S) is a Drinfeld p7-structure. Let
M = ker a. By parts 2 and 3 we see that the composite

a: ((pg"/Ok)/M)s — Hlpg] — H[pg]
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is an isomorphism. A splitting of H®[p}] into H[pH] is provided by the
image of ((p"/Ok)/M)s in H[p}]. To see the splitting is unique we ar-
gue as follows. To give a splitting is the same as giving a morphism v :
((pr™/Ok)/M)s — H[pR] such that the composite

v ((p"/Ok)/M)s — H[ph] — H[p}]

coincides with the map induced by a. To give v is the same as giving

v (9" /Ok) /M) — H[pg(S) — H"[pg](5).

Thus there is only one possible choice for 7. The second assertion of this part
now follows from parts 3 and 4.

6. Let S(m) be the closed subscheme of T = H[pn]®x"/0x)" where the
tautological map

(9x"/OK)" — H[pR|(T)

is a Drinfeld p}-structure (use lemma 1.9.1 of [KM]).
7. That H = Spf R|[T]] follows from page 26 of [Me]. Let T be the first power
of T whose coefficient in fem(7T') is not in the maximal ideal of R. Consider

the map
s—1

P BT — RIT)/(fup (T)) = BRI

i=0
After tensoring with the residue field of R we get an isomorphism. Thus this
map is already an isomorphism and s = fgmh. We conclude that T' plrme
is a linear combination of 1,7,...,T?"™" 1 in R[[T]/ foy(T), and again by
reducing modulo the maximal ideal of R we see that T P’ s a linear com-
bination of 1,7, ..., TP =1 With coefficients in the maximal ideal of R. Put
another way we can find a monic polynomial h(T) of degree p/¥™" over R
all whose nonleading coefficients are in the maximal ideal of R, and a power
series g(T') € R[[T]] such that h(T) = g(T)fer(T). We see at once that the
constant term of g(7") is a unit in R and hence that ¢(T") € R[[T]]*. We see at
once that the second and third conditions are equivalent. The first and third
conditions are equivalent by lemma 1.10.2 of [KM]. O

Suppose that X is a locally noetherian formal scheme with ideal of defini-
tion Z. We will let X,, denote the scheme with underlying topological space
X and structure sheaf Oy/Z™. By a Drinfeld pli-structure on a Barsotti-
Tate Og-module H/X we shall mean a compatible system of Drinfeld pf2-
structures

an (™ /Or)" — H[pR](Xn)
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for H x y X,,. This is easily checked to be canonically independent of the choice
of ideal of definition 7.

If A is a noetherian ring complete with respect to the [-adic topology for
some ideal I and if H/Spec A is a Barsotti-Tate Og-module with Drinfeld
©-structure o, then we obtain a a natural Drinfeld pf-structure o on the
corresponding Barsotti-Tate Ox-module H/Spf A (take the push forward of «
on X, for each n). This establishes a bijection from Drinfeld p}-structures on
H/Spec A to Drinfeld p}-structures on H/Spf A. (Given a compatible system

an (g™ /Ok)" — H[pg](A/I")
using the completeness of A we get in the limit a homomorphism
a: (p"/Ok)" — HIpR](A).

Using lemma 1.9.1 of [KM] we see that « is in fact a Drinfeld g} -structure.)

We will next recall some results of Drinfeld about formal deformations
of one-dimensional Barsotti-Tate Og-modules with Drinfeld level structures.
Consider first the case of a formal Barsotti-Tate Ox-module. More precisely
consider the functor which associates to any local Artinian Og-algebra A with
residue field k(v)* the set of isomorphism classes of triples (H,j, ) where
H/A is a Barsotti-Tate Ox-module, where j : S, — H Xgpeca Spec k(vi)™
and where o : (p"/Ok)? — Hp}|(Spec A) is a Drinfeld p}-structure.
Proposition 4.3 of [Dr] tells us that this functor is pro-represented by a reg-
ular finite flat local Ry g-algebra, which we will denote Rk 4,,. We will de-
note by (i K,g,}, @) the universal triple. Again by lemma 4.16 of chapter 1T
of [Me] we see that (X, J) is actually defined over Spec Ry ,m. In fact

a: (p"/Ok)? — Zkglpk](Spec R gm) (as T g[pi]/Spec R gm is finite)
and by proposition 1.9.1 of [KM] & is a Drinfeld p}-structure over Spec R g .
Thus we get a map Spec Ry g.m — (Spec Rk 4)(m), which is an isomorphism
after tensoring with any Artinian quotient of Rk, and hence is an isomor-
phism. We also have that Ry g, is degree #GL,(Ok /o) over Ry 4. (To see
this it suffices to look at the generic fibre R, ®z, Q,, where the degree is
easy to calculate because 5 K,g becomes ind-etale and a Drinfeld p-structure
is nothing but an isomorphism

a: (p"/Ox)s = Hpp.)

We next turn to deformations of Hy = Yx, x (K/Og)"/k(vik)®. Fix a
surjection
81 (9" /Ok)"™" — " T Ho /T Hy;
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and let GLgy(Ok/9R)s denote the group of x € GLy,(Ok/pf) such that
0 ox = 0. Then there is a short exact sequence

(0) = Hom (p"THy/THy, ker 6) — GLy11(Ok /9 )s — Aut (ker §) — (0).

Consider the functor which associates to any local Artinian Og-algebra A with
residue field k(v)* the set of isomorphism classes of triples (H, j, «) where H/A
is a Barsotti-Tate Ox-module, where j : x , = H Xgpeca Spec k(vg ) and
where a @ (p"/Ok)9™" — H[p®](Spec A) is a Drinfeld pf-structure such
that the composite

1

(9™ /Or )™ == H[pR](Spec A) — H[p](Spec k(vx)*) *—
— Hylpg](Speck(vk)*) = o™ T Ho /T Hy

equals 6. This functor is pro-representable by (}7 j.a 1)/Spf Ry™Y (by propo-
sition 4.5 of [Dr]).

To describe how it is pro-represented it is convenient to also fix a homo-
morphism 7 : (p" /O )™ — (p™/Ok)? such that

d@ v (px" /O™ = (" THo/THo) & (9" / Ok )*.

This first of all gives rise to a splitting Aut (kerd) — GLy1(Ok/p)s. Sec-
ondly it gives rise to an isomorphism of Spf R¥™Y with

Hom (p;{mTHo, iK,g) Xspec Rx.4 Spec R[Qg,m.

Over this ring we have the pull back from Hom (T Hp, 2 K g) of the tautological
extension

(0) — Sxy — H — THy® (K/Ox) — (0),

as well as a second extension
(0) — Sy — H' — THy @ (K/pg™) — (0).

There is a natural isogeny H — H’ whose kernel projects isomorphically to
o "THy/THy, and so we get a splitting

i:p"THy/THy — H.

Then
ag =aoy+iod.

(See the (rather sketchy) proof of proposition 4.5 in [Dr].)
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The deformation space Spf R{™ has a right action of GLyn(Ok/o%)s
which may be described as follows. The splitting ~ allows one to write the
group GLy 11 (Ok /9R)s as a semidirect product of Hom (o " T'Hy/T Hy, ker 9)
and Aut (ker ). It thus suffices to describe the action of both these groups on
Spf Ry™V. Now Aut (ker §) is isomorphic via v to GL,(Of/@%) and simply
acts on the factor Spf R g,,. On the other hand composition with o gives a
map

Hom (o T Hy /T Hy, ker §) — Hom (9" T Hy, S¢ o(Ric 0 m
Pr Pr HK.g 95
= HOID (g)]_{mTHo, EK,Q)(RK,g.m)~

The action of an element ¢ € Hom (o, T'Hy/T Hy, ker 0) on
Hom (pj_(mTHo, iK,g) XSpecRK,g Spec RK,g,m

is simply by translation by the image of ¢ in Hom (o "1 Hy, 5 K.9)(REi.gm)-
If we write Hom (T'Hy, X ;) = Spf R then H is defined over Spec R. More-
over as before we can identify (Spec R)(m) with

H Spec Ry,
5

where the disjoint union is over surjections
0+ (9" /Ox)"™" — 9" T Ho /T Hy.

If @ € GLyyn(Ok /o) then x takes RJ™ isomorphically to RV, If 2 €
GLy1h(Ok/9F)s then the two actions of z on Spec RY™ coincide. In particular
we see that (Spec R)(m) is regular and is finite and flat over Spec R of degree
#G Lgn(Ok [ 9)-

We now record a few more basic facts about Drinfeld level structures which
can be proved by reduction to the universal case.

Lemma 3.2 In this lemma S will denote an Ok -scheme which we will assume
15 locally noetherian with a dense set of points with residue field algebraic
over k(v). Also H/S will be a one-dimensional Barsotti-Tate O -module of
constant height h.

1. S(m)/S is finite, flat of degree #GLy(Ok/p).

2. Suppose that
a: (p"/Ox)" — H[pR|(S)
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is a Drinfeld ©W-structure. Suppose also that M C (p"/Og)" is a
Ok -submodule. Then there is a unique Ok -invariant finite flat subgroup
scheme N C H|p] such that the set of a(x) for x € M form a full set
of sections for N/S. If moreover

5 (p™ /O%) = (9" /Ox)" /M

is a map of Og-modules, then a0 is a Drinfeld g structure for H/N.

The construction of N is compatible with base change in the following
sense. If T'/S is a locally noetherian S-scheme with a dense set of points
with residue field algebraic over k(v) and if

ar : (" /Or)" == HIpR](S) — (H x5 T)[pR](T),
then the set of ar(z) for x € M is a full set of sections for N xg T.

Proof: The first part is proved by a straightforward reduction to the uni-
versal formal case. We will prove the second part only, as the argument in
this case is slightly more difficult. The last paragraph of the second part fol-
lows from lemma 1.9.1 of [KM]. Thus we concentrate on the proof of the first
paragraph of part 2.

By corollary 1.30.3 of [KM] there is a unique closed subscheme N C H[p}}]
which is locally free over S and for which the set of x € M form a full set of
sections. From the uniqueness it follows that N is invariant by the action of
Oj. Thus it suffices to check that

1. N is a subgroup scheme;

2. if
0 (i /Ok) = (9" /Ox)" /M
is a map of Og-modules, then o4 is a Drinfeld g4 structure for H/N.
There is a closed subscheme S’ C S such that for any scheme T7'/S, N xg
T C H xgT has the two properties above if and only if 7" — S factors through
S’ (H[p}] is the spectrum of a sheaf of locally free Hopf algebras H/S. Let Z

denote the subsheaf of ideals defining N. The first property above is equivalent
to the composite map

IT—H-—HH— H/T@H/T,

where the middle map is the comultiplication, being zero. It follows that
there exists a closed S” C S universal for the truth of the first property. The
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existence of S" C S” follows from proposition 1.9.1 of [KM].) What we must
show is that S' = S.

We may at once reduce to the case that S = Spec A for an Artinian local
ring A. (Look at Ogs/m? as s runs over a dense set of points and a runs over
positive integers.) Then by tensoring with W (k(vk)*) we may assume that
the residue field of A is k(vk)*. Next we may replace H/A by the universal
deformation of H x Spec k(vg)* together with its Drinfeld p}-structure, and
so we may suppose that S = Spec R for a complete noetherian local ring which
is flat over Og... Then we may replace S by S x SpecQ,, which is dense in
S. But H/S x Spec@Q, is ind-etale and the result is easy. O

The following corollary follows readily.

Corollary 3.3 In this lemma X will denote a locally noetherian Og-formal
scheme. We will assume that X™ has a dense set of points with residue field
algebraic over k(v). Also H/X will denote a one-dimensional Barsotti-Tate
O -module of constant height h.

1. There is a formal scheme X(m)/X and a Drinfeld o} -level structure
Q"™ on H xy X(m) which is universal in the following sense. If Y —
X is any morphism of formal schemes and if 6 is a Drinfeld p}-level
structure on H X x Y then there is a unique morphism Y — X (m) over
X under which o™ pulls back to 6. Moreover X (m)/X finite, flat of

degree #G L (Ok /9 ).-

2. Suppose that « is a Drinfeld oh-structure on H/X. Suppose also that
M C (pg"/Ox)" is a Og-submodule. Then we can find a Barsotti-Tate
Ok -module H/a(M) over X and a morphism H — H/a(M) over X
such that when restricted to any closed subscheme X C X the morphism

Hlx — (H/a(M))|x
is surjective and the set of a|x(x) for x € M form a complete set of
sections for the kernel.

The construction of H/a(M) is compatible with base change in the fol-
lowing sense. If Y /X is a locally noetherian X-formal scheme such
that Y4 has a dense set of points with residue field algebraic over k(v)
and if Hy (resp. ay) denotes the pull back of H (resp. «) to Y, then
Hy/ay (M) is canonically the pull back of H/a(M) to Y.

We have seen that Ry 4, has a natural continuous left action of OIX)KQ. The
same is true of Rk g4, and so in fact Rk 4,, has a continuous left action of

GLy(Ox) x Op,. = GLy(Ox /9k) x Op, -
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In fact we can extend this action to a continuous left action of GLy(K) x D,
on the direct system of the R g4, such that

(7,9)

RKvg»ml - RK,Q,’H’LQ
T T
Frob;},g(det ¥)—v (det d))
W k(v )*) — W (k(vk)*)

commutes if mqy >> m;.

To describe this first suppose that (v,6) € GLy(K) x Dy ,, that v 1e
M,(Ok), that vk (det(d)) < 0 and that vO%, C e " 0%. It suffices to
define a W (k(vg)®)-linear map

~

(7,0) : Rc.gmi — RK,g,mQ®W(k:(v)‘“),Frob$§(de°6)7%(““)W(k(v)ac)-

Next, by the universal property of R 4, it suffices to give a deformation of
(EK’g,j, Oétnv) to RK,g,m2® 'UK(deté)—vK(det'y)W(k(v)ac). By lemma 3.2

W (k(v)*€),Froby ¢

there is a unique finite flat subgroup scheme A C » K,g over Ry g m, such that
the set of ™V (z) for z € (yO%)/O% are a complete set of sections for A. For
our deformation of Y , we will take

(EKg/A) XSpfW(k(’UK)ac),(FI‘Ob,ZK)UK(dEté)_vK(det'Y) ShW(]{;(UK)aC)

It has a Drinfeld pj'-structure coming from

univ
[0

(0R™ /Ok)? <> ™08/ (YOR) ™= (S /A)(Ric gms).

(Use lemma 3.2.) Reducing modulo the maximal ideal of

~

ac
RK7g’m2®W(k(v)ac)7ﬁob5§(det6)7UK(detw)W(k(/v) )
and using j we obtain
(p—fK“K(detW)) ac ~o (p—vaK(deté))
EK,g XSpeck(,UK)ac’(Fr*)fK(vK(det'\/)—vK(det6)) Spec k(UK) = EK,g .

Finally we identify this with Xx , via

_ —vg(detd)y ~
ot Egg’g e YKg

We note that if z € O and x # 0 then the element (z7!, 27!) acts trivially.
Thus we obtain an action of

GL9<K) X D;;,g - (GL!](K) X D;(,g)/KX7

where K> is embedded diagonally.
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Lemma 3.4 Let us fix K, g and m. For each positive integer s we can find
an integer N(s) such that

e N(s) increases monotonically to infinity as s — oo;

e any element of wy " Op, , lifts to an endomorphism of

T N(s
YKg X (RK,g,m/mRé,i,m)
N(s)

o and (1 + @i Op,,) acts trivially on Rgm/mp, . .

Proof: Note that if we can choose N(s) satisfying the first two conditions,
then the third will also be satisfied. (If 6 € Op with § = 1 mod p* then

(6—1)/@® and (6~ —1) /' lift to endomorphisms of iK,g X (RK,g,m/mg}({s) ).

By the uniqueness of such lifts (see part 2 of lemma 1.1.3 of [Kat]) we see that

N(s)

§ lifts to an automorphism of X X (R gm/ma" ) which is the identity on

K,g,m
w-torsion.)

Now take N(s) to be the integer part of \/(s/ex/q, —m) (or 0 if this is not
defined). As p"®) is zero on (RK%m/mgﬁ(‘im) the second condition on N(s)

follows from part 3 of lemma 1.1.3 of [Kat]. O

The following lemma will be proved in section 5.

Lemma 3.5 We can find an inverse system of proper schemes of finite type
X/ O g with compatible actions of GLy(Ok) and a closed point x € X, such
that

1. ker(GLy(Ok) — GL,(Ok /™)) acts trivially on X,,,

2. the generic fibre of X,,/Xo is finite, etale and Galois with Galois group
ker(GLy(Ok) — GLy(Ok /™)),

3. x 1s totally ramified in each X,,,

4. and the inverse system of formal schemes (X)) with action of GLy(Ok)
is isomorphic to the inverse system of the Spf Rk g,

Suppose that [ is a prime not equal to p. We will let \Ifkl%m denote the
i" vanishing cycle sheaf with coefficients in Q¢ for Spf Rk, in the sense of
Berkovich (see appendix IT). Thus Wi, is a finite dimensional Qf*-vector

space equal to Qf° ®z, lim_, R'W,(Z/1°Z). We set Wi, = lim_,, ¥y, . and
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we may drop the subscripts K and/or [ when no confusion can arise. Let Ag
denote the set of (v,d,0) € GL,(K) x Dy, x W such that

vk (7) = vk (0) + vk (o).

The action of GLy(K) X Df , on the tower of the R4, gives rise to an

action of Ag, on the tower Ry g, ®o..,, L for any finite extension L/ Ko
More precisely (v,d,0) € Ax, acts as (7,0) ® o. In this way we get a left
action of Ag 4 on Wi, .

Lemma 3.6 The action of Agg on Wi, is admissible/continuous.

Proof: The action of GL,(Ok) is smooth from the definitions. It follows
from lemma 3.4, corollary 4.5 of [Berk3] and lemma 3.5 that the action of
Op,, is smooth. Let X;, denote the kernel of GLy(Ok) — GLy(Ok/p})-

It follows from lemmas 3.5 and IL.3 that Wi, = (W%, )¥. Finally it
follows from lemma 3.5, the comparison theorem of [Berk3] and lemma II.1
that Uy, ., is finite dimensional and has a continuous action of Ir. O

If p is a irreducible admissible representation of D , over Q¢ (and hence
necessarily finite dimensional) then we set

Wi 1g(p) = Hom oy (p W)

g

This is naturally an admissible GL,(K) x W-module. More precisely
(v, 0)9)(x) = (7,6,0)d(p(0) "),

for any 6 € Dy with vg(detd) = vk (y) — vk (o). Define a homomorphism
d: GLy(K)x Wy — Z by dy(v,0) = vk(det v) —vg (o). The following lemma
is immediate.

Lemma 3.7 If ¢ : Z — (Q%)* then
@é{,l,g(lo ® (Y ovg odet)) = \If%}hg(p) ® (w—l od,).
There is a natural map of Ag -modules

\IjiK,l,g(p) Qp— qjiK,Lgv

which sends f ® v to f(v). We will denote the image of this map ¥, [p] and
we will let Wi, . [p] denote the preimage of Wi, [p] in Wi, . We will call
irreducible admissible representations of D inertially equivalent if they differ
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by twisting by a character of the form v o vg o det for some character ¢ : Z —
(Q¢°)*. The submodule W%, [p] only depends on the inertial equivalence class
of p. Because OgKg is compact it is easy to check that

\Ili(,l,g = @p ® \Ijzk,l,g[p]

where the sum is over one representative of each inertial equivalence class of
irreducible admissible representation of D .
We will let e[p] denote the number of irreducible components of P|og :
K

It also equals the number of characters ¢ : Z — (Qy¢)* such that p E
p® (Yovkodet). Let Alp] be a set of e[p] elements 0 € Dy, such that the set
of vk (detd) for § € Alp] run over a set of representatives of the congruence
classes mode[p]. If § € D, we will we will let

\IjiK,l,g [p]6

denote Wi, [p] but with its Ag, action twisted so that (v,¢,0) acts via
(7,07 '€d, o). Then there is an isomorphism of Ay ,~modules

\I/%,l,g(p) ;) @ \I}’é(,l,g[p](i

S€Ap]

which sends f ® v to (f(67v))s.
We also introduce the virtual GL,(K) x Wx-module

[Pragp)] = D (1) [Ty 4(0)]-

7

Q
—_

Il
o

The following lemma is proved in [Car3].

Lemma 3.8 If p is a character of K* then

Ura1(p) Zp ' @poArt .

4 Some simple Shimura varieties

In this section we shall introduce some Shimura varieties which will be the
main object of study in this paper. This class (or one close to it) of Shimura
varieties, which are particularly simple in a number of respects, were first
singled by Kottwitz (see [Ko4]).
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We will use without comment notation established in section 1. Let U be
a sufficiently small open compact subgroup of G(A>). By sufficiently small
we shall mean that the projection of U to G(Q,) for some prime x contains no
element of finite order other than 1. Let S be a connected, locally noetherian
F-scheme and s a geometric point of S. Consider the functor that to (.5, s)
associated the set of equivalence classes of quadruples (A, A, 7,7) where

e A is an abelian scheme of dimension dn?;
e \: A— AYis a polarisation;
e i: B < End’(A) such that A oi(b) = i(b*)¥ o X for all b € B and
tr (0] zie(a)) = (cotr /g o tr p/r)(nd) + tr p/r(b) — (cotr p/r)(b)
for all b € B;

7 is a m (S, s)-invariant U-orbit of isomorphisms of B ®q A*-modules
n:V ®gA® — VA, which take the standard pairing ( , ) on V to a
(A>)*-multiple of the A\-Weil pairing on V A; (see [Ko3] pages 390-391).

We consider two quadruples (A, A, i,7) and (A, X',i',7') equivalent if there is
an isogeny «a : A — A’ which takes A to a Q* multiple of X', takes i to 7" and
takes 77 to 7' (see [Ko3| page 390). If s is a second geometric point of S then
there is a canonical bijection between the image of (S, s) and of (5, s). Thus
we obtain a functor from connected, locally noetherian schemes S/F' to sets
(see [Ko3] page 391).

Because U is sufficiently small this functor is represented by a smooth
projective scheme Xy /F (see [Ko3| page 391). If V' C U there is a natural
finite etale map Xy — Xy. There is also a natural right action of G(A>)
on the inverse system of the Xy: if ¢g7'Vg C U then g : Xy — Xy by
(AN, 4,77) — (A, \,i,10g). If U and V are sufficiently small open compact
subgroups of G(A*) and if V' is a normal subgroup of U then the finite etale
cover Xy — Xy is Galois with group U/V. Thus if z is a geometric point of
Xy we obtain a continuous homomorphism

8 ( Xy, z) — U.

(This map is only determined up to conjugation unless one chooses a compat-
ible choice of liftings of x to all the covers Xy .)

If £ is a finite dimensional irreducible representation of G' on a Qf“-vector
space We then we obtain a representation

¢ m(Xp,x) — U — G(Q) = Aut (We).
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Thus we also obtain a lisse etale Qf°-sheaf L£¢/Xy;. Although the construction
of L¢ appears to depend on a choice of base points this is illusory (as we will
explain below). If g € G(A*) and U, V are sufficiently small open compact
subgroups of G(A*) with ¢!V g C U then we have the morphism

g: Xy — Xy
and £(g;) also gives rise to a morphism of sheaves
g:9 L — L.

(We will explain the construction of this map g and why the choice of base point
does not effect the construction of £, by looking at the case of a locally constant
etale sheaf of (Z/I"Z)-modules. We will leave to the reader the standard and
rather tiresome extension to Qj“-sheaves. Thus suppose that a finite group G
acts freely on a scheme Y (on the right). Suppose also that H; and H, are
subgroups of G and that g € G with gH,g™! C H,. Let X; = Y/H; so that we
get a morphism ¢ : X; — X,. Suppose that V' is a finite free Z/I"Z-module
and that p : G — Aut (V) is a homomorphism. As above we obtain a sheaf
L, on each X;. Let us describe this sheaf without reference to base points. If
U — X; is a finite etale cover of a Zariski open subset of X; then £,(U) is the
set of functions

fim(Y xx, U) —V
such that for all ¢ € H; and C' € mo(Y xx, U) we have

f(Ca) = p(o)~ F(C).
To define a map ¢g* : £, — L, over X, it suffices to give compatible maps
g: £p(U2) - ﬁp(Ul)a

whenever we have a commutative diagram

Ul — U2
| l
X, L X,

with the vertical maps being finite etale covers of Zariski opens. If f : mo(Y X x,
Uy) — V then we let g(f) : mo(Y xx, U1) — V be the function defined by

g(N)(C) = p(9)f(Cyg).)
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We will set . .
Hl(X, Eg) = hlgl Hét(XU Xp Fac,ﬁg).

If g € G(A*) and U, V are sufficiently small open compact subgroups of
G(A>) with g7V g C U then we get a morphism

g Hét(XU XF Fac,ﬁg) — Hét(XV XF Fac"cé).
If V. C U then we see that
Hét(AXU XF Fac’ [,5) = Hét(XV XF Fac’ E&)U/V.

Thus H(X, L) becomes an admissible G(A>)-module, in fact an admissi-
ble/continuous G(A*) x Gal (F*¢/F)-module. We will let [H (X, L¢)] denote
the virtual G(A™) x Gal (F*/F)-module

D (U THAX, L))

%

(see appendix I).

Our distinguished embedding 7y : F' — C allows us to speak of the complex
points of Xy, which we will denote Xy;(C), a smooth manifold. We get an
isomorphism

H\(Xy xp F*, L) — H'(Xy(C), Le).

€

There is an element I € B®gR (unique if n > 2) with the following properties.
o [2=—1.

o BI"=—I0.

e The pairing by X by — (b1, bo]) is a positive definite symmetric form on
V ®q R.

e For any embedding ¢ : F© — R the space V ®p+, R is an (E ®q
R)[7]/(I*)-module. Our choice of 7y gives rise to an isomorphism (E ®q
R)[I]/(I?) = C[I]/(I?). If o # 7| p+ we require that [ = —i on V®@p+ ,R.
On the other hand we require that the 7 eigenspace of I on V ®p+ -, R
has C-dimension n.

We will let Uy, denote the centraliser of I in G(R). It is a maximal connected
compact mod centre subgroup of G(R). We will let U, denote a maximal
compact mod centre subgroup of G(R) containing U,. As on page 400 of
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[Ko3] we can give a more explicit description of the smooth manifold X (C).
It is the disjoint union of

4ker (Q, G) = # ker((F)* JQ* Npyps (FX) —> A%, JA* Np= /5 (A3))
copies of the manifold
GQNG(A®)/U x G(R)/Us)-

Under this identification the right action of G(A>) on inverse system of the
Xy'’s corresponds to the action by right translation on the

GQNG(AT)/U x G(R)/Us).

Using in addition our identification ¢ : Q¢ — C we see from Matsushima’s

formula that we get an isomorphism

H'(X, Le) = @ 7> @ H (Lie G(R), Us, oo © &),

where 7 runs over irreducible constituents of the space of automorphic forms
for G(A), each taken with its multiplicity in the space of automorphic forms.
(See [Kod] page 655.) Thus we obtain the following lemma.

Lemma 4.1 As virtual G(A™)-modules we have an equality

H(X,Le)] = -
= #ker (Q. Q) X2, (7] Y2, (~1)" " dim H'(Lie G(R), U, 1 @ €),

where m runs over irreducible constituents of the space of automorphic forms
for G(A), each taken with its multiplicity in the space of automorphic forms.

Let us now give a slightly modified definition of Xy. For this purpose
suppose that U = UP x U, X [[;_ Uw,, where U? C G(A>P), U, o C Q) and
fori > 1, Uy, C (BgP)*. We give an equivalent moduli problem represented by
Xvu/F,. We consider the functor which takes a connected locally noetherian
F,-scheme and a geometric point s to equivalence classes of (r + 5)-tuples
(AN 4,77,7, 0, M, ) /S Where

e A/S is an abelian scheme of dimension dn?;

e \: A— AV is a polarisation;
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i : B — End(A) ®z Q such that Ao i(b) = i(b*)¥ o A for all b € B, for
i > 1 we have Lie(A) ®p, Fy, = (0) and Lie(A) ®p, Fye is a projective
sheaf of rank [F,} : Q,|n?, Lie(A) ®p, F,, is a projective sheaf of rank n,
and Lie(A) ®p, Fye is a projective sheaf of rank ([F,, : Qpn — 1)n;

e 77 is a my (S, s)-invariant UP-orbit of isomorphisms of B ®gA*P-modules
n? : V ®g A®P — VPA, which take the standard pairing ( , ) on V ®q
AP to a (A°P)* multiple of the A-Weil pairing on VP Ay;

e 7,0 denotes a m (S, s)-invariant Up-orbit of isomorphisms Q, = Q,(1);

® 7, is a m (S, s)-invariant U, -orbit of isomorphisms of F},-modules 7,,, :
All ®Zp Qp — gVuuAs;

o for i > 1,7, is a m (S, s)-invariant U,,-orbit of isomorphisms of B,,-
modules 7, : A; ®z, Q, = Vi, As.

We call two (r + 5)-tuples (A, \,7,7",7,0,7,,) and (A, X, ()", 77,0, M;)
equivalent if there exists an isogeny a : A — A’ and v € Q* such that «
carries A to v\, i to @', 77 to (7*)’, and 7,,, to 7, ; and such that 7, , = 77, .
The image of this functor is canonically independent of the base point s so we
can think of it as a functor on connected locally noetherian F,,-schemes. Then
this functor is also represented by Xy X g F,,. The isomorphism between these
two moduli problems is given by mapping (A4, \,4,77,7,0,M,,) to (A, A,4,7)
where
77, = 77p X (((Id(’)}?’w & nw1) @ @nwz) @ ((Idogw ® nwl) ® @ nwi)vnp’o)'
i>1 i>1

The dual Vv, , is taken with respect to the canonical pairing on A ®z, Q,

and 7, & composed with the A\-Weil pairing on V,A. The action of G(Q,) in
this picture may be described as follows. An element (go,g1,...,9,) € Q@ x

H;'qzl (BZE>X maps <A7 )‘7 ia ﬁpa ﬁp,07 ﬁw;) to (A7 /\7 Z'u ﬁpv gOﬁp,Oa ﬁwi © gi)

5 Integral models

Next we wish to describe an integral model for X over Op,,. More precisely
suppose that U? C G(A*>P) is a sufficiently small open compact subgroup
and suppose that m = (my,...,m,) € ZZ,. Then we will let U?(m) C G(A*)
denote the product -

U” x 27 x [ [ ker((OF, ) — (O Jwi™)*).

=1
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For simplicity we will restrict attention to open compact subgroups of this
form. Given U? and m as above we shall consider the functor from locally
noetherian connected Op,-schemes S with a geometric point s to sets which
takes (.5, ) to the set of equivalence classes of (r + 4)-tuples (A4, A\, 7,77, a;)
where

e A/S is an abelian scheme of dimension dn?;
e \: A— AV is a prime to p polarisation;

e i:Op — End(A) ®z Z,) such that Ao i(b) =i(b*)" o A for all b € O,
for i > 1 we have Lie(A) ®o,, Orw, = (0) and Lie(A) @0, Orue is a
projective sheaf of rank [F : Q,|n®, Lie(A) ®0,, Opw is a projective
sheaf of rank n, and Lie(A) ®o,,, Opue is a projective sheaf of rank
(Fo : @yl — Ly

e 7P is a m (S, s)-invariant UP-orbit of isomorphisms of B®gA*P-modules
nP: V ®@g AP — VP A, which take the standard pairing ( , ) on V ®q
AP to a (A*P)* multiple of the A-Weil pairing on VP Ay;

o ay:w; " A /A — eAlw"](S) is a Drinfeld w]"'-structure;

o fori>1, a; : (w; ™ A;/\;)s — Alw[™] is an isomorphism of S-schemes
with Opg-actions.

Two (r+4)-tuples (A, \, 4,7, ;) and (A", N, 7', (7P)’, o) are equivalent if there
exists a prime to p isogeny 0 : A — A’ and v € Z(Xp) such that d carries A to v\,
itod, 7 to (P), and «; to o). Again this functor is canonically independent
of the base point s so we can think of it as a functor from connected locally
noetherian Op,-schemes to sets. On connected locally noetherian F,,-schemes
it is naturally isomorphic to the functor defined in the last section. (Note that
because we are now assuming that Z; C U, we no longer require an analogue
of 7,0.)

If my = 0 then it is known that this functor is represented by a projective
scheme Xy» ,,,/Op.. (Representability and quasi-projectivity follow as on page
391 of [Ko3] or as in section 5.3 of [Carl]. Properness follows from the valuative
criterion as in section 5.5 of [Carl], the point being that if A is an abelian
variety of dimension dn? with an action of an order in B over the field of
fractions of a DVR and if A has semistable reduction then A has good reduction
(otherwise the toric part of the reduction has too small a dimension to have
an action of an order in B). The level structure then extends uniquely to the
Neron model A of A, because Av[n] is etale over the DVR for n supported on
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Wy, ..., w, and the primes not dividing p (use the fact that Lie A[w;]>* = (0)
for © > 1).) Hence by 3.1, this functor is represented for all m by a projective
scheme Xyp 1,/ Opap.

The inverse system of the Xyr /O, again has an action of G(A*). The
action of g € G(A>®P) just sends (A4, \, 4,77, ;) to (A, N\, i,7P o g,a;). The
action of (go, g1, ..., gr) € G(Q,) is slightly trickier to describe. To do so let us
suppose that for each ¢ > 1 we have the following integrality conditions

-1
hd gl e O%l:?’wi’
-1

mg '

! op
e w, ' g €0g,.

Under these assumptions we will define a morphism
(gz) : XUP,m B XUP,m’~
It will send (A, \,4,77, a;) to (A/(C @ CL), pa»90) )\ i, 7P, o; o g;), where

o () C cAlwi™] is the unique closed subscheme for which the set of a4 (x)
with x € g1A11/Aq1 is a complete set of sections;

for i > 1, C; = a;(g:\i / \i);

C = (O?',w ®OF,w Cl) S¥) @::2 C’Z C A[ufvalp(go)];

C* is the annihilator of C' C Afu~"#»(9)] inside A[(u¢)~"*#(90)] under
the A-Weil pairing;

p*ar(@) )\ is the polarisation A/(C®C*) — (A/(C @ C+))Y which makes
the following diagram commute
Ao AY

! T
A/(C @ CH) — (A/(CoCH))Y;

e a0y : wl_mllAll/All — (eA[ws]/C)(S) is the homomorphism making
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the following diagram commute

wy ™AL Ay — cAlw]/Cy(S)

l !
w; M A/ A — (€AWl /C)[w]](S)
! !
wy ™A /A — (eAlwi™]/C1)(S)
T T
wi™ A /A eA[wi™](S);

o fori>1 «a;0g;:w, A, JA; — AJw?®]/C; is the homomorphism making
the following diagram commute

w, AN — Awe]/C

()

! |

w; "gili/gihi = (Alwg®]/Ci)[w;™]
! |
T T

It is tedious but straightforward to check that this does define an action.
We see that (p~2,p~1,...,p~!) acts in the same way as p € G(A>?) and so
acts invertibly on the inverse system. Thus this definition can be extended to
the whole of G(Q,). We also see that on the generic fibre (i.e. over F,) this
definition (when it makes sense) agrees with the action previously defined. (A
less tedious argument is to first note that this definition coincides with the
previously defined action on the generic fibre and then use the fact that the
generic fibre is Zariski dense in Xy ,,, to check that first two assertions. That
the generic fibre is indeed dense follows at once from lemma 5.1 below.)

We remark that the lisse Q¢ sheaf £ can be defined over the whole of
Xupm in exactly the same manner it was defined over the generic fibre Xy ().
If g € G(A*) maps Xy, to X(yry nv then again £(g;) induces a morphism of
sheaves

g:9Le — L¢
over Xup .

We next establish some important pieces of notation. We will let A/ Xy,

denote the universal abelian variety. If A/S is an abelian scheme and if ¢ :
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Op — End (A/S) ®z Z,) then we will let G4 denote the Barsotti-Tate Op,,-
module eA[w>]. We will simply use G/Xyr,, to denote G 4. If s is a closed

geometric point of Xp» ,,, we will let h(s) denote the height of G*. We will
let X v, denote the reduction Xurm XSpec O, SPec k(w). We will let Y[[?im
denote the reduced closed subscheme of X s ,,, which is the closure of the set

of closed geometric points s with h(s) < h. We will also let

h) (]

— — —[h—
ngp,m = XUP,m - X[UP, }

m:*

The action of G(A™) on the inverse system of the Xy»,, takes the inverse

system of locally closed subschemes Yéhp)m to itself (because they are defined
in an invariant manner).

Lemma 5.1 Throughout this lemma we suppose that UP is sufficiently small.
Sugijose also that my = 0 and that m;, = m; for i > 1. Let s be a closed point
of Xurm Xspeckw) K(w)* and fix an isomorphism Gl = Y Fun—h(s)-

1. The formal completion of Xuw m XspecOp.,, SPEC Opn: at s is 1somorphic
to the universal formal deformation space for the Barsotti-Tate Op,,-
module Gs. Thus we get an identification

(XUp.m XSpec Op. SPEC Oﬁ£)§ =~ Hom (T'G,, ipqmn_h(s));

while (7%23 X Spec k(w) SPec k(w)*) is identified to the closed formal
subscheme

Hom (Tgsa EFw,nfh(s)) C Hom (Tgsa iFw,nfh(s))'

2. Xuv m/Spec Op,, is smooth. Moreover each 7812’m/8pec k(w) is either
empty or smooth of dimension h.

3. The closed points of X v X Spec k(w) k(W) above s are in natural bijec-
tion with the surjective homomorphisms

0 w_mllAn/An —» ggt[wmi]%(s)).

We will write sg for the point corresponding to §. Then we can identify
the formal completion of Xuw ' Xspec 0., SPEC Opne at 85 with

Hom (w_mll Tg57 EFw,n—h(s)) ><Spf Rpw’n_h(s) Spf RFw,nfh(s),m/la
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such that the morphism
(Xupm' Xspec O, SPEC Oﬁgr)é\g — (Xurm XSpec Op., SPEC Oﬁgr);\

corresponds to the natural morphism

Hom (w—m’ngS’ iFw,’)’L*h(S)) XSpf Riy nn(s) Spf RFw,n—h(S),mll
!
Hom (T'G,, Xr, n-n(s))-

Moreover the formal completion onglp(jiL), at ss corresponds to the closed

formal subscheme Hom (w™™ TGy, S, n n(s)) inside
Hom (w_mll Tgs; EFw,n—h(s)) XSpf Rpy, n—n(s) Spf RFw n—h(s),m} -

- Xuem'/Opw 1s regular and flat.

. Yéhp)m,/k‘(w) is smooth and the morphism Ygi?m, — nghp)m is finite and

flat of degree #GLo(Opu/w™ ) /#G Ly n(Opu/w™).

. Suppose that (UP)" C UP and that for all i we have m} > m. Then the
natural morphism
X(Up)/l7ml/ B— XUp’m/

is finite and flat of degree
07 (U T #CLaOra 0 Ors) ([ ] #CLn (O, [0 Orn)).
i=1 =1

If m = m/ then this morphism is in fact etale.

Proof: First of all it is standard that (Xuem Xspec 0y, Spec Oz, ), is the

S

formal deformation space for (r + 2)-tuples deforming (As, s, @5, v s) (where
i > 1). By the Serre-Tate theorem this is the same as deformations of the
(r 4 2)-tuple (As[p™], As, is, ais). As A AJu™] = Ag[(u®)>®] we see that this
is the same as deformations of the (r + 1)-tuple (As[u®],is, a;5). As Ag[we]
is ind-etale for ¢ > 1 it has a unique deformation over any Artinian local ring
with residue field k(s) as does «; ;. Thus we need only consider deformations
of the pair (As[w™],is). As Op, = M, (OF,,) this is the same as deformations
of G5 = e As[w™] with its Op,-action. This proves the first assertion of the
lemma.
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The rest of the first part of the lemma follows from the discussion before
lemma 2.3 and from corollary 2.4. The second part of the lemma follows from
the first.

The first assertion of the third part of the lemma follows from lemma 3.1.

The second assertion follows from the discussion proceeding lemma 3.2. Y(Uhp(s,;),

can be constructed as the reduced subscheme of the fibre product of Y(Uhp(sn)l)

and Xgyp o over Xpyp,,. Thus (78;(23,)96 is the reduced formal subscheme

of the fibre product over Hom (T'Gs, ¥ g, n—n(s)) of Hom (T'G,, X5, n—n(s)) and

Hom (w‘mlngs, X Fyn—h(s)) XSpt R () Spf Rr, m—h(s).m) - (Here we make use

~(h(s)) )

of lemma 2.6.) Hence (Xy, /)5 is the reduced formal subscheme of

Hom (w_mll Tgs; Z’Fw ,n—h(s)) X Spf Rpy, n—h(s) Spf }%Fw,nfh(s),m’1 )

i.e. Hom (w="™TG,, Y Fyn—h(s))-

The fourth part now follows on applying proposition 4.3 of [Dr| because
both these properties can be detected on formal completions at closed points.
(If A is a noetherian local ring with maximal ideal m then dim A2 = dim A,
m/m? 5 m"/(m")? and A} /A is faithfully flat.) As for the fifth part, finiteness
follows from lemma 3.1. Smoothness and flatness follow from the computation
of the formal completions. The degree can also be computed on formal com-

pletions: suppose that s is a closed point of Ygﬁm x Spec k(w)*. The number
of closed points of ngp) v X Spec k(w)® above s is the number of surjective
homomorphisms from ((9 P/ W)™ 0 (Op/w™ ). If 55 is one of these points
the degree of (YSLp)m, x Spec k(w)*);, over (nghp)m X Spec k(w)*©)2 is the rank

of E%wm_h[wm'l]. Thus the degree of Y(U’Qm/ over X(Uh,?m is

(#Opu /W™ )" (H#G Lo (O /w™) [#G Ly (Opw/w™)s) =
— #GLo(Op /™) |#G Ly (O /™).

We can divide the proof of the sixth part into two cases: the case where
m{| = m) and the case where U? = (UP)” and m! = m] for i« > 1. In the
second of these two cases it is standard the morphism is etale of the stated
degree. In the first case it follows from lemma 3.2. O

(We remark that one can use the results of Drinfeld’s paper [Dr] to show

that in fact if m; = 0 then Yﬁ,m is smooth. We will not give details here as
we will not need this result. It seems to us an interesting question whether
this remains true for m; > 0.)

The next lemma will be proved in section 8 below.

66



Lemma 5.2 The scheme 7527,71 is non-empty.

As a first application of this lemma we have the following corollary.
Corollary 5.3 The scheme Yg‘ﬁm for h =0,...,n — 1 is smooth of pure di-
mension h.

As a second application we now provide the postponed proof of lemma 3.5.
Proof of lemma 3.5: Choose a totally real field F'* with a place w above
p such that F} = K and choose an imaginary quadratic field E in which p
splits. We may then choose u, B, *, 79,  and A; as in section 1 and such
that dimp B = g%. Also choose a sufficiently small open compact subgroup

UP C G(A®7). Let
Xm = XUP,(m,O ..... 0) XSpec(’)pyw Spec Oﬁgr

and let  be any closed point of
7&?2(070“”70) XSpeck(w) SpeC k(w)ac C X(].

(The existence of x follows from the last lemma.) That the collection of the
X,, and the z follows from lemma 5.1. O

Now let ® denote the vanishing cycles for Yypm C Xyrm- Then we have
a spectral sequence

H' (X o X k(w)™, ® @ L¢) = H™ (Xypm X F2 Le).
(See lemma I1.2.) If (g,0) € G(A™) x W, then we have a natural map
(9,0) : (g x Frob2@Y*dl = (go (Fr* )@ x 1)*®) @ Lo — & @ L.
Thus we get a smooth/continuous action of G(A*>) x Wg, on

lim H'(Xuom x k()" &7 & L)
which is compatible with the action on H*™ (X, L¢) and the above spectral
sequence.

For any 0 < h < n — 1 we get a long exact sequence (see for example [FK]

1.8.7 (3))
s HIXU) X k()% 7 @ L) — Hi(Xom,, X k(w)ee, &7 @ Le) —
s Hi(X o X k() & @ Le) — .

Combining these two observations we obtain the following lemma.
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Lemma 5.4 Suppose that for each 0 < h < n—1,0 <1 < 2h and 0 <
Jj <n—1 the G(A®) x Wg,-module hm_,UpmHZ(Xépm X k(w)*, &7 @ L¢) is
admissible/continuous. Then the same is true for each im_ .y Hi(YUp,m X

k(w)*, ® ® L) and we have an equality of virtual G(A>) x W, -modules

DX L)% = 3~ Lim HI(Xip % k(w), @7 © Lo)]

We wish to further analyse the structure of Xypm. For s a closed point of

Yglp)m let M, denote the kernel of the composite
ar s w ™ Ay Ay — G} (k(s)) — G} (k(s)):

Then M; is a direct summand of w™"*Ay; /Ay which is free over Op,, /w™ of

rank (n — h). The function s — M, is locally constant on Ygi?m (Suppose
that H is a finite abelian group, that S is a connected scheme and that F is
a lisse etale sheaf on S. If o : Hg — F is a morphism of etale sheaves then
there is a subgroup H' C H such that ker « = Hg (cf page 49 of [KM]).) Thus
we have a decomposition

Xl = ]_[XUpmM,

where M runs over free (’)Fﬁw/wml—submodulﬁ of w™™ Ay1/Aqq of rank n — h
and where M, = M for s a closed point of Xys . If g € (OF,) then g
gives an isomorphism

g: XUP,m,M I XUP,m,g—lM-

The following lemma follows at once (using lemma 5.1).

Lemma 5.5 Suppose that mi = 0 and m, = m; for i > 1. Then Yg‘ﬁ,m@M 1S

smooth of dimension h and XU,3 ' M/XU) is finite flat of degree

P.m

#Prr (Opu /™) [#G Ly (Op. /w™) =
= (O™ YD GG Ly (O ™).

Now suppose that M C Ajy is a Op,-submodule which is both a direct
summand and free of rank n — h. We will let Py, C Aut(A;;) denote the
maximal parabolic subgroup which stabilises M. Then we will set

G (A%) = G(A™P) x Q;j X Py (Fy,) X ﬁ(ij};)X
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We will also set
XUP,m,M = XUP,m,w_mlM/M'

For fixed M the inverse system of the Xy, as inherits an action of G (A>).
Then

H{(X & @ L) = _}llglmH (X ve.mm x Speck(w)™, & @ L)
is a smooth/continuous G (A>) x W, -module.
We will next describe a natural map
PM(O:U /w)ml)Hé(YUpymyM X Spec k(w)*, & @ L)
Hﬁ(Ygl) X Speclk(w)ac, DI ® Le).

p,m

Ind

/W)X

OFw/wml)

A typical element of Ind
represented by a functlon

HZ(XU;DmM X Speck:( )ac’q)j ® Lf) is

[ (OOBPM/U)W)X — Hé(YUpm,M x Spec k(w)*, &’ @ Le)

such that
f(vg) =~f(9)
for all v € Py (Op/w™) and all g € (O, /w™)*. We map f to

(#Pr (O /™) [ #(OR J0™)*) > 97 f(9).
9P (OF,w/w™ )\(OF,, /w™1)*

This map is easily checked to be a well defined isomorphism of (OOBI?w)X—
modules.

Similarly we can define a natural map

IndP (F )HZ(XM7(I)] ®£§) — lim HZ(Xé) % SpeCk( )ac,q)j ®££)

Pm
—UP,m

as follows. A typical element of Ind (P )Hé(yM, ®J @ L) is represented by
a locally constant function

[ (BP) — Hi(X )y, ¥ ® L)

such that
f(vg) =~f(9)
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for all v € Py(F,) and all g € (B%)*. We map f to

/ 9~ f(9)dy,
P (Fw)/(Ba)*

where we choose Haar measures to give Py (F,)/(B)* volume 1, and where
the integral makes sense as it is in fact a finite sum (as f is locally constant and
Py (Fw)/(BoP)* is compact). This is a morphism of G(A*) x W, -modules.

Lemma 5.6 Suppose that H (X 1, ! ®@L¢) is an admissible Gy (A®)-module.
Then the above map gives an isomorphism of G(A*>) x Wg, -modules

HI(Xp, ¥ @ L) — lim HI(Xy), x Speck(w)™, & @ Le).

—UP,m

(BSP
In dPM(F

In particular H! (Yéhp)m X Spec k(w)™, ®I @ L¢) is an admissible G(A®) x W, -
module.

Proof: Recall the Iwasawa decomposition (BgP)* = Py (F,)(OgF,)*. It
follows that

Pry(Fu)\(B)* = Pri(Opw)\(OF )" = Pr(Opw/w™ )\(OF, /w™)".
This gives rise to maps

(O wm1)*

In dPM (OFw /wml)H2<7U7’,m,M X Spec k(w)®, &7 @ Le)
|
Ind o Hi(X v, @7 @ Le)

which are compatible with the maps

HI(X(),, % Spec k(w)™, @/ @ L)

l

(h)’ X Spec k(w)*, &/ @ Lg).

lim_)Upym Hz (7(]:0 m
As each of the maps

/W)X

I d PJM(OF /wml)

HY(X o s x Spec k(w)®, & @ L)
!

X ) m X Spec k(w)*, &7 @ Lg).

Hi(X,
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is an isomorphism, the lemma will follow on passing to the limit as long as we
can check that the map

(OF w/w™)*

PM(OF,w/wml)HZ(YUﬂWM X Spec k(w)*, &7 @ L)

!
Ind 70" HI(X y, @ ® Le)

lim_,¢p , Ind

is an isomorphism. Injectivity is straightforward. As for surjectivity any f €

Ind g}?};]f {( X, ®) ® L¢) being locally constant factors through one of the
finite quotients Py (O /w™ )\(O%F,,/w™)*. Then f will be in the image of
OOP ,wml X — A
Tnd (V5 1)m, H(Xupm m % Speck(w)®, &7 @ L) for some UP and m/. O
Prr(Opw/w™1) Y
Putting together the analysis of this section we obtain the following propo-

sition.

Proposition 5.7 For h = 0,...,n — 1 choose a direct summand M, C Ay
of rank n — h. Suppose that for each 0 < h <n—-1,0<j <n-1and
0 < i < 2h the G, (A™)-module H-(X py,, P ® L¢) is admissible. Then we
have an equality of virtual G(A*>) x Wg, -modules

[HX, L)% ] = Y (=) Ind 700 (K, @ © L),

7 (Fw)
h7j7i

We will let (X[(]}L{m)A (resp.  X{}p ;nar) denote the formal completion of

Xur m along the locally closed subscheme Yéhgm (resp. Xur.mar). The compar-

ison theorem of [Berk3] implies that ®'| ) (resp. |5, ) coincides with
UP,m U]

the formal vanishing cycles for thp)m C (X ggm)/\ (resp. Xupma C X 00 moar)

(see appendix II). In terms of Q/YSL)M (resp. G/Xuvmar) the formal com-

pletion is completely characterised by the following useful universal property.

Lemma 5.8 Suppose that X is a locally noetherian Op,,-formal scheme and
assume p = 0 on X™. Suppose also that H/X is a Barsotti- Tate O ,,-module
and that 7 is a Drinfeld w™ -structure on H/X. Moreover suppose that we
are given a morphism f : X4 — ngp)m (resp. Xuomr) under which G with
its canonical Drinfeld w™ -structure pulls back to H|yrea with the Drinfeld
w™ -structure y|yrea. Then there is a unique extension of f to a morphism
f : X — X{p o under which G with its canonical Drinfeld w™ -structure
pulls back to H and ~y respectively.

71



Proof: Let (A, \,i,7", ;) be the pull back to X™ of the universal object
over Xy» . Exactly as in the first paragraph of the proof of lemma 5.1 we see
that deformations of (A, A, 7,7, ;) to X are in natural bijection with the defor-
mations of (f*G, f*a;1). Thus we have a unique deformation (A’, X', 7', (7*)’, o)
over X of (A, \,4,7", ;) which gives rise to (H,7). Thus we have a unique
morphism f: X — Xyp, such that the universal (r 4+ 4)-tuple pulls back to
(A", N4, (7P), @}). This morphism restricts on X™4 to f and so must factor
through X {}pvm7 - We see that f is also the unique such morphism extending

f under which (G, o) pulls back to (H,v). O

6 Igusa varieties of the first kind

In our setting there seem to be two natural analogues of the familiar Igusa
curves in the theory of elliptic modular curves. We will call these Igusa varieties
of the first and second kind. When we speak of these Igusa varieties we will
refer only to the analogue of the ordinary locus on the usual Igusa curves. We
have not looked at the question of whether our Igusa varieties admit natural
smooth compactifications, although we feel this is a natural and interesting
question. In the case of elliptic modular curves, the Weil pairing on the p-
divisible group of an elliptic curve allows one to identify these two kinds of
[gusa variety.

In this section we introduce the more naive notion of Igusa variety of the
first kind in the context of the Shimura varieties we are studying. To this end
fix an integer h in the range 0 < h < n — 1. Also if m = (my,...,m,) € Z%,
then let m denote (0, mso, ..., m,). -

By an Igusa variety of the first kind I, g;)m /Y(JQW we shall mean the mod-

uli space for isomorphisms a5' : (W™ Op,,/ OF@)%,L) = G w™]. Thus
UPm

m

I(Ulgm /Yg‘ﬁﬁ is Galois (and in particular finite etale, but not necessarily con-
nected) with Galois group GLj(Op,/w™"). The morphism I(U};,{m — Ygi?m
factors naturally through I(U};’),m’ if m{ < my and m; = m; for i > 1. The

inverse system of the Ig;{m has a natural action of G(A*?) x GLy(Op,) X

Let (Z x GLy(F,))" denote the sub-semigroup of elements (c,g) € Z x
GLy(F,) such that w to the integral part of —c/(n — h) times ¢ is inte-

gral. Then the inverse system of the Ig;{m has an action of G(A*?) x Q) x
(Z x GLy(Fy))" x [T;_o(B)* extending that of G(A>?) x GLy(Op,) X
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[[i-,(0%,.)*. We leave the action of G(A>?) to the reader. First suppose
that (go, ¢, 95", i) € Q) x (Z x GLu(Fy))* x [Ti_,(Bg2)* also satisfies

e for i > 1 we have g; ' € OF ., and gy lg; € OB ;>
o (97")7" € My(Orw) and g5 g5 € My(Or),

e (n—h)w(gy) <c <0,

e for i > 1 we have wlmi_m;gi € OF >

o W gE € My(Op).
Under these assumptions we will define a morphism

e h h
(907 ) gltmgi) : I[(]p)’m — I[(]p{m/-

It Wlu Send (A7 )‘7 i? ﬁpa a(letv ai) to (A/(C D Cl)’ pvalp(go))\’ ia ﬁpa a(it Og§t7 Q; O gl)a
where we have set

o () C eAlwi"] is the unique closed subscheme for which there is an exact
sequence

(0) — ker F71* — €y — of"(F}2/ O}, [(g5")']) — (0),

(this makes sense as if d denotes the integral part of —c¢/(n — h) then
ker F~/1¢ 5 GY[w?] and G [w?] D a(F) /O ,[(g5*)7"]) (we are using the
fact that (c, 1) € (Z x GL,(F,))"1));

o fori > 1, C; = a;(g:\i/\y);
e U= (O%w QOr,, Cl) S @222 C; C A[ufvalp(go)];

e C* is the annihilator of C' C A[u="»0)] inside A[(u®)~v*#»90)] under
the \-Weil pairing;

e p"»(9) )\ is the polarisation A/(C'®C+) — (A/(C@®C*))Y which makes
the following diagram commute

pfvalp(gO)A

A — AY

l T
A/Cach) — (A(Calh))Y;
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o afogtt: (wl_m,1 (’)F,w/(’)pvw)}[’(}? — (eA[w®]/CY)° is the homomorphism
UP,m
making the following diagram commute

(W, ™ O/ Op)  — (eA[w]/Cy)et
! 7
o/ (eA[ws] /Cr)et ™
! !
w; MOk SOk, — (eA[wi™]/Cy)et
! !
W™ Ok Ok — e A aS(Fu/Opw) (955 7Y)
7 T
(w; ™ Oru/Opu)" = e Al

o fori>1 a;0g;:w,; A, J\i — AJws®]/C; is the homomorphism making
the following diagram commute

! T
w; " gili/gihi = (Alwg®]/C)[w;™]
! !
T T
’U};mlAz/Al i) A[meZ]

It is tedious but straightforward to check that this does define an action.
We see that (p~2,p~!,...,p7!) acts in the same way as p € G(A*?) and so acts
invertibly on the inverse system. Thus this definition can be extended to the
whole of Q) x (Z x GLu(Fy))" x [T_o(B2)*. (A less tedious argument is
to use the compatibility described below with the action of G(A*P) x Q) x
Py(Fy) x TTi_o(B3P)* on the inverse system of the Xyp . ar.)

We will denote by Flr*f1 the element (p~/', —1,1) € Q) X (Z x GLy(F,))".
We see that

1. QF x Z x GLy(Fy) is generated by QX x (Z x GLy(F,))* and P:‘r;*fl;

—~— f
2. Fr*'' Ig;)’m — I((Z)p)m is just (Fr*)/t. (Note that according to the

definitions above 1*:;*}01 does take [ ((333 to itself.)

),m
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Now fix j : Ayy — Of, with kernel M. This induces a homomorphism
j* : PM(Fw> —» 7, X GLh(Fw)
9 — wodet(gly) x jogoj).

h)

We will define a morphism j* : [ ((]p " Xuyr .m,m such that

-k

]((JI;),m J_) yUP,m,M
! !

—(h Fr*)f1(n—h)my —(h

Xég,m R égm

commutes. More precisely j* is the map which takes (A, A, 7,77, a5, a;) to
(A@TRET) NG ) G ome o Frahin=h) o o) where

() = F0— o it o j(a).
(To see that oy is well defined and that it is a Drinfeld level structure use
lemma 3.1.) Because X o /Y(Uhﬁm is finite flat of degree
#(Op/w™) " HG Ly (O /w™)

(see lemma 5.5), because Xy, is smooth and hence normal (see lemma
5.5), and because the composite

h (h)  (Fr*)1n=mmi —(p)
]((Jp)m - XUP,m - Urm

is also finite flat of the same degree we see that j* is an isomorphism.

Suppose that g € G(A>P?) x Q) x Pr(Fy) x [[;_o(Bg?)* and that j.(g) €
G(A®P) x Qf X (Z x GLy(Fy))* x [[;—o(Bg2)*. Suppose also that (U?)" D
g 'UPg. If for each i we have m; >> m/ then

~ f1(n—h)(mq—m})

h ju(g)Fr* h
[((JP),m [((U)P)’ m’
o o
XUP,m,M i) X(UP)/,m/,M

commutes.

We now look at natural formal extensions of these Igusa varieties. In

particular we will let (7, [(]p ) / ( Up m)/\ denote the unique etale covering with

reduced subschemes IUp . /X Upm (see [Berk2]). If t € Zs( then we will let

(I[(Jlﬁ,)m)/\( t)/ (](Uhp)m) denote the moduli space for Drinfeld w’-structures on

G /(I3 )"

75



Lemma 6.1 1. The natural morphism (I((]}L{m)/\(t) (Ig;,)m)A is finite
and flat of degree #G Ly, (Op./w").

2. (I(U}L)m)A( )/([g;)m) (t) is the unique etale cover with reduced subschemes

Upm/XUPm

3. (Ig;)jm)A(t) has the following universal property. Suppose that X is a
locally noetherian Op,-formal scheme and assume p =0 on X™4. Sup-
pose also that H/X is a Barsotti-Tate Op,,-module and that we are given
a morphism f : X4 — I((]}L{m under which G pulls back to 'H
we have an exact sequence

Xred . Then

(0) = H® — H — H*" — (0)

over X, with H° formal and H® ind-etale. Suppose finally that v is a
Drinfeld w'-structure on H°/X. Then there is a unique extension of f

to a morphism ]7 X — (I(Ulﬂiy)m)A under which G pulls back to H and the

canonical Drinfeld w'-structure on Q/(I(U}; )" (t) pulls back to .
Proof: The first part follows from corollary 3.3. The second part follows

because
h ~ ok h
(L) (1) = (Tl X 00 o (T0) ().
From the definition of (I((]}; ) () the third part reduces to the special case

t = 0. In this case, by lemma 5.8, we obtain a unique morphism X — (I, [S]Z)’W)A

under which G pulls back to H. The third part of the lemma now follows from
the following standard result (which in turn follows easily from, for instance,
proposition 1.1 of section I of [Arti]).

Lemma 6.2 Suppose that Z — Y is a finite etale morphism of locally noethe-
rian formal schemes. Suppose that X is also a locally noetherian formal scheme
and that we have a commutative diagram

Xred N X
! !
zZ — ).

Then there is a unique diagonal morphism X — Z making the diagram still
commute.
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O

We will let (GL,_n(F,) X GL,(F,))" denote the set of pairs (¢°, ¢°*) in
GL,_n(Fy) x GL,(F,) for which there exists a scalar a € F such that
both ag®® € My(Or,) and (ag®)™' € M,_1(Or,). This is a subsemigroup
of GL,_n(F,) x GLy(F,). There is a natural homomorphism from

G(A™P) x QX x GLy_p(F,) x GLy(F,) x H (BP)*

to
,

GA™?) x Q) x T x GLy(F,) x [[(B2)"
1=2
under which

(97, 9p.0s Gons G+ Gu) — (9, Gpos w(det gy, ), G5rs Gy )-

We will denote this map ¢g — [g]. Under this homomorphism
G(A™P) x QX X (GLy_p(Fy) x GLy(F,))" x H (BP)*

is taken to

G(A™P) x Q) x (Z x GLy(F,))" x [ [(BX)*.

1=2

If w is a uniformiser in Op,, then we will let

n—h

Fr;fl( ) _ (Lp_fl(n_h)? w—l’ 1, 1)
in .
G(A™P) x Q) X (GLy-p(Fy) x GLy(Fy))" x [T(B2).
i=2

Then — fi(n—h) fi(n—h)

B =R

?

and G(A™P) x Q) X GLy_n(Fy) X GLy(Fy) x [Ti_5(BgP)* is generated as a
semi-group by G(A"Op) X Q) X (GLy-n(Fy) x GLy(Fy))" x [T;_o(Bg2)* and

TSR
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The inverse system of the (I, () )\ (t) has a natural action of G(A>?) x
Q) X (GLyp—n(Fy) x GLp(Fy)) " X Hl o(BgP)*, which is compatible via | | with
the action of G(A™P) x QX x (Z x GLy(F, )) X [T;_,(B2)* on the inverse

system of the [ [(]’L)m We will leave the action of G(A*?) to the reader and
describe the action of Q) x (G Ly (Fy) X GLy(Fy))" x [[iy(Bg)*. To this
end suppose that

(90, 93, 95", 9i) € QF X (GLyp(Fy) x GLy(F,))T x H (BP)*

and that
e for i > 1 we have g;' € OF, and g;'g; € OF,,,
o (97")7" € My(Or,) and g5 'g5* € Mu(Ok.u),
* 90 ') € Mun(Orw),

m;—m

e for i > 1 we have w, ngOBw7

® Wy ma—m et € Mh(OFw)

Also choose a € Zxq such that wg$* € M;,(OF,) and (w*¢)) ™t € M,_(Or.y)
(if there is a choice, choose the max1mal such a). Finally also suppose that

o w' Vg € M, 4(Op.).

We will define a morphism

e h h
(90, 9% 65, i) + (L) (&) — (L5 (),

which extends

h h
[(9079(1)’9?37‘%)] ]((]P)m ]((]p)m

Let C; be the unique closed subscheme of G[w™] IUIZ)m for which there is a
short exact sequence

(0) — ker F=/iwtdetad) @) s oSY(F /O [(65)7Y]) — (0).

To define the desired extension (go, g7, ¢5*, g:) of [(go, 97, ¢5*, g:)] it suffices (by
the universal property of ([g;),m,)A(t’ )) to specify a lifting G’ of G/C; from
I[(Jh) to (Ig;)vm)A(t) together with a Drinfeld w"-level structure on (G')°.

p7m
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e now explain the construction of G’ and the Drinfeld w*-structure on
W lain th truction of G’ and the Drinfeld w"-struct
(G")°. To do so fix a uniformiser @ of Op,,. Note that we have an embedding

(Fo/Or)" (g1 25 g [w] — G/¢°ur].

(By an embedding we mean a compatible system of embeddings over each

closed subscheme of (7, ((J];,)m)A(t)) We also have a Drinfeld w'-structure @

on (G/G°w?)°. We set
G = (G/G°w))/ (@) (Fy ™" /O [(wg)) ) +af (Fu/Orw) " [(91)7'])).

This does not depend on the choice of w. By corollary 3.3 we see that the
composite of w™%a? with

(W O O™ o (Wt O Q)™ /(F O (w7g2) 1))

gives a Drinfeld w!-structure on (G')°.

independent of the choice of w.

It is tedious but straightforward to check that this does define an ac-
tion. We see that (p~2,p~!,...,p~!) acts in the same way as p € G(A®P)
and so acts invertibly on the inverse system. Thus this definition can be ex-
tended to the whole of Q) x (GL,_n(Fy) X GLy(Fy))" x [T_o(BR)*. (A
less tedious argument is to use the compatibility described below with the
action of G(A>?) x Q) x Py (Fy) x [[;_,(BgP)* on the inverse system of the

——fi(n—h
X{oma-) Note that Frl = maps (]g;{m)A(t) to itself and defines a lifting

of (Fr*)f1("=") hich is analogous to the canonical lifting of Frobenius in the
theory of elhptic modular curves.

Now fix homomorphisms j* : Ayy — O, and j° : Ayy — O’;;Uh such
that j° @ j° is an isomorphism. Let M = kerj**. These choices induce
homomorphisms define a Levi component Ljo jety C Py, i.e. the elements of
Py which also preserve ker j°. They also induce an isomorphism

This Drinfeld w! -structure is also

~

(j ] ) L(J ) — GLn_h(Fw) X GLh(Fw)
g N (jOOgO(j(])_l,jetogo(jet)_l).

If w is a uniformiser in Op,,, we will define a morphism
(7%, 3% )"+ (T 0) () = X
which extends the morphism

(5" - I((]’;)m—>7Up,m,M.
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To define such a morphism it suffices (by lemma 5.8) to specify a deformation
of the pair
(g(pmlfl(”_h)) Fm1f1(n h) o Oé t o ] )/[(h

UP,m

to (Ig;{m)/\(ml). As a deformation of @™ we take G/G°[w™]. Then
we have the identification

Q] x G % GG
(z,y) — w4y
As a deformation of F™f1("=" o505 we take (al05%) @ (astojt). (Note that
over ]((J’;),m we are identifying g(pmlfl(n_h)) and G/G°[w™] so that Frmifi(n=h) .
G — g™ M) corresponds to the natural projection G — G/G°[w™].)

Lemma 6.3 1. The morphism (3°, 7, @)* is an isomorphism.

2. Suppose that g € G(A™P) x Q) x Ljo jeny x [['_o(BP)* and suppose that
(7°.5%).(g) € G(A™) x @ X (GLo-1(Fu) X GLu(Fu))* x [T,_o(BL)".
Suppose also that (UP) D g~ 'UPg and that for each i we have m; >> m/.
Then

0 et) ( )F*fl(” h)(mi— ml)

(1" ) my) U

(Ury,;m
! !
g
Xl/}P,m,M - X(/\UP) m! M

commutes, where the vertical maps are (3°, 7, @)*.

Proof: The second part is formal. To prove the first part we will verify
that X{}, .y, has the same universal property as (Ig;)’m’ 1) (my). That is we
will show that if & is a locally noetherian Op,-formal scheme, if p = 0 on
xred if ‘H/X is a Barsotti-Tate Opw-module, if f : xred YUpmM is a
morphism under which G pulls back to (H/H°[w™])]|xrea and if 7 is a Drinfeld
w™-structure on H°/X, then there is a unique extension of f to a morphism
fix— (Ig;),m)A under which G pulls back to H/H°[w™] and the canonical
Drinfeld w'-structure oy 0 5 on G/ X{), ., 3, pulls back to @w™"17. To see that
X{» . has this universal property we use lemma 5.8 and note that there is
a natural bijection between

e Drinfeld w™!-structures v on H°/X

e and Drinfeld w™ -structures § : w™™ Ay /Ay — (H/H°[w™])[w™] over
X which restrict to oy o j° on A4,
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This bijection sends § to @™ d o (5° fmlM/M) and v to @ ™y0;°+ a5, where

ast o (w™ Ay /A1) — H[w™] is the unique lifting over X’ of the pull back
from Xy 0y to X7 of o (W™ ™Ay /Ay) — Glw™]®. O

We will let @°(t)/ I Up m X Spec k(w) SPEC k(w)® denote the formal vanishing
cycles for Ig;)’m C (Ig;)’m)/\( ). (If t = my then it follows from the last lemma

that (I () ) (t) is isomorphic to the completion of a proper scheme of finite
type over Op. along a locally closed subscheme of the special fibre. In gen-

eral (Il(]hp )A(t) is etale locally isomorphic to (I1) )A(t) with m} = t. Thus

UprP.m
() /1}}; o XSpee k(w) Spec k(w)® is well defined.)
Note that, if Up D (UP) and for each i we have m; < m}, then the re-

striction of ®°(¢ )/IUpm X Spec k(w) Spec k(w)* to ]((h)) s X Speck(w) Spec k(w)™

is canonically isomorphic to ®¢(t) /I(Up e X Spec k(w) Spec k(w)* (see [Berk3]).
Suppose that z is a closed point of [((me X Spec k(w)® and suppose that

Je : Yn_n — G°. Then we obtain a natural map
g5 (I3 () Xsp oy, SpE Ofw )z — SPE Ry nhots
and hence a homomorphism
(J2)" \IJF dn—ht (),
Lemma 6.4
(J2)" \I]F Jn—hit = DI (t),.

Proof: We will let Spf R(G,.) (resp. Spf R;(G?)) denote the universal defor-
mation space for G, (resp. G° with its (unique) Drinfeld w' level structure).
Then we have

(L))" (8) Xspt 0p,., SPE Oy ) = SPFR(Ga) Xspr ro(g) SPE Re(G7)
:) Hom (ngg, ZFw n— h) XSprFw n—h Spf RFw,n—h,t-

As Hom (T'G,, ¥ Fun—n) and Spf Rg, ,_p are formally smooth we see that
Hom (TG, iFw,n—h) XSpf Ry non SPL Ry n—nt — St Rp, nnyt

induces an isomorphism on vanishing cycles (see lemma II.4). The lemma
follows. O
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The inverse system of sheaves

( )/[g;m X Spec k(w Spec k’( )
has an action of G(A™P) x QX X (G Ly (Fu) X GLy(F,) " <[]y (BP)* x W,

in the following sense. If

(9.0) € G(A®P) x Q) x (GLy_n(F.) x GLy(Fu))* x [[(BR) x W,

and if [g] : IU};)m — I((Z)p), v then for ¢ >>t' we get a natural map

(9,9) : ([g] x (Froby@)")*®(t') — @(t)

on II(J};),m x Spec k(w)®*

We now wish to describe the action of (g, o) on stalks. Thus let  be a closed
point of I[(]];)ym x Spec k(w)* and let y = ([g] X (Frob®@)*)z, a closed point of
I((ZL)/ , X Spec k(w)®. Suppose also that j, : 3, 5, — GY. If 6 € Drg. ., and
if w(det §) = w(det g°) — w(o) then we will define

([g] x (Fr0b$(0)>* X 0)(Je) : Y Fyn—h = g;(/)
To do so it suffices to give an isomorphism

(pf1(w(det gg)—w(@))

0
EFw n—h - gw .

We simply take j, o 6. We will write simply

gy = (lg] x (Froby@)* x 8)(j.),

but recall that it depends on a choice of §. We see that, for ¢t >> t/,

(I ) () Xsp 0y SPE O ) 2 Spf Rpy i
! !

-k

(I () Xspt0r,, SPE Q) SPf Rppy

commutes (the left vertical arrow being g x (Frob”(®))* and the right vertical
arrow (¢°,4)). Hence

gxo

®(t),  — D),
T 7
j (99,6,0)
\Ijiﬂml,n—h,t A \I;]Fw,l,nfh,t’
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also commutes (the left vertical arrow being (7X)* and the right vertical arrow
being (j;)" = ([g] x (Froby™)* x 6)(ja)™).
If we set

Hé(l(h)a CI)j ® £§) = ll};n tHé(I((]Z),m XSpeck(w) SpeCk<w)aC’ (I)j(t) ® Ef)a

then Hi(I™ &7 @ L¢) becomes a smooth

T

G(A®P) x Q) X (GLn_p(Fy) x GLy(Fy))" x [[(BX) x W,
i=2
module. Then we have the following lemma.
Lemma 6.5 1. IfI'; denotes the kernel of the homomorphism
GLy1(Orw) — GLy 1 (Op.w/w')
then for t <t we have a canonical isomorphism
PU(t) — ().
2. The action of the semigroup

G(A™P) x Q) % (GLy-n(Fy) x GLu(Fw))™ x [[(BE)* x W,
=2

on H{(IW & ® L) is admissible/continuous.

Proof: The first part follows by calculating on stalks using isomorphisms
(72)* and the above compatibility. The second part follows from the first. O

We also have the following lemma which we will prove in the next section.
— fi(n—=h) . )
Lemma 6.6 Fr_ acts invertibly on each
H(I) ) X Spec k) Spec k(w)™, & () @ Le).

We are now in a position to prove the following result.
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Proposition 6.7 1. The action of the semi-group

r

G(A®?) x QF % (GLu-n(Fu) x GLy(Fy))*" x [[(BE)* x W,

1=2

on H{(IW &I ® L) extends uniquely to an admissible/continuous action

of

G(A®?) x QF % GLy_n(Fy) x GLy(F,) x [[(B2)* x W,

=2

2. If we fix a triple (5°,j @) as above then we get an isomorphism of
smooth

G(A>P) x QF X GLp_p(Fy) X GLp(Fy) X [[;_o(BP)* x Wg, =
= G(Aoo’p) X Q; X L(jO,jet) X H;:2<BS;I¢))X x Wg,

modules ' ' o '
H(IW & @ Le) 5 H(X pr, & @ L)
3. The unipotent radical of Py (F,) acts trivially on
H(X v, @ @ Le).

Proof: The first part follows from the lemma 6.6. For the second part we
consider the maps

—5 fi(n=h)m1 0 e *\— h
Fre o (5% 7, @)) ™t Xmar — (T ) ()

and the induced maps

f\;ﬁ (n—h)m1

(((5% 5, @)*) ") o (Fry )"
from ' '
H(I{), Xspecku) Spec k(w)™, & (my) ® Le)
to

Hé(XUT’,m,M XSpeck(w) Spec k(lU)ac, (I)j & Eg)

Combining lemmas 6.3 and 6.5 we see that these latter maps are isomorphisms.
Again by lemma 6.3 they are compatible as UP and m vary and give in the
limit an isomorphism

H(IW & @ Le) = H(X pp, & @ Le).
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That this isomorphism is compatible with

G(A>P) x QF X GLy_p(Fy) X GLy(Fy) X [ (BP) x W, =
= G(Aoo,p) X @; X L(jOJct) X H::2<Bg}?)>< X WFw

actions again follows from lemma 6.3.
The final part follows from the second and from lemma I.1. O

Corollary 6.8 For h =0,...,n — 1 choose homomorphisms j\ : Ay; — (’)}L;)h
and j5* - Ay — Op,, such that j) & ji* is an isomorphism. Let My = ker j5'.
Then we have an equality of virtual G(A>) x Wg, -modules

[H(X, L)% ] =Y (=1 [Imd ), HI(IW, &7 © L)),

(Fuw)
h‘vjvi

7 Igusa varieties of the second kind

We now come to the slightly less obvious generalisation of Igusa curves. More
precisely we define the Iqusa variety of the second kind,

h s h
Ti s = JOGO/I) ).

Then J,(j;),m,s/f,(]’?m x Spec k(w)* is Galois with group (Op,, ., /w®)* (acting
on the right).
We will describe an action of the semigroup

GA®T) X Qi x (Zx GLa(Fu))* x T (BE)* X Df,

=2

on the inverse system of the J(UZ)m ;- Consider an element

r

(97, 99,0+ €+ G G 6) € G(A™P)x Qp X (Zx GLa(F,)) x [ [(Bi)*x D, i,
=2

Choose a € F) with ¢+ (n —h) > (n — h)w(a) > c. If (UP) D (¢P)"'UPg?

and if for all ¢ we have m; >> m!, then we let

7

(97, 9p.0 € Grg Gui» 0) = Lyyy X Spec k(w)™® — [((h)

Upy e X SPEC k(W)

be the map
(97, 9905 C: o> Gu;) X (Frob?,)e—w(detd)
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We will extend this to a compatible series of morphisms
e h h
(9p> 9p,0,Cs gwtv Gw; s 6) : J[(]P),m,s - J((Uz’)’,m’,s’
for s > . For this it suffices to give compatible isomorphisms
((Froby,) =05 e 0 ) [w”] = (67, 990 ¢ 9l 9u) "G [w”]

over J(U};,{mﬁ. First note that a~'4 gives an isomorphism
a'é : (Froby) IS g 0w = Spynn/Sr, nonlaF ).
Also note that
a:G°/G°laF "] = (9", gpo, ¢, g Gu) G-
Thus for our isomorphism
((Frob? )@ty w5 (07 9p.0s € 9 Gu ) G0) "]

we may simply take a1, followed by the map induced by the universal iso-
morphism
SFum-nw’] = G°[w]

over J((J};),m,m in turn followed by a. It is straight forward but tedious to check
this is independent of the choice of a and does define an action.

Note that the element (Fr*fl, 1) simply acts as (Fr*)/1. (So for instance on
I((J}Qm x Spec k(w)e it acts as (Fr*)/t = (Fr*)/t x (Frob)~1.)

We will be most interested in the part of this action which is an action of
k(w)®-schemes. To this end define

(Dfy o X GLn(Fu))*
to be the set of elements
(0,7v) € Dfﬁw’n_h X GLp(Fy)

such that (w(detd),~) € (Z x GL,(F,))". Also set

GM(A®) = GA®T) x Q) x D, ., x GLu(F,) x [[(B)"

=2
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and

GO (A%)" = GASP) x Qf x (D, x GLa(Fu))* x [[(B3)*.

1=2

If we embed G™(A>)* into

G(A™?) x Q) x (Z x GLy(Fu))* > [ [(Bi) = D, .,

=2

by sending (g7, 90,0, g5, Gu:) to (97, gpo, w(det 8), g5, gu,, 8), then G (A)
acts on the inverse system of the J((]};),m’s over k(w)*. We note that this action
is compatible with w o det : D;w,n—h —— Z and the action of

G(A™P) x Q) x (Z x GLy(F,))" x [ [(BE)*
1=2

on the inverse system of the I, ,(J};,)m

If p is an irreducible admissible representation of Dy, ., over Q¢ we get

a lisse etale sheaf F,/ J[(]]:,{m’s coming from the restriction of p to
ker(Op,. . — (Obp, ./ w")").

If

r

(971 990, € Gt Guns 0) € G(A™P) X Q) X (ZX GLy(F)) ' x [[(BE) x Djs, o
defines a map

then we obtain a morphism
(9", 99,0+ € Gus» Guis 6) (9, 9p0: € Ga s Gy 6)"(Fp ® L&) — Fp @ L.
Note moreover that
ker(OlX)Fw’nfh — (Opy /W)™

acts trivially on F, ® L¢ over J(U};)vm,s.
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We remark that as a sheaf (without the action of any groups) F, only
depends on p up to twists by unramified characters. Thus F, = F, for some
p with finite image. The representation p’ can be thought of a representation

of the fundamental group of I((]’? and hence defines a lisse etale sheaf over

I [(]}L)m which has base change to Ié, X Spec k(w)* isomorphic to F,.

We will set

HI(IM F, @ Le) = lim H(I,, x Speck(w)™, F, @ L).

—Up

Then H:(I™,F, ® L¢) has an admissible action of

G(A®P) x Q) x (Z x GLy(F,))* H (BR) % (DF, -/ Ob,,.. )

—~ f
and the element (Fr* 1, 1) acts trivially. Thus this action factors through the
surjection from

G(A™P) x QX X (Z x GLy(F,))* X H (Ba) X (Dfy -t/ Oy, 1)

to GM(A>)/COJ,  which sends

(gp’ 9p,0,C, gi;ta Gw;» 5)

to
(6%, Gpop” =) 5 g%t g, ).

Thus we may and will consider H:(I"W, F, ® L¢) as an admissible G (A>)-
module. This is compatible with the action of G (A>)* on the inverse system

of the J(U];L,)’mys over k(w)®

Similarly the action of Op ~~ on \I/%w’lm_h’t (resp. \I/%w’lm_h,t [p], where
p is an irreducible admissible representation of D;mn_h) and on the inverse
system of the J((J?’m’s defines a sheaf ]:<\1/J1'?’w,l,n—h7t) (resp. ]:(\Ij%w,l,n—hi[p])) on

each J[(JIQWS. If

T

(97, 9p0: & 058 Guir 0) € G(A®P) x Q) X (Zx GLy(F,)) " x [ [(BR) x D, .

i=2

defines a map
h h
‘]l(]p),m,s - J((Uz’

) m/ s’
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and if
(57 Y5 U) € AFw,n—h

defines a map

then we obtain a morphism (¢”, g0, ¢, G5, Gu;, (6,7, 0))
(9", 9.0 € G+ Guon» ) (F (W, teh) @ Le) — F(Wp 1 4) © Le
(resp.
(gp7gp,07cv gz;tvgww5>*(:F<\Ij%’w,l7n—h7t’[ ]) ® ‘Cf) B _7:( Fy,lin— ht[ ]) ® ‘Cﬁ)
Note moreover that

e ker(O5,  — (Op,, . h/ws)x) acts trivially on F (97, tnent) ® Le
and f(\p%w,l,nfh ilp]) ® L¢ over JU

e that if I'; = ker(GL,—1(Opw) — GLn,h(OF,w/wt)) then
f(\lji?w,l,nfh,t) :) f(qj%'w,l,nfh,t’)rt

and ' '
f<\y%’w,l,n—h,t[p]) - f<\11§7w,l,n7h,t’ [p])rt7

e and that
f\ll%wln ht @F\IJ% JIn— ht ])

where p runs over a set representatlves of the inertial equivalence classes
of representations of DF ek

We will set

HI(IM, F(W) @ L) = lim  HI(I},, x Speck(w)™ F(W ;. 4,) ® Le)

—UP,m,t
and
H (1", F(W[p])@Le) = _fim, Hz( O X SPEC (W)™, F (W i) ©Le).
Then H{(IMW, F(W)® L¢) and HI(IMW | F(W[p]) @ L) have admissible actions
of
G(AP) x Qp X (Z x GLu(Fu))" X [[mo(B)* X (Apun-n/Op,, ) =
= G(A®P) x Qf X (Z x GLy(Fy))* x [T_o(BP)* X GLy_p(Fy) X Whg,.
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—~.
Again the element (Fr” | 1) acts trivially. We see that

H(IW, F(W) ® Le) = P H(I™, F(¥[p)) © Le)

p

where again p runs over a set of representatives of the inertial equivalence
classes of representations of D;w b
One also has that

Fp® \Ij%w,l,n—h,t(p) — @ (5*-7:(\I’j [0])-
deAp]

Hence
Hi(IM, Fp® Le) @ WS, | (p) = HI(IDW, F(W[p]) @ Le)V,

where the action of
(gp’ gp,Oa C, gi}? Gu;» s U)
on Hi(IMW, F(W[p]) @ L¢)° is compatible with the action of

(97, gpop™ V=D 6 g i) @ (7,0) € G (A®P) X GLy_(Fy) X W,
on Hi(IMW F, @ L¢) ® \Iljfwvlmfh(p), where 6 € Df, ., satisfies

w(detd) = w(dety) —w(o).
We record this as the following lemma.

Lemma 7.1 We have a natural isomorphism

Hz([(h),]:(q;j) ® Ef)n—h o @(Hﬁ([(h)7]:p ® L) ® \I,%Wl’n_h(p))(n—h)/e[p]

p

under which the action of

(gp7 9p,0, G, gﬁf? Guwir s 0)
on HY(IMW  F(WI) @ L¢) is compatible with the action of

(97, gpop™ DT 6 g ) @ (7,0) € GV (A®P) X GLyn(Fu) X W,
on Hi(IMW F,® L) @ \I’%w,z,n_h(P): where 0 € Dy, ., satisfies
w(det d) = w(dety) —w(o).
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J®

Urm.co WE shall mean a compatible system of

By a closed point x., of
closed points x4 of ']((]’;),m,s as s varies. If z is a closed point of I gﬁ,)m X Spec k(w)*
then the following are equivalent

e the choice of an isomorphism j : g, , 5 — G2

n)

e and the choice a closed point z of J[(ﬂ[,’mpo above x.

We will write j,_ for the isomorphism corresponding to z,. Note that if
(97, 9p.0+ ¢ 9+ Gu,) € GATT) x Qi % (Z x GLy(F,))" > [ [(B)*,
=2

if § € Dy, ,,_j, and if e = ¢ — w(det §) then
((gp,gpp, ) gieuthgwi) x (Froby,)" x 6)(Jes.) = j(gp,gp,mc,gfi,gwiﬁ)xoo

If xo is a closed point of J[(]}Qmm
Spec k(w)* then we set

F(\D%‘w,l,n—h,t)moo = hj?f(q’%w,l,n—h,t)xs-

above a closed point z of Il(]h;’),m X

We then have canonical isomorphisms (the composite depending on the choice
of z,, above x)

~

f(‘l’%w,z,n—h,t% = f(\lﬂFw,l,n—h,t)iUoc - \I’ivw,l,n—h,t‘

r

G(A®?) x Q) x (Z x GLy(F,)* x [[(BL)* x Apynon,
i=2
for
y = ((gp7 gp,07 Cv gg’? ng) X (FrObZ))Ciw(det 6)>x
and for
Yo = (gp’ 9p,0,C, gzeﬁ? Guw; 5>$OO

we have a commutative diagram

; (97,9p,0,C.9% 19w; 17,0) ;

J ’ w U J

F(\DFw,l,n—h,t’)y F<\IJFw,l,n—h,t>x

1 (gng Ovc’get:g’w' 7(5’7’0)) ]

¥i D, w 7 7

f(\Iij,l,nfh,t’)yoo ‘/T(\I/Fw,l,nfh,t)ﬁoo

. 6:7,0) .

¥ ( Y5 ¥

\IJFw,l,nfh,t/ \Ile,l,n—h,t'
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The following proposition is of key importance for us. In the original
version of this paper we reduced its proof to an abstract result on formal van-
ishing cycles which Vladimir Berkovich kindly proved for us. This result with
Berkovich’s proof is reproduced in his appendix to this paper. In this version
of the paper we have found it simpler to incorporate Berkovich’s argument di-
rectly into this paper. Thus the latter half of the proof given below is entirely
due to to Berkovich.

Proposition 7.2 There is a unique homomorphism
K ‘bj(t) - f(quﬁ‘w,l,nfh,t)

(h) h)

over Iy, . X Spec k(w)® such that if v« is a closed point of Jl(ﬂ,mwO above a
closed point x of Ig;{m x Spec k(w)®, then
K q)j(t)x - f(qj%w,l,n—h,t)x
coincides with the inverse of the composite
F(\D%w,l,n—h,t)m - F(\P%w,l,nfh,t)moo - \I[%w,l,nfh,t (Jioz P’ (t)a-
Proof: Because of the uniqueness it suffices to work locally on II(J}L),m X

Spec k(w)*. Thus let W C I(UZ),m x Spec k(w)® be an open subset such that
W, the restriction of (I[(JZ),m)A(t) XSpt Op. OPf Opne to W, is affine. For any
positive integer s let W denote the pull back of W to J((]h) and let W /W"

denote the unique etale cover with reduced subschemes W, / Ww.
Choose a lifting of W/k(w)* to a smooth scheme of finite type Y/Oz,..
Set ’

A A
Y =Yy Xspros,. SPERE, n—ht

and more generally

Y = (Yi))s Xspt 0o SPE Ry -t

nr
Fyy

where (Yi)s/Y}p is the unique etale cover with reduced subschemes Wy/W.
Also set
YN} =Y Xspt 05 SPE RE, it /MF,

nr
Fy

and more generally

YMNY = (Yi)s Xspt 0 SPE REy ht /0 o py-

For
F’LU
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Note also that the formal vanishing cycles for Y, are just the constant sheaves

\IJJF l;n—h,t"
Choose N(s) as in lemma 3.4 for the triple Fi,, n — h, t. Then the ac-

tion of (1 +w*Op,, ,_,) on Xp, np lifts to an action on Xp, non Xpgp, . p.
RFw,n_h,t/mg}f)n Moreover for any positive integer a > t the action of

(1+ w9 O0p, ) on Spyaon[w?] Xpp o, Ry nne/mpe)

w,n—h,

Thus (14 w*Op,, . _,)/(1+w™**"Op, ) acts diagonally on

—h,t”

. is trivial.

2t [0] X Y0 N (s)}-
As Y/, AN(s)}/Y{N(s)} is finite, etale and Galois with Galois group
(1 + wSODFw,n_h>/<1 + ws+a_tODFw,n—h)v

the quotient is a finite, flat group scheme H2[w®]/Y/*{N(s)}. The direct sys-
tem of the H"[w"] define a formal Barsotti-Tate Or,,-module HY/ Y {N(s)}.
Note that H[w!] & Sp, _ni[w'], and so HO inherits a Drinfeld w'-structure.
Also note that over W, , 4 we have an isomorphism

H[w"] = Bp, pon[w] = G°w].

The composite isomorphism descends to an isomorphism over Ws. Thus we
see that over W, we get a canonical isomorphism between GY and H?. More
generally for s’ > s we get a canonical isomorphism between the pull back of
HY to Y2 {N(s)} and the restriction of H% to Y {N(s)}.

Let HS /Y] denote the unique lifting of G /W, to an ind-etale Barsotti-
Tate Op,-module. By corollary 2.10 we can recursively find an extension of
Barsotti-Tate Op,,-modules

(0) — HY — Hy — H — (0)
over Y/'{N(s)} which restricts over Y*{N(s — 1)} to the pull back
(0) — Hy_y — Hox — MLy — (0).

We will simply write H for any H.
From the universal property of (I((]}L{m)/\(t) we obtain a unique morphism
of formal schemes over Spf Oz,

K5 YMN(s)} — (I4,,)(t) x Spt O

nr
Fw
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which extends the natural map W, — [((J};)’m x Spec k(w)* and such that G
pulls back to H and the universal Drinfeld w’-structure on G° pulls back to
the Drinfeld w!-structure we have just defined on H°. From the definition of
W, and lemma 6.2 we see that x* lifts to a unique morphism

ke Y{N(s)} — WP

which extends the identity map on W and such that G pulls back to ‘H and the
universal Drinfeld wf-structure on G° pulls back to the Drinfeld w!-structure
we have just defined on H°. Note that

w %

YMN(s)y — W)
7 ) T
Ys/ll{N(S)} =5 WS/\+1

commutes. Note also that if x is a closed point of W, and if x, is a closed
. (h) )
point of Jy o lying above z then
YMNED, S
! !

Spf Rpynone/mps . = SPf Rpymons

commutes, where the right hand vertical arrow is j;_.

The rest of the argument is entirely due to Vladimir Berkovich, to whom
we are extremely grateful. By his lemma II.5 we see that for every positive
integer NV we can find a positive integer s such that N(s) > N and a morphism

K(N)* : Y — W)

s

such that for each closed point x of W, and each closed point z, of J(U};’),m,oo

lying above x

(Y2{N}) W

l l

SprFw,n—h,t/mng}nih’t — SprFw,nfh,t

commutes, where the right hand vertical arrow is j; .

We will let W/(Z/I"Z) denote the j™ vanishing cycle sheaf constructed for
the constant sheaf Z/I"Z on Spf Rg, n_ns and ®/(Z/I"Z) the j™ vanishing
cycle sheaf constructed for the constant sheaf Z/I"Z on W*. Thus

Wt = (m W(Z/1"2)) @2, Qf°
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and ' .
O/ (t) = (im O/ (Z/1I"7Z)) @z, Qf°.

By theorem 4.1 of [Berk3], for any positive integer  we may choose a positive
integer N such that any two morphisms of formal schemes over (’)fm,

Spf RFw,nfh,tHXla ey Xh]] — Spf RFw,nfh,t

which agree on Spf (Rp, n—ns/mp, ., )[X1, ..., X4]] induce the same map on
vanishing cycles . A
VI(Z)I'Z) — W (Z)1I'Z).

As the formal completion of any W/ or Y* at a closed point is isomorphic

to Spf Rp, n—nt[[X1, ..., Xn]] we see that we can find a positive integer s (still
perhaps depending on r) and a morphism of constructible sheaves over Wy,

K D Z)UT) — VI(Z/IT),
S®

such that for any closed point z of Wy and any closed point zw of Jy,,,

above x the morphism
K ®NZ)T)y — V(Z)I'Z)

coincides with the inverse of (j;_)*. In particular we see that  is an isomor-
phism.

Moreover if § € Of ~  we see that the natural map §*®/(Z/I'Z) —
®I(Z/I"Z) (which arises as ®/(Z/I"Z) is a pull back from W) corresponds
under & to the composite of the natural map 6*W/(ZI"Z) — W/(Z/I"Z) (which
arises as ®/(Z/I"Z) is a pull back from Spec k(w)*) with the automorphism
§ of W/(Z/I"Z) (which arises from the action of Obp v O0 SPERE, o)
(This can be checked by working on stalks and using the commutativity of the
diagram

B2/ L) "= Wiz
L |
o(z/Ir7), = wizrz),

where the right hand vertical arrow is ¢.)
We will let F(W/(Z/I"Z)) denote the etale sheaf over W obtained by de-
scending W/ (Z/1"Z) /W, by the diagonal action of (Op,, . /w®)*. Thus

F( W 1) 2 (I F(W(Z/1'Z))) @5, Qf
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We see that k descends to an isomorphism
KON L)L) — F(V(ZJI'Z))

over W such that for any closed point z of W and any closed point z,, of

J((]};)m’oo above x the morphism

K (bj(Z/l’"Z)x — ]—"(\Ifj(Z/l’"Z))x
coincides with the inverse of

FW(Z)rD)), = FW(2/rD)),, = Wz/rz) "= e,

where x4 is the image in W of x,,. By looking at stalks we see that the
morphisms x are compatible as r varies and hence we can glue the morphisms
k to give the map whose existence is asserted in the proposition. O

The next two corollaries are checked by working on stalks.

Corollary 7.3 The homomorphism k in the proposition is an isomorphism.

Corollary 7.4 Suppose that g = (g7, gp0, 9%, 9, guw;) is an element of
G(A™P) x Q) x (GLn_p(Fy) x GLi(F,)" x [[(BE),
=2

and that
h h
(9] = I 0y — Ty s

Suppose also that (¢°,06,0) € Ap, n—n and that t >>t'. Then

(lg] x (Frob®(@))) @i (#) 9% i (1)
! !
w(de —w(de %\ * j 0.6,
(lg) X (Frobt@etoh) vty g -y WS g, )

commutes (where the vertical arrows are induced by k).
The next three corollaries follow easily from the previous one.

. o hn=n)
Corollary 7.5 Under k the homomorphism Fr__ x 1 from

H(IY5),, x Speck(w)™, /(1) @ L)
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to
H(I{),,, % Spec k(w)™, & (t) ® Le)

corresponds to the homomorphism 1 x (w™ !, @1,1) from
(I % Spec k(w), F(V, 1, y) © Le)

to
H(IS) % Spec k(w)™, F(W, | )@ Le).

Hence lemma 6.6 follows.

Corollary 7.6 x induces an isomorphism
H(IMW & @ L) S H(IP, F(W) @ Le).

Moreover if g = (g7, gpo, 9%, 9, gu;) is an element of

r

G(A®P) x Q) X (GLn_n(Fy) x GLy(F,)" x [[(B2)*

1=2

and if o € Wg,, then the action of g X o on the left hand side corresponds to
the action of [g] x g% x & on the right hand side.

Corollary 7.7 The action of

T

G(A®P) x Q) X (GLn_n(Fy) x GLy(F,)" x [[(B2)*

=2

on HI(IM & ® L) extends uniquely to an action of

G(A®P) x QF x GLy_n(Fy) x GLy(F,) x [[(B&®)*.
1=2

Combining these with lemma 7.1 we get the following corollary.

Corollary 7.8 We have an isomorphism

H(I"M, &7 @ Loy 5 @@HIIP, Fp ® Le) © W, 1,4 (p) "/,

p
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where p runs over irreducible admissible representations of Dy, nh up to in-
ertial equivalence. Moreover if (g7, gp.o, 9% 95, Gu;» 0) 1S an element of

G(A®P) x Q) X GLy n(Fy) X GLy(Fy) X H (B2)" x Wkg,,

1=2

then the action of (¢%, gp.o, 9% 9, Guy, @) on the left hand side corresponds to
the action of

<gp 9p, Opiflw(g%w((s)?gz)tagwi) X (93,,0')
on H(IMW, F,® L) ® \I/F tn_n(p), where 6 € D, ., satisfies

w(det §) = w(det g°) — w(o).
We will let d;, denote the homomorphism

GLy(Fy) x Wg, — GW(A=)/Op,
(90 0) — (Lp @011,

where
w(det §) = w(det ¢°) — w(o).
If we set
[H(IW, Fy @ Le)] = > (=" [HIIM, F, @ Le)],
then we can combine corollaries 6.8 and 7.8 to obtain the following theorem.
Theorem 7.9 For h =0,....,n — 1 choose homomorphisms jp : Ay1 — (’)?;;Uh

and j5* : Ayy — Op,, such that j) & ji* is an isomorphism. Let M), = ker j;*
Then we have an equality of virtual G(A>) x Wg, -modules

n—1
[H(X, L™= elpl'In dPNIth J([H(IW, Fy® Le)] %4y, [V 1n-n(p)]),
h=0 p

where p runs over representatives of the inertial equivalence classes of irre-
: o . y
ducible admissible representations of Dvan_h

(See the discussion before lemma 3.7 for the definition of d,,. See appendix
[ for the definition of *g4,.)
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8 k(w)" points.

The purpose of this section is to give a reasonably explicit description of the
inverse system of sets J((]}L{mﬁ(k(w)“c) together with its action of G (A>).
This we will do by combining the theory of Honda and Tate (which describes
simple abelian varieties over k(w)® up to isogeny - see [Tatl]) with some
Galois cohomology calculations which closely follow work of Kottwitz (and
which allows us to describe the possible polarisations on these abelian varieties
- see [Ko3| and [Ko4]).

If UP is an open compact subgroup of G(A*?), if m € ZL, and if s € Z>q
then set -

UP(m, s) = UPxZy % (14w Opy,, )% (L+w™ My(Op)) x | [ (1w OF,,),

=2

an open compact subgroup of G (A>).
Also set
T (k(w)*) = lim T (k(w)™).

«—UP,m,s

This set has a natural right action of G (A>)* and we see that
h ac ac
T s (W(w)") = T (k(w))/UP (m 5).

Also if z € J® (k(w)*) then we define the stalk of F, ® L¢ to be the direct
limit of its stalks at the images of x in each J[(]'L)7m7s. For each such x there is

a canonical isomorphism
(Fr®Le)e = p®E
such that for any g € G™(A>)* we have a commutative diagram

(Fp@ﬁf)xg = (Fp®££>w
! !

LS
PR E P90)®E(91) PRE.

As a first step we will see that when considering k(w)%-points one can (as
in characteristic zero) work with abelian varieties up to isogeny, rather than up
to prime to p-isogeny. To this end we have the following lemma, whose proof
is straight forward. (The main point being that if x is a closed geometric point

h ~
of Jiit) s then G, = G0 x Geb.)
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Lemma 8.1 1. JW(k(w)®) is in bijection with equivalence classes of (r +

6)-tuples
(A A8 0.0, Ty T s, )
where
o A/k(w)* is an abelian variety of dimension dn?;

Here we call two such (r
(A,7 >\,7 i,7 (np)la T];;,Ov (772;),7 Thev
A— A, veQ anda € Z

A A— AY is a polarisation;
i: B — End(A)®zQ such that

— for all b € B we have X oi(b) =i(b*)Y o A,
— fori>1 the ring O, acts trivially on Lie A,

— Lie A®o,,, Oruw is a one-dimensional k(w)*-vector space;

nP 1 V@gA>®P 5 VPA is an isomorphism of BRgA>P-modules un-
der which the standard pairing, ( , ), on'V corresponds to a (AP)*
multiple of the \-Weil pairing on VPA;

Mp,0 - Qp = Qp(D;
nl X, — eAlw™]? is an isogeny;
ne : Fh 5 eV, A;

for i > 1, ny, : As @z, Q, = Vi, A is an isomorphism of B, -
modules.

" 1My, ), equivalent if there is an isogeny o :

+ 6)-tuples, (A, N, 3,07,1p,0, Nys Moy M) a0l
)
< such that

P
YA=a"oNoa,
aoi(b) =1(b)oa forallb € B,

() oa =P,
Yanpo = M0,
(m) o a =1,

(n5,) o =g,
(ﬁwi), O = Thy;,-

2. Under this bijection the action of

(67, 9p.0s 9001 95 Gu,) € G (A®)F
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on J® (k(w)®) corresponds to the map which sends
(Aa )\7 i? 77p7 Mp,0; 772;7 775)7 77w1)
to
(A7 )‘7 i? 77p © gp’ Tlp,0 © 9p,0, 772; © 92;7 772; © gfm Thy, © ng)
3. In particular the action of GMW(A®)* on JW(k(w)) extends to an ac-
tion of G (A>).

In the rest of this section we will give a group theoretic description of
J® (k(w)e). We start with an application of the theory of Honda and Tate

(see [Tatl]).

Lemma 8.2 1. There is a bijection between isogeny classes of pairs (A, 1)
where

o A/k(w)™ is an abelian variety of dimension dn?;
e i: B— End(A) ®zQ such that

— for i > 1 the ring O, acts trivially on Lie A,
— LieA®o,, Ory is a one-dimensional k(w)*-vector space;

o cA[w™|¢ has height h;
and pairs (M, w) where
o M/F is a CM field extension which is embeddable into B over F,

e w is a place of M above w such that
(Mg : Fyln=[M : F](n — h),
o there is no intermediate field M O N D F such that @|y is inert
in M.

2. Suppose that (A,i) and (M,w) correspond. Then C' = End%(A) is the
division algebra with centre M and invariants as follows.

o [fx is a place of M not dividing ww® then inv ,(C) = inv ,(B® ®@p
o [fxis a place of M which divides ww® but not ww® then inv ,(C) =
0.

o inv(C)=I[M:F|/n.
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o inv;(C)=—[M:Fl|/n.

Moreover

dimy;(End 5(A) ®z Q) = (n/[M : F])>.

Proof: In the proof of this lemma we will use results from appendix III
without comment.

We will first show that any A as in the first part of the lemma is a simple
object in the category of abelian varieties up to isogeny with B-action. To
this end choose a simple factor A’ of A in the category of abelian varieties up
to isogeny with B-action. Suppose that A’ corresponds to a p-adic type over
F with minimal representative (M, n). Choose a place = of F' such that B, is
a division algebra and such that x fu®. Let y be a place of M above x. If z|p
then (as z|u but  # w) A[y>] is etale and hence 7, = 0. In any case we see
that, if C’ = End %(A’), then

inv,(C") = —[M, : F,)inv .(B),
and so
[C": M])V? > n/[M : F].

Thus
dim A’ > dn?,
which implies A = A’, as desired.
Thus let A correspond to a p-adic type over F' with minimal representative
(M,n). Note that if y is a place of M dividing u but not dividing w then
Aly™] is etale and hence 1, = 0. Moreover as A[w*™]° is a simple object in

the category of Barsotti-Tate groups up to isogeny with B,-action we see that
5]

there is a unique place w of M above w with ng # 0. Then A[w*>]° = A[w
and as this Barsotti-Tate group has height [F}, : Q,]n(n — h) we see that

(Mg : F][C: M]Y* =n —h.

Also as the Newton polygon of A[w>]° has Newton polygon which is pure of
slope 1/([F, : Qp](n — h)) we see that

N = €afw/ (0= 1) fup).
Hence we see that
o invyC = [My: F,]/(n—h)=[C: M|/,
o inv ;O = —[My: F,)/(n—h)=—[C: M/
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e and for any other place x of M we have

inv,C = —[M, : F,]Jinv .(B).

As
dn? = dim A = [M : Q[n[C : M]Y?/2
we see that
n=[M: F|[C: M]"/?
and hence that
(n—h)[M : F] =n[Mg : F,l.
Because we can find an extension N : M such that N splits B and [N : F]? =
[B : F|, we see that M embeds in B over F. Finally as (M,n) was chosen
minimal we see that there is no intermediate field M D> N D F such that @|y
is inert in M.

Conversely if (M, ) is as in the theorem we consider the p-adic type over
F, (M,n) where

® N = €ajw/ (N —h) fup),
e 7, = 0 for any other place z|u of M,

® Nae = eapp(l—1/((n = h)[Fy - Q))),
® 1), = e, for any other place z|u® of M.

Let (A, %) be the corresponding abelian variety with B-action. Again using the
results listed in appendix III we see that (A,7) has the properties listed in the
lemma. O

We now want to add polarisations to the picture. To this end we follow
the approach of Kottwitz, [Ko3]. The next lemma is presumably the analogue
in our language of “the vanishing of the Kottwitz invariant”.

Lemma 8.3 Keep the notation of the last lemma and suppose that (A,i) and
(M, w) correspond. Then we can find

e a polarisation \g : A — A" such that the \g-Rosati involution preserves
B ® M and induces the involution * @ ¢ on it,

e and a finitely generated B ® M-module Wy together with an alternating
pairing

(; Yo: Wox Wy — Q

which 1s * @ c-Hermitian
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such that

1. there is an isomorphism of B @ M ® A*P-modules
Wo ® A®P? = VP A
which takes ( , )o to an (A*P)*-multiple of the \o- Weil pairing on VPA,
2. and there is an isomorphism of B ® R-modules
Wo@R SV R

which takes ( , )o to a R* multiple of our standard pairing ( , ) on
VeR.

Proof: By lemma 9.2 of [Ko3] there is a polarisation \g : A — AY such
that the Ag-Rosati involution preserves B ®r M and acts on it as * ® c. Let
C' = End 5(A) ®z Q and let {, denote the Ap-Rosati involution restricted to
C. We see from lemma 8.2 that C' is a division algebra with centre M and
that I,y = c.

The first step of the proof will be to show that, up to isogeny, we can lift
A with its B ® p M-action and its polarisation over Opae.

Let M+ denote the maximal totally real subfield of M. For a|[C : M]'/?
we will let X, C C denote the locally closed M T-subvariety of semi-simple
elements § such that §% = § and the characteristic polynomial of § over M
is an @', but no higher, power. (Note that if a polynomial over F'* is a a'®
power over (M) it is already one over MT.) Then

Cho=! = T Xa(MY).
Computing over (M ™) we see that
dim X, = [C: M|+ (a — [C: M]/a).

As C%=1is an affine space over M of dimension [C : M| and as for a # [C :
M2 we have dim X, < [C : M], we see that we can find an element

sech= — J] Xa(M).
a#[C:M]L/2

Set N = M(0). Then N is a maximal subfield of C', which is preserved by
1o, which is a CM-field and which satisfies I4|y = ¢. Set N* = MT() the
maximal totally real subfield of V.
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We see that N also splits B (as it does so locally at all places of F' by
lemma 8.2). Choose an isomorphism « : B ®r N = M,(N) and let *,
denote the involution ao (x®@c)oa™ on M, (N). If z € M,(N) we will define
&’ € M, (M) by (2'); = x5;. Then we have z* = az’a™" for some a € GL,(N)
with a’'a™! € N*. We see that (a’'a™!)(ad'a )¢ = (a/)"}(d’'a™')a = 1 and so by
Hilbert’s theorem 90 a'a™! = ~/~¢ for some v € N*. Replacing a by va we
see that we may suppose that ' = a. If we compose a with conjugation by
bin GL,(N) then we change a to bab’. Thus by suitable choice of a we may
suppose that
*®c)

a(z*®%) = aa(x)'a™?

for some diagonal matrix a € GL,(NT), with diagonal entries ay, ..., a, say.
As * ® ¢ is a positive involution on M, (N) we see that a;a; is totally positive
for all 2 and j. Thus multiplying a by a scalar we may suppose that each a; is
totally positive.

Considering € € M,(N), let Ay = €A and let j : Ay — A denote the
tautological inclusion. Let i; : N < End°(4;) be the map induced by ¢ and
let A\ = 7Y 0 \g o7, a polarisation on A;. If for i = 1,...,n we let ¢; denotes
the element of M, (N) which has a 1 in the " entry in the first column and
zeroes elsewhere, then we get an isogeny

(e10)+ ... +(en0j): A} — A.

Then the diagram
A —— AY
T !

Ap Eheafe)

commutes. Note that, as the centraliser of B ®p N in B ®p End%(A) is N,
the centraliser of i1(N) in End°(A;) is just i,(N) itself.

Now (up to isogeny) we can lift A; to an abelian scheme A,/ Opac in such
a way that the action i, of N lifts to an action i; of N on A;. (See [Tatl].)
Choose a polarisation f : A x Fl¢ — AY x F% for which the Rosati involution
induces ¢ on i;(N) (see lemma 9.2 of [Ko3]). It extends to a homomorphism
i Ay — AY. which is again a polarisation (see [Ko3], page 392). Let 7 denote
the pull back of i to A;. As Ay and & both induce ¢ on N and as i1 (V) is its
own centraliser in End(A;) we see that \; = fioz for some z € N. As \; and
& are both polarisations, z must in fact be a totally positive element of N +.
Then \; = p o x is a polarisation of A; which reduces to A;. Set A = (A;)",
i=M,(iyoa): Bop M — End°(A) and A\ = @;’:15\1 oi(aj/ar).
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Because Lie Ay ®o,,. FO¢is a F @ Fo© 22 (Foc)Hom(BES)_module, we get a
decomposition

LieA; @0y Foc= @ (LieA)),.
o€Hom (F,Fa¢)

We also have a decomposition

w w )

Lie gl Q0 pac F >~ Lie Zl [p™] ®0pge Foc =~ @ Lie /Tl [2%°] @O pae e

where x runs over places of F' above p. Then

Lie Ay [z™] QO pae Fry = @(Lieﬁl)m

where now o runs over embeddings o : F' — FJ° such that x is the induced
place of F. Let Hom (F, F2)" denote those embeddings which induce the place
won E, so that Hom (F, F2¢) = Hom (F, F$°)" [ [ Hom (F, F$°)" o c. Then we
deduce that there is a unique oy € Hom (F, F9€)* such that (Lie A;),, # (0).
Moreover oy induces w on F and (Lie A;),, = Fo°.

We can find an embedding x : F?° — C such that x o 0y = 79, our
distinguished embedding F' — C. Set

Wo = Hi((A Xspec0pge . SpecC)(C), Q).

This is a B ®r M-module with an alternating pairing (coming from 5\0) which
is * ® c-Hermitian for the action of B ®x M. We see at once that Wy @ AP
is equivalent to VPA as a B ®p M ®g A*P-module with * @ c-Hermitian
A P-alternating pairing.

It remains to show that Wy ®R has invariants (see section 1) (n—1,1) at 7y
and (n,0) at any other embedding F* — R. Note first that the invariants of
Wy @R are the same as the invariants of the /' ®g R-module with c-Hermitian
alternating pairing ( , ); on Wi ®qg R, where

Wl = Hl((gl XSpecOFﬁz}c’K Spec C)(C)a Q)7
and ( , ); comes from M. As an F-module we see that W; & F™. Also
Wl ®Q R = (L’L@gl) ®OF1%C,H (CJ

and so it is an F' ®gp C-module, not simply an F' ®g R-module. Corresponding
to F ®q C = CHom(FO) we get a decomposition

W @R (W ®¢R),.

T€Hom (F,C)
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As Wi ®g R = (F ®g R)™ we see that for all 7,
dimc (W ®g R); + dime (W ®g R)roe = n.
On the other hand
o (W1 ®gR)uor, =C,
e but if 7 # k 0 gy while 7|g = (k 0 0¢|g then (W) ®g R), = (0).

As the alternating form on (W; ®g R) is ¢ ® c-Hermitian for the action of
F ®q C we see that

Wi ®@q R = (W1 @ R),

is an orthogonal direct sum for this alternating form.
For a suitable choice of i € C a square root of —1 the c-symmetric form

(W1 ®gR) x (W) ® R) — C given by
x Xy (iz, y)h + iz, y)

is positive definite. Choose /—1 € E ®q R such that x o oo(v/—1) = —i. If
T|g = co ko og|p then

T XY — <\/—_1$,y>1 + vV —=1{z,y)

is positive definite on (W} ®g R),, while if 7| = & o 0y|g then it is negative
definite on (W; ®q R),. It follows that the invariants of Wy ®¢ R coincide
with those of V ®g R and so these are equivalent as B ®g R-modules with
8-Hermitian R-alternating pairings up to R*-multiples. O

Keep the notation of the last two lemmas. Let I, denote the \p-Rosati
involution on C' = End §(A). Let H}V /Q denote the reductive algebraic group
such that for any Q-algebra R the R-points of HyY are the set of g € C ®q R
such that glg € R*. Also let D = End g (Wp), so that D is isomorphic
to the centraliser of M in B°P, and let {, denote the involution on B =
End p(Wp) and on D induced by ( , )o. Let H:*/Q (resp. Go/Q) denote the
reductive algebraic group such that for any Q-algebra R the R-points of H}*
are the set of g € D ®g R such that glog € R* (resp. g € B’ ®g R such that
glog € R*). Then

(] H(I)JA C G,

e (G and G are inner forms of each other,
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e and HyYV and H}* are inner forms of each other. (If Isom (H}Y, HX)

denotes the variety of isomorphisms between these algebraic groups, we
need to show that Isom (H{V, HI*) has a connected component which
is geometrically connected. Thus it suffices to show that there is an
isomorphism Hy* xg A" 5 HAY xo A™" which is conjugate to all its
Gal (Q*¢/Q) transforms. The existence of such a isomorphism follows
from the equivalence of Wy @A™ " and VPA@xen A" as B®r M Qg
A*P-modules with * ® c-Hermitian A P-alternating pairing.)

Moreover we have a natural isomorphism
HEY (47°7) = HEN (A7),

Also let ¢y denote the class in H*(Q, Gy) which represents the difference be-
tween (‘/7< ) )) and (W07< ) >0)

We see that there are natural bijections between the following sets.
1. G(Q)-conjugacy classes of F-embeddings j : M — B°P such that #o0j =
joc.

2. Equivalence classes of B ®r M-modules together with a * ® c-Hermitian
Q-alternating form on that module which are equivalent to V as B-
modules with x-Hermitian Q-alternating pairing.

3. The preimage of ¢y under H'(Q, H:*) — HY(Q, Gy).

(The map from the first to the second set sends j to (V,( , )) considered as
a B®p M-module via Id® j: Bpr M — B ®p B°P.)

Lemma 8.4 This bijection induces a bijection between the following sets.

1. G(A>®P)-conjugacy classes of F-embeddings j : M — B such that
# Oj = ] O C.

2. The preimage of ¢o under Hl(Q,H&A(K"O’p)) N HI(Q,GO(KOO’Z))),

Proof: We see that G(A>P)-conjugacy classes of F-embeddings j : M —
B°P such that # 0 j = joc are in bijection with classes z € H(Q, H¥*(A™"))
which lift to a class y € HY(Q, H}*) mapping to ¢y € H'(Q,Gy). Any
such z certainly maps to ¢o in H'(Q,Go(A™™")). So we must show that if
€ H'(Q, H¥*(A™")) maps to ¢y in H'(Q, Go(A™")), then we can lift z to
such a y.
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Note that ¢y maps to zero in H'(R,Gy) (by lemma 8.3) and in
H'(Qy, Go) = H'(Qp, (B ®g, Q) x (@)") = (0).

Thus z € HY(Q, HYA(A™")) ¢ HY(Q, HY*(A)) maps to ¢y € HY(Q, Go(A)).

Let A(Gy) and A(HF™) be the groups defined in section 2.1 of [Ko2]. Then
according to proposition 2.6 of [Ko2] we have a commutative diagram with
exact rows as follows.

0) — ker'(Q H}) — HYQ H}) — HYQHMA) — AHFY)
! ! il il
(0) — ker'(Q,Go) — HYQ,Go) — HYQ,Go(A)) — A(Go).

The lemma now follows from a diagram chase, because of the following two
observations.

1. ker'(Q, HE*) — ker' (Q, Gy).
2. A(HM) — A(Gy).

The first of these follows because letting Z, denote the centre of Gy the
composite homomorphism

ker'(Q, Zy) — ker' (Q, HY*) — ker'(Q, Gy)

is an isomorphism by the argument on pages 393 and 394 of [Ko3]. The second
follows by direct computation from the definitions. In fact, if [F'T : Q][B :
F]Y/? = [M* : Q][D : M]'? is odd then A(Gy) = (0) and A(H}*) = (0). If
on the other hand [F* : Q][B : F]*/2 = [M* : Q][D : M]"/? is even then the

natural homomorphism A(HE) — A(Gy) is the unique isomorphism

7.)27 = 7,27

We also see that there are bijections between the following sets.

1. Equivalence classes of polarisations A : A — AY such that the A-Rosati
involution takes B ®r M to itself and acts on it as * ® ¢, and where two
polarisations A and )" are equivalent if there exists § € End %(A) such
that X is a Q*-multiple of 6V 0.

2. Equivalence classes of non-zero elements v € C%=! such that v = §%J
for some 6 € C' ®¢g R, and where v and 7' are equivalent if there exists
§ € C* and pu € Q% such that 7/ = udtod.
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3. Equivalence classes of non-zero elements v € C*=! such that v = pd*d
for some 0 € C®gR and some i € R*, and where v and 7/ are equivalent
if there exists § € C* and pu € Q* such that v = udtyd.

4. ker(H'(E/Q, HAV (E)) — H'(C/R, HAV(C))).
5. ker(H'(Q, HAY) — H'(R, HAV)).

(The equivalence between the first two parts sends v to Agoy. The equivalence
between the last two parts results because

HY(E,HyV) = H'(E, (C ®p E*)* x (E)*) = (0).)
We deduce that we have a bijection between the following two sets.
1. Equivalence classes of polarisations A : A — A" such that
e the A-Rosati involution takes B ®pr M to itself and acts on it as

* X,

e there is an equivalence of B® A*P-modules with *-Hermitian A>P-
alternating pairings between V? A with the A-Weil pairing and V' ®
AP with our standard pairing ( , );

and where two polarisations A and )\ are equivalent if there exists § €
End %(A) such that X is a Q*-multiple of 6¥\6.

2. Those elements of ker(HY(Q, HYY) — HY(R, H}Y)) which map to ¢
in HY(Q, Go(A™™")).

We will call two polarisations A\, N : A — AY nearly equivalent if VP A
with its A-Weil pairing is equivalent to V?A with its N-Weil pairing as a
B ®p M ®g A*P-module with * ® c-Hermitian A*>P-alternating pairing. This
is a strictly coarser equivalence relation than our previous notion of equivalent.
We have the following lemma.

Lemma 8.5 There are bijections between the following sets.
1. Near equivalence classes of polarisations X\ : A — AV such that

o the \-Rosati involution takes B ®@p M to itself and acts on it as
* X e,

e there is an equivalence of B® A°P-modules with x-Hermitian A°P-
alternating pairing between VP A with its A\-Weil pairing and V ®
AP with our standard pairing ( , ).
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2. The preimage of ¢og under
HY(Q, HyV(A™")) = H'(Q, Hy*(A™")) — H'(Q, Go(A™)).
3. G(A>P)-conjugacy classes of F-embeddings j : M < B°P such that
Hoj=joc.

This bijection can be arranged so that \ and j correspond if and only if VAP
with its standard pairing ( , ) is equivalent to VP A with its A\-Weil pairing as
B ®@p M ®qg A>®P-modules with * ® c-Hermitian A*P-alternating pairings.

Proof: We have to show that the preimage of ¢y under the homomorphism
HY(Q, HyV (A™")) = H'Y(Q, Hy*(A™")) — H'(Q, Go(A™7))

is contained in the image of ker(H'(Q, Hy") — H'(R, HyV)). Suppose that
z € HY(Q, HYV(A™")) maps to ¢ € H'(Q, Go(A™")). Again by proposition
2.6 of [Ko3] we have an exact sequence

HY(Q, Hy") — HY(Q. Hy"(A™)) @ H' (R, Hy") — A(Hg"),
and so it suffices to check that x maps to zero under the map
HY(Q, Hy ¥ (A™)) — A(Hg").
By lemma 2.8 of [Ko3] we have a commutative diagram

HY(Q, HyV (A7) = HNQ,HgYA™") — H'YQ,Go(A™"))
l l !
A(HGY) = A(HG™) — A(Go).

(The injectivity of the map A(HJ*) — A(Gy) was explained in the proof of
lemma 8.4.) Thus it suffices to show that ¢y € H'(Q,Go(A™™")) maps to
zero in A(Gp). But ¢y € ker(H'(Q,Gy) — H'(R,Gy)) by lemma 8.3 and
HY(Q,,Go) = (0). Thus ¢ € H'(Q,Go(A™")) has the same image in A(Gy)
as ¢p € HY(Q, Go(A)), i.e. 0 (by proposition 2.6 of [Ko3]). O

Now let PHT™® denote the set of triples (M, @, [j]) where
o M is a CM-field extension of F,
e w is a place of M above w such that

(Mg : Fyln=[M : F](n—h),
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e there is no intermediate field M D N D F such that w|y is inert in M,
e [j] is a G(A*P)-conjugacy class of F-embeddings
j:M— B
such that #0j=joc.
Combining lemmas 8.1 and 8.5 we see that there is a surjective map
P JW (k(w)*) — PHT®

which sends
(A> )‘7 ia 77p7 Tlp,05 778)7 772)) 77w¢),
to the triple (M, w, [j]) associated to the near equivalence class of (4,14, \) by
lemma 8.5. Note that the action of G (A>) on J® (k(w)) preserves the
fibres of P.
Let z = (M, w,[j]) € PHT™. Suppose that j € [j]. We make the following
definitions.

1. D; will denote the centraliser in B° of jM and 7; will denote the re-
striction of # to D;.

2. V; will denote the B ®p M-module V' with its B®p M action via Id® j :
B®rM — B®pB°. If j/ € [j] then the B&p M ®g A>*P-modules with
* @ c-Hermitian A P-alternating pairings V; ®g A and V ®g AP are
equivalent. This equivalence can be realised by an element of G(A>?).

3. H;/Q will denote the reductive algebraic group coming from the B&p M-
automorphisms of V; which preserve the standard alternating pairing
(, ) up to a scalar multiple. This group comes with a natural embed-
ding ¢; : H; — G. Moreover, if j' € [j] then we have an isomorphism

Hj XQ AP 5 Hj/ XQ Aoo,pﬂ

which is canonical up to conjugation in H;(A*®). This isomorphism is
achieved via the maps ¢; and ¢; and conjugation in G(A>?).

4. Unless F* = Q and n = 2, there is a distinguished extension 7(j) :
M — C of 1y : F'— C. It is defined as follows. The equivalence class of
V; as a B®p M ®gR-module with * ® c-Hermitian R-alternating pairing
is classified by a collection of pairs (a,,b,) for 7 : MT — R. In fact
we have (a,,b;) = (0,n/[M : F]) for all but one embedding 7 for which
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(ar (), 0r (j)) = (1,n/[M : F]—=1). Moreover 71|p+ = 7o|p+. We see that
71 is uniquely determined except in the exceptional case excluded at the
start of this paragraph. We define 74(j) to be the unique embedding
M — C extending 7, on Mt and 1y on F.

If j, 7" € [j] and 75(j) = To(j") then we have an equivalence of B&p M Q¢
A-modules with * ® c-Hermitian A-alternating pairings between V; ®g A
and Vj ®g A. This equivalence can be realised by an element of G(A).
Thus we have an isomorphism

Hj XQA; Hj/ XQA,

which is canonical up to conjugation in Hy(A). (If F* = Q and n = 2
we may suppress the requirement that 75(5) = 70(j’).)

Lemma 8.6 Keep the above notation.

1. For any embedding 7o : M — C extending 19 we can find a j' € [j] with
70(7) = To.

2. If j,j' € [j] and To(j) = To(j') then we can find an isomorphism H; =
Hj: compatible with one of our canonical isomorphisms HjxoA = Hj X g
A. (If FT =Q and n = 2 we may suppress the requirement that 7o(j) =

70(4")-)

Proof: We first look at part one. Choose jo € [j]. Asin the discussion before
lemma 8.4 we see that G(Q)-conjugacy classes of elements of [j] correspond to
elements of

ker(H'(Q, Hjo) — H'(Q, H;,(A™)) © H'(Q. G)).
Thus the possibilities for V; ®g R correspond to the image of
ker(H'(Q, Hjo) — H'(Q, H,;,(A™)) © H'(Q, @)

in H'(R, H;,). As in lemma 8.4 we have a commutative diagram with exact
rows

(0) - kerl(Qv Hjo) — H' (@7 Hjo) - Hl(Qﬂ Hjo (K)) - A<Hjo)
| | ! |
(0) - kea'(QG) — HY(QG) — HYQGA) — AQG).

where

113



e ker' (Q, Hj,) — ker' (Q,G)
e and A(H;,) — A(G).
Then a diagram chase shows that the possibilities for V; ®g R correspond to
ker(H'(R, H,) — H'(R,G)),

i.e. to equivalence classes of B ®r M ®g R-modules with a * ® c-Hermitian
R-alternating form which are equivalent as B ®g R-module with *-Hermitian
R-alternating form to V ®g R with its standard pairing ( , ). The first part
of the lemma follows.

We now turn to the second part of the lemma. Let Z; denote the centre of
H;. The key point will be that

ker'(Q, Z;) < ker' (Q, H)).

This is proved as on pages 393 and 394 of [Ko3|. As V; ® A is equivalent to
Vir @ A the difference between V; and Vj: corresponds to an element of

ker (ker (Q,H,;) — HY(Q,G)),
i.e. to an element of
ker(ker' (Q, Z;) — H'(Q,G)).

Let this element of ker' (Q, %)) be represented by a cocycle o — z,. Then we
can find o € G(Q*) and § € Z;(A) with

for all 0 € Gal(Q*/Q). If h € H; then aha™' € Hj. Moreover if o €
Gal (Q*¢/Q) then

olaha™) = az,o(h)z;'a™ = ac(h)a™.
Thus conjugation by « gives an isomorphism H; — H; over Q.

Suppose that g € G(A) gives an isomorphism V; ®g A = Vj ®g A. Then
Ba~tg € H;(A). For all o € Gal (Q%/Q) we see that o(Ba"tg) = Ba~lg, and
so fa~tg € H;(A). Altering g on the right by an element of H;(A) we see
that we may suppose that

g=ap™".
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As conjugation by 57! is trivial on H; we see that g and « induce the same
isomorphism
Hj XQA = Hj/ X0 A,

as desired. O

We will write D, for any of the M-algebras D, for any j € [j]. (They are
all isomorphic as their invariants are given by

inv,(D;) = [M, : F,linv ,(B).)

Note that up to conjugacy we have a unique embedding D, — B°. If 7 :
M — C extends 7y : F' — C then we will write H f’% /Q for any one of the
algebraic groups H; for j € [j] with T5(j) = 7p. It comes with an embedding
L;éo : HZL’/% — (G which is well defined up to G(A)-conjugacy.

Now suppose that (A,i, ) is a triple associated to z. We will make the
following definitions.

1. We will let C4;) denote End%(A) and we will let f(a,, denote the
A-Rosati involution on Ci4; y).

2. We will let H4;)/Q denote the algebraic group such that for any Q-
algebra R, H(a; ) (R) is the group of elements g € Ca,;) ®q R with
gi(A,i,A)g c R*.

If j € [j] then we get an equivalence of B ®p M ®g A*P-modules with * ® c-
Hermitian A°P-alternating pairings between V; ®g A*? and VPA. Thus we
get an isomorphism

Hj XQ AP =, H(A,i,)\) XQ Aoo,p’

which is well defined up to Ha,; ) (A*P)-conjugacy. We also then get an
isomorphism
Hj xq Q" — Ha;x) X Q,

which is specified up to H4; x)(Q*)-conjugacy by the condition it is compat-
ible with the isomorphism

Vi Qo AP S yrA & pAco.p AP
(itself defined up to Ha;x)(A>P)-conjugacy). Thus Ha, ) is an inner form

of H; (cf the discussion after lemma 8.3). Since the A-Rosati involution is
positive, H(4; ) (R) is compact mod centre.
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Lemma 8.7 Suppose that (A,i,\) and (A',7',N) are both associated to z.
Suppose also that j € [j]. Then we can find an isomorphism

H(A,i,)\) ;> H(A’,i’,)\’)

compatible with some choices of the canonical isomorphisms H; xg A>P —
H(AJ")\) XQ AP and Hj XQ AP AN H(A/,i/,/\’) XQ AP,

Proof: We can find an isogeny
a:A— A
such that
e /'(z) = «i(zx)a ! for all z € B®p M,

=1 .
e and N = a VAya~! for some v € C&Ajf)) with v = §*“.in§ for some

o ¢ C(AJ}/\) 030) R.

Then (v,1) € C}; ) x E* represents an element of

ker(H'(E/Q, Hia i (E)) — HYQ, Haon(E))).
Let Z(a,,) denote the centre of H4; ). As
o H'(E,Ha;y) = (0),
o HY(E, Za;) = (0),

e and ker'(Q, ZAiN) = kerl(@,H(A,M)) (again by the same argument
used on pages 393 and 394 of [Ko3]),

we deduce that
ker(H'(E/Q, Hiaip(E)) — HY(Q, Hiain(A)))
equals
ker(H'(E/Q, Z(ain(E)) — H'(E/Q, Ziaixn(Ap)))-
Thus we can find (6, 1) € C}y; ) x E* such that
(pestainys, u/pu) € M* x EX.

Note that we may take = 1. Then replacing o by ad we see that without
loss of generality we may suppose that v € M* (and hence that v is a totally
positive element of M™).
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It follows (from v € M) that « induces an isomorphism C4;x) — Claiv)
(2 /> axa™') which takes {4 ; ,) t0 $(4/# »y and hence induces an isomorphism
Haany — Heari -

We may choose p € (A®P)* and 6 € (A};F)* such that v = p~1§%.
Suppose that 3 : VPA = VP A’ is an isomorphism of B ®r M ®g A®P-modules
with alternating pairings up to (A°?)*-multiples. Then we see that

BHVPa)d ™! € Hiauny(A™P).

Altering  on the right by an element of H;x)(A®"), we may suppose that
B = (VPa)d~! and hence that 3 and VP« induce the same isomorphism

Hauny X AP 5 Ho g xy X AP

the second part of the lemma follows. O

We will write C for any of the M-algebras C4; ). (They are all isomorphic
as they have the same invariants by lemma 8.2.) Also from the invariants we
see that for any place x # w or w® of M we have C,, = D, ,. We will write
H2V for any of the algebraic groups Ha ) for (4,4, \) associated to z. This
is well defined up to inner automorphism. If 7y : M — C is any extension of
7o : I/ — C then there is an isomorphism

1'—‘[Lé XQ AP ; Hﬁv XQ Aoo’p,

2,70

which is canonical up to HAV(A%P)-conjugacy. In particular we have an em-
bedding
AV HAV(ASP) s G(AXP)

well defined up to G(A*?)-conjugacy. We also have isomorphisms

HN(Q,) = Q) x C, 2 Q) x CJy % H G Ly iarery (M) % H H Cl,.

z|w,x£w i>1 z|w;
But there exist embeddings (unique up to conjugation)

o C,4 — Dp, n_p over F,, (firstly M,, — Dp, n—pn because [My : F,,]|(n —
h), and secondly we find that the centraliser of M, in Dp, ,,—; has in-
variant [My : Fy,]/(n —h) = [M : F]/n = inv 5C,),

. Hm‘wﬂ#w M, pa.m)(My) — My (F,) over F,, (because

(n/IM:F)) Y [M,: Fy)=n—n[Mg: F,J/[M: F] = h),

z|w,x#Ww
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e and for each i > 1, Hmlwi C.o = D, — By over F,.
Thus we may extend 4V to an embedding
AV LAY (A%) < G (A%)

well defined up to G (A>)-conjugacy.
We finish this section with the promised description of J™ (k(w)®).

Proposition 8.8 The map
P JW(k(w)*) — PHT®

is a surjection with fibres preserved by G™(A®). If = € PHT™ then P~'(2)
is isomorphic as a right G (A®)-set to # ker'(Q, HAV) copies of

AV (HN QNG (A>)/Z.
This identification is canonical up to replacing 2V by y — g2V (zyz—1)g™!
for g € GM(A>®) and z € HAV(Q) and simultaneously left translating the
1somorphism by g.

Proof: We have already proved the first sentence, so fix z € PHT™. Then
z corresponds to a near equivalence class of triples (A,7, \). This near equiv-
alence class consists of ker' (Q, HAV) equivalence classes. Fix one such equiv-

alence class C' = [(4,4,\)] and let C' denote the set of points
(A,7 )\,7 Z”? 77p7 np,07 7]2;7 775,: T]wz)

of JM (k(w)™) with (A’,i', N) equivalent to (A,i,\). We will show that C is
isomorphic as a right G"™(A>)-set to

vy (Hain (QN\G™(A®) /2.

The proposition will then follow.
First we see that any point of C' can be written in the form

(A7 )\7 ?:7 TIp, 77p,07 7]2)7 Them Uwz)

Thus G™(A>) acts transitively on C. Finally the stabiliser in G (A%) of z,
is just L(A’L)\)(H(A’i’)\))zg. O

118



9 An application of Fujiwara’s trace formula.

Let ¢ € CX(G™W (A*)*/Zy x OF . ;). In this section we will find (subject
to some restrictions) a group theoretic description for

tr (90|Hc([(h)7 FP ® ‘CE))

Our main tool will be Fujiwara’s trace formula (see [Fu]). This is a form
of the Lefschetz trace formula for the cohomology with compact supports of
smooth but not necessarily proper varieties over finite fields. This formula was
conjectured by Deligne and had been proved modulo some sort of resolution
of singularities by Pink (see [P]).

Any such ¢ can be written as a finite sum of the form

Y= Z agchar v (1m,0)gUe (m,0)
g9

for some fixed U and m (depending on ¢). As always we can and will assume
that U? is sufficiently small.
By a fixed point of [U?(m, 0)gU?(m,0)] we will mean a point

z € JM (k(w)®*)/(UP(m,0) N gUP(m,0)g~")

such that z = xg € J®(k(w)®)/UP(m,0). This set appears to depend
on g not just on UP(m,0)gUP(m,0), but if we replace g by ujgus (with
u1,us € UP(m,0)) the two sets are in natural bijection via z +— xuy’. (If
ugus = ujguly, with uj,u, € UP(m,0) as well, then z +— xz(u})~! gives
the same map.) We will denote this set defined up to canonical bijection
Fix([U?(m, 0)gU?(m, 0)]).

Suppose z is such a fixed point. Choose g € U?(m,0)gU?(m,0) and a point
7 € JM(k(w)™) above z € JM(k(w)*)/UP(m,0) N gU?(m,0)g~'. Then we
see that

Tg = Tu

for some u € UP(m,0). We will set
tr [UP (m, 0)gU” (m, 0)]|(F, @ Le)o = tr (1 @ &) (gu™").

We will check that this is independent of the various choices. First if we
replace T by Zv for some v € UP(m,0)NgUP(m,0)g~! then gu~! is replaced by
v lgu~tv and so the value of the trace is unchanged. Secondly if we replace g
by u1gus and T by T(u;)~" then gu~! is replaced by u;gu~'u; ! and again the
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value of the trace is unchanged. Thus tr [U?(m, 0)gU?(m,0)]|(F, ® L¢), is a
well-defined function on Fix([U?(m,0)gU?(m,0)]).

Again suppose that = € Fix([UP(m,0)gU?(m,0)]) and again choose g €
UP(m,0)gUP(m,0) and 7 € JM(k(w)*) above z € JW (k(w)*)/UP(m,0) N
gUP(m,0)g~!. Let 2 = P(Z). Then we can represent T by an element y €
G (A>), and we see that

yg = 2 (a)yu

for some a € HAV(Q) and some u € UP(m, 0). We will show that the conjugacy
class [a] of @ in HAV(Q) depends only on . We have to check independence
of the following choices.

e We could postmultiply a by an element of
(V)" (U (m, 0)y ™) N HY(Q).

But as H2V(R) is compact modulo the centre this intersection is a finite
group and so as UP(m, 0) is sufficiently small we see that

(1Y) (U (m, 0)y™") NHZY(Q) = {1},

e We could replace y by (2V(b)yv with b € HAV(Q) and v € UP(m,0) N
gUP(m,0)g~!. In this case a is replaced by bab~! and wu is replaced by
v lu(g™ vg).

e We could replace g by uigus and y by yu;' with uy,uy € UFP(m,0).
Then a remains unchanged and w is replaced by uus.

e We could preconjugate (2V by b € H2V(Q) and postconjugate by ¢’ €
G (A>) while replacing y by ¢'y. Then u is unchanged and a is replaced
by b-lab.

Thus we may write [a(x)] for this conjugacy class. Notice that

tr (U7 (m, 0)gU” (m, 0)]|(F, ® Le) = tr (p ® ) (2" (a(2))),

because gu~! =y~ 1AV (a)y.

Now we ask the converse question: given a € H2V(Q) how many points
z € Fix([UP(m,0)gUP(m, 0)]) are there with [a(x)] = [a]? One may check that
the answer is the cardinality of the double coset space

# (2 (H2Y (Q))\X/UP (m, 0) N gU? (m, 0)g™")
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where

X = {y e GW(a%): y L2V ([al)y N gUP(m,0) # 0}.

If a,b € HA(Q) and if both 3y~ %4V (a)y and y~12V(b)y € gUP(m,0) then
AWV(a1b) € y~lgUg 'y and so (because U? is sufficiently small and HAV(R)
is compact modulo its centre) we see that a = b. We deduce that the number
of z € Fix([U?(m, 0)gUP(m,0)]) with [a(x)] = [a] is also given by

#(:2Y (Zuav (a)(Q)\X'/UP (m, 0) N gU”(m, 0)g ™)
where
X'={y e GM(A%) :y iV (a)y € gUP(m,0)}.
A similar argument shows that for any y € G™(A*) we have
2V (Zgav (@)(Q))y(UP(m, 0) N gUP(m, 0)g~") =
= HbEZH?V(a)(Q) L?V(b>y(Up(m’ 0) N gUp(m7 O>g_1)7
and so the number of z € Fix([U?(m,0)gU?(m,0)]) with [a(z)] = [a] is also
given by
vol (U?(m,0) N gUP(m,0)g~")~"
vol ({y € 12Y(Zpav (a) (@GP (A%) 1y~ "2V (a)y € gUP(m, 0)}),
where we use any Haar measure on G® (A>) and where we use a Haar measure
on 2V (Zgav(a)(Q)) which gives each point volume 1. This can be rewritten
vol (UP(m, 0) N gU?(m,0)g~")~"
(h) (g oo
vol (2 (Zgrav (@) (Q)\ Zgm (1) (@) Ofav &y (char guoom.0)),
where again the measure on 12V (Zpav(a)(Q)) gives each point volume 1 and
where the Haar measures on each other groups are arbitrary as long as they
are chosen consistently for each occurrence of a given group. This appears
to depend on the choice of g € [UP(m,0)gUP(m,0)]. Adding the formulas for
g running over a set of representatives for UP(m,0)gU?(m,0)/UP(m,0) and
dividing by
#(UP(m,0)gU" (m,0)/UP(m, 0)) = [UP(m, 0) : UP(m,0) N gU"(m,0)g™"],
we see that the number of x € Fix([UP(m,0)gU?(m,0)]) with [a(z)] = [a] is
also given by
vol (UP(m, 0))~!
(h) (Ao
vol (18 (Zyav (a) (Q)\ Ze (=) (@) Ol (char 1o 0)070(m.0))-
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We remark that this number may be infinite.
We will say that ¢ € C2*(GM (A=) /2 x OF n_n) 18 acceptable if it can
be written as a finite sum

Y= Z aichar UP(m,0)g;UP(m,0)

1

with UP sufficiently small and where

1. for y € |, UP(m,0)g;UP(m,0) the p-adic valuation of every eigenvalue of
Y0 is strictly less than the p-adic valuation of every eigenvalue of y¢;

2. each Fix([UP(m,0)g;UP(m,0)]) is a finite set;
3. and, for each 1,

S, (= 1)tr ([UP(m, 0)g;UP (m, 0)] | HI(ILY,, x Spec k(w)™, F, @ L¢)) =
= ZxEFix([UP(m,(])giUp(mp)]) tr ([UP(m,0)g;UP(m, 0)][(Fp ® Le)a)-

Here [UP(m,0)g;UP(m,0)] defines a correspondence on Il(]]?’m which lifts

to a natural cohomological correspondence on F, ® L¢ over (I((ﬁ,)’m X
Spec k(w)*). It therefore acts on Hé([é,};)’m x Spec k(w)*, F,® Le). (See
[Fu].)

This definition is only useful if we have a good supply of acceptable func-
tions ¢. This is provided by the following lemma, whose key ingredient is
Fujiwara’s trace formula.

Lemma 9.1 Suppose that ¢ € C(GW(A>)T/Z7 x Oy n—n)- Fiz d €
Dy . with w(detd) = 1. Then for N >> 0 the function ¢|(1,p*", 6" 1,1)
defined by

(el(L,p" Y, 0, L 1) (y) = e(y(1,p"™, 6%, 1,1))

1$ acceptable.

Proof: The first condition is easily checked. The latter two conditions follow
from corollary 5.4.5 of [Fu] because

[UP(m,0)g:(1,p~ "N 67N 1,1)UP(m, 0)] = (Fr*)*N [UP(m, 0)g;:UP(m, 0)]

in the notation of [Fu| (see the third paragraph of section 7). O

We now show how we can calculate the trace of an acceptable function on
the cohomology of Igusa varieties of the first kind.
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Lemma 9.2 Suppose that ¢ € C3°(GMW(A®)T/ZX x OF ) is acceptable,
then

tr (@‘Hc(l(h)w}—p ® Le)) = (1) > ePHT®) Z:(}[S]CH?V(Q)(# ker' (Q, H2Y))
vol (Zygsv (@) @)\ Zina (a) (A%)) 0% 27 (@)t (p © €) (12 (a).

This sum is finite and all the terms occurring are finite numbers. For each
non-zero term we have F(a) D M and

Zonoe) (@) = 2" (Zuav (a) (A%)).

We may make any consistent choices for the Haar measures implicit in this
formula as long as the Haar measure on Zyav(a)(Q) gives points measure 1

and as long as the measures used on Zgm)peey(a) and Zgav(a)(A>) correspond
AV

z .

under t
Proof: We first check that if Og&;gw)(@) # 0 then

ZG(h>(A°°)(a) = L;W(ZH;W(G) (A%)).

0
w

If Og(\fég)w)(go) # 0 then the p-adic valuation of every eigenvalue of 12V (a)

is strictly less than the p-adic valuation of every eigenvalue of 12V (a)¢, (because
¢ is acceptable). Thus there is a constant x such that a place x of M(a) C C,
above w divides w if and only if

|a|;/[M(a)oc1Fw} > K.
Hence if z is a place of M(a) above w then any other place of M(a) above
T|pq) also lies above w. Let N/(F(a) N M) denote the normal closure of
M (a)/F(a) N M, then N has the same property that two places x and 2’ of
N above the same place of F'(a) either both lie above w or neither lie above
w. Fix a place x of N above w and let A denote the decomposition group for

x in Gal (N/F(a) N M). Let 0 € Gal (N/F(a) N M). Then some (resp. all)
places of N above the place o(z)|p(q) lie above w if and only if

(Gal (N/F(a))oA) N (Gal (N/M)A) £ 0

(resp.
(Gal(N/F(a))oA) C (Gal (N/M)A) ).

Thus we see that Gal (N/M)A is a union of double cosets of the form

Gal (N/F(a))cA,
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i.e.

Gal (N/F(a))Gal (N/M)A = Gal (N/M)A.
As Gal (N/(F(a) N M)) is generated by Gal (N/F(a)) and Gal (N/M) we see
that
Gal(N/(F(a)NM)) = Gal (N/(F(a) N M))Gal (N/M)A = Gal (N/M)A.

This translates into w|p)ny being inert in M. By the minimality of (M, w)
we conclude that F'(a) D M and so

Zemn 4oy (@) C Zgnueey (M) = HIV (A™).

This establishes the desired equality.
If

%0 — Z OéiChar UP(m,O)giUp(m’O)

then
tr (g H (", F, @ L¢)) = vol (UP(m, 0)) 32, ; (1)
tr ([U7(m, 0)g:U (m, 0)]| Hi (115, x Spec k(w)®, F, ® Le)),
where we use the same Haar measure to compute tr¢ as we do to compute

vol (UP(m,0)). The lemma now follows from the definition of acceptable and
from our previous calculations. O

Although it appears that we have a purely group theoretic expression for
the trace this is illusory as the definition of H2V involves abelian varieties.
Thus we must further massage the formula.

Let vV : HA — G,, denote the multiplier character (so that v2V(x) =
atr). Also let Zyav(a)(A)' (resp. Zpav(a)(R)') denote the kernel of

v]: Zpav (a)(A) — RS,

(resp. the kernel of
v]: Zuav(a)(R) — RZ,).

We have an exact sequence

{1} = Zuav (@)(R)" — Zpav (a)(Q\Zgav (a)(A)! —
— Zpav (a)( @\ Zgav(a) (A7) — {1},

and hence vol (Zgav(a)(Q)\Zgav(a)(A>)) equals
vol (Ziga (a) (@) Zizsw (@) (A)vol (Zav (a) (R)1) .
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Moreover if we use Tamagawa measure on Zyav(a)(A)' then the main theorem
of [Kob] tells us that

vol (Zpav(a)(Q)\Zpav (a)(A™))
= #A(Zyav(a)(Q))(# ker' (Q, Zyav(a)) ol (Zyav(a)(R)) ™!
= rp(#ker'(Q, Zyav (a)(Q))) 'vol (Zav (a)(R)')

where kg = 2 if [B : Q]/2 is even and kg = 1 otherwise. (See the introduction
to [Ko5], formula 4.2.2 of [Kol], compute A(Zpav(a)(Q)) directly from the
definition and note that [B : Q]/2 is even if and only if [Z¢, (a) : Q]/2 is.)
Thus the right hand side of the main equality of lemma 9.2 can be rewritten

(1) Ecprrrs Spoicmaviey (# ker'(Q HY) /4t ker! (@, Zipv(a)
0% 7 (@)vol (Zpgav (a)(R)) ~tx (0 ® €)(12V (a)),

where we use measures on Zpav(a)(R)" and Zgm) sy (a) compatible with Tam-
agawa measure on Zyav(a)(A)" and the exact sequence

{1} = Zuav (@)(R)' = Zuav (@) (A)' = Zgm o) (27 (@) — {1},

Now suppose that a and o’ € HAV(Q) are conjugate under HAV(A). Then
Zyav(a) and Zyav(a’) are inner forms of each other which become isomorphic

over A. Moreover the Tamagawa measures on Zgav(a)(A)" and Zgav(a')(A)!
agree under this isomorphism (use the definition of Tamagawa measure and
the discussion in paragraph two on page 631 of [Ko3]). Thus

(h) (A _ (h) (A _
Ofviay (@)vol (Zav (a)(R)") ™ = Ol 5™ () vol (Zyav (o) (R)') .

The number of HAV(Q)-conjugacy classes in the HAV(A)-conjugacy class
of a in HAV(Q) is

# ker(ker' (Q, Zyav(a)) — ker'(Q, HAY).

For the moment let Z (resp. Z’) denote the centre of H2V (resp. Zpav(a)).
Then we have homomorphisms

ker'(Q, Z) — ker'(Q, Z') — ker'(Q, Zav(a)) — ker'(Q, H2Y),
where as on pages 393 and 394 of [Ko3| we see that

ker'(Q, Z') — ker'(Q, Zyav(a))

125



and
ker'(Q, Z) — ker'(Q, H2Y).
Thus
# ker(ker' (Q, Zpav(a)) — ker'(Q, HMY))

equals
# kerl(Q> ZH?V (a))/# kerl((@, H;AV)

In particular this number only depends on a up to HAV(A)-conjugacy. Thus
we may again rewrite the right hand side of the main equality of lemma 9.2 as

ee D DO (@)vol (Zua(a)(R)) ™ (p@ €) (12 (a),

2ePHT(™) a

where the second sum runs over representatives of HAY(A)-conjugacy classes
of elements a € HAV(Q) such that F(a) D M (if z = (M, w, [§])) and where
we use Haar measures on Zgav(a)(R)" and Zgm (y)(a) compatible with Tam-
agawa measure on Zyav(a)(A)" and the exact sequence

{1} = Zuav (@)(R)' — Zuav(a)(A)' — Zgoo ) (12¥ () — {1}.
Consider the following three sets.

1. The set FPX@ of pairs (z,[a]) where z = (M, @, [j]) € PHT™ and [a] is
a HAV(A)-conjugacy class in HAV(Q) such that F(a) D> M.

2. The set FP(LZ) of triples (2,7, [a]) where z = (M, w, [j]) € PHT® 7,
M < C extends 79 and [a] is a H}2 (A) conjugacy class of elements

a € H2 (Q) such that F(a) D M and with a is elliptic in both H2 (R)

and DX (If F* = Q and n = 2 drop the 7y, so that FPLQ simply
consists of pairs (z, [a]).))

3. The set FP™ of equivalence classes of pairs (a, @) where a € G(Q) is
an element which is elliptic in G(R) and where w is a place of the field
F(a) above w such that

(n—h)[F(a): F]=n[F(a)g : Fyu)-

We consider two pairs (a,w) and (@', w") equivalent if a and o’ are con-

jugate by an element of G(A) which induces an isomorphism F(a), —
F(d’), taking w to w'.
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If (a,w) € FP™ then we define an element (a, @) € G (A®) as follows.
We set t(a,w)? = a € G(A®P). We set i(a,w),o = v(a) € Q). If z|uis a
place of F other than w then we set t(a,w), = a € (B%)*. We set ¢(a,w)?, =
a € F(a); — Dg, ;. Finally we set t(a,w);, = a € [[, F(a)y C GLp(Fy),
where the product is over places  # w of F(a) which divide w. Note that
1(a,w) is well defined up to G™(A>)-conjugacy.

Our expression for tr (p|H.(I™, F,® L¢)) is in terms of a sum over FPXL).
We wish to turn this into a sum over FP™ . To this end we will consider two

maps.

1. The map ¢ : FP(L}X — FPX@ which sends (z, 7y, [a]) to the pair (z,[d']
where a' is an element of HAV(Q) conjugate to a in HIA(A®P) =
HAV(A>P). We will see below that such an @' exists and is unique
up to HAV(A)-conjugacy.

2. The map ¢ : FPgﬁ — FP™ which sends (2,7, [a]) (with z = (M, @, [j])

to (1L4(a),w’) where @' is the unique place of M (a) above the place w

of M.

Lemma 9.3 The map ¢ is well defined. It is surjective and the fibre of (z, |a))
has [F(a) : F] elements, unless F* = Q, n = 2 and [F(a) : F| = 2 in which
case it has 1 element.

Proof: Fix z = (M, w,[j]) € PHT™ and 7, : M — C extending 75. We
will give a natural map from conjugacy classes in H;% (A), which are elliptic
in H;éo (R) and D7, to conjugacy classes in H AV(A) as follows.

1. We use the isomorphism HL2 (A%P) = H2V(A*P), which is canonical
up to conjugacy, to associate conjugacy classes in these two groups.

2. We use the isomorphism

Q x [ pr.=ox [] ¢

z|u,xAw z|u, AW

which is canonical up to conjugacy, to associate conjugacy classes in
these two groups.

~Y

3. We use the natural identification with elliptic conjugacy classes in D . =
G Ly .7 (Mg) with conjugacy classes in C’ZX’@. (C. & is a division algebra
with centre Mg and dimension (n/[M : F])?.)
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4. We use the natural map from elliptic conjugacy classes in HZL% (R) to
conjugacy classes in its compact mod centre inner form, HAV(R). This
map is surjective. (Elliptic conjugacy classes transfer to any inner form
and in H2V(R) stable conjugacy and conjugacy coincide because HAV (R)
is compact mod centre.)

We claim that under this map the preimage of [a] has [(M ®g R)(ax) :
M ®@¢R] elements. (Unless M = Q and n = 2 when it has only 1 element.) If
[a'] is one such preimage then the other preimages are just the [(a’)* x aZ ] with
a’_ stably conjugate to a in H;% (R). Thus the preimages are in bijection

with
Ker(H (R, Zgua (al)) —> H'(R, H)).
z,7(

2,70

Elements of this set also parametrise equivalence classes of B ®p ((M ®q
R)(al,))-modules with a *®c-Hermitian R-alternating pairing which are equiv-
alent as B ®p M ®q R-modules with * ® c-Hermitian R-alternating pairing
to V ® R with its standard pairing, ( , ). These in turn are parametrised
by sequences of pairs of integers (a,,b,) for 7 : (M ®¢g R)(al,) — R where
(ar,b:) = (n/[(M ®¢ R)(al,) : F ®gR],0) for all but one such embedding 7
for which 7|y = 79 and (ar,, b, ) = (n/[(M ®@gR)(al,) : F®gR]—1,1). Thus
the preimage of [a] € HAV(A) does have [(M ®g R)(as) : M ®g R] elements,
unless M = Q and n = 2 when it has only 1 element.

To complete the proof of the lemma it suffices to show that [a] C H;éo (A)
maps to [a'] C H2V(A) then [a] contains an element of H2 (Q) if and only if
[a'] contains an element of HAV(Q). This follows from theorem 6.6 of [Ko2] if
we can verify that the group JR(7/Q) of that paper vanishes for every centraliser
I of a semi-simple element in H(Q) where H/Q is a quasi-split inner form
of HAV (and hence of HZL’% ). This can be verified as in lemma 2 of [Ko4].
Alternatively one can note that it fits in an exact sequence

ker'(Q,T) — ker'(Q, H) — Hom (R(1/Q), Q/Z) — A(I) — A(H) — (0)

(combine section 4.6 of [Ko2] with the definition of A(H) and A(/) and the
isomorphism 4.2.2 of [Kol]). If [B : Q]/2 is odd then a direct calculation
shows that A(H) = A(I) = (0), while if [B : Q]/2 is even then the morphism
A(I) — A(H) is the unique isomorphism Z/2Z — Z/2Z. On the other hand
the map ker' (Q, I) — ker'(Q, H) is surjective because (arguing as on pages
393 and 394 of [Ko3] we see that) the composite

ker'(Q, Z(H)) — ker'(Q, Z(I)) — ker'(Q, I) — ker' (Q, H)

(where Z(H) (resp. Z(I)) denotes the centre of H (resp. I)) is an isomor-
phism. Thus R(//Q) = (0). O
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Lemma 9.4 The map ¢ is a bijection
o FP") =, FP®),

Proof: Suppose (a,w) represents an element of FP™. Let M denote the
minimal subfield of F'(a) which contains F' and for which w|, is inert in
F(a). (It is an exercise in the splitting of primes in number fields to show
such a unique minimal subfield exists.) Let j : M < B°P be the tautological
embedding. Then the equivalence class of V ®g R as a B @ p M ®g R-module
(via j) with * ® c-Hermitian R-alternating pairing has invariants (a.,b,) (for
7: M*T — R) with (a,,b.) = (n/[M : F],0) for all 7 except one for which we
get (n/[M : F] —1,1). Call this exceptional embedding 7y. Its restriction to
Ftis 5. Then ((M,w|y, [7]), 7o, [a]) is a point of FP{’X mapping to the class
of (a,w) and it is unique. The lemma follows. (If F* = Q and n = 2 drop T,
which is no longer well defined.) O

Putting these results together we get the following formula for the trace of
¢ on H.(IW F,® Le).

Proposition 9.5 Suppose that ¢ € C(G™(A®)* /7 x Ob,. m_n) is accept-
able, then

tr (p|H(I™, F, @ L)) = (_1)%5 z;o[(a,a)]er(h)
[F(a) : F]~vol (Za(a)(R)5) 05, 7 ()tr (p @ €)(u(a)),

where kg = 2 if [B : Q]/2 is even and kp = 1 otherwise. (If F* = Q and
n = 2 we must drop the [F(a) : F]7! term.)

This sum is finite and all the terms occurring are finite numbers.

We choose measures on Zgma=y(a) and on Zg(a)(R)g compatible with

e Tumagawa measure on Zg(a)(A)*,
e the exact sequence
{1} — Za(a)(R)! — Zo(a)(A)' — Za(a)(A®) — {1},

e the association of measures on Zg(a)(R)§ and Zg(a)(R)' (see page 631
of [Ko5]),

e the association of measures on

Zpepyx () = [ [ GLuyipi:r (Fla)s)

z|w
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and on

[a¥)

Zp YnithLh(Fw)(b(a’)) =

Dy iy ir@nFo] % Lo azs GLb/(F@):F=1F(@)g:Fu) (F(0)z)

X
Fu

(see page 631 of [Ko5]),
e and the isomorphism

Za(a)(A™) =
Za(a)(A>P) x Q, X ZD;w’nithLh(Fw)(L(a)) X [Tizs Z(BL’}Z)X(G)'

10 The cohomology of Igusa varieties

In this section we compute H.(I", F, ® L¢) in terms of H(X,Le). We will
use results and notation from appendix IV without comment.

For h=0,....,n—1let P, C GL, denote the parabolic subgroup consisting
of block upper triangular matrices with an (n — h) x (n — h)-block in the top
left hand corner and an (h X h)-block in the bottom right hand corner. We
will let P,* denote the opposite parabolic (lower triangular matrices with the
same block structure). Also let N, (resp. N,*) denote the unipotent radical of
P, (resp. P;®) and L, denote the Levi component P, N P;Y (2 GL,_p, x GLy,).

Fix an irreducible admissible representation p of Dy . _,. We will define
a homomorphism 7

Red(]" : Groth (GLy(F,)) — Groth (D}, , /05 x GLy(F,))

as follows.
First we have a homomorphism

Groth (GL,(F,)) —> Groth (GLy,_n(Fy) x GLy(F,))

which sends [7] to [Jyor(m) ® 6}{1 ?] (see appendix I). Secondly we have a
homomorphism

Groth (GL,_(F,) x GLy(F,)) — Groth (D}, , /0%, . x GLy(F.))

which sends [a ® 3] to

> Vol (Dj, o/ Fx) ™ r alew (pvew) ¥ @ 6],
v
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where 1 runs over characters of D, ., /Of ~ sothat a and p’®¢ have the
same central character, and where we use associated measures on GL,,_,(F),)
and Dy . (That this second map is well defined follows from corollary

IV.5.) Red;h) will denote the composite.
The homomorphism Redﬁ,h) extends naturally to a homomorphism

Red” : Groth (G(A*)) — Groth (G™(A>)).

We will need a couple of lemmas in local harmonic analysis. It is convenient
to fix

e the Haar measure on F* giving Oy volume 1,
X L X
e the Haar measure on Dy, giving ODFW,n—h volume 1,

e and the Haar measure on GL,_j(F,) associated to our choice of Haar
X
measure on D Foun—h-

Lemma 10.1 Suppose that ¢° € C(Dy, . 1/Op. _1). Then we can find
an element PC,(¢°) € C°(GLy—p(Fy)) with the following properties.

1. If w is an irreducible admissible representation of G'L,_p(F,) then

tr m(PC,( Ztr %)vol (D}, o/ F0)” "t m(PaL (v ow))

where Y runs over characters of Dy, ., /Of _ so that a and p¥ @

have the same central character.

—h

2. If g € GL,_p(Fy) is a non-elliptic semi-simple element then

OFt (BT (6") =0,

8. 1If g € GL,_n(Fy) is an elliptic semi-simple element and if g € Dy, .,
s an element with the same characteristic polynomial then

n— — Py -1 Dme7 ~
OFEn1F) (PC, () = (—1) WA Fe@ Fal D O P n (0)r ().

4. If g € GL,,_(Fy,) is in the support of PC,(¢°) and if X is an eigenvalue
of g then (n— h)w(\) is in the image under wodet of the support of ©°.
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Proof: Via w o det : Dy, . ,/Of, = Z we may and we shall think
of ©° € C®(Z). We will let A° denote the set of elements of GL,,_(F,) all
whose eigenvalues have w-valuation in the image under (n —h)~'wodet of the
support of ¢°. We will let A,, C GL,,_,(F,) denote (w o det)~!({m}). We
then set

PCP(SDO) = (900 ocwo det)goJL (IDV)char A0,

and

¢ = (¢° cw o det)py ().
Note that by definition PC,(¢") has property 4 of the lemma.

It follows from lemma IV.1 that for a non-elliptic regular semi-simple ele-
ment g € GL,_,(F,) we have

Ot F(Z) = 0,

while if g € GL,_(F,) is a elliptic regular semi-simple element and if g €
D;wm_ , 1s an element with the same characteristic polynomial then

(@)¢"(@)tr p(9)-

Parts 2 and 3 of the lemma follow (because the valuation of all eigenvalues of
an elliptic element of GL,,(F,,) are equal).

It also follows that at all regular semi-simple elements of GL,,_,(F),,) the
functions @ and PC,(¢") have the same orbital integrals. Hence by theorem
2f of appendix 1 of [DKV] we see that for any admissible representation m of
GL,_n(F,) we have

Of =) = (=1 "ol (D, 1/ Zoy,

n—h

tr7() = trr(PC,(¢")).

Thus it suffices to prove the first part of the lemma with @ replacing PC,(¢").
Suppose that 7 is an irreducible admissible representation of GL,_(F,)
with central character 1. Also let 1, denote the central character of p. If
¢7r|o; # 1, (—91X then trm(p) = 0 as desired. Thus suppose that wn|0; =
w Fu w
¢p|O;w. Then

tr (@)

= Yoep P @)trm (o (pvychar 4,)

= 2 Camimodn-n #°@) Wty (& — )/ (n = B))tr w(par, (pvychar 4,)
= Z?:_oh_l erz<n —h)~! an—hzwﬂwp @ (x)(x —i)tr w (o (pv)char 4,)
= (n—h)~" qun—h:%wp D ez ()Y () Z?;ohil tr (oL (pv)eechar 4,)
= Vpntagrp, T (0 = h) Vol (OF, )M (i)

= Yy, TOEIVOL(DF, o/ Fu) e (o (v ym0)-
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The lemma follows. O

Lemma 10.2 Let p be an irreducible admissible representation of D, nh
Suppose that ° € C2(Dy, . _,/Op,. ) and that o € C(GLy(Fy)). Sup-
pose moreover that if g° (resp. g¢) is in the support of ©° (resp. ©¢) then the p-
adic valuation of every eigenvalue of ¢° is strictly less than the p-adic valuation
of every eigenvalue of g¢. Also fix Haar measures p, and p, on GL,(F,) and
GLy(F,). Then we can find a function IPC,(¢°, ¢°; tin, tn) € C(G L, (Fy))
with the following properties.

1. Let g € GL,(F,) be a semi-simple element. Then

05 F)(IPC, (0%, % i, 1)) =
D}>7<'w n—h
(= 1) ogey O (09) 0 = ()t p(g?),

where (¢°, g¢) runs over a set of representatives for conjugacy classes in
Drp, non X GLp(Fy) such that, if ° denotes a semi-simple element of
GL, _1(F,) with the same characteristic polynomial as g°, then (9°, g°)
is conjugate to g in GL,(F,). Whenever (tr p(g° ))OGLh(Fw () # 0 we
see that Zgr,, . (Fu)xGLy(Fo) (0 X 9°) = Zar,(r,) (7, 9¢) and we take cor-
responding measures on these two groups in the two sides of this equality
of orbital integrals.

2. If m is an irreducible admissible representation of GL,(F,) and if

[er () ® 675 Zmaﬁ ® 0]

with o (resp. (3) running over irreducible admissible representations of
GL,_h(Fy) (resp. GLy(Fy)) and with mey s € Z (and almost all 0), then

trW<IPCP(¢O790 Mna#h))
:Za,ﬁ,wtr@b( )maBV01< Fup,n— W/ )™ ltr@(ﬂpJL(pVé@w))trﬁ(SOe)

with o (resp. (3, resp. 1) running over irreducible admissible represen-
tations of GLn—p(Fy) (resp. GLy(Fy), resp. Dy, ,/Op,. ).

Proof: The choice of measure u;, on GL(F,) and our fixed choice of Haar
measure on GL,_p(F,) determine a Haar measure on Ly (F,).

Let €° (resp. €°¢) denote the set of p-adic valuations of elements in the
support of ¥ (resp. ¢°). By our assumptions €° and &¢ are disjoint finite
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sets. Let & denote the set of elements ¢° x g¢ € Lj(F,) such that the p-adic
valuations all the eigenvalues of ¢° lie in ° and the p-adic valuations of all
the eigenvalues of ¢ lie in €. If g € & then Zgr,(r,)(9) = Z1,(r.)(9). By
lemma 10.1 & contains the support of PC,(°) x ¢°.

Define a function on GL,(F,) by

W(g) =Y 075 (PC,(¢°) x ¢°),

g

where the sum is over sets of representatives of Ly (F,,)-conjugacy classes con-
tained in the GL,(F,) conjugacy class of g. We will show that this function
satisfies the hypotheses of theorem B of section 1.n. of [V1]. It will then follow
from that theorem that there is a function

IPC(%, 9%t i) € C2(G L (Fy))
such that for all g € GL,(F,) we have

O?Ln(Fw)(Ipc(ng, ©°; s i) = Z Oj,h(Fw)(PCp(QOO) X %),
g/

where the sum is over sets of representatives of Ly (F,,)-conjugacy classes con-
tained in the GL,(F,) conjugacy class of g, where we use our fixed measures
on GL,(F,) and L(F,), and where whenever OgL,h(Fw)(PCp(wo) X ) # 0 we
use conjugate measures on the conjugate groups Zgy, (¢)(Fy) and Zp, (¢')(Fu).
The first part of the lemma will then follow from this and lemma 10.1.

First note that W is clearly invariant under conjugation.

Now suppose that (7, u) is a standard pair (for GL,(F),)) in the sense of
section 1.m of [V1]. If t € T we will let &(¢) denote the multiset of p-adic
valuations of eigenvalues of . We will also let €°(¢) (resp. &°(¢)) denote the
submultiset of €(¢) consisting of elements which also lie in €° (resp. €¢). Note
that tu is conjugate to an element of & if and only if ¢ is conjugate to an
element of & if and only if #¢° = n — h and #¢° = h. In particular the
support of W in Tu is contained in the set tu such that the p-adic valuation
of all the eigenvalues of ¢ lie in the finite set ¢° U &°. Hence W has compact
support in T'u.

We will let §(T") denote the set of elements ¢t € T which are conjugate to
an element of &. If s € (T') and gsg~! € & then

gTug™" C Zap,r)(gtg™") C Li(F,).
Ift € TNg 'Sg then
W (tu) = O (PC, (%) x ¢°).

gtug—
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In particular if s is a regular element of 7' (in the sense of section 1.1. of [V1])
then we see that W is constant in some neighbourhood of s (by, for instance,
theorem A of section 1.n. of [V1]).

Suppose s € T'. Let uy = u, ua, ..., Uy, be unipotent elements of Zgy,, (r,)(5)
such that

o for all i the GL, (F,)-orbit of su; is open in the union of the GL,(F,)-
orbits of su; for j <i;

e and for any unipotent element v € Zgy, (r,)(s), su is in the closure of
the GL,(F,)-orbit of sv if and only if sv is GL,(F,,) conjugate to some

SUj.

(See section 1.j. of [V1].) Fix a Haar measure on Zgyp, (s)(F,). This deter-
mines a canonical Haar measure on each Zgy,, (su;)(F,) (see section 1.d. of
[V1]). Then we can choose functions fo " Fo) - foEnFe) ¢ C*(GL,(Fy))
such that

GLy(

e for j < i the support of f; Fv) does not meet the GL, (Fy)-orbit of

suj,

e if j =i then Og€7l(Fw)(fGLn(Fw)) =0,

o and OG " (fFE ) = 1,

(See section 1.k. of [V1].) To verify the hypotheses of theorem B of section
L.n. of [V1] it remains to show that there is a neighbourhood V' of s in 7" such
that for all ¢ € V' which are regular in 7" (in the sense of section 1.1. of [V1])
we have the equality

= 2 Wlen)ORs (2 ),

(This equality is independent of the choice of Haar measure on Zgy, (tu)(F,)
as long as in the case W (tu) # 0 we choose the conjugate Haar measure on
Zp, (atua™)(F,) = aZgy, (tu)(Fy,)a™t, where atua™ € &.)

First suppose that s € &(T'). Then each W (su;) = 0. On the other hand
we can find a neighbourhood V' of s in 7" such that if ¢ € V then &(t) = &(s).
Then VN S(T) = 0 and so for any ¢ € V we have W (tu) = 0 and the desired
equality holds.

Now suppose that s € &(T) and that gsg~! € &. Replacing T by gTg !, s
by gsg~! and u by gug~' we may suppose that T C Ly, s € & and u € Ly(F,).
Because s € & we see
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e that for each i, u; € Ly (Fy);

e that for all i the L, (F,)-orbit of su; is open in the union of the Ly (F,,)-
orbits of the su; for j < ;

e and that for any unipotent element v € Zgy,,(r,)(s), su is in the closure
of the L, (F,)-orbit of sv if and only if sv is L, (F,)-conjugate to some
SUj.

It follows from lemma 2.5. of [V1] that we can find a neighbourhood V' of s in
T such that

o VCG

e and for any compact set A C GL,(F,) one can find a compact set C' C
Ly(F,)\GL,(F,) such that, if L,(F,)g ¢ C then for each i =1,...,m

g VugnA=0.
As in section 2.5. of [V1] it follows that we can find h € C°(GL,(F,)) such

that
/ h(zg)dx
Lp(Fw)

is 1if Ly(F,)g € C and 0 otherwise. If we set

g = [ @ g

then we see that
o £ e C2(Ly(F)),

for j < i the support of fZ-L’L(F”) does not meet the Ly (F,)-orbit of su;,

for t € V and for any i,j =1, ..., m we have

tu; i tu; g
(argue as page 954 of [V1]),

if j # i then QL) (plrFw)y — o,

1

and OFn(Fw) (pln(Fuly _ q

)
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Using theorem A of section 1.n. of [V1] we see that for ¢ € V' which is also
regular as an element of T" we have

W(tu) = z OquZ Fy) (PC ( ) 0 )OLh(Fw)<fiLh(Fw))
= Z W(Sul)OGLn(Fw)(fGLn(Fw)).

)

This completes the proof of the first part of the lemma.
For the second part, the Weyl integration formula tells us that

tr (IPC,(¢°, ¢ i, 1)) = ZT(#WG(T))*1
Jpees Da(t )0“” (<) J(IPCL (%, 0% i, 1)) X (1)l

where
e T runs over GL,(F,)-conjugacy classes of maximal tori in GL,(F,),

e W(T) denotes the normaliser of T in G L, (F,) modulo T,

T denotes the subset of regular elements of T,

o Dg(t) = |det((ad (t) — 1)’LieG/Li€T)"

(See for instance section A.3.f of [DKV] and note that x is locally integrable.)
By the first part of the lemma this can be rewritten

tr w(IPC,(¢°, ¢ Mgiﬂh); ZT(#Wthiu)(g))’l
Jrves Da(t0 x 19)O5E =1 (PC (09) O ) (00) x (1) diOdte,

where now
e T runs over L,(F,)-conjugacy classes of maximal tori in L, (F,),
e and Wy, (r,)(T) denotes the normaliser of T" in Ly(F,,) modulo T'.

Let Poye denote the parabolic associated to t° x ¢ as in section 2 of [Cas].
If Poyse is not a subset of P;¥ then by the assumption on the supports of (°
and ¢° and by lemma 10.1 we see that

O M (PC, () 0 () = 0.
If on the other hand Py C P;* then
o Dg(t° x t¢) = Dy, (t° x t9)dp, (t° x t¢) (from the definitions)

o and X (t” X t°) = Xr,op (t° X t°) (by theorem 5.2 of [Cas]).
h
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Thus we obtain

tr w(IPC,(¢°, % fin, 1))
= ZT(#WLh(Fw)(T))_l oL F) GL (F

Jrees D (10 x 105" (PO () O ) (0) oo (1), (1)t
= 1 (o (7) ® 557 (PCo(°) x ¢°),

and the second part of the lemma follows. O

Corollary 10.3 If 7 is an admissible representation of GL,(F,) and if ©°,
©°, tn and py, are as in the lemma then

trRed" (m)(¢° x ¢°) = tr w(IPC,(¢°, &°; pin, p1n))-
We can now prove our second main theorem.
Theorem 10.4

Red ™ [H (X, Le)™ | = n[H(I"M, F, ® L¢)]
in Groth (G (A>)).
Proof: By lemma 9.1, it suffices to check that for any
o o€ CF(G(A™P) x (Q)/Z)) x [T;i=(B)"),
o "€ CX(D5, nn/Oby, . )

Dryn—n
e and ¢° € CX(GLy(Fy)),
such that ¢ = ¥ x % x ©° is acceptable, we have
tr (Red(" (H(X, £6)))() = ntr H(I", Le ® F,) ().
(Note that, if C' € R and )y, ..., ¥, are characters of Z we can a function
¢ € C(Zsc) such that g(¢’) = 1 but 9;(¢') =0 for i =1, ...,m.)
But by corollary 10.3, proposition VII.1 and lemma 10.2 we have
tr (Red(" (H(X, Le)))(¢)
= tr H(X, Le) (9 x IPC,(¢°, 9% thn, 1))
= (=1)"kpn ) [F(a) : F]7 (=1)"F@Flvol (Zg(a) (R)g) "
O (@ X IPC,H (9%, 6% i, 1)
= (~1)"kpn Yy myerpeo [F(a) : F]7 (= 1)/ F@F=n=h)/1F(@)a:Fu)
—1 G (A%
vol (Za(a) (R)3) ™ Ofipy “ ™ (0)tr (p @ €)(u(a),

where we drop the term [F(a) : F]7'if n = 2 and F™ = Q. Here kg = 2
if [B : Q]/2 is even and = 1 otherwise and the choices of measures are as
in proposition 9.5. Comparing this formula with proposition 9.5, the trace
identity and hence the theorem follows. O
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11 The main theorems

To state our third main theorem let us establish a little more notation. Let
redg‘) : Groth (GL,(F,)) — Groth (GL,(F,))
to be the composite of the map

Groth (GL,(F,)) — Groth (GLy_n(Fy) x GLy(Fy))
7] — [Jnee(m) ® 6]

and the map
Groth (GLy_n(Fy) x GL(Fy)) — Groth (GLa(Fy))
which sends [a ® (] to
vol (DF, _p/Fu) "t alpan (o)) 16]

if the product of the central characters of o and p is 1 and sends [a ® ] to 0
otherwise. Then red,(oh) extends to a homomorphism

Groth (G(A™)) — Groth (G(A®?) x Q) x GLy(F, H (B
Note that

where t runs over characters of Dy, ._,/Op, .
Combining theorems 7.9 and 1() 4 we at once obtain the following result.

Theorem 11.1 In Groth (G(A>) x W, ) we have

n[H(X, Le)™ ZZI d 5l red M [H (X, Le)™ | *are 1) [YFutn—n(p)]

h=0 p

where p runs over irreducible admissible representations of Dy, ., and where
\Art;{1| :Wg, — p% C Q-

Let us rephrase this theorem another way. Define

n-red"” : Groth (G(A™)) — Groth (G(A™") x Q) x GLy(F,) x [[(B®)*)
=2
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in the same manner we defined redgh) except that we replace J N;P(W) ® 51132 2 by
simply Jyer (). We may decompose

[H(X, Le)] = Y _[n][Re(m)]

™

where 7 runs over irreducible admissible representations of G(A>) and where
[Re(m)] € Groth (Gal (F'*/F)). We will need the following lemma, which

follows from lemma 4.1 and corollary VI.2.

Lemma 11.2 Suppose that © and @' are irreducible admissible representations

of G(A™) such that
o 2 (),
o [Re(m)] £ 0,
o and [Re(n')] # 0.
Then m, = m,,.
Then we have the following reformulation of theorem 11.1.

Theorem 11.3 Suppose that m = 7 X Tpo X Ty, X ... X Ty, S an irre-
ducible admissible representation of G(A™) such that m,g|zx = 1. Then in
Groth ;(GL,(F,) x Wg,) we have

nlmo)[Re(m)|wy,] = (dim[Re(m)]) Sp2g 30, n-Ind 7735 (nred P, )
(U5 tnn(p) ® (M8 ® ] ["%) 0 Art ghlwi, )

where p runs over irreducible admissible representations of Dy, ..
As a special case we get the following consequence.

Corollary 11.4 Suppose that m = 7P X T, X Ty, X ... X Ty, 45 an trreducible
admissible representation of G(A>) such that Ty,0l;x =1 and m, is supercus-
pidal. Then in Groth (GL,(F,) x Wg,) we have

n[mo][Re(m)lwi, ] = (dim[Re () [¥p, 10 (JL ™ (70)") @ (7,5 0 Art o), |-
Proof: Use the following facts.

e If 7, is supercuspidal and if N is the unipotent radical of a proper
parabolic subgroup of GL,(F,) then Jy(m,) = (0).
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e If 7, is a supercuspidal representation of GL,(F,) and if 7}, is a square
integrable representation of GL,(F,,) with the same central character,
then it follows from the results listed in appendix IV that tr 7, (¢x ) = 0
unless m,, &, in which case it equals vol (Df, . /Fr).

O
Theorem 11.5 Suppose that K is a p-adic field and [ # p is a prime. Suppose

that 7 is a supercuspidal representation of GL,(K). Then there is a continuous
semi-simple representation

ri(m) : Wi — GL4(Q°)

such that
(Wi 1g(JLH(m))] = [m @ ri(m)]-

Proof: Choose (E, F™,w, B, *, 1, 3, A;,£) as in section 1 and such that
e FF 2K,
o [B:F]=g"

e and ¢ is sufficiently regular that H'(X, L¢) = (0) for i # g — 1 (see the
last paragraph of section 1 of [Ko4| for the existence of such a &).

By corollary VII.2 we may choose an irreducible admissible representation 7

of G(A*) such that

o [Re(F)] 0,

e T, =7 ® (¢ odet) for some unramified character ¢ of K*/OF,

o and myolzx = 1.

By the previous corollary we see that in Groth;(GL,(K) x Wg) we have

9l ® Re(®)lwe] = (dim{Re(F)) W11 (L 7)) © (b 0 Arth ]
Thus, if we set

[r1(m)] = g(dim[Re(7)]) ™ [Re () e ® (o © Art g )|we ® (1 0 Art )],

we see that
[Tl (71')] € Groth l(WK)
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and
(Wi ,g(JL (")) = [m][ra(m)].
Clearly dim[r;(7)] = g. Finally by our assumption on £, we see that Re(T)

is a true representation and hence [r;(7)] can also be represented by a true
representation r(7). O

The following lemma follows from the definitions, from lemma 3.7 and from
lemma 3.8.

Lemma 11.6 Suppose that K and K’ are p-adic fields and | # p is a prime.

1. If o : K = K’ is an isomorphism of Q,-algebras then for any irreducible
supercuspidal representation ©' of GL,(K") we have

r(7’ oo) =nr(n"),

where, if we fix an extension & of o to an isomorphism & : K% = (K')*
then (') (z) = ri(7’)(cza ™).

2. If o € Aut (Qf°) and if m is an irreducible supercuspidal representation
of GL,(K) then
ri(o(m)) = o(r(m)).

3. If w is an irreducible supercuspidal representation of GLy(K) and if ¢ is
a character of K*/OF then

ri(m ® (Y odet)) = ri(m) @ (¥~ o Art ).

4. If m is a character of K* then ry(m) = 7' o Art ;.

For the rest of this section we will use without comment the notation
established in appendix IV.

Theorem 11.7 Suppose that K is a p-adic field and | # p is a prime. Suppose
also that s and g are positive integers and that 7 is an 1rreducible supercuspidal
representation of GL,(K). Then

(Wi 1,95 (JL 1 (Sp o(m)¥))] =
> (=1 J[Sp (m) B (7@ [det ) B .. Hﬂ(vr®!det!5 1)]
[ri(7 @ | det |P71) @ |Art H90—9)/2],

Proof: We will argue by induction on s. The case s = 1 is just the previous
theorem. Thus suppose the theorem is proved for all s’ < s.
Choose (E, F*,w, B,*, 1,3, A;,€) as in section 1 and such that
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o T =K,
e and [B: F| = ¢*s*.

By corollary VII.2 we may choose an irreducible admissible representation 7

of G(A™) such that
o dim(Re(7)] 0.
e T, = Sp,(m) ® (¢ @ det) for some character ¢ of K*/Ox,
e and myplzx = 1.

If we write 7’ for m ® (¢ o det), then by theorem 11.3 and lemma IV.3 we
see that

95[Sp ()] [Re(7)] =

(dim[Re(7)]) X502y n-Tnd 5248 [Sp (2 @ | det [*) x
U 1 g(s—i) (JL TSP o (7 >>>®<< @] ") 0 Artghlw,)-

By the inductive hypothesis we may rewrite this

g5[Sp J(T[Re(7) @ ((Fpo @ | 15°77") 0 Art gMw,,] =

(dim[Re())[V ks (L.~ (SD ()" >>®\Art—1\9<s D24 |
(dim([Re(7)]) S5y 2520 (1) ™ n-Ind 228 [(Sp (') B (' @ | det V) BB
Ba<'®|det|s "= >>xSph/<w®|det|sh>M< '@ | det ).
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By lemma IV.2 this can be rewritten

[P r,1.95(TL 71 (Sp o (7)) ® |Art 51 [967D/2) =

w@m{(])[ (IR @ (Fro ® | [2¢7Y%) 0 Art gl —
2 ISp (N @ | deg ] 1)) |
1§: P (1) I (st ()] (' @ | det P=1)]—
S (1 I (T e (7)) i (' @ | det [F71)] =

w@m%&ﬂ)[ (IR @ (Fro ® | [2¢77%) 0 Art gl —
ISP ()][r(7 @ | det [+

z hnxlf””WGNMJMMMMW®M%WW—

ZF o (=1 I (T o (7)) [ @ | det 1)) =

gS(dlm[Ra(
L [Sp ('
iji( 1)>~

2;21[81)]'(”/) B (7' @ |det ) B ... B (7' @ [det [*"H][r(7" @ | det ||+
[Sp (7)][A'],

for some [A’] € Groth (Wk). Then by lemma 3.7 we see that
[P r1.95(JL (Spo(m)¥))] =

ijl[Spj(ﬂ) EB (@ |det )@ ...H (7 @ | det |*1)]
(7’ @ [ det [I~1) @ [Art 3! [907)/2] + [Sp ()] [A],

D8P L(®)][Re(F) @ ((Fro ® | [5°77%) 0 Art g )]
)|[ru(x’ @ | det [*~1 "))+ |
w(Lmrmga (][’ @ | det P~)] =

for some [A] € Groth (Wk).
It remains to show that [A] = 0. By lemma VIL.4 we may choose an
irreducible admissible representation 7’ of G(A>) such that

o dim[Re(7)] #0,

o 7 2 (nH...B(r®|det 1) @ (¢ o det)™! for some character 1’ of
K*/Ok,

e and T, o[z« = 1.
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Now let 7" denote 7 @ (1’ o det)™!. By theorem 11.3 and lemma IV.3 we also
see that

gs[r' B ... B (7' ® | det | )] [Re(#)] =

(dim[Re(7")]) 2710<—1>8 HneInd i (v B B (7 @ | det M) x
i g(emiy(JL~ (Sp oy (7' ® [ det 1))@

~/ h' /2
(Eo)t @l 1,77 0 Art gh)w, -

By the inductive hypothesis and what we have already proved, this can be
rewritten

gs[m B ... B (7 @|det " H][Re(T)|wy ® (7,0 0 Art @;HWK] =

(—1)5_1(dim[35(~')])[3p ( NI[A® (¢ o det)]+

(dim[Re(7)]) 2252 32520 (— 1) "neInd P20 (' B .. B (' @ | det 1))
(Sp (7' @ | det \h') (7r ® | det | B ... B (7' @ |det [))]

[ri(7' @ | det M=) @ |Art FH909)/2].

Again using lemma IV.2 this becomes

gs[r' B ... B (¢ @ | det |*)][Re(F)|wic ® (70 0 Art o)) =

(1) (dim[Re(7)))[Sp,(7)][A ® (1 o det)]+
(dim[Re(7)]) Sopr2o S (~ 1 (T sy ()]
(@ | et |71 @ [ Art ! 90-/2]

5—2 s—h" i — =
> =g §'=2 (fl)j 1[w<rlh”,j’,s—1—h”fj’ ()]
[ri(7 ® | det ["+971) @ |Art i [9072/2) =

(dim[Re(7")]) >oh—olm' B .. B (7' @ | det [*71)]

(— 1)5_1(dim)[Rs(~')D[Sp S(mA® (¢ o det)]+
[ri(7' @ | det |*') @ |Art 9i=)/2),

In particular we see that [A] = 0, as desired. O

Suppose that 7 is an irreducible admissible representation of GL,(K).
Then we can find

e a parabolic subgroup P C GL, with a Levi component isomorphic to
GLg X ... x GLyg,,

e and an irreducible supercuspidal representation m; of GLg, (K);
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such that 7 is a subquotient of

e
n-Ind P(ngé)K)(m X o X ).

Moreover the multiset {m;} is independent of all choices. Thus we may define

t

[r(m)] = Y _ln(m) © |Art i

=1

(9i—9)/ 2] )

The following lemma follows at once from lemma 11.6.
Lemma 11.8 Suppose that K and K’ are p-adic fields and | # p is a prime.

1. Ifo : K = K’ is an isomorphism of Q,-algebras then for any irreducible
admissible representation ' of GL4(K') we have

r(n’ o o) =n ()7,

where, if we fix an extension & of o to an isomorphism & : K% = (K')%,
then r(7")? (x) = r(7")(cxo™1).

2. If o € Aut (Qf°) and if w is an irreducible admissible representation of
GL,(K) then
ri(o(m)) = o(r(m)).

3. If m is an irreducible admissible representation of GL,(K) and if ¢ is a
character of K* /Oy then

ri(r ® (Y odet)) = r(m) @ (v o Art ).

We now return to the analysis of [Re¢()|w,, |-

Theorem 11.9 Suppose that w is an irreducible admissible representation of

G(A>). Then
AR(mlwr, | = (dim[Re(m])lri(ma) © (mp0 o [Art 5.
Proof: Consider the two homomorphisms
©1, 0, : Groth (GL,(F,)) — Groth (GL,(F,) x Wg,)

defined by
O1([7]) = [r @ ri(m)]
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for any irreducible 7 and

n—1
Oa([r]) = > Y n-Ind 75 nred MV [w] (U, 1 n(p) @ [Art |77
h=0 p

for any admissible 7 (where p runs over irreducible admissible representations
of Dy, ,_4). By theorem 11.3 we only need to show that ©; = ©,. Moreover
it follows from lemma A.4.f of [DKV] that we only need check that ©;([n]) =
©y([7]) when 7 is a full induced from square integrable.

Thus suppose that we have positive integers sy, ..., s; and nq, ..., n; such that
n = siny + ... + Sgny. Suppose also that for i = 1,...,¢ we have an irreducible
supercuspidal representation m; of GL,,(F,). Let P C GL, be a parabolic
subgroup with Levi component G Lyg,,,, X ... X GLy,,, and write 7 for

n-Ind 5725 (Sp . (1) x .. x Sp,(m)).

We must check that ©,([r]) = Oy([7]).
If hy, ..., hy are positive integers such that h; < s; we will let

o P C GLSM denote a parabolic subgroup with Levi component G'Ly,,,,, X
GL (si—hi)ns s

o h= h1n1 + ...+ htnt,

® P,y C GLy, denote a parabolic subgroup with Levi component G' Ly, ,, X
.o X GLhtTLta

° P{’ ny © GL,_5 denote a parabolic subgroup with Levi component
L(Sl_hl)nl X ... X GL(St_ht)nU

By lemma IV.8 we see that

Os([7]) =

Zh Z V'OI(D>< h/FX)_

tr (n- IndGLn} ’}3 (SP g, —n, (T1) X oo X Sp 4, _p, (7)) (i1, (pv))
GLn(Fu GLy(Fy) s

n-Ind p (w))[( IndPhh((F Sph1<7rl®|det‘ 1mhay e

XSpht<Wt®‘det|st ht)) X (Up,1n-n(p) @ |Art 7' [77/2)],

where hq,..., Ay Tun over positive integers with h; < s;, where p runs over
irreducible admissible representations of Dy n_n- Using the second part of
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lemma IV.4 we see that this becomes

Os([7]) =

Yl Snico e Ind £8P, (m) o

G S;My w Si— B
(n-Ind Z )Sp e (0 @ [ det [%779) 5 (W, g (s, hoyns (JL TSP 4, (7))
®|Art 1|(m si— z‘)*”)/2)) X ...5p St(ﬂ't)]'

Now by theorem 11.7 this becomes

Os([n]) =
S Ty S (=) neInd G [Sp () X L
GLgn Fw)

(n-Ind 5, ) (Sp;(m) B (m @ | det [) B ... B (m; @ | det

XSp, (m; @ | det |5~ 1))
X... X Sp, (m)|[r(m; @ | det P~1) @ |Art (=)

Si—l—hi)

Next by lemma IV.2 we rewrite this

Os([r]) =

S S Sy

n- Indg(LF (Fw) [Sp () X X WD g, —h—jihs) X o X Sp g, ()]
[ri(7 ®|det [~ 1) ® |Art 32

S T T e

n-Ind G(L" ) [Sp L(710) 5 X (T 1 nimrt) X o X SP g, ()]
[r(m; @ | det =1 @ |Art _1|("F")/2] =

Z”L 1 Zsl n- Ind an Fw [Sp ( ) . X w<fj,—1,si+1—j>><
- X Sp st(ﬂ—t)][rl(ﬂ'z ® !det |J 1) X |AI‘t ;{1 (ni—n)/Q] —

(7] D2y 25 Irams @ | det [7) @ JArt (/2] =

O ([7]).

The theorem follows. O

Corollary 11.10 Suppose that 7 is an irreducible admissible representation
of G(A™®). Then either £[R¢(m)] is a true representation.
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Proof: Suppose not, then by the Weil conjectures for all but finitely many
finite places = of F' we have [Re(7)|w,, | is neither a true representation, nor
the negative of a true representation. This contradicts theorem 11.9. O

We now use our results to extend a theorem of Clozel [Cl1].

Theorem 11.11 Suppose that L is a CM field and that 11 is a cuspidal auto-
morphic representation of GL4(AL) satisfying the following conditions:

o IIV XTI,

e Il has the same infinitesimal character as some algebraic representation
over C of the restriction of scalars from L to Q of GL,,

e and for some finite place x of L the representation 11, is square integrable.

Then there is a strictly positive integer a(Il) and a continuous representation
Ry(IT) of Gal (L*/L) over Q¢ such that for any finite place y of L not dividing
[ we have

[Bi(ID)wy, ] = a(ID)[ri(1L,)].

Proof: Suppose first that L = EF" where E is an imaginary quadratic field
such that x|g splits in £ and where F't is a totally real field with [F'T : Q]
even. In this case we will write F' for L.

Choose (B, *, 19, 3, \;) as in section 1 such that B is a division algebra with
centre F' such that

o [B:F|=g%
e B gsplits at all places of F' other than x and ¢
e and B, and B,. are division algebras.

(Here we are using the assumption that [F" : Q] is even.) By theorem VI.4,
corollary VL.5 and lemma VI.6 we can find

e an algebraic representation £ of G over Qf°,
e and an automorphic representation 7 of G(A)

such that if we set BC (1) = (¢, II), then

o JL(I) =1II
e and dim[R¢(m)] # 0.
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If e(m) is the sign of dim[Re()], set
o [R(ID)] = e(m)g[Re(m>) @ rec(y)|car (e /r))
e and a(Il) = e(m) dim[Re (7)].
From theorem 11.9 it follows that for all finite places y of F' such that
o yfosr,
e y|g splits in £
e and y /1,

we have
[Ri(ID)]wy,] = a(ID)[r(IL,)].
Next suppose that y|g is inert in £ or that y|xz°. Let p denote the rational
prime under y. We can find a real quadratic field A such that
° Ap = F,
e and z|g splits in A.

Let E’ denote the third quadratic subfield of AFE, let (F*) = AFT and let
F' = F'(F*) = AF. Note that E’ is an imaginary quadratic field in which
both p and x|g split. Let 2’ denote a prime of F’ above x and let ¥ denote a
prime of F" above y which does not divide 2/(2’)¢. Note also that F, = F!, and
F, = F},. The 2’ component of the automorphic restriction Resk, (IT) is square

integrable and hence Resk, (IT) is cuspidal. Moreover by strong multiplicity one
Resk, (IT1)¢ 22 Resk, (IT), and Resk, (IT) has the same infinitesimal character as
an algebraic representation of GL,(F’ ®g C) over C. Thus we can associate
to Resk, (II) a continuous representation R;(Resk, (I1)) of Gal (F¢/F’) and a
positive integer a(Resk, (IT)) such that for all places z of F” for which

° ZXLE/(CE/)C,
e 2|g splits in £’
e and z /I,

we have

[Ri(Resp (1D) |, | = a(Resp (IT)) [ri (Resg (11)..).
It follows from the Cebotarev density theorem that

a(TT)[Ri(Res(T1))] = a(Resg (T1)) [Ry(T1) | Gat (e /1))
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Thus

a(Resg (1)) [Ry(TD) |, | =
a(ID)[Ri(Resg (T1 IWF/]—
(II

)
a(IT)a(Resfy (1) [ry(Resf, (I1),)] =
a(Ma(Resp (1)) [r(11,)],

and we have established the theorem in the special case.
Now we will turn to the proof in the general case.
If A is an imaginary quadratic field such that x|g splits in £ then set

e [’} to be the maximal totally real subfield of AL,
o Fy=AFt = AL,

e 1, a prime of F4 above x,

o4 to be the non-trivial element of Gal (F4/L)

and €4 to be the non-trivial character of Gal (A4/Q).

Then [Ff : Q] is even and z4|g splits in A. Moreover L, — Fal,, and
so as before we see that Resk ., (I) continues to satisfy the conditions of the
theorem, but for F4. Thus, from what we have already proved, there is a
continuous representation R;(Resy, (IT)) of Gal (L*/F,) and a positive integer
a(Resy, (IT)) such that for all places z fl of F4 we have

[Ru(Resg, (ID)|w., | = a(Resg, (IN)[ri(Resg, (I1)z)].

It follows from the Cebotarev density theorem that

[Ri(Resg, (I1))7*] = [Ri(Resg, (I1))]
and that if A’ is a second such field then

a(Resy,, (1) [Ri(Resg, (IT)) | Gar (poe /7 F )] =
a(Resg, (D) [Ri(Resg , (IT)) | Gal (o /74 )]

Fix one such quadratic extension Ag. Let {p;} be a set of representa-
tives of the equivalence classes of irreducible continuous representations of
Gal (L*/Fy,) on ﬁnite dimensional Qf°-vector spaces. Let I be the set of in-
dices such that p; *® = p; and p; is a constituent of [Rl(ReslgAO(H))]. Let J be
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the set of indices such that p; *° 2% p; and p; is a constituent of [Rl(ResIL;AO (IT))].
For i € I choose an extension p; of p; to Gal (L*/L). Also write

[Ri(Resgs, (I)] = ) bilpil.

i€elUJ

Let

P = @Pi-

ielUJ

Let H denote the Zariski closure of the image of p and let H° denote the con-
nected component of the identity in H. Also let M/F,, denote the fixed
field of p~'H?. If N/L is a finite Galois extension disjoint from M then
pGal (F*/N Ay) is Zariski dense in H and so we have the following results.

1.
2.
3.
4.

If i € U J then p;|gal(rec/na,) is irreducible.
If 7 € I then p;|qal (zac/ny is irreducible.
If 1,7 € IUJ and pi|Gal(Lac/NA0) =~ pj‘Gal(LaC/NAo) then ¢ = j.

Ifi,j € 1,if § = 0 or 1 and if p;|qal (zae/n) = ﬁj|Ga1(Lac/N)®e§40 theni=j
and § = 0.

In particular if A/Q is a quadratic extension as above such that Fj is
linearly disjoint from M over L then

® pi|Gal(Loc/F 4gA) 18 irreducible for all : € TU J

e and if, for some 7,5 € U J, we have p?AO|Gal(L“C/FA0A) o pj|Ga1(Lac/FA0A)

then p; ** = ;-

We have also seen that

(dim[Ri(Resg, (ID)])[Ri(Resp, (I1))|gal (zoc/pay 4)] =
(dim[Ry(Resg, (T)]) > 0y biloilcal e/ ma, )]-

Thus we must have

(dim([Ry(Resfs, (T))[Ri(Resg,, ()] =
(dim[ R (Resfs, (TD)])(ie, (0i/2)[(Id G2y {ac) iy 10i) | (zee/m)]+
S e bil(Dr ® €4l (1o )

where d4; = 0 or 1.
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Choose such an extension A; so that Fl, is linearly disjoint from M over
L. Set

a. ac 5 i
[R(ID)] = (b;/2)[In ga}gacﬁA ol + D bil(5i @ €0,

ied el

Also set
a(Il) = alResf, (1)

so that
dim[R;(7)] = a(IT)g.

Suppose now that A is such a quadratic extension of (Q such that F)y is
linearly disjoint from M A; over L. Then

D b7 ® €4t (zeespa, ) = > bil(Bi @ €4 |ca (noesraan))

iel iel
and so 04, = 04,; for all ¢ € I. Hence
(dim[Ry(Res, (ID)))[Ri(I1)|Gal (1oc/ 7)) = (dim[Ry(ID)])[Ry(Resg, (I1))].

Given any finite place y {l of L we can choose an imaginary quadratic
extension A/Q such that

e LA is disjoint from M A; over L,
e y splits as 3y in LA

e and z|g splits in A.

Then
(dim[Ry(Resz, (TD)]) [R: (1) w, ] =
(dim[Ry(TD)])[Ry(Resj, (1)l =
(dim[Ry(T1)])a(Resg, (IT))[ry (11 ),
and so

as desired. O

(Attempts to construct Galois representations by first constructing them
over many quadratic extensions are not new (see for instance [BR]).)
From this one can deduce the following extension of theorem 11.9.
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Corollary 11.12 Suppose that 7 is an automorphic representation of G(A)
such Ty is cohomological for . Let BC (w) = (¢, 11) and suppose that JL (II)
is cuspidal. Then JL (II) satisfies the hypotheses of theorem 11.11 and

na(JL (1)) [Re(7>)] = (dim[Re(7>)]) [Ry (JL (I1)) @ rec()|ga (ac /) -
In particular if y Jl is a place of F' then

n[Re(7%)] = (dim[Re (7%)])[r:(JL (1)) @ (3,7 o Art Ei)‘Gal (Fac/F)).

ylE

Proof: Using the Cebotarev density theorem, this follows easily from theo-
rems 11.9 and 11.11. O

We remark that the results of this section depend on the main theorem
of [Ko4] via theorem VI.1 and corollary V1.5, both of which rely on theorem
A.4.2 of [CL] (the former via theorem A.5.2 of [CL]). However we believe that
we could have avoided this logical dependence on the main theorem of [Ko4]
at the expense of doing a little more work. More precisely one can calculate
directly from the definitions Wy ,(p)Ls(O%). If 7 is an irreducible admissible
representation of G(A>) this suffices to calculate

> (dim(m, ) X On)) [Re(n) |

7'(',

where 7’ runs over irreducible admissible representations of G(A>) for which
(") = 7 (by using an argument similar to the proof of the last theorem).
This tells us [Re(7)|w,, | for all but finitely many places w of F' which lie over
a rational prime which splits in F, and this in turn suffices to prove theorem

A.4.2 of [CL].
12 The local Langlands conjecture.

We will start this section by checking various basic functoriality properties of
our map ;. Throughout this section K will denote a finite extension of Q, and
[ will denote a prime other than p. Recall that we have fixed an isomorphism
1: Qe 5 C.

Lemma 12.1 Suppose that w is an irreducible admissible representation of
GL4(K) and that x is a smooth character of K*. Then

[ri(m @ (x o det))] = [ri(m) ® (x " 0 Art ).
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Proof: 1t is easy to reduce to the case that 7 is supercuspidal, so suppose
that 7 is supercuspidal. Choose an imaginary quadratic field M in which p

splits and a totally real field Lt with a place x(+) such that L;f( 4y =K. Set

L = ML™T and choose a place x of L above x(+). Thus L, = K. Let X be a
continuous character of A /L*LX such that xx;' is unramified. By corollary
VIL.3 we may choose a cuspidal automorphic representation II of GL,(Ay)
such that

o II° XTIV,

e Il has the same infinitesimal character as some algebraic representation
of RS§(GL,),

e and II, = 7 ® (¢, o det) for some character ¢, of K*/Oy.

From theorem 11.11 (applied at good places of L) and from the Cebotarev
density theorem we see that

a(I[R(IT @ (Y o det))] = a(Il @ (Y o det))[Ry(IT) @ recy,(X)~'].
Applying theorem 11.11 at = we conclude that
(T ® X)) = [n(IL:) @ (X 0 Art ).

The lemma now follows from lemma 11.6. O

Lemma 12.2 Suppose that m is an irreducible admissible representation of
GL,(K) with central character .. Then

detry(m) = (Vr @ | [99" D271 o Art 11

Proof: Again it is easy to reduce to the case that 7 is supercuspidal, so
suppose that 7 is supercuspidal. Choose an imaginary quadratic field M in
which p splits and a totally real field L™ with a place z:(+) such that L;r( L EK.
Set L = ML™ and choose a place = of L above x(+). Thus L, = K. By
corollary VII.3 we may choose a cuspidal automorphic representation II of
GLy(Ap) such that

o JI¢ =TIV,

e [l has the same infinitesimal character as some algebraic representation
of RS§(GL,),
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e and II, = 7 ® (¢, o det) for some character ¢, of K*/Oj.

From theorem 11.11 (applied at good places of L) and from the Cebotarev den-
sity theorem we see that for all o € Gal (Q*¢/Q) there exist a;(0), ..., a,(0) €
i'¢ such that

e R(I)(o) has eigenvalues oy (o), ..., ap(0), each with multiplicity a(II),
e and a;(0)...an(0) = recy, (v, @ | |99~/2)71(0).

(See for instance the first paragraph of the proof of proposition 1 of [Tay]
for more details of this sort of argument.) Applying theorem 11.11 at x we
conclude that

det ry(1,) = (Y. @ | ’g(gfl)/Q)fl o Art I—<1.

The lemma now follows from lemma 11.6. O

Lemma 12.3 Suppose that m is an irreducible admissible representation of
GLy(K). Then
[ru(m*)] = [ru(r @ | det ['~9)"].

Proof: Again it is easy to reduce to the case that 7 is supercuspidal, so
suppose that 7 is supercuspidal. Choose an imaginary quadratic field M in

which p splits and a totally real field L™ with a place 2:(4) such that L:( =K

Set L = ML" and choose a place z of L above x(4). Thus L, = K. By
corollary VII.3 we may choose a cuspidal automorphic representation Il of
GL4(ApL) such that

o II¢ XTIV,

e Il has the same infinitesimal character as some algebraic representation
of RSG(GLy),

e and II, = 7 ® (1, o det) for some character ¢, of K*/Oj.

From theorem 11.11 (applied at good places of L) and from the Cebotarev
density theorem we see that

a(Tl @ | det |*9)[Ry(ITY)] = a(ITV)[Ry(IT ® | det |*9)].
Applying theorem 11.11 at = we conclude that

[r(I1)] = [ra(TT; @ [ det ['9)"].
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The lemma now follows from lemma 11.6. O

Now suppose that K'/K is a cyclic Galois extension of prime degree ¢. If 7
is an irreducible admissible representation of GL4(K) then one can associate
to 7 its base change lifting Resk, (7) to K’ (see theorem 6.2 of chapter 1 and
the discussion on pages 59 and 60 of [AC]). Also if 7’ is a Gal (K'/K)-regular
(see section 2.4 of [HH] for the definition of this concept) generic irreducible
admissible representation of GL4(K') one can associate to 7’ its automorphic
induction Ind %, (7') to K (see theorem 2.4 of [HH]). Then Resk, (7) is an irre-
ducible admissible representation of GL,(K’) and Ind %, (') is an irreducible
admissible representation of GL,,(K).

We will need to make use of the global analogues of these constructions,
which we now recall. Suppose that L'/L is a cyclic Galois extension of number
fields of prime degree ¢q. Let 7 denote a generator of Gal (L'/L) and let n denote
a non-trivial character of

AL /L (L) (NuyrA)-

If IT is a cuspidal automorphic representation of GL4(A ) then we can associate
to II an “induced from cuspidal” (see definition 4.1 of chapter 3 of [AC])
representation Res% IT of G L, (Ar) with the following properties.

1. Resk, (11) is cuspidal if and only if IT = II ® (1) o det).

2. A cuspidal automorphic representation II' of GLy(Ay/) is of the form
Res% 1T for some cuspidal automorphic II if and only if II' = I’ o 7.

3. If x is a place of L which splits in L’ and 7 is a place of L’ above = then

Res?, (I1); = I1,.

4. If x is a finite place of L which is inert in L’ then

Res?, (11), = Resfz (I1,).

(See theorems 4.2 and 5.1 of [AC].) Now suppose that II' is a cuspidal auto-
morphic representation of GL,(A/). Then there is an “induced from cuspidal”
representation Ind 7,11 of GLg,(AL) with the following properties.

1. Ind£,(I") ® (1 o det) = Ind &, (IT').

2. If II' 21T’ 0 o then Ind %,(IT') is cuspidal.
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3. If z is a place L which splits as x;...x, in L' then

Ind f,(I'), = n-Ind §7}"(IL,, x ... x 1T, ),

where () is a parabolic subgroup of GLy, with Levi component G L.

4. For all but finitely many places x of L which are inert in L’ we have
Ind £,(IT'), = Ind & (IT)).

(See theorem 6.2, lemma 6.4 and corollary 6.5 of [AC].) The following lemma
seems to be well known (see section 1.5 of [HH]), but for lack of an explicit
reference we give the proof.

Lemma 12.4 Keep the above notation and suppose that x is a finite place of
L which is inert in L'.

1. 11! 4s Gal (L. /L,)-regular.

2. The only generic, irreducible, admissible representation m of GLgg(Ly,)
such that

e TR (n,odet) =

e and

GLgg(L)
QL)
(where Q C G Ly, is the parabolic subgroup defined above)

Resﬁi (m) = n-Ind (I, x ... x (I, o 7971))
is Ind £r (T17).
3. Ind ¥, (1), = Ind &7 (IT.).

Proof: Note that the first part follows from lemma 2.3 of [HH]. Also note
that the third part follows from the second part and the definition of Ind é,
(see section 6 of chapter 3 of [AC]). Thus it remains to prove the second part.

We can write

! = (B;eSp S;(?TZ'»)) B (Bic/Sp s/ (7))

where 7, = wj o7 if i € I’, but not if i € J'. For i € I’ choose an irreducible
admissible representation 7; such that Resifgﬁi = 7/, Then

GL(]Q Léc ~Y - ]
n-Ind & "I, 2 (BiepSp (7)) ®7) B (B BIZg Sp (] 0 7))

158



(use the fact that IT/, is Gal (L /L,)-regular generic). Moreover
tnd b (I13) 2 (Bher B3 Sp o (7 © (1 0 det))) 8 (e Sp., (Ind &5 ()
(see [HH] and assertion 2.6 (a) of [BHK]), and hence
ResysInd 7 (IT;) & (BierSp o (7)) ™) B (B BIZ; Sp (1] 0 7))
(see [AC] and assertion 2.6 (b) of [BHK]). In particular

Resf7Ind 7 (IT,) 2 n-Ind 7" 1IL..

Now suppose that 7 is a generic, irreducible, admissible representation of
GL,(L;) such that

e T®(nyodet) = m

e and
Resf7 () 2 n-Ind 6727 (IL, x .. x (I, 0 7971)).

We may write
™ (Bies B2 Sp, (m ® (n) o det))) B (BiesSp (1))

where 7; = m ® (1 0 det) itie J,but notif¢ € I. If ¢« € J then we can write
= Ind f, 7, where 7} is an irreducible supercuspidal representation. Then

Resyim & (BiesSp,, (Resyrm)™) B (B, B Sp (7] 0 7))

see [AC] and assertion 2.6 (b) of [BHK Note that for i € I Reskem, =
(see [ L

(ResL, m;) o T, while for i € J we have 7. $§ 7; o 7. Thus we may identify [/
with I’ and J with J' so that

e for i € I we have Resfzm =

e and for i € J we have 7, 2 7/ o 7/ for some j(i).
Then

e for i € I we have m; & 7} ® (1, o det)?® for some j(i)

e and for i € J we have m; & 7.
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Thus
72 Ind Z11,,

as desired. O

Lemma 12.5 Suppose that w is an irreducible admissible representation of
GLy(K). Then

[ri(Resger ()] = [ra(m) |, ).

Proof: Again one may reduce to the case that 7 is square integrable, so
suppose that 7 is square integrable. (See section 6.2 of chapter 1 and pages
59 and 60 of [AC].) Choose an imaginary quadratic field M in which p splits.
Also choose a cyclic Galois extension (L) /L" of totally real fields and a place
x(+) of LT such that xz(+) is inert in (L) and the extension (L’)i(Jr)/L;H)
is isomorphic to the extension K'/K. Set L = ML* (resp. L' = M(L')") and
choose a place z of L above z(+). Thus the extension L, /L, is also isomorphic
to K'/K. Choose a place y of L which splits completely in L’ and which lies
above a rational prime other than p which splits in M. By corollary VII.3 we
may choose a cuspidal automorphic representation II of GL,(A[) such that

o II¢ =TIV,

e Il has the same infinitesimal character as some algebraic representation
of RSG(GL),

o II, = 7 ® (¢, o det) for some character ¢, of K*/O%,
e and II, is supercuspidal.

Then there is an “induced from cuspidal” representation Resy, (IT) of GL,(AL)
such that for all places w of L we have

e Res?, (IT),, = Rest¥(I1,) if w is inert in L',
e and Res?, (I1),, = 1% if w splits in L'

From the second of these conditions we see that Res?, (II) is supercuspidal
at every place above y and hence is cuspidal automorphic. From the second
of these conditions we also see that Rest, (IT),, has the same infinitesimal
character as some algebraic representation of RS@(GLS]).

If w is a finite place of L at which II,, is unramified and if w’ is a prime of L'
above w then, from the compatibility of base change with parabolic induction
and from the explicit description of base change when g = 1 (see part (d) of

160



theorem 6.2 of chapter 1 of [AC]), we see that if w' is a prime of L’ above w
then

[F(Resty (M), | = aRest, (M) [r(TTu) w,, |

Thus, from theorem 11.11 (applied at good places of L’) and from the Ceb-
otarev density theorem we see that

CL(H)[RZ(RGS%(H)] = a(Resﬁ,(H))[Rl(HﬂGal((L/)ac/L/)].
Applying theorem 11.11 at = we conclude that

[ri(Resi (T1,))] = (M) lw,, -

The lemma now follows from lemma 11.6. O

Lemma 12.6 Suppose that ' is a generic, Gal (K'/K)-regular, irreducible,
admissible representation of GLy(K'). Then
[ri(Ind &, (x') @ | det [90=972)] = [(Ind % ra(n"))].

Proof: One may reduce to the case that 7’ = Sp,(7Y), where 7° is super-
cuspidal, so suppose that 7’ has this form. (See corollary 5.5 and theorem 5.6
of [HH].) Note in particular that in this case ¢ is even. Choose an imaginary
quadratic field M in which p splits. Also choose a cyclic Galois extension
(L)*/L* of totally real fields and a place x(+) of Lt such that x(+) is inert
in (L')* and the extension (L');,)/L;, is isomorphic to the extension K'/K.
Set L = ML*T (resp. L' = M(L')*) and choose a place z of L above x(+).
Thus the extension L! /L, is also isomorphic to K’/K. Choose a generator
o of Gal(L'/L). Choose a place y of L which is inert in L’ and which lies
above a rational prime other than p which splits in M. Choose a supercusp-
idal representation m, of G'L,(L;) such that m, 2 7y ® ¢ for any character ¢
of (L;,)*/Or,. (To see that this is possible one may argue as follows. First
choose any irreducible supercuspidal representation 7r2 of G’Lg(L;). Then take
Ty, = m) @ X, where y is a character of (L)* such that

(wﬂ'yxg)’(oz,’y 7£ (wﬂyxg)‘oz/w © U)

By corollary VII.3 we may choose a cuspidal automorphic representation IT of
GL4(ApL) such that

o II° 11V,
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e [l has the same infinitesimal character as some algebraic representation
of RS§ (GLy),

o II, = 7 ® (¢, o det) for some character ¢, of (K')* /O,
e and I, & 7, ® (1, o det) for some character ¢, of (L})*/Of, .

Note that in particular 117 2 II.
Consider the cuspidal automorphic representation Ind f,l'[ of GLg(AL).
Using the the strong multiplicity one theorem we see that

(Ind £,11)" = (Ind £, 11)°.

If w is an infinite place of L which splits as w;...w, in L', then (Ind [,11),, is a

subquotient of n-Ind qui ()L”)(le x...xIl,), where @ is a parabolic subgroup
of GLg, with Levi component GLI. In particular this allows one to check that
Ind %, (IT), has the same infinitesimal character as some algebraic representa-
tion of RSH(GLg,) (use the fact that g is even). Moreover by proposition 5.5
of [HH] we see that Ind },(IT), is supercuspidal.

From theorem 11.11 (applied at good places of L) and from the Cebotarev
density theorem we see that

a(I0)[Ry(Ind §,(IT) @ | det |20-9/%)] = a(Ind f, (IT))[Ind Gy (7)) 7, Ba (1)
Applying theorem 11.11 at x we conclude that
[ru(Ind 5, (T0,) @ [ det [20797%)] = [(Ind y i (IT,.)
The lemma now follows from lemma 11.6. O
If 7 is an irreducible admissible representation of GL,(K) we will set

rec;(m) = r(7V @ | det |179/2).

With this new normalisation we have the following restatement of lemma 11.8
and of the preceding lemmas.

Lemma 12.7 Let K'/K be a cyclic Galois extension of prime degree q and
let ™ be an irreducible admissible representation of GL,(K). Then we have the
following results.

1. If T € Gal (K*/Q,) then rec;(m o 1) = rec)(m)".

2. If g =1 then rec)(m) = mo Art ;.
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If ¢ is the central character of w then detrec;(m) = rec;(1y).
If x is a character of K* then rec;(m @ (x o det)) = rec;(m) @ rec(x).

rec;(Resf (7)) = recy(m)|w,,, -

S T e

If ' is an irreducible admissible representation of GLy(K') then
rec;(Ind %/ (7")) = Ind %ﬁ/ rec;(7').

We next turn to some cases of non-Galois global automorphic induction,
which were established by one of us (M.H.) in [Har2]. Indeed in a sense the rest
of this section is superfluous, as we could simply refer to section 4 of [Har2].
However we will repeat the arguments here in somewhat greater detail, as we
can now be slightly more direct. We will repeat not only arguments of [Har2],
but also arguments of Henniart from [BHK] and [He6].

Proposition 12.8 Suppose that Ly D Ly D Ly are CM-fields with L3/L,
soluble and Galois. Suppose that x be a character of Af /Ly such that

1. Xc — X—l}.

2. for every embedding T : Ly — C giving rise to an infinite place x we
have
Xo @ 2 —> (T2/cTz)PT

where p, € Z and if T # 7' then p. # pl;

3. there is a finite place y of L1 which is inert in Lz, which does not divide
I and and for which the stabiliser of the character x, o Np,/r, of (L3)y
in Gal (Lg/Ll) is Gal (L3/L2)

Let ¢ be a character of Aj /L such that
1. ¢c — ¢*1,'
2. if [Ly : Ly] is odd then ¢oo = 1;

3. if [Ly = Lq] is even, then for every embedding T : Ly — C giving rise to
an infinite place x we have

x 12— (r2/|T2)*;

4. @y 15 unramified.
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Then there is a cuspidal automorphic representation I7!(x) of GLpy1,)(AL,)
such that

o I00° =I5 00"

° (If; (x)® (podet))s has the same infinitesimal character as an algebraic
representation of RS&1 (GLiLy:11))s

o /1 18 supercuspidal;
Lo X Y p )4 )

o and

[Rz(fef%ga)c% gcb odet))] = a(I7}(x) @ (¢ o det))
[Ind GZI(LEC/L;)reCm(X_l(qﬁ_l o Nyy/p,)| |A-lEeLad/2y]

Proof: The proof will be by induction on [Ls : L;], there being nothing to
prove in the case [L3 : L] = 1.

Now consider the inductive step. Because L3/L; is soluble we may choose
a subextension L3 D Ly D Ly with Ly/Ly cyclic Galois with prime degree g.
Let o be a generator of Gal (Ls/L;) and let & be a lift of o to Gal (L3/Ly).
We will consider separately the cases Ly C Ly and Ly N Ly = L.

Suppose first that Ly C Lo. Set ¢/ = ¢ o Ny, unless [Ly : Ly] is odd in
which case set ¢’ = 1. Then from the inductive hypothesis we see that there
is a cuspidal automorphic representation [ f;‘ (x) of GLj1,.0,1(Ar,) such that

o I = I ()"

o (I f;* (x)®(¢'odet) ) has the same infinitesimal character as an algebraic
representation of RS(S4 (GLiLy:14);

. If; (x)y is supercuspidal;

e and

R0 (@ odet)] =
a(I7 (x) ® (¢ o det))[Ind ooy e rrmrect, (¢ (@) 7 ((-lLaLal)/2)),

By theorem 11.11 and lemma 12.7 we see that

|4
[recy(I7; (x)y)) = [Mnd gy, reci ().

and hence that W
o Lyay o
rec (IF2(09)] = Ind 47 reey(x)]

164



Thus

[reci(T; (X)), | = > [reci(xy © N1y, /10, © 7)),
7€Gal (L3/L2)\Gal (L3s/L4)

and

[reci (T2 009wy, ) = > [rec;(xy © Niy, /1, © T0))-
T7€Gal (L3/L2)\Gal (L3/L4)

In particular by our assumption on x, we see that

[reci (173 (x)y)] # [reci(1 (X);)]

and conclude that
I (X)y % TEH 005
Now set
I (x) = Ind 173 (x)-

By the strong multiplicity one theorem we see that
I (0" =I5 00"

If w is an infinite place of Ly below places 1, ...,z, of Ly then ILLQ1 (X)z 1s a
subquotient of Ind g(LL[Llf;)LI](LI’I)(If;(X)II X oo X I74(X)a, ), Where Q C GLi1,.1,)
is a parabolic subgroup with Levi component GL[QLQ: L] Using this one can
check that (I7!(x) ® (¢ o det))s has the same infinitesimal character as an

algebraic representation of RSé&(GL[ La:L1])- Moreover
1 Ll,
I (x0)y = Ind /" (172 ()y)

is supercuspidal by proposition 5.5 of [HH]. From theorem 11.11 we see that
for any finite place x of Ly not dividing [ and lying below places z1, ..., z, of
L, we have

T

w
recu(IE(x)s ® (6] o det))] = S [Ind !~ rec(xe, (¢, © Np,. ...

i=1
By lemma 12.7 we conclude that for all but finitely many finite places x of L,
lying below places z1, ..., x, of Ly we have

r

WLl x
[reci (I} (X)x @ (¢ 0 det))] = D [Ind gy, reci(Xe, (90 © Npo, /14.))]-

=1
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Finally using the Cebotarev density theorem and theorem 11.11 we see that

RUIL() @ (@ode] =
a(If2(x) ® (¢ o det))[Ind Gy (5 2 recy (X (¢ 0 Niyyp,)| [ E2EaD/2)).

Now we turn to the case Ly N Ly = L;. In this case by inductive hy-
pothesis there is a cuspidal automorphic representation 1 £§L4(X oNp,r,/L,) of
GLipy:1,(Ar,) such that

]£;L4<X © ]VLzlu;/Lz)C = ]£;L4<X © NL2L4/L2)V;

(I£;L4(X © Niory/1:) ® (¢ o Np,y1, o det))s has the same infinitesimal
character as an algebraic representation of RS@4 (GLiLy:10);

[£§L4(X o NL2L4/L2)y is supercuspidal;
e and

[RZ<II€;L4(X © NL2L4/L2) ® (¢ © NL4/L1 © det))] =

alry, (o Nianayn,) ® (60 Npyyi, o det))
[Ind (LEC/L;L4)1"€CZ,2((X_1 0 Npyrijr) (@7 0 Npypyyp,)| |72 E0/2)),

By theorem 11.11 and lemma 12.7 we see that for any prime x of L, not
dividing [ and lying below primes z1, ..., x, of LyL, we have

T

W
[TGCZ(I£§L4(X O Npyri/Ls)2)] = Z[Ind W(L4’z rec;(Xz © N(L2L4)zi/L2,xi)]'

L2L4)zi
i=1
In particular we see that
[reci (1727, (X © Niyrayra)e)] = [reci(Irin, (X © Nigrara)5,)]
and so by the strong multiplicity one theorem
I£§L4(X © NL2L4/L2) = [£§L4 (X © NL2L4/L2)U'

Thus by theorem 4.2 of chapter 3 of [AC] there is a cuspidal automorphic
representation II of GLyz,..,j(Ar,) such that Resfi(ﬂ) = If;‘L4(X o NiyLa/Ls)-
Again theorem 4.2 of chapter 3 of [AC] tells us that

Y = II° ® ( o det)
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for some character n of A} /LYL{ (Nr,/r,Af,). The norm map gives an
isomorphism

Npyyot t AL LY Lo (N AT,) = A /(LT (L)) (N 1 AT ).
On the other hand because L] is totally real we see that
AL ) (o)) (N A ) = AL /(L) (L) (N jrp AL
and hence that
Nipyjg t AL LY oo (NLyyin AL) = AL LT Ly (Npg AL )-

4

Thus we can find a character ¢ of Aj /LT L{ ,, such that o N, , + =7 and
hence
(II® (1 odet))” = (IT® (1) o det))*.

Note that therefore

([[I:;Ll (X) ® (dj © NL4/L2 © det))v = (I£;L4<X) ® (w o NL4/L2 o det))c
If z is an infinite place of L lying under an infinite place x of L4 we see that
I, = 17 (X © Niyryyr,)z. Thus (IT® (¢ o det))o has the same infinitesimal
character as an algebraic representation of RS(L@1 (GLiLy:1,1)- From lemma 6.12
of chapter 1 and the discussions on pages 52/53 and 59/60 of [AC] we see that
II, must be supercuspidal.

By lemma 12.7, for all but finitely many pairs (z,¥) of a place = of L; and
a place = of L, above x we have

[reci(IL® (¢ o det)))lwy, ] = [reci((Z7)1, (X) @ ((9¥) © Ni,/1, © det))z)].

It follows from theorem 11.11 and the Cebotarev density theorem that
a(Ip,,(x) ® (¢ o NL%Ll odet))[I(I1 ® (¢9) o det))|qal (zge /L)) =
a(Il® (¢y o det))[Ri(I1;;, (X) ® (@1 0 Niyp, o det))]

and hence that

[T ® (¢ o det))|Gal(L“°/L4)] = a(TI ® (¢ o det))
Gal ( L§¢/L B )
[Ind 5, Lach;‘)L4)reclz((X o Npyry/1:) (@ ™ o Npyryyn,)| |(=[L2:La])/2)]

As Ind gi Eﬁiiﬁ‘*)m)recl (xto NL2L4/L2)|WL4’y is irreducible we see that

[R(IT @ (¢ o det))] = a(TT @ (¢¢) o det))
Gal (Lg¢/L1) 1 Lt
[IndGalngchz rec, (X "ot o N, p,)| [ E2lad)/2)],
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for some character ' of A} /L Ly (Nr,/r,A7,). Thus

[(Bi(IT® (¢¢ o det)) @ recy, (v @ (n') 7)) =
[(Ri(TT® (¢ o det)) @ recy, (v @ (1) 7))"]

and hence by theorem 11.11, lemma 12.7 and the strong multiplicity one the-
orem we see that

(M@ (n odet))® = (IT® (' odet))”.
Replacing IT by II ® (' o det), we have that I1° = IT and

[Rl(]‘g ?éjﬁ%(””il o det))] = CL(H X (qﬁqﬁ(n/)fl o det))
Ind £ 252 ey (6 © Ny )| [1-1E0072)

and hence (using theorem 11.11, lemma 12.7 and the Cebotarev density theo-
rem)

(P11 2 (6 0 det))] = a(I1® (¢ 0 det))
al (L§¢/Ly _ _ _ .
[Ind oy (1 7 recs (x (@7 © Niyy,)| [(-HbD/2)]

Thus we may set If;(x) =1I. O

Recall that if r is a continuous representation of Wx over C and if ¥ is a
continuous additive character of K then we have the following.

o An L-factor
L(r, s) = det((1 — Frob,/(#k(px))") W, <) 7",
where W!K denotes the inertial invariants of r.

e An e-factor
e(r, s, ).

(See for instance [Tat2]. In the notation of [Tat2] we have €(r,s, V) =
€(rws, ¥, py), where py is the additive Haar measure on K which is self
dual with respect to W.)

o A ~-factor
y(r,s, W) = L(r",1 = s)e(r, s, W)/ L(r, s).

If moreover 7y and 7o are irreducible admissible representations of GLg, (K)
and GLg,(K) then we also have the following.
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e An L-factor L(m X 7o, s).
e An e-factor €(m X mo, s, V).
e A ~-factor

y(my X 9,8, W) = L(m) x my,1 — s)e(my X m, s, V)/L(m X ma,5).

(See [JPSS] for the definitions. In the case go = 1 and my is trivial we will
simply drop it from the notation.) Note that if 7 is unramified then

L(m,s) = L(rec(m), s).

Corollary 12.9 Suppose that Ly D Ly D Ly are CM-fields with Ls/Ly soluble
and Galois. Suppose that x be a character of Af /L3 such that

1. Xc — X_l;

2. for every embedding T : Ly — C giving rise to an infinite place x we
have
Xz : 2 — (T2/cTz)P"

where p; € Z and if T # 7' then p; # p.;

3. and there is a finite place y of Ly which is inert in Lz, which does not
divide 1, which is unramified over LT and for which the stabiliser of the
character x, o Np,/1, of (Lz), in Gal(L3/Ly) is Gal (L3/Ls).

Then for all but finitely many places x of L we have
Gal (Lg/ L,
L(IE (X2 8) = L((Ind gy (730 vecr 00w, o 5) = [ Llreen(xz),
z|x

Proof: We only need show that we can choose a character ¢ as in proposition
12.8. Let ¢ be a character of Ly of the form described in proposition 12.8.
We have a commutative diagram with exact rows

0) — ><H OL - Af, — Cl(Ly)

T T
0) — OF Ny (L 1oo><H Ofw) — LiNp AL — ClL(Li)™,

where Cl(L;) denotes the ideal class group of Ly. Thus it suffices to define ¢
on [, OF, ./(OF, ,(Np, 1+ I1, OF, .)) so that it equals ¢ on OF,. Let O},
’ ’ 1
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denote those elements of (’);+ with norm down to Q equal to 1. Then ¢, is
1
trivial on O} . Thus it suffices to check that

X
OL1 Ll y Ll/fﬁ H OLl x

So suppose o € OF N(OF,  (Np, 1+ 1, OF, ;). Then, because y is unramified
over L, we see that a€ (L)*N (Np,r+(AZ;)*). But we have a right exact

sequence

(LT — @) /Ny, 1 LY, — Gal(Li/LT) — (0).

Thus o must fail to be a norm at an even number of infinite places x of L7,
i.e. «ris negative at an even number of infinite places x of L7 . Thus the norm
down to Q of « is positive and hence 1. O

Corollary 12.10 Suppose that Ls/Ly is a soluble Galois extension of CM-
fields and suppose that Ly and L, are intermediate fields between Ls and L.
Let W =[], V. be a non-trivial additive character of Ar, /Li. Suppose that x
(resp. X') is a character of A} /Ly (resp. Axé/(Lg)X) such that

1oxe=x"" (resp. (X')°=(')"");

2. for every embedding T : Ly — C (resp. 7' : Ly — C) giving rise to an
infinite place x (resp. x') we have

Xo @ 2 +— (T2/cTz)PT
(resp.
Xt & 2 — (T'Z/CT’Z)p/T/)

where p; (resp. pl,) € Z and if T # 7 (resp. T # 7{) then p; # p,
(resp. pp 7 Dy );

3. there is a finite place y (resp. y') of Ly which is inert in Lz, which does
not divide [, which is unramified over LT and for which the stabiliser of
the character x,,oNp, /1, (resp. X, 0Nr,r;, in Gal (Lz/Ly) is Gal (Lz/Ls)
(resp. Gal (Ls/L})).
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Suppose that 1 and ' are algebraic characters of A} . Then for all places x
of L1 which are inert in Lz and which do not divide | we have

WLl x
e (152 ()2 ® (s © det))] = [Ind 2 recy (v (s © Ny )
and

144 1,z
[reci((17} (X')e ® (¢}, 0 det))] = [Indyy, " recy (X, (¢ © Niy, yr,,))]

2,z

and

(L2 (0 @ (Y odet))e x (I (X)) @ (¢ o det)), 5, V) =
w.
Y(Ind y, reci(xo (Ve © Niy,r,.,)))@
’ w 1,z
(Ind Wié:zrecl(X;:(w; o Ny /11.))): 8 Va).

Proof: This follows from the previous corollary and from theorem 4.1 of
[He3]. O

Now fiz a non-trivial additive character U of K.

Lemma 12.11 Fiz a finite Galois extension K3/K. For each pair (Ka,X),
where K5/ K is a finite subextension of K3/K and where x is a character
of K5 of finite order, we can choose an irreducible admissible representation
I (X) of GLik,.k)(K) which satisfies the following properties.

1. [rec)(If,(x))] = [Ind %,Zrecl(x)]-

2. Whenever (Kj, x) and (K}, X'") are two such pairs (with both Ky and K},
inside the same fived K3) and 1 is a character of K* of finite order we
have

Y((IE, (X) @ (¥ o det)) x I, (\'), 5, V) =
v(Ind %Zrecl(x(w o Nk,/k)) ® Ind %ﬁ/ rec;(x'), s, V).

Proof: Choose an extension of totally real fields L}/L" and a place xq of
L°, which is inert in L§ and for which the extension L3, /LY is isomorphic
to K3/K. (This may be constructed as in lemma 3.6 of [Hel|. Using weak
approximation one can ensure that all the number fields of that argument can
be taken to be totally real). Choose an imaginary quadratic field M and a
real quadratic field N such that N is disjoint from L} over Q and such that

p splits completely in M N. Let x; and y; denote two places of M N above p
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which have the same restriction to M. Set L; = MNL? and let = (resp. y)
denote the places of L which lie above g and z; (resp. xo and y;). Also set
Ly = L°MN and Lz = LYMN. Let = (resp. y) denote the place of L; above
xo and 1 (resp. y1). Thus z and y are inert in L3 and the extension Lj, /L1,
and K3/K and L3, /L, are all isomorphic.

Fix a pair (Ks,x) as in the lemma and let Ly/L; be the subfield of Lj
corresponding to Ky C K3 under the isomorphism of Ls,/L;, and K3/K.

Choose p, as in corollary 12.10 and all divisible by the inertial degree
fro/ik- Let Xo denote the character of L;oo corresponding to this choice of
p-. Also choose a character y, of K for which the stabiliser of x2 o Nk, /Ko
in Gal (K3/K,) is Gal (K3/K3). (For this it suffices to choose a finite order
character x, of Of with the same property. Again it suffices to choose a
continuous homomorphism O, — Z, with the same property (then compose
it with a character of Z, of sufficiently large order). Again it suffices to choose
a Qp-linear map Ok, ®; Q, — Q, with the same property. But using the
p-adic log and the normal basis theorem we find that there is a commutative
diagram

0%, ©:Q K[Gal (Ky/K)
l l
0%, ©3Q, > K[Gal (Ks/Kz)\Gal (/K]

where the top horizontal map is Gal (K3/K)-equivariant, where the left hand
vertical map is induced by the norm map and where the right hand vertical
map is the natural projection. The existence of the desired homomorphism is
now immediate.) Now as in the proof of corollary 12.9 we can find a character
X of A}, such that

e Y.\ ! is unramified,
e and X,x, "' is unramified.

(One must use the fact that = and y are split over the maximal totally real
subfield L3 of L,. The argument is easier than in the proof of corollary 12.9

because xo|px = 1.)
Ly

-1 . .
Now set Yoo = Xool le/sz/K and choose a character 1 of Aj which is

unramified at # and which restricts to s at 0o. One can check that X, (¢, o
Nrp,./r..,) has finite order and hence is a twist of x by an unramified character
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of finite order. Replacing ¢ by a twist by a suitable character of finite order
one may assume that x = Xz(%z © Np,,/1,,)-
Finally we set
I, () = 11} (X)= @ (x 0 det).
The lemma follows from corollary 12.10. O

We will let Cusp (GLy(K)) denote the set of isomorphism classes of irre-
ducible admissible representations of GL,(K) and we will let

Cusp g = U Cusp (GLy(K)).

g=1

We will let Z[Cusp ] denote the free Z-module with basis the elements of
Cusp g. Then we may extend the definition of L(m X m,5s), €(m X ma, s, P)
and y(m; X ma, s, P) to bilinear maps from Z[Cusp x| x Z[Cusp x| to the mul-
tiplicative abelian group of non-zero meromorphic functions on C. We may
also extend

e rec; to a homomorphism Z[Cusp ] — Groth (W),
e V to a homomorphism Z[Cusp x| — Z[Cusp k],
e and ®(¢ odet) to a Z[Cusp ;] — Z[Cusp x|, for any character ¢ of K*.

(Note that to any irreducible admissible representation = of GL,(K) we can
associate a class [7] € Z[Cusp g/, i.e. if 7 is a subquotient of n-Ind (7; X ... X 7;.)
with each 7; irreducible supercuspidal then [r] = [m]+ ...+ [7,]. Note however
that we do not in general have L(w, s) = L([n], s) etc.)

Lemma 12.12 Fix a finite Galois extension K3/ K. We can associate to any
irreducible g-dimensional representation r of Wy /Wi, , an element [Ty, /i (1))
in Z[Cusp | with the following properties.

1. For any such v we have rec)[mg, k()] = 7.

2. For any irreducible representations r and v’ of Wi /Wi, and any char-
acter ¥ of K* of finite order, we have

Y([Trsy i (1) @ (Yodet)] X [y i (17)]Y, 5, ¥) = y(r@recy(¥) @ ("), 5, U).

Proof: This follows from the previous lemma and from Brauer’s theorem
that representations induced from characters of subgroups form a Z-basis of
the Grothendieck group of virtual representations of the finite group Wy /Wi,
(I
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Corollary 12.13 Fiz a finite Galois extension K3/K. If r is an irreducible
representation of Wy then [mx, k()] can be represented by a supercuspidal
representation T, i (r). The map

r— 7TK3/K<T)

is an injection from the irreducible representations of Wy /Wi, to Cusp .

Proof: Suppose that [7x, k(1)) = Y, a;[m;] where the [r;] are distinct ele-
ments of Cusp ;. Then

7([7TK3/K (7”)] X [WKS/K(T)]V7 S, \I])

has a zero at s = 0 of order Y . a? (see proposition 8.1 of [JPSS]). On the
other hand

7([7TK3/K(T)] X [WKa/K(T)]vv S, qj) = 7(T ® Tvv S, ‘I])

and so has a simple zero at s = 1. The corollary follows. O

Corollary 12.14 Fiz a finite Galois extension K3/K. If r and r' are irre-
ducible representations of Wi /Wi, and if 1 is a continuous character of K*
of finite order then

L((mry i (r) ® (¢ o det)) x mgey i (1')Y, 8) = L(r @ recy(¢) & ()", s)
and
e((Try /i (1) @ (Yo det)) X mry i (r')Y, s, ¥) = e(r @ rec;(¥) @ ('), s, ¥).
In particular 7g, k() and v have the same conductor.

Proof: This follows from lemma 12.12 and the previous corollary as in
lemma 4.4 and proposition 4.5 of [He3|. O

Lemma 12.15 We can associate to any irreducible continuous g-dimensional
representation r of Wy with finite image, an irreducible supercuspidal repre-
sentation 7(r) of GLy(K) with the following properties.

1. For any such r we have rec)[m(r)] = r.
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2. For any continuous irreducible representations r and r’ of Wy with finite
images and for any character v of K* of finite order, we have

L((m(r) @ (¢ odet)) x w(r')", s) = L(r @ rec;(¢) @ ()", 5)
and

e((m(r) ® (¢ odet)) x w(r')Y,s,¥) = e(r @ rec;(v) ® (r')", s, V).

Proof: As K has finitely many extensions of given degree there are count-
ably many irreducible continuous representations r of Wy List them rq, 79, ...
and set g; = dimr;. There are only finitely many irreducible supercuspidal
representations of GL,, (K) with the same conductor as r; and with central
character det(r;) o Art x. (For instance, as there are only finitely many ir-
reducible representations of Dy~ which are trivial on a given open compact
subgroup and which have given central character, this can be deduced from
the Jacquet-Langlands correspondence (see sections 2.5 and 2.6 of [He4]).) For
any positive integer I we may find a set IC; of finite Galois extensions of K
such that

e if K and K" € Ky then either K/ D K" or K" D K’;

o Ugrex, K' = K

o Cr C Kr_1;

e and for each K’, K" € K; and each ¢ < I we have
WK’/K(ri) = 7T1<"/I<(7"z')-

(Argue by recursion on 1.) Set m(r;) = mx/k (r;) for any K’ € K;. The lemma
now follows easily. O

Corollary 12.16 Ifr is an irreducible continuous representation of Wy with
finite image and if Y is a character of K> of finite order then

w(r @ rec;(v)) = 7 ® (¢ o det).
Proof: Look at the zero at s = 0 of

Y([r(r) @ (¥ odet)] x [r(r @ rec;(¥))]Y, s, ) =v(r@r’, s, U).
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Corollary 12.17 The map rec; gives a bijection between isomorphism classes
of irreducible supercuspidal representations of GL4(K) with central character
of finite order and equivalence classes of g-dimensional irreducible continuous
representations of Wy with finite image.

Proof: This now follows from the previous lemma and corollary and from
theorem 1.2 of [Hed]. O

Corollary 12.18 The map rec; gives a bijection between Cusp (GL4(K)) and
the set of equivalence classes of g-dimensional irreducible continuous repre-
sentations of Wx. Moreover my € Cusp (GLy, (K)) and my € Cusp (GL,,(K))
then

L(m % mq,s) = L(rec;(m) ® rec(ma), s)
and

€(m X o, 5, V) = €(rec)(m ) ® recy(ms), s, ¥).

Proof: Any irreducible supercuspidal representation of GL,(K) is of the
form 7 ® (1) o det), where 1, is finite order and v is unramified. The corollary
follows as in sections 4.2, 4.3 and 4.4 of [He5]. O

Corollary 12.19 The bijection rec; from Cusp (GL4(K)) to the set of equiva-
lence classes of g-dimensional irreducible continuous representations of Wi is
independent of the choice of | # p and of the choice of isomorphism 1 : Q¢ = C

(which we have assumed is chosen so that 1 \}{/2 is valued in RZ,).

Proof: This follows from the last corollary and from theorem 4.1 of [He5].
a

As described in section 4.4 of [Rod] one may naturally extend
rec; : Cusp ;o — Irry (W)
to a series of bijections
recg : Irr(GLy(K)) — WDRep,(Wk)

for all g € Z-o. We will let Sp, = (r, V) denote the g-dimensional Weil-
Deligne representation of Wy on a complex vector space with basis e, ..., 41
where

o 7(0)e; = |Art ! |'e; for all 0 € Wy and all i = 0,...,g — 1
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e and where Ne; = e;41.

Then Rodier sets
recg(Sp ., (m) B ...BSp,,(m)) = (rec;(m) ® Sp,,) ® ... ® (rec;(m;) ® Spy,).

Then we have
recg () = (rec;(m), N(m))

for some N (7).

Theorem 12.20 The map recy is a local Langlands correspondence. (See the
introduction for the definition of a local Langlands correspondence.)

Proof: That this follows from what we have already proved seems to be well
known, but for lack of an explicit reference we sketch the argument.
It follows from lemma 12.7 and the definition of recx that

o if 7 € Irr(GL,(K)) then recx(m) = m o Art *;

o if [1] € Ir(GL,y(K)) and x € Irr(GLy(K)) then reck(m @ (x o det)) =
reck (m) ® reck(x);

e and if [] € Irr(GLy(K)) then detreck (m) = reck (¢r).

Suppose that 7 is an irreducible admissible representation of GL,(K).
Then we can write
™ = Sp Sl(ﬂ-l) EE Hﬂ Sp St(ﬂ-t)’

with 7, ..., m; irreducible supercuspidals. Moreover we have

™ =2 Sp, (m ®|det|" ") B...BSp,,(r, ® |det |'*).

(In the case t = 1 this can be deduced from proposition 1.1 (d) and proposition
2.10 of [Z]. Then the case that 7 is tempered follows from another application
of proposition 1.1 (d) of [Z]. Finally the general case follows from proposition
1.1 (d) of [Z] and corollary 2.7 of chapter XI of [BW].) Hence using lemma
12.7, the definition of reckx and the isomorphism

Spy = Sp, ® |Art '
we see that

o if [1] € Irr(GLy(K)) then reck(m") = recg(m)".
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It remains to check that if [m] € Irr(GL,, (K)) and [mo] € Irr(GL,, (K))
then
L(m X ma,8) = L(reck (m1) @ reck (ms), s)

and
e(m X o, 8, V) = e(reck (m) ® reck(ms), s, V).

Recall that in [JPSS] the factors L(m x ma,s) and €(m X ma, s, V) are only
defined directly for m; and 7y generic. In this case if

T = Sp, (mia) B ... BSpy, (M)

with each ; ; supercuspidal, then

t1 to

L 1X7T2, HHLﬂ'l]lX’YTQJZ, )
J1=1j2=1
and
1 2
€(m X ma, 5, V) = HH (11, X T2y, 8, V)
Ji1=1j2=1

(see theorems 3.1 and 9.5 of [JPSS]). In general these formulae are used to
define L(m X m,s) and €(m X mg, s, ¥) for any irreducible admissible m; and
mo. As by definition we have

L(ry ®ry,s) = L(ry, 8)L(rs, s)

and
6(’/"1 b ro, s, \D) = E(7417 S, \IJ)E(T% S, \IJ)

for all Weil-Deligne representations r; and ry, we only need to check that
L(Sp, (m1) x Sp,(m2), 5) = L(reck (m) ® reck(m) ® Sp,, ® Sp,, 5)
and
€(Sp, (m1) X Sp,(m2), 5, V) = €(recg(m) ® recg(m) ® Sp,, ® Sp,, s, ¥)

for all irreducible supercuspidal representations m; and 79, and for all positive
integers s; > Ss.

By theorems 3.1 and 8.2 of [JPSS] (see also equation (14) of section 8.2 of
[JPSS]), we see that if s; > sy then

so—1

L(Sp, (m) x Sp,(m2),s) = [ L(m x (r2 @[ det |7, 5)

=0

178



and

s1—1s2—1

Y(Sp, (1) X Sp 4, ( H H’y (m1 @ | det ") x (w2 @ |det]’), s, ¥).

=0 7=0

Using corollary 12.18, we see that it suffices to check if r; and ry are irreducible
Weil-Deligne representations of Wy and if s; > s, are positive integers, then

so—1
L(ri®ry®@Sp,, ®Sp,,s) = H L(r; @ 1y ® |Art 15771 5)
i=0
and
s1—1s2—1
Y(ri @712 ®Sp,, ®Sp,, s, ¥) = H H Y(ry @ ro @ |Art | s, W),
i=0 j=0

Note that if s; > s5 then
Sp S1 ® Sp S2 = Z Sp s1+s2+1-27 ® |Art I_(l ’i_l'
=1
The desired equality of L-factors follows at once from the definitions in section

4.1.6 of [Tat2]. The desired equality of y-factors follows easily if we can show
that for any irreducible Weil-Deligne representation r of Wy we have

t—1
Y(r ® Spy, s, ¥) = Hy(r ® |Art |’ s, U).
i=0

To prove this we consider two cases. If r is ramified then according to
section 4.1.6 of [Tat2] we have

t—1 t—1
Y(r ® Spy, s, V) = 6(@7’ ® |Art ', s, ¥) = H’y(r ® |Art ', s, ).
i=0 i=0

Thus we may suppose that r is unramified and hence that dimr = 1. Again
using the formulae of section 4.1.6 of [Tat2] we see that

”y(r@Spt,s U) =

e«(P;- or®|ArtK1| s, W) (=)' [[;Z5(r ® |Art ') (Frobg)
Ht 1L(?‘ @ |Art |, 1—8)(Ht o L(r @ |Art 1|7, s)) 7t =
[TiZo v(r @ |Art "+, 5, ) [iZo (—(r & |Art 21]*+)(Frobs)
L(rY ® |Art ;(1|_i_1, 1—3s)/L(r®|Art K1| s)) =

[T=0v(r @ |Art [+, 5, 0).

The theorem follows. O
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I Appendix: Generalities on admissible rep-
resentations.

If G is a group and g € G we will let
e Z(G) denote the centre of G,

e Z:(g) denote the centraliser of ¢ in G,

e and [g] the conjugacy class of g in G.

If 7 is a representation of G we will let W denote the vector space on which
the image of 7 acts, and we will let v, denote the central character of = (if it
has one).

Now suppose that GG is a topological group such that every neighbourhood
of the identity contains a compact open subgroup. Suppose also that €2 is an
algebraically closed field of characteristic 0. then we will let

C=(G)

denote the space of locally constant 2-valued functions on G with compact
support. If ¢ : Z(G) — Q* is an admissible character of Z(G) then we will
let

C=(G,9)

denote the space of locally constant (2-valued functions ¢ on G such that
o v(zg) =Y(2)p(g) for all z € Z(G) and g € G
e and the image of the support of ¢ in G/Z(G) is compact.

We may choose a (left or right) Haar measure p on G such that every
compact subgroup of G has measure in Q. Then we may speak of an €)-
valued Haar measure meaning a non-zero element of Qu. If p € C>®(G), if
7 is an admissible representation G over 2 and if we fix an (Q-valued) Haar
measure on G then we have a well defined endomorphism 7(¢) of W,. The
endomorphism 7(¢) has finite rank and so trm(y) makes sense. Similarly if ¢
is an admissible character of Z(G), if ¢ € C°(G,y™!), if 7 is an admissible
representation G with central character ¢ and if we fix Haar measures on
G and Z(G) then again we have a well defined endomorphism 7(¢p) of W.
Again the endomorphism 7(y) has finite rank and so tr7(¢) makes sense. If
v € CX(G) or C*(G, 1) and if we fix Haar measures on G and Zg(g) then
we will let
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denote the integral

/ o(xgr™")dz,
G/Zc(g)

if this integral converges. All these notations depend on a choice of Haar
measure(s) which we are suppressing. We will try to make clear in the accom-
panying text which measures we have chosen. If the choice of Haar measure
on a particular group enters twice into a particular formula we will always
suppose that we make the same choice both times, unless there is an explicit
statement to the contrary. In such cases it will often be irrelevant which choice
we make, only that we make a consistent choice.

Now suppose that H/K is a reductive algebraic group. Let P C H be
a parabolic subgroup with unipotent radical N C P. If 7 is an admissi-
ble representation of (P/N)(K) then we define an admissible representation
Ind ¥ (7) of H(K) as follows. The underlying space will be the set of function
f: H(K) — W, such that

e f(hg) =m(h)(f(g)) for all g € H(K) and h € P(K);

e there exists an open subgroup U C H(K) such that f(gu) = f(g) for all
uweUand g€ HK).

If f is such a function and g € H(K) then we set
(9(f))(h) = f(hg)

for all h € H(K). Conversely if m is an admissible representation of G(K)
then the space of N(K)-coinvariants Wy n(k) is naturally an admissible rep-
resentation 7y of (P/N)(K).

Often it is convenient to use instead an alternative normalisation. To
describe this, choose a square root | |}(/2 K — Q% of | |g. If fi is even
we will suppose that | |}{/2 takes a uniformiser to p~/%/2. Then we will let
n-Ind #(7) denote the normalised induction as in [BZ]. Thus n-Ind & (7) =
Ind 2 (7 @ 6}/%) where 67(h) = |det(ad (h)|[jey)i° Similarly if 7 is an
admissible representation of H(K), we will define the Jacquet module Jy ()
to be the admissible representation my ® (5;1/2 of (P/N)(K).

Now return to the general topological group G such that every neighbour-
hood of the identity in G contains a compact open subgroup. Let Irr(G) denote
the set of isomorphism classes of irreducible admissible representations of G
over ). Let Groth (G) denote the abelian group of formal sums



where ny; € Z and where for any open compact subgroup U C G there are
only finitely many IT € Irr(G) with both TIV # (0) and ny # 0. If (7, V) is an

admissible representation of G then we will define

[7]= > nn(m)II € Groth (G)

IIelrr(G)

as follows. Given II € Irr(G) choose an open compact subgroup U C G such
that IV # (0). Then 1Y is an irreducible H(U\G/U)-module. We let ny(7)
denote the number of H(U\G/U)-Jordan-Holder factors of 7V isomorphic to
I1Y. This is independent of the choice of U. (To see this suppose U’ C U.
Let ' be a Jordan-Holder filtration on 7V. Let (F') = H(U'\G/U)F*. It
suffices to show that (%)’ /(F™')" contains IIY" once or not at all depending
on whether F'"/F"! is or is not congruent to IIV. This is easy to verify.) We
list some basic properties of this construction.

1. [ ] is additive on short exact sequences.

2. Let K denote a p-adic field. Suppose that G = G; x GL,(K) and that
H = G; x P(K) where P C GL,, is a parabolic subgroup. Then there

is a unique homomorphism Ind IGD(LI’; : Groth (H) — Groth (H) such

that for any admissible representation m of H we have Ind g(L;})K) (7] =
GLn(K

[Ind ey

3. Suppose that G = G| x G5 and that 7; is an admissible representation
G; for + = 1,2. Then 7 ® m, is an admissible representation of Gy X G.
If 7 and 7wy are irreducible so is m; ® m. We can define a product
Groth (G7) ® Groth (G2) — Groth (G; x G3) which sends [I1;] ® [II5]
to [II; ® Il,] for any irreducible admissibles I1; and Il;. Then for any
admissible representations m; of G; for i = 1,2 we have [, ®my] = [m][m2].

4. More generally suppose that G = G X G5 and that we have a continuous
homomorphism d : Gy — Z(G4) with discrete image. Suppose that
m is an admissible representation of G; and that 7o is an admissible
representation of (G3. Then we define the representation m ®g mo of
Gh1 x Go by (71 ®q m2)(91,92) = m(g1d(g2)) ® m2(g2). Then m ®4 7o
is admissible. If II; and Il, are irreducible so is II; ®,4 Il and so we
can define a product Groth (G1) ® Groth (G5) — Groth (G x G5) which
sends [IT;] ® [I1] to [II; ®4I15]. We will denote this product 4. Then for
any admissible representation m; of G and my of Gy we have [ ®4 1| =

(1] *a [m2].
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It some special cases it will be convenient to introduce a slight variant of
Groth (G). For this suppose that [ is a prime number and Q = Q. Sup-
pose that G has an open subgroup H x I'. By an H x I'-smooth/continuous
representation of G we shall mean a representation 7 of GG such that

e 7|y is smooth (i.e. the stabiliser of any element of W, is open)

e we can write W, = lim_, W; where W, are finite dimensional I" invariant
subspaces of W, such that the representation

m: I — Aut (W)
is continuous with respect to the l-adic topology on WY,

By an H x I'-admissible/continuous representation of G we shall mean a rep-
resentation 7 of G such that

e 7|y is smooth (i.e. the stabiliser of any element of W, is open)

e and for any open subgroup U C H, the vector space WV is finite dimen-
sional and the representation

7: [ — Aut (WY)
is continuous with respect to the [-adic topology on WY,

We will let Irr g« (G) denote the set of isomorphism classes of irreducible H x
I'-admissible/continuous representations of G. We will also let Groth g ;(G)
denote the abelian group of formal sums

Z nHH

HGIrrHXr,l(G)

where n;; € Z and where for any open compact subgroup U C H there are
only finitely many II € Irrgwr;(G) with both IV # (0) and ny # 0. If (7, V)
is an H x I'-admissible/continuous representation of G then we can define
(7] € Groth gy (G) as before. We will usually suppress the choice of H and
I'. Our examples will all be of one of the following forms. Here K will denote
a finite field extension of Q.

1. H is a topological group such that every neighbourhood of the identity
in GG contains a compact open subgroup, I' is a Galois group with the
Krull topology and G = H x T'.
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2. H is a topological group such that every neighbourhood of the identity
in G contains a compact open subgroup, I' = Ix and G = H x Wg.

3. G = Ak, (see section 3), H = GLy(Ok) x Op, and I' = Ix.

In the latter two cases it is a theorem of Grothendieck that Irr;(G) = Irr(G)
and hence that Groth;(G) C Groth (G).

Finally consider the following special situation. Let K be a p-adic field.
For h =1,...,n — 1 we will let P, denote the parabolic subgroup of GL,(K)
consisting of matrices (g;;) with g;; =0if ¢ > n—h and j < n—h. We will let
N}, denote the unipotent radical of P, and Lj the Levi component consisting
of matrices (g,;) € P, with g;; = 0 for i < n —h and j > n — h. Also let
Z, denote the centre of L. Abusing notation we will write N (o) for the
elements in P,(F) N R M, (Ok). This is in fact a group.

Lemma 1.1 1. If V is an admissible Py,(K)-module and if for all u €
N (K) we have (u—1)?> =0 on V then N, (K) acts trivially on V.

2. If V is a smooth Py(K)-module which is admissible as a Lp(K)-module
then Ny (K) acts trivially on V.

3. If G1 is any locally compact totally disconnected group and if V is a
smooth Gy x P, (K)-module which ia admissible as a Gy x Ly (K)-module
then Ny (K) acts trivially on V.

Proof: For the first part consider the open compact subgroups U,,, consisting
of elements of P,(Of) which reduce modulo g} to the identity and modulo
O3 to an element of Ny (Ok /™). Note that U, is normalised by Nj(px™).
Thus VU is a finite dimensional smooth Nj(p)-module, and as Np(px™)
is compact, VU™ is semi-simple. Thus if u € N(pg™) we see that u = 1 on
VUr . As Nu(K) =U,, Nu(px™) and V = J,, VU, the first part of the lemma
follows.

Now consider the second part of the lemma. If x is a character of Z(K)

then set
V= () ker(z—x(2))
2€Zh(K)
and
vi=Uwv

Because V' is an admissible Lj,(K)-module we have

V=@
X
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(This follows because for any open compact subgroup U C L,(K), VV is a
finite dimensional smooth Zj, (K )-module, and hence

VU= Penvy).)

X

Thus it suffices to show for each x and ¢ that VX is a P, (K)-module on which
Ny (K) acts trivially. We will do this by induction on 7 for fixed x. For i =0
there is nothing to prove. Thus assume the result is true for VX, and we will
prove it for VX. By the first part of this lemma it suffices to show that V;X/V*,
is a P, (K)-submodule of V/VX, on which N,(K) acts trivially. Suppose that
v € V/VX,. By smoothness, v is invariant by N,(p%) for some m. If u is
any element of N, (K) we may choose z € Z;,(K) such that zuz™ € N, (ph).
Then we have

uv = uz 'y (2)v = x(2)z H(zuz o = x(2)z v = .

The second part of the lemma follows.
The third part of the lemma follows easily from the second. O

II Appendix: Vanishing cycles

Here we will collect some facts about vanishing cycles.

Let K/Q," be a finite field extension, let O denote its ring of integers and
let [ be a prime integer different from p. Suppose that X/O is a proper scheme
of finite type.

Lemma II.1 If x is a closed point of X then (R0, (Qf°)x). is a finite di-
mensional QF¢-vector space with a continuous action of Gal (K*/K).

Lemma I1.2 [f L/X is a lisse Q¢-sheaf then
RW,(L) = (R'Y,(Q)) ® Ls,
where Ly is the restriction of L to the special fibre of X.

Lemma I1.3 Suppose that Y/X is a finite cover with an action of a finite
group G. Suppose that the generic fibres are a Galois etale cover with group
G. Suppose that x is a closed point of X which is totally ramified in Y, and
let y be its preimage in Y. Then

(R0, (Q)x)s = (R, (QF°)y)y -

Y
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In [Berk3], a vanishing cycles functor is constructed for a certain class of
formal schemes over O. The comparison theorem 3.1 of [Berk3] implies that if
X is a formal scheme over O, which is isomorphic to the formal completion of
a proper scheme of finite type X/O along a subscheme Y of the special fibre
of X, then there is a canonical isomorphism of sheaves

Ri\Dn(Z/lmZ)Xn%‘ i\Ifn(Z/lmZ)any.

It follows that the projective system of constructible sheaves R'W, (Z/I"™7Z)x,
form a Z;-sheaf and, therefore, there is a well defined Qf°-sheaf R‘W, (Q¢) . It
is canonically isomorphic to R*¥, (Q¢) x|y, and the automorphism group of the
formal scheme X acts on it. More generally the construction of R*W, (Qf°) y is
functorial in X, i.e. if X and ) are two such formal schemes and if f : X — Y
then there is a natural map of Q¢-sheaves on X

Foo () R (Q)y — R (Q).

The continuity theorem from [Berk3] implies that there exists an ideal of def-
inition of A such that any automorphism of X', trivial modulo this ideal, acts
trivially on the Q{“-sheaves R'U, (Qf“)y. The construction of R, (Q)y ex-
tends to any special formal scheme X which is etale locally isomorphic to the
formal completion of a proper scheme of finite type X/O along a subscheme Y
of the special fibre of X. Again this construction is functorial in X. The follow-
ing lemma follows easily by reduction to the algebraic case using Berkovich’s
comparison theorem.

Lemma 11.4 Suppose that X and Y are special formal schemes each of which
15 etale locally isomorphic to the formal completion of a proper scheme of finite
type over O along a subscheme of its special fibre. Then

R0, (Q)xy = (D R4 (Qi)x ® R'T,(Q))y.
J

We end this section with a lemma of Berkovich’s (see the lemma in [Berk4]).

Lemma I1.5 (Berkovich) Let X and Y be special affine formal schemes,
say X = Spt A and Y = Spf B. Let J C B be the maximal ideal of definition
for Y, and set Y{N} = Spec (B/JN*1). Assume that X is isomorphic to
the formal completion of an affine scheme of finite type X = Spec A’/Spec O
along a closed subscheme of its special fibre. Let I' C A’ be the maximal ideal of
definition of this subscheme. Furthermore assume that we are given projective
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systems { X, }n>0 and {Vn}n>0 of finite etale coverings of X and Y respectively.
Let Y,{N} denote the pull back of Y{N} to V,. Suppose finally that we are
given compatible morphisms

On : Yn{n} — A,

Then given any positive integer N for m >> 0 (depending on N ) we can find
a morphism
"2 ym B Xm
such that
90|ym{N} = <Pm|ym{N}-

Proof: As in the proof of the lemma in [Berk4] we see that we have &), =
Spf A, and ),, = Spf B,,, where A,/A and B, /B are finite etale. We set
By = lim_. B, and J, = JB,. Again as in the proof of the lemma of
[Berk4] we see that (Bu, Jx) is a Henselian pair. The map ¢, induces a
homomorphism

o A — A, — B,/J""' B, — B, /J".

By corollary 1 on page 567 and remark 2 on page 587 of [El] we see that there
exists an integer ¢ such that for all n >> 0 there exists a homomorphism
Op : A" — By
with
Pn = ¢, mod JHE

Fix such an n, which we also suppose greater than N + .
Note that as A’/O is finitely generated @, is in fact valued in some B,, for
m >> 0. As JL N B, = J*B,, we see that for m >> 0

On = @m mod JNTIB .

Thus @,(I") C JB,, and so we may extend ©,, to a continuous homomorphism
A — B,, such that

A 2 B,
| |
A, 25 B, /JNTB,

commutes. By lemma 6.2 we see that we get a morphism
v: A, — B

with ¢ = ¢, mod J¥HB,,, as desired. O
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ITI Appendix: Abelian varieties over .

In this appendix we will explain how the theory of Honda and Tate [Tatl]
allows us to classify simple abelian varieties over F)°.

By a CM field we will mean a number field M such that for any embedding
1 : M — C the image iM is stable under complex conjugation and such
that the automorphism ¢ of M induced by complex conjugation on iM is
independent of the embedding . Equivalently either M is totally real or a
totally imaginary quadratic extension of a totally real field. We will let Q[ /]
denote the free abelian group on the places of M above p. If i : M — N is
a finite extension we get natural maps i, : Q[By] — Q[Px] induced by
T = > Eyay and 0 Q[Pn] — QP induced by y — fpw if ylr. I s
a fractional ideal of M then we set [I] =) z(I)x € QBum].

By a p-adic type for a CM field M we shall mean an element 7 € Q[P ]
such that n + c,n = [p]. We will call p-adic types n € Q[Puy] and 7' €
Q[PBr] equivalent if there is a CM field M”, a p-adic type 0" € Q[Par]
and embeddings i : M” <— M and i’ : M" — M’ such that i.(n") = n and
i’.(n") = n'. By a p-adic type we shall mean an equivalence class of p-adic types
for various CM fields M. Then any p-adic type b has a minimal representative
(M,n) such that if (M’,n’) € b then there exists i : M — M’ such that
7' =im. (To see this choose (M’',n) € b with M’/Q Galois, let H denote the
subgroup of o € Gal (M’/Q) such that o7 = 7' and set M = (M')#.) We
call a p-adic type b ordinary if for any (M,n) € b and any = € ), we have
NaNex = 0.

Suppose that ¢ = p" is a power of p. By a g-number one means an algebraic
number 7 such that for any embedding i : Q[r] — C we have me(m) = g.
To any g-number 7 we associate a CM-type b(w) = [(Q[x], [r]/r)]. To =
Honda and Tate also associate a simple abelian variety A./F,. The simple
factors of A xp, 4 are all isogenous to Ars. Thus all the simple factors of
Az xp, Fi¢ are isogenous: we will denote them A7 /Fa¢. We see that A] ~ A7..
If b(m) = b(n') then we can find positive integers n and n' such that (up
to Galois conjugation) [7"] = [(7/)"]. Then (after replacing 7 by a suitable
Calois conjugate) 7" /(') is a unit with all archimedean absolute values 1
and hence a root of unity. Thus we can find a positive integer m such that 7"
and (7')"™ are Galois conjugate. Thus A»m is isogenous to Aryn'm and so
Al ~ A7,. This allows us to write Ay for A7 /F5¢. If 7 is is any p-adic type
for a CM field M the for some positive integer r we have that rn € Z[,,] and
hence for a second positive integer h we have that rhn = [a] for some o € Oy.
Then 3 = ac(a)/p™ is a unit in the ring of integers of the maximally totally
real subfield M* of M. Thus 7 = o?37! is a p""-number and b(7) = [(M, n)].
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Thus to any p-adic type we can associate a well defined isogeny class of simple
abelian varieties Ay /F5°. It follows easily from the theory of Honda and Tate
that this gives a bijection between p-types and isogeny classes of simple abelian
varieties over Fy°. The following further results also follow easily from their
theory.

1. If b is a p-adic type with minimal representative (M,n) then End°(Ay)
is the division algebra with centre M and invariants

o inv,End(Ay) = 1/2 if z is real;
e inv zEndO(Ab) = N fasp if x|p;

e inv,End?(A4) = 0 otherwise.

2. If b is a p-adic type with minimal representative (M, n) then dim A, =
[M : Q][End®(Ay) : M]V?/2.

3. If b is a p-adic type with minimal representative (M,n) and if z is a
place of M above p then Ay[z*°] has height [M, : Q,][End°(Ay) : M]'/?
and its Newton polygon has pure slope 7, /e /p.

Now fix a CM field F' and a central simple F-algebra B. If M/F and
M'/F are CM field extensions and if n and 7' are p-adic types for M and
M’ respectively the we will call them equivalent over F' if there is a CM field
extension M"/F, a p-adic type " € Q[Ba~]| and embeddings i : M" — M
and ¢/ : M"” — M over F such that i,(n") = n and 7,.(n") = 7. By a p-adic
type over F' we shall mean an F-equivalence class of p-adic types for various
CM fields M/F. Then any p-adic type b has a minimal representative (M,n)
such that if (M’,n') € b then there exists i : M < M’ over F such that
n = Q..

Now let B be an F-division algebra. We will consider the category of
pairs (A4,4) up to isogeny, where A/F7¢ is an abelian variety and i : B <
EndO(A/IE‘gC). As in section 3 of [Ko3] we can use the results of the last
paragraph to describe the simple objects of this category. They are in bijection
with p-adic types over F. If b is such a type we will let (Ay,ip) denote the
corresponding simple object. We have the following additional properties.

1. If b is a p-adic type over F' with minimal representative (M, n) then
End p(Ap) is the division algebra with centre M and invariants

e inv,Endg(Ap) =1/2 —inv (B ®p M) if z is real;
o inv,End g(As) = 1o foyp — inv (B @p M) if z|p;
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e inv,End 5(A4p) = —inv (B ®p M) otherwise.

2. If b is a p-adic type over F' with minimal representative (M,n) then
dim A, = [M : Q|[B : F]*/?[End 5(4,) : M]V2/2.

3. If b is a p-adic type over F' with minimal representative (M,n) and
if x is a place of M above p then Ay[x*°| has height [M, : Q,][B
F1Y2[End (Ap) : M]"/? and its Newton polygon has pure slope 1, /e, /.

IV Appendix: The local Jacquet-Langlands
correspondence, pseudo-coefficients and
Zelevinsky’s classification

Let Q be an algebraically closed field of characteristic 0 and of cardinality
equal to that of C. Let K be a finite extension of QQ,. Suppose that V/Q is
a vector space and that 7 : GL,(K) — Aut (V) is an irreducible admissible
representation with central character 1,. We will call 7= supercuspidal if for
any v € V and f in the smooth dual of V' the function GL,(K) — € which
sends

z+— f(av)

is compactly supported modulo the centre K* of GL,(K). Choose an embed-
ding of fields 2 : Q — C. We will call 7w square integrable if for any v € V' and
f in the smooth dual of V' the function GL,(K)/K* — R which sends

T — |Z(f($v))|2|l(¢7r(det xm_g/g

is integrable. It follows from Zelevinsky’s classification [Z] that this definition

is independent of the choice of 1. We will call 7,2-preunitary if there is a pairing
(, ) from V xV to C such that

o (avy + va,v3) = 1(a)(v1,v3) + (v2,v3) for all a € Q and vy, v9,v5 € V,

(v1,v9) = ¢(vg,vq) for all v1,v9 € V' (where ¢ denotes complex conjuga-
tion),

(v,v) > 0 for all non-zero v € V,

v, T(x)vy) = [o(r(det g))[¥9(vy,v5) for all vi,v, € V and z €
Ly(K).
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Rogawski ([Rog2]) and Deligne, Kazhdan and Vigneras (see [DKV]) have
shown the existence of a unique bijection, which we will denote JL, from
irreducible admissible representations of D[XQ , to square integrable irreducible
admissible representations of GL,(K') such that if p is an irreducible admissible
representation of Dy then the character xjy(,) of JL (p) satisfies

® XiL(p)(7) = 0if v € GLy(K) is regular semi-simple but not elliptic,

o xiLp(y) = (1) Mrp(d) if v € GLy(K) is regular semi-simple and
elliptic and if J is an element of DIXQ , With the same characteristic poly-
nomial as 7.

If 7 is a square integrable irreducible admissible representation of GL,(K)
with central character v, then it seems that Deligne, Kazhdan and Vigneras
also show the existence of a function ¢, € C°(GL,(K), ¥ t), which we will
call a pseudo-coefficient for m, with the following properties. (We always use

associated measures on inner forms of the same group.)
e trm(ps) = vol (Dg ,/K™).

e Suppose that
GLy x..xGLy,, =L CPcCGL,

is a Levi component of a parabolic subgroup of G'L,. Suppose also that
for + = 1,...,s we are given a square integrable irreducible admissible
representation m; of GLg, (K') such that m; 2 7 and such that ¢y, ...¢,, =
Y. Then

trn-Ind IGD(L;’(()K)(m X ... X 7s)(pr) = 0.
o If v € GL,(K) is a non-elliptic regular semi-simple element then

05t ) (ip) = 0.

o If v € GLy(K) is an elliptic regular semi-simple element and if § € Dy
has the same characteristic polynomial as ~ then

0580 (o) = (~1)7" Vol (D o/ Zpyx (6))tr IL () (0).

(See section A.4 of [DKV], especially the introduction to that section and
subsection A.4.1 .)

Lemma IV.1 Let 7 be a square integrable representation of GLy(K) and let
wr be a pseudo-coefficient for m as above.
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1. If v € GLy(K) is a non-elliptic semi-simple element then

O"?LQ(K) (90%) = 0.

2. If v € GLy(K) is an elliptic semi-simple element and if 6 € Dy , has
the same characteristic polynomial as vy then

OF8) (p,) = (1) KKl (D /7 (8))r L7 (5)(6).

Proof: Consider the first part. Let T" be a maximal torus containing ~.
Then
0= Z ()05 ()

where u runs over a set of representatives of the unipotent conjugacy classes in
Zar,(7)(K), where I', denotes the Shalika germ associated to u and where and
where t is any regular element of T" sufficiently close to 7. Then homogeneity
([HC], theorem 14(1)) tells us that

0 =T1(t)O5 "™ (pr)

for any regular ¢t € T sufficiently close to 7. By [Rogl], I'i(¢) is not identically
zero near vy and the first part of the lemma follows.

Consider now the second part. Let T be an elliptic maximal torus in
GLy(K) containing 7. We can and will also think of T C Dy .. Then we can

take 0 to be y € T'C D o~ For t a regular element of 7" sufficiently close to vy
we have

(—1)7"'vol (D}, /T)tr JL ™ Zr (£)OSE ) (o)

where u runs over a set of representatives of the unipotent conjugacy classes
in Zgr,(v)(K) and where I', denotes the Shalika germ associated to u. Again
using homogeneity ([HC], theorem 14(1)) we see that

(=17 vol (D, /T)tr JL ™} (x¥)(8) = OS5 () lim Ty (£).
, m

Thus it suffices to check that

lim Ty (t) = (=1 WO ol (Z . (8)/T).

t—0

This is independent of the choices of measures, as long as we choose associ-
ated measures on Zgy,(7)(K) and Zpx (). (Choices of Haar measures on
g
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Zar,(v)(K) and T are implicit in the definition of I',.) Thus we may choose
any measure on K and Euler-Poincaré measure on T and Zgp, (7)(K) (see
section 1 of [Ko5]). Then we must use (—1)%/K0):EI=1 times Euler-Poincaré
measure on Zpx 9(5) (by theorem 1 of [Ko5]). According to [Rog2] with these

choices of measures I'1(t) = 1 for regular ¢ € T sufficiently close to 7. On
the other hand according to [Se] with these measures vol (T/K*) = 1 and
vol (Z ( )/K*) = 1. The second part of the lemma follows. O

Suppose that s|g is a positive integer and that 7 is a supercuspidal repre-
sentation of G Ly/s(K). Let Q; denote a parabolic subgroup of GL, with Levi
component GL; . Zelevinsky ([Z]) describes the irreducible subquotients of
GLy(K
Qs(K)
as follows. Let I'(s,7) be the graph with vertices labelled = ® |det|’ for
j =0,..,5 — 1 and with one edge between 7 ® |det |’ and 7 ® | det [’ for
J =0,...,s —2 and no other edges. Zelevinsky shows that there is a bijec-
tion between directed graphs ' with underlying undirected graph I'(s,7) and
irreducible subquotients of

n-Ind (7r><7r®|det|><...><7T®|det|s_1)

GLy(K s
n-Ind G 00 (7 @ |det | x .o x 7 @ | det "),

which, following Zelevinsky’s notation, we will denote T' — w(f)

Some particular subquotients will be of special importance for us. So we
will let fabc(ﬂ) denote the directed graph with vertices labelled 7 ® | det |7 for
7=0,...a+b+c—1and

e a single edge from 7 ® |det | to 7 @ |det |77t for j =1,...,a — 1 and for
j=a+b+1,..,a+b+c—1,

e and a single edge from 7 ® |det |"~! to 7 ® |det [ for j = a,...,a + .

Similarly we will let T, (7) denote the directed graph with vertices labelled
T®|det| for j=0,..a+b+c—1and

e a single edge from 7 ® |det|"™! to 7 @ |det | for j = 1,...,a and for
j=a+b,...,a+b+c—1,

e and a single edge from 7 ® |det |’ to 7 @ |det |’ for j = a,...,a+b— 2.
More over we will denote w(ftvs_l_w) = W(f6,t,s—1—t) by
Sp,(7) B (7 @ |det |)B ... B (7 ® |det |*™1),
forany t =0,...,s — 1.
Zelevinsky ([Z]) has proved the following results.
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e Sp . (m) is square integrable and any square integrable representation is
of this form for a unique positive integer s|g and a unique supercuspidal
representation 7 of GLg/s(K).

e The only generic (“non-degenerate” in Zelevinsky’s terminology) sub-

quotient of n-Ind gSL&((I)()(W X 7T®|det| x ... x 7@ |det |71 is Sp (7).

Moreover Tadic ([Tad]) has shown that

e for any embedding ¢ : €2 — C the only -preunitary subquotients of
n—Indgf&({I){)(ﬂ X T® |det|x ... x7®|det|*!) are Sp ,(7) and 7 H (7 ®

|det |) B ... B (7 @ | det [571).

Lemma IV.2 Suppose that s+ sy = s|g are positive integers and that 7 is an
irreducible supercuspidal representation of GLg/s(K). Set g; = s;g/s and let
P denote a parabolic subgroup of GLs with Levi component GLgy X GL,,. Let
I (resp. fg) be an oriented graph with unoriented underlying graph I'(sy, )
(resp. T(so,m @ |det|1)). Let T and I” be the two (distinct) oriented graphs
with underlying unoriented graph T'(s, ) which agree with Ty on T'(s1,7) and

with Ty on T(sy, m® | det [2). Then n-Ind IGD(LIEQ()K) (w(T1) xw(Ty)) has a Jordan-

—

Holder series of length two and the two Jordan-Holder factors are w(I') and
w(I).

Proof: We may and will assume that Q); C P. Let U, denote the unipotent
radical of Q5. By section 1.6 and theorem 2.8 of [Z] we can compute the
Jordan-Holder factors of Jy, (n-Ind ](j(ngK) (w(T}) x w(T'5))). We find that they

are all products (each taken with multiplicity one) of the form
js)’

where ji, ..., Js runs over all permutations of 0,...,s — 1 such that j; < j; if
there is an edge of either I'y or I's running from ¢ to i’. This is the same as the

—

union (as sets with multiplicities) of the Jordan-Holder factors of w(I') and

w(I") (see theorem 2.8 of [Z]). The lemma then follows from theorem 2.2 of
[Z]. O

(p@|det]) x ... x (p® | det

Lemma IV.3 Suppose that s|g are positive integers and that w is an irre-
ducible supercuspidal representation of GLy/s(K). For h=0,...,g —1 let N,*
be the unipotent subgroup of GL, introduced at the start of section 10.

1. If g fsh then Jyov (Sp ,(7)) = (0) and Jyor (7 H...B (7 ® | det 1*71)) = (0).
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2. If sh = gh' for some positive integer h' then
Iner (Sp (7)) = Sp jy (m @ | det |*™) x Sp (),

and

JNEP(W H..H (7T ® |det |sfl)) _ (7THE| N (7T® |det |hl71))><
X((’/T ® ‘ det |h’) M. [ (7r Q ]det ’s—l))_

Proof: These results follow easily from theorem 2.2 of [Z]. O

Lemma IV.4 Suppose that s|g are positive integers and that m is an irre-
ducible supercuspidal representation of GLg/s(K).

1. If 7" is an irreducible admissible representation of GL4(K) which is not

a subquotient of n-Ind gSL&({[){)(W X7T®|det| X ... x 7@ |det|[*7!) then

tr 7' (@sp . (m)) = 0.

2. If P is a proper parabolic subgroup of G L, with Levi component GLg, X
GLgy, and if my (resp. ms) is an irreducible admissible representation of
GLg (K) (resp. GLy,(K)) then

trn-Ind gé‘é()m (m1 X m2)(psp ,(m)) = 0.

3. Suppose that ' is an oriented graph with underlying unoriented graph
I'(s,7) and that T has s edges oriented from 7 @ |det ' to 7 @ |det [/,
Then

trw(I)(¢sp () = (—1)"vol (D o/ K™).

Proof: For the first part note that the proof of lemma A.4.f of [DKV] shows
that 7’ can be written in Groth (GL,(K)) as an integral linear combination of
n-Ind gzL(g(()K ) (m}) where P; runs over parabolic subgroups of GL,, where 7/ is an
irreducible square integrable representation of the Levi component of P;(K)
and where no (P, 7) is conjugate to (GLg, Sp ,()). (In fact in the notation
of [DKV] we have r(7}) # r(Sp 4(7)).)

For the second part note that it follows from lemma A.4.f of [DKV] that
we may write m; € Groth (GL,, (K)) as a finite sum

3 GLg, (K)
T = alin—Ind Pu(}() T4,
i
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where ay; € Z, Pi; C GLg, is a parabolic subgroup and my; is an irreducible
square integrable representation of the Levi component of Pp;(K). Similarly

we have
Zagznl d GZ(K) To;.

For each pair of indices 4, j choose a parabolic subgroup P;; C P C G L, such
that P;(K)NGLy, (K) = Pu(K) and P/;(K)NGLg,(K) = P(K). Note that
for all 7, j we have P,; # GL,. In Groth (GL,(K)) we have the equality

n-Ind IGD(L;( = Z aj;az;n-Ind g/Lf;(())le X Tg;.
]
The second part of the lemma follows.

The third part follows by a simple recursion from the second part and
lemma IV.2. O

Corollary IV.5 If s|g are positive integers, if m is an irreducible supercus-

pidal representation of GLg/s(K) and if ™ is an admissible representation of
GLy(K) then
vol (Df(’g/KX)’ltr T (Ysp.(m) € L.

Corollary IV.6 If s|g are positive integers, if w is an irreducible supercusp-
idal representation of GLg/s(K) and if ™ is a generic irreducible admissible
representation of GL4(K) such that

tr7'(¢sp, (m) # 0
then 7 = Sp (7).

Corollary IV.7 Ifs|g are positive integers, if m is an irreducible supercuspidal
representation of GLg/s(K), if1: Q — C and if 7' is an 1-preunitary irreducible
admissible representation of GLy(K) such that

' (sp,(m) # 0
then either © = Sp (7) or @ & 7B ... B (7 @ |det|*71).

Suppose that s; and g; are positive integers for + = 1, ..., ¢ such that g =
g151+...+g:S¢. Suppose moreover that for: = 1, ..., ¢ we are given an irreducible
supercuspidal representation 7m; of GL,, (K). Suppose first that
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o if i < j then m; 2 m; ® |det |* for any a € Z>, with

1+s;—s5;<a<s;.

Also let P denote the parabolic subgroup of G'L, consisting of block diagonal
matrices with diagonal blocks of size s1g1 X s191, ..., Stg¢ X S¢g; from top left to
bottom right. Then

n-Ind gég(()K)(Sp s, (M) X .. x Sp,(m))
has a unique irreducible quotient which we will denote
Sp S1 (Trl) Bﬂ BE‘ Sp St(ﬂ-t)‘

If o is any permutation of {1,2,....t} such that (s,1,751), ..., (Set, Tot) still
satisfies the above condition then

Spsal(ﬂal) H.. .8 Spsﬁ(ﬂgt) -~ Sp81(7r1) H.. .8 SpSt(ﬂt).

Thus whether or not (sy,71), ..., (s, ) satisfy the above condition we may
define

Sp,,(m)B...BSp,,(m) =Sp,,, (7e1) B...BSp,_, (7s),

for any permutation o of {1, 2, ...,t} such that (Sy1,71), -5 (Sot, Tor) does sat-
isfy the above condition. It follows from theorem 2.8 of [Z] that this notation
is compatible with our previous use of H. Moreover any irreducible admis-
sible representation 7 of GL4(K) is of this form and, moreover, the multiset
{(s1,71), -, (8¢, ™)} is uniquely determined by 7. (For these results see section
4.3 of [Rod], and note that a sketch of the unpublished result of I.N.Bernstein
(proposition 11 of [Rod]) can be found in [JS].)

We will call the collection {(s;,m;)} unlinked if for all ¢ # j the following
condition is satisfied.

o If m; = m;®| det |* for a positive integer a then either a > s; or a+s; < s;.

Zelevinsky shows ([Z], theorem 9.7) that if {(s;, m;)} is unlinked then
Sp,, (m) B .. BSp,, (m) = n-Ind 525" (Sp.,, (m1) x ... x Sp ()

and that this representation is generic. Zelevinsky also shows ([Z], theorem
9.7) that any irreducible generic admissible representation of GL,(K) arises
in this way from some unlinked collection {(s;, m;)}.

The following result follows from lemma 2.12 of [BZ].
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Lemma IV.8 Suppose that s; and g; fori =1,....t are positive integers such
that g = g181 + ... + g:8¢. Suppose also that m; is an irreducible supercuspidal
representation of GL,, (K) for i = 1,...,t; and that P C GL4 is a parabolic
subgroup with Levi factor GLg, 4 X ... X GLs,g,.

For h=0,...,g—1 let N,® < GL, be the unipotent subgroup defined at the
start of section 10. Then in Groth (GL,(K) x GL,_,(K)) we have an equality
between

[Jner (n-Ind IGD(LIg(()K)(Sp o (M) X ... X Sp, (m))]

and
o [-Ind 55 (Sp (1 @ [ det [1) x . x Sp,, (m, ® | det [ ~"))]
[n-Ind 57t (S, (1) X X Sp g, (1),

where the sum is over all positive integers hy,...,h; with h; < s; and h =
higi + ... + hyg; and where

o P' C GLy is a parabolic subgroup with Levi component GLp, 4 X ... X
G L,

e and P" C GL,_y is a parabolic subgroup with Levi component
GL(Sl—hl)gl X ... X GL(St*ht)gt

V Appendix: The global Jacquet-Langlands
correspondence.

Let S(B) denote the set of places of F' at which B ramifies. Recall that we are
assuming that at such a place B, is a division algebra. The following theorem
was proved by Vigneras in her unpublished manuscript [V2], which relied on
a seminar of Langlands which to the best of our knowledge was never written

up. We will explain how it follows easily from an important theorem of Arthur
and Clozel [AC].

Theorem V.1 1. If p is an irreducible automorphic representation of

(B°?®A)* then there is a unique irreducible automorphic representation
JL (p) of GL,,(Ar), which occurs in the discrete spectrum and for which

JL (p)S(B) >~ p3(B),
2. If v € S(B) and JL(p,) = Sp,, (72) then
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o cither JL(p), = Sp,, (7)),
o orJL(p), X m, B .. .8 (r, @ |det [*=71).

3. The image of JL. is the set of irreducible automorphic representations 7

of GL,(AF) such that

e 7 occurs in the discrete spectrum,

e and for every x € S(B) there is a positive integer s,|n and an
irreducible supercuspidal representation w, of GLys, (Fy) so that

either JL (p) = Sp ,, () or JL(p), = 7, B .. B (7, @ |det [*1).

xT

4. If p1 and ps are two irreducible automorphic representations of (B ®
A)* such that for all but finitely many places © of F' we have p1, = pog,
then py = po (i.e. p1 = py and this representation occurs with multiplicity
1 in the space of automorphic forms).

Proof: Let H denote the algebraic group over Q such that H(R) = (B® ®q
R)* for any Q-algebra R. We will confuse irreducible admissible representa-
tions occurring discretely in the space of automorphic forms (with fixed central
character restricted to RZ) with their completions in L?. By twisting, we need
only consider representations which are trivial on RZ,,.

Then by theorem B of [AC] we have, in the notation of [AC],

E ' GLnpx F
&dlsc Agisc p)

where the sum is over (pre)unitary representations of GL,(Ar)'. Let us write
JL(ps) = Sp g, (me(p)) for x € S(B). Moreover for T C S(B) let 7(T, p)
denote

PO X ISP (o) x I (7o) B...B(x,(p) @ |det[=)).

zeT 2€S(B)—T

Then, using section 8 of [AC], lemma IV.4 and corollary IV.7 we see that
d(m,p) = 0 unless m = (T, p) for some T C S(B), in which case d(m, p) = £1.
Thus the equality of theorem B of [AC] becomes

adlSC Z :l:(lgéchF T p))
TCS(B)

The coefficients a’l,.(p) are just the multiplicity of p in the space of auto-

morphic forms trivial on R%,. The coefficients a5 ¥ (7 (T, p)) are defined by

199



the equalities
el WX F—
> age N (mtem(f) = g W Wt

disc

D seW (ag)reg [ det(s = 1) grnr |71 (M(s,0)pq.(0, f))

in the notation of section 9 of chapter 2 of [AC]. Choose z € S(B). Then for
any z in the Bernstein centre for GL, (F,) we see that

> ag ()t m(f)ma(z) = Y pe, W [WE
D seW (ap e | det(s = 1) gornxr[~Htr (M(s,0)pq.(0, ) p.(0)z(2).

Let D denote the variety of unramified twists of the representation 7 (p)(*)
of GLyss,(p)(Fy)*® and suppose that z corresponds as in [Bern] to a reg-
ular function on D/W(GLy, s, (»)(Fy)*=), D) (in the notation of [Bern]). If
Q # GL,, x F then either pg.(0),(z) = 0 for all z which correspond to reg-
ular functions on D/W(GL,/s,(»)(F:)*=®), D), or pg.(0), maps to a O-cycle
on D/W(GLys,(p)(Fy)*=®, D) supported away from m,(p) x ... x (74(p) ®
| det |*=(P)). Choose z in the Bernstein centre corresponding to a regular func-
tion on the space D /W (GLy s, (,)(Fy)*=), D) which is 1 at 7/, (p) X ... X (7, (p) @
| det |*:(”)) and zero at all other terms occuring in our sum (which is finite for
any given f). Then we see that

GLNXF
E O Jise m)trw(f E m(m)tr w(f

where

e m(m) denotes the multiplicity of 7 in the discrete part of the space of
automorphic forms invariant by RZ;

e and where both sums run over irreducible representations 7 such that m,,
maps to 7, (p) X ... X (7.(p) ® | det |**?)) in D/W (G Ly s,(p)(Fe)\, D).

We deduce that agSLCN “F(7) is just the multiplicity of 7 in the discrete part of
the space of automorphic forms invariant by RZ,
Using the strong multiplicity one theorem for GL,,(Ar), the theorem fol-

lows. O

Combining this with the facts that any automorphic representation of
G L, (Ar) which is supercuspidal at one place is cuspidal and that any cuspi-
dal automorphic representation of GL,,(Ar) is generic we obtain the following
corollary.

Corollary V.2 Suppose that p is an irreducible automorphic representation of
(B°?®@A)* such that for one place x ¢ S(B) the component p, is supercuspidal.
Then for all places © ¢ S(B) the component p, is generic.
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V1 Appendix: Clozel’s base change.

In this section we will give a description of automorphic representations of
G(A) in terms of automorphic representations on (B ®g A)*. This descrip-
tion is basically due to Clozel (see [Cl1] and [C12]), but there were a number of
gaps in his argument which were repaired with the help of Labesse (see [Lab]
and [CL]).

As we have fixed 2 : Q¢ = C we can think of £ as an irreducible algebraic
representation of G over C. Note that for any C-algebra R we have

RS§(G x E) x C = (G x C) x¢ (G x C),

where the first factor corresponds to 75 : £ — C and the second factor to
7o 0 c. We will let £ denote the representation & ® & of RS@ (G x FE) over
C. It restricts to the representation £ ® (£ o ¢) of G(Ew) = RS§(G x E)(R).
We will also use g for the restriction of this representation to GL,(F,) C
EX x GL,(Fy) = G(Ey) (see section 1).

We will call an irreducible admissible representation m, of G(R) (resp. Il
of GL,(Fy)) cohomological for & (resp. cohomological for £g) if for some 1,

H'((LieG(R)) ®@g C, Uso, Too ® &) # (0),
(resp.
H(M,(Fs) @& C,U(n,0)F U T @ &x) # (0).)

Suppose that z is a place of Q which splits as x = yy® in E. Recall (from
section 1) that the choice of a place y|x allows us to consider Q, — E, as an
E-algebra and hence to identify

G(Q.) = (B)" x Q.

If 7 is an irreducible admissible representation of G(Q,) we can then decom-
pose
TE Ty @ Prye.

If we vary our choice of y we find that m. = wf and that ¢, = g V¥r e
(Here we set 7 (g) = m,(¢~#).) We define BC (7) to be the representation

Ty @ Tye @ (Y ye 0¢) @ (P y 0 C)

of
G(E,) = (BX)* x X = (BP)* x (BR)* x B} x Ej.

y('

Now suppose that x is a finite place of Q which is inert in £ but such that
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e 1 is unramified in F;

o (B #) = (M,(F,),1), where g = w(g°)'w™! with w the antidiagonal
matrix with ones on the antidiagonal.

These latter two conditions exclude only finitely many places of Q. If x is such
a place then G(Q,) is quasi-split and split over an unramified extension. We
will fix a maximal torus T, in a Borel subgroup B, in G x F, so that B,(F})
consists of elements of G(F,) which correspond to upper triangular elements
of M, (F,) and T,(F,) consists of elements of G which correspond to diagonal
elements of M, (F,). Thus 7,(Q,) can be identified with the set of elements
(do;dy,....dn) € QF x (F))" such that dy = didy,,,_; fori=1,...,n. If Y is a
character of T'(Q,) we define a character BC (¢)) of EX x (F))" by

BC (¢)(do; dy, ..., d,) = ¥(dodg; dody /dS, ..., dod,, /dS).

Let B denote the Borel subgroup of upper triangular elements of GL,. If

7 is an unramified representation of G(Q,) which is a subquotient of the in-

duced representation n-Ind gi%i)(w) then we will denote by BC (7) the unique

unramified representation of E x G L, (F,) which is a subquotient of the nor-
malised induction from EX x B(F,) of BC (¢).
If IT is an irreducible automorphic representation of (B°?®gA)* then define
I1# by
IT*(g) = I(g™*).

Using the strong multiplicity one theorem we see that
JL(I#*) = JL (T1)Y o c.

Theorem VI.1 Suppose that 7 is an irreducible automorphic representation
of G(A) such that m, is cohomological for §. Then there is a unique irreducible
automorphic representation BC (1) = (¢,11) of A% x (B ®q A)* such that

1 4= @bwlzg ;
2. if v is a place of Q which splits in E then BC (7), = BC (7,);

3. for all but finitely many places x of Q which are inert in E we have
BC(7), = BC(m,);

4. My 1s cohomological for £g;

5. S, = §|];1X (where EX C G(R));
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0. ¢H|A§ = °/1;
7. T1# 2~ 1.

Proof: We will deduce this from theorem A.5.2 of [CL].

Let T/Q denote the torus RS(S (G,,) and let T' C T denote the kernel
of the norm homomorphism 7" — G,,. We have a natural morphism 7" x
G1 — G which is surjective on geometric points. It has kernel 7! embedded
by t — (t,t7'). If 7 is an admissible representation of G(A) we obtain an
admissible representation 7|(rxa,)a) of (1" x G1)(A) by composing 7 with the
homomorphism 7' x G; — G. (Use the fact that (7" x G1)(A) — G(A) is
continuous and open.) If 7 is automorphic then 7|y, )a) is a direct sum
of irreducible subrepresentations. As far as we can see not all these direct
summands are automorphic for 7' x G;. Rather suppose that ¢g; € G(A) form
a set of representatives for v(G(A))/v(G(Q))N(A%). Then we get a bijection
of spaces of automorphic forms

AGQ\GA) = @, AT x G)(Q)\(T x Gy)(A))sT @
! — (9:(F)lirxcn) @)

If 7’ is an irreducible subquotient of W’(TXGl)(A) then 77’ may not be automor-
phic but 7’ composed with conjugation by one of the g; will be. Note that
(because G(Q) is dense in G(R)) one may assume that g; ., = 1 for all 7.

If x is a place of Q which splits in £ then we get an exact sequence

(0) — TH(Qu) — (T'x G1)(Q,) — G(Qa) — (0).

If 7, is an irreducible admissible representation of G(Q,) then m.|(rxay)(@,) 18
also irreducible.
If x is a finite place of Q which is inert in E, but such that

e 1 is unramified in F,

o (B #) = (M,(F,),1), where g = w(g°)'w™! with w the antidiagonal
matrix with ones on the antidiagonal;

then we get an exact sequence

(0) — THQe) — (T x G1)(Q:) — G(Q.) — (0),

if n is odd, while if n is even we get an exact sequence
(0) — THQ,) — (T x G1)(Q:) — G(Q,) = (Z/2Z) — (0).
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In either case if 7, is an unramified irreducible representation of G(Q,) then
7rx|(TXgl)(@z) contains a unique unramified subquotient which we will denote

0
Telreey@.)-
If [F*:Q] > 1orn>2 then we have an exact sequence

(0) — T'(R) — (T x G1)(R) — G(R) — (0),
while if F'" = Q and n = 2 then we get an exact sequence
(0) — THR) — (T x G1)(R) — G(R) — {£1} — (0).

If 7 is a irreducible admissible representation of G(R) then it is cohomological
for £ if and only if

L ool = g|];ixo,

2. and there is an irreducible constituent ., of moo|g, (r) and an i € Zx
such that '
H'(LieG1(R) ®@r C,Us, 7o, @ €|y ) # (0).

Thus if 7 is an irreducible automorphic representation of G(A) such that 7.,
is cohomological for ¢ we can find an irreducible automorphic representation
7' for (T' x G1)(A) such that

[ J 7T,|T1(A) = 1,
e if x is a place of Q which splits in E then 7, = 7| (rxa1)(@.):

e for all but finitely many places = of Q which are inert in E we have
_ |0 :
o = Tal(ru)@w)’

b Wéo’EOXO = f|;;ixoa

e and for some ¢ we have
HZ(LZG G1<R) ®]R (C7 Uooa (71_2)0 X S)IGl(R)) 7é (0)

Thus 7’ is of the form ¢° ® 7}, where 9 is a character of E*\A% and 7] is an
automorphic representation of G (A). Moreover |71 a) = ¥n ];11( A):

Now we apply theorem A.5.2 of [CL] to 7] and we conclude that there
exists an automorphic representation I of (B°? ® A)* such that

e if z is a place of Q which splits in £ then II, = BC (7, )| gor)x;
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e for all but finitely many places z of Q which are inert in £ we have
Hm = BC (7T1~)|(B;P)><;

e for some 7 we have

H' (My(Fu) ®& C,U(n, 0)" U T ® £5) # (0).

(The first of these properties is not explicitly stated in theorem A.5.2 of [CL].
However it follows easily from a slight modification of the proof. In the nota-
tion of the proof of theorem A.5.2 in [CL] divide the set S as a disjoint union
S = 5,USy where S; consists of places which split in £ and S5 of places which
are inert. Now take fs = ([[,cg, fo) ¥ fs, where for x € S5, f, is any element
of C*(Gy(Q,)) and fs, is the characteristic function of a sufficiently small
open compact subgroup, Kg,. Then we can still find a function g associated

to fs. We conclude as in [CL] that if we fix an unramified representation p of
GO ( ASU{oo})

. K,
Zﬂ' ep (WOO) dim 7.(.3252 tr BC (7T51 ) ((1051) =
ZH tr (Hw(¢%e)H52 (9052)19)tr HSI (905'1)7
SU{oo} ~v

where 7 runs over automorphic representations of Go(A) with 7 = p and
IT runs over automorphic representations of Go(Ag) with TI9U{*} = BC (p).
We deduce that if we fix an irreducible representation p of Go(A%2Y1>}) which
is unramified outside S; then

Z ep (7Too) dim 71_51252 = Z tr (Hoo(gpoo)HSQ (9032)]9)7
T II

where 7 runs over automorphic representations of G(A) with m529{>} = p and

IT runs over automorphic representations of Go(Ag) with I1529{>} = BC (p).
The rest of the argument is as in [CL].)

It is now easy to check that (] AL IT) satisfies the first six properties of
the theorem. Uniqueness follows from theorem V.1. The final property also
follows from V.1, because for all but finitely many places x of Q we have
# =11, O

Corollary V1.2 If m and 7' are irreducible automorphic representations of
G(A) such that 7 and ' are cohomological for & and such that 7, = 7l for
all but finitely many places x of Q, then m, = 7. for all places x of Q which
split in E.

Proof: This follows from theorems V.1 and VI.1. O
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Corollary V1.3 Suppose that m is an irreducible automorphic representation
of G(A) such that 74 is cohomological for . Suppose also that there exists a
place x of ' such that

o z|g splits in E,
o B s split,
e and T, is supercuspidal.
Then for any place y of F' such that
o y|g splits in E
e and B,P is split,
Ty 1S generic.
Proof: This follows from corollary V.2 and theorem VI.1. O
In the other direction we have the following result.

Theorem V1.4 Suppose that 11 is an irreducible automorphic representation
of (B°®® ® A)* and that v is a character of AS/E* such that

1. T = 117,
2. ¢H‘A§ = /Y,
3. Il is cohomological for &g,
4. and §|;§o = ¢|2‘§o (where EX C G(R)).
Then there is an irreducible automorphic representation m of G(A) such that
1. BC(m) = (¥, 10),
2. and w4 s cohomological for €.

Proof: This theorem will follow from proposition 2.3 of [C12]. (We caution
the reader that the proof of proposition 2.3 in [C12] seems to us rather sketchy
(see in particular the first paragraph of section 2.5 of [CI2]). However this
is remedied in theorem A.3.1 of [CL] where a complete derivation of the key
trace identity is given.)

206



We will use the notation of the proof of theorem VI.1. Let m be the
automorphic representation of G1(A) whose existence is guaranteed by propo-
sition 2.3 of [CI2]. Then ¢° x m; is an irreducible automorphic represen-
tation of (T x G1)(A) which vanishes on T*(A) (because if b € A} then
»e(b/b°) = (b)) = ¥r, (b/b°), the latter equality following from Clozel’s def-
inition of “base change lift”). Thus ¥° x 7 is a subrepresentation of the re-
striction of some automorphic representation 7 of G(A) to (T'x G;1)(A). Again
from Clozel’s definition of “base change lift” we see that BC (7) = (¢« AL I1).

Finally because m; is cohomological for {|g, ) and because 9° ; =¢ ]; we
see that S, X m o and hence 7, is cohomological for . O

Corollary V1.5 Keep the notation and assumptions of the theorem. Then
dim[Re(7*°)] # 0.

Proof: Combine the theorem with a theorem of Kottwitz (see theorem A.4.2
of [CL]). O

It may sometimes be useful to combine theorem VI.4 with the following
lemma.

Lemma V1.6 Suppose that 11 is an automorphic representation of (B°? @ A)*
such that

1. 11 =2 117,

2. and I, has the same infinitesimal character as some algebraic represen-

tation of RSG(GLy,) over C.

Then we can find a character 1 of AL/E* and an algebraic representation &

of G over C such that
1. ¢H|A§ =Y/,
2. Il is cohomological for &g,

3. §|];ixo =S, (where EX C G(R)),

4. and Moﬁu =1.
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Proof: Because I, has the same infinitesimal character as an algebraic
representation of RS(S(GLH) over C we see that

wnoo . Fgé — CX
is of the form

(27) = [ e r(as).

where a,, b, € Z and where 7 runs over Hom ¢(F*,R) = Hom g |, (¥, C). As
ITY, = TIS, we see that for all 7 we have a, + b, = 0. Thus if x € EX we have

Un, (x) = (1o()/70(2))",
where a = ) a, € Z. Define
VYoo : B — C*

by
Yoo(x) = To(2)
then 1o, X Il defines a representation of G(Ey) = EX x GL,(Fy) such that

(Voo x i) 0 € = PSPy X YY) 2 thy X .

(Note that the first ¢ refers to the G-structure, the second and third to the
G Li-structure and the fourth to the GL,-structure.)

We may choose an algebraic representation = of RS(SG over C such that
Yoo X I, and =¥ have the same infinitesimal character. As (15 X IIy) 0 ¢ =
Voo X Il5 we see that

[1]
[l
[

ocC

(Here ¢ acts on E and so gives a C-morphism from RS§(G) x C to itself.)
Under the isomorphism

(RS§G) x C = (G x C) x¢ (G x C)

we see that = corresponds to £ ®¢ for some algebraic representation £ of G over
C, i.e. == ¢&g. Using 71 to view C as an E-algebra we get an identification

G(C) 2 C* x GLn(F)

and hence an embedding

i:(E%)" = G(C)
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which sends (x1,23) to (179(z1),22). Embedding G(C) as the first factor of
RS (G)(C) = G(C) x G(C) we can extend i to a homomorphism

i: (EX)? — RS{(G)(C).
If instead we identify
RSG(G)(C) = (E ®g C)* x GL,(F ®g C) = (C® C)* x GL,(Fx ® Fx)
(using the identifications
(nel)®(nec)®1)): E®eC = C?

and
(1o od®(cory™)): FogC S F2)
then
i(x1,22) = (10(x1), 1520, 1).

Thus (€ 0 i)(x1,22) = To(21/22)* If x € EX C G(R) C G(C) then we can
identify x € G(C) with i(xzz¢, x). Thus £(z) = 79(2°), i.e.

Elpx = V5.
Recall the exact sequence.
(0) — QX\AX — EX\AJ =5 EX\AX 5 QX\AX — Gal (E/Q) — (0).

Note that ;" = ¥ and so vy is trivial on (A%)'*°. From the formulae at
the start of this proof we see that ¢y (—1) = 1. But from the exact sequence
we see that AX = Q*(A%)™R*, and so we deduce that

Ymlax = 1.

Again from the above exact sequence we see that
Yp=1¢"o(c—1)

for some character ¢’ of (A})“"1/{£1}. Again from the explicit formulae at
the start of this proof we see that

¢/|(E§o)c—1 - ¢oo|(E§o)c—1-

Thus we can choose a character ¢ of A% /E* such that
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° z/;‘(AE)kl =,
e ¢|E§o - ¢OO7

e and 1“% =1

Then wH\AE =¢o(c—1).
Finally because £}, and II,, have the same infinitesimal character we see
by theorems 6.1 and 7.1 of [En| that I1,, is cohomological for {g. O

VII Appendix: The trace formula.

In this appendix we will give an expression for the trace of an element ¢ €
CP(G(A™)) on H(X, Le). For simplicity we will derive this as a simple spe-
cialisation of the main result of [Arth], which relies on arthur’s trace formula.
However in our case this expression can be derived in a more elementary fash-
ion by using the Lefschetz trace formula (cf [KS] or [Bew]). We will also give
some applications of this expression.

More precisely in this appendix we will prove the following result.

Proposition VIL.1 Suppose that ¢ € C°(G(A>). Then

tr (p|H (X, Le)) = (—1)"nkp ZV(—i)n/[F(v):F]
[F(v) : F] ol (Za(7)(R)§) O (p)tr e (),

unless F* = Q and n = 2 in which case we drop the factors [F(vy) : F|™1.
Here

e 7 runs over a set of representatives of G(A)-conjugacy classes in G(Q)
which are elliptic in G(R);

e kp=21if [B:Q]/2 is odd and kg = 1 otherwise;

o Zc(7)(R)y denotes the compact mod centre inner form of Zg(v)(R) and
Za(7)(R)] the kernel of

|V| : ZG(’V)O — RZy;

o and we use measures on Zg(7)(R)§ and Zg(v)(A>) compatible with

— Tamagawa measure on Zg(7y)(A),
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— the decomposition
Za(7)(A) = Za(7)(A) x Za(7)(R),

— association of measures on Zg(v)(R)o and Zg(v)(R),

— and the measure dt/t on RZ,.

Proof: By the discussion prior to lemma 4.1, by theorem 6.1 of [Arth] and
by remark 3 following that theorem we see that

tr (9l H(X, Le)) = (—1)"0p# ke (Q, G) T, (= 1) F M) (n/[F () : F])
vol (Z6(7) (Q)RZ\ Ze(7) (A)vol (RX,\ Za(7) (R)o) 1 O5 7 (p)tr (),

where

e the sum runs over a set of representatives of G(Q)-conjugacy classes in

G(Q);
e 0 =2if F* =Q and n = 2 and dp = 1 otherwise;
e and we use associated measures on Zg(7)(R) and Zg()(R)o.

(Note that in the notation of [Arth] we have

e |[D(M,,B)| = n/[F(y) : F], unless n = 2 and F" = Q in which case
[D(M,, B)| =1,
o [iMI=1,

Note that

vol (Za(M)(QRZ\Za(7)(A))vol (RZ\Za(7)(R)o) ™! =
vol (Za(M(Q@)\Za(7)(A)")vol (Za(v)(R)) ™,

where Zg(7)(A)! denotes the elements g € Zg(7)(A) with |v(g)| = 1. By the
main theorem of [Kob] we see that if we use Tamagawa measure then

vol (Za()(Q\Zo()(A)") = kp/# ker'(Q, Za(7)).
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(Using the fact that [B : Q]/2 and [Z5(7) : Q]/2 have the same parity, a direct
calculation shows that #A(Z¢ (7)) = kp.) Moreover the G(A)-conjugacy class
of v in G(Q) contains

4 ker(ker'(Q, Zg(y)) — ker'(Q, G))

G(Q)-conjugacy classes. As in the discussion (in the third paragraph) following
lemma 9.2 we see that

# ker(ker'(Q, Za(v)) — ker'(Q, G)) = #ker (Q, Za(v))/# ker' (Q, G).

Thus we may rewrite Arthur’s formula to give the formula in the proposition.
O

We will now draw a few corollaries from this lemma which are standard
facts.

Corollary VIIL.2 Suppose that S is a finite set of finite places of F' such that
o if x € S then B, is split and x|y splits in E,

e and if x and y are two elements of S with the same restriction to F*
then x =v.

For x € S let 70 be a square integrable representation of GL,(F,). Also let &
be an irreducible representation of G over Qf¢. Then we can find an irreducible
admissible representation m of G(A>) such that

o dim[Re(r)] 0,
o forx € S wehave m, = 1)@ (¢, 0det) for some character, of F) /O,

e and for x € S we have x| .= 1.
E,(L'CE

Proof: We may suppose that for some z € S the representation 70 is su-

percuspidal. Let S(Q) denote the set of places of Q@ below places in S. If
y € S(Q) then it gives rise to a distinguished place y of E above y, i.e. z|g
for any place z € S above y. Decompose

G(A) = GATOUn o TT (2 < [[(B2)).

y
yeS(Q) x|y

If U C G(AS@U{}) is an open compact subgroup, then set

pu = chary X H charZ; X ngx,
yeS(Q) x|y

where
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o if x ¢ S then ¢, is the characteristic function of some open compact
subgroup,

e while if z € S then then ¢, is the product of a pseudo-coefficient @0 for
70 with the characteristic function of det ™ (O},).

We may and will choose U sufficiently small so that the only element of finite
order in the intersection of G(Q) with the support of ¢ is 1.
Then proposition VII.1 and lemma IV.1 tell us that

vol (G(R)))tr (pu|H(X, L¢)) = nrp(dim€) [ (dim JL ~'(x2)),

zeSs

where we use Tamagawa measure on G(A) = G(A>) x G(R) and a measure on
G(R);§ compatible with this, the association of measures on G(R) and G(R)y,
the exact sequence

vl

(0) — G(R)g — G(R)o — RZ, — (0),

and the measure dt/t on RZ,. In particular we see that

S (trwlp0)) (dim[Re (m)]) # 0.

™

where 7 runs over irreducible admissible representations of G(A>).
Thus we may choose an irreducible admissible representation 7 of G(A™)
such that both

e and trm(py) # 0.

The first of these conditions implies that for some 7., the representation 7 x
T 1s automorphic (apply Matsushima’s formula, lemma 4.1). The second
condition implies that

e for y € S(Q) we have wﬂ\oé =1,

e and, for z € S, we have

tr Wl(@ﬂ'%@(’(/@odet)) 7£ 0

for some character 1, of F/OF  (see the argument for lemma 10.1).
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Thus for any x in S with 70 supercuspidal we see that 7, & 70 ® (1, o det)
(use lemma IV.4). As we are assuming that some such place z exists it follows
from corollary VI.3 that for all x € S the representation m, is generic and
hence it follows from corollary V.6 that 7, & 70 ® (1, o det) for all x € S.
Thus 7 is our desired representation of G(A>). O

Corollary VIIL.3 Suppose that L is a CM field which is the composite of a
totally real field L™ and an imaginary quadratic field M. Suppose that S is a
finite set of places of L such that

o ifx €S then z|g splits in E,

e and if x and y are elements of S with the same restriction to L™ then
r=y.

For x € S suppose that 12 is a square integrable representation of GL,(L,).
Suppose also that = is an algebraic representation of RS@(GLQ) over C such
that Z¢ = ¥ (where ¢ acts on RS{(GLy) via its action on L). Then we can
find a cuspidal automorphic representation I1 of GL4(AL) such that

1T Y,
2. Il has the same infinitesimal character as ZV|qr, (L),

3. and for all v € S there is a character 1, of L} /OF , such that

I, 2 1I° ® (¢, o det).

Proof: We may assume that for some x € S the representation I1? is su-
percuspidal. Choose (E, F, B, %, 79, 3) as in section 1 with E = M, F = L,
(B : F] = ¢g? and B, split for all z € S. We can choose an algebraic repre-
sentation & of G over C such that {g|cr, (1) = Z|cL.(L.)- The corollary now
follows from corollary VII.2 and theorem VI.1. O

Lemma VII.4 Suppose that s|n is a positive integer. Suppose also that 7°
is an irreducible supercuspidal representation of G Ly s(Fy). Then we can find
an irreducible admissible representation 7 of G(A>) and a character Y0 of
Fy /O, such that

1. dim[R¢(7*°)] # 0,

2. my = (my, B B (1), @ [det 1)) @ (¥, 0 det),
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3. WP,OIZ;; = 1.

Proof: Let S(B) denote the set of places of F' at which B is ramified. Note
that if z € S(B) then z|g splits in E.
As
RS§(GL,) x C = (GL, x C)Hom(Fe),

we may choose a maximal torus 7' = (GL} x C)Hom(F0) and a Borel subgroup
B D T consisting of upper triangular matrices in (GL,, x C)#™ (€ Then we

can identify
X* (T) ~ (Zn)Hom (F,C)

in such a way that the set of B-positive weights, X*(T'),, consists of vectors
(;;) with z.; > 2, ; whenever ¢ < j. We will let p € X*(T')+ denote half the
sum of the positive roots, i.e.

pri=(n+1)/2 —1i.

If Z is an irreducible algebraic representation of RS{(GL,) over C we will let
z(Z) € X*(T), denote its heighest weight. Note that =¢ = =Y (where ¢ acts
on RSS(GLn) via its action on F) if and only if

x(E)’T,i + x<E>CT,n+l—i =0

for all 7 € Hom (F,C) and all i = 1,...,n. We will use exactly similar notation
for RS{(GLyys).

Choose an irreducible algebraic representation =’ of RSS(GLWS) over C
such that

° (El)\/ o] (E/)C

e and z(Z'); ;11 > x(E),; + (s — 1) for all 7 € Hom (F,C) and all i =
1,....n—1.

By corollary VII.3 we may choose a cuspidal automorphic representation IT'
of GL,,s(Ar) such that

° (H/)V o] (1—[/)07
e II’_ has the same infinitesimal character as (Z),
e I’ is supercuspidal for all x € S(B),

o I, = m) ® (1, o det) for some character 1,, of F /O,
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Also choose a character ¢ of Ay /F* such that
o ¢! =¢%
o for every 7 : F' — C defining a place y of I’ we have
¢y 12— (1(2)/I7 ()],

where §, = 0 if either s or n/s is odd, while §, = £1 if both both s and
n/s are even;

e and ¢, is unramified.

(The existence of such a character ¢ is proved exactly as in the proof of corol-
lary 12.9.) Note that I, ® ¢, has infinitesimal character parametrised by
' € X*(T), where

LC:_J - <n/8 + 1)/2 — 11— Trn/s+1—i + 57-/2

According to the main theorem of [MW] there is an irreducible automorphic
representation I1" of G L, (Ar) which occurs in the discrete spectrum and which
is a subquotient of

n-Ind G (I © 6.6 [ det [079/2) x o (I @ ¢ @ | det [7172),

where () C G L, is a parabolic subgroup with Levi component GL; /s More-
over we have the following properties.

1. IV = 1I¢ (by the strong multiplicity one theorem).

2. Il has the same infinitesimal character as the algebraic representation
E of RSG(GLy,) over C with

(E)r—yses = 1/2(s = 1)(2l =1 —n/s) + x(Z').1 — 0-/2,

for I =1,...,n/s and J = 1,...;s. (Note that by our assumptions on
0, and z(Z') we do have z(Z) € X*(T); and so ZV has infinitesimal
character with parameter x € X*(7T') given by

Tr(I-1)s+J =

(n+1)/2—(I—-1)S—J—1/2(s=1)(2(n/s+1—1)—1—n/s)—
‘T(EI)T,n/erl—I + 57—/2 =

(n/s+1)/2—=T+(s+1)/2—J—x(Z)rpn/se1-1 + 6:/2,
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for I =1,...n/sand J =1,...,s. This x € X*(T) also parametrises the
infinitesimal character of any subquotient of

n-Ind {2 (11 @ doe ® [ det |17972) x5 (I @ o ® | det [1/2).)

3. For each x € S(B), I1, & (7Y H... B (72 ® | det |*~1)), for some supercus-
pidal representation 79 of GL,/s(F;) (see [MW] and proposition 2.10 of

[2])-

4. I, 2 (70 B ... B (7 @ |det |* 1)) @ (¢2 o det), for some character 10 of
Fy/OF,, (see [MW] and proposition 2.10 of [Z]).

Applying theorem V.1, lemma VI.6, theorem VI.4 and corollary VI.5 we
see that there is an irreducible automorphic representation m of G(A) such
that

e BC (n) = (v, JL'(IT)) (for some character )
o and dim[R,(7>)] # 0.

Then 7 is our desired representation of G(A>). O
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