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A b s t r a c t .  In this paper there are two innovations. First, the geometry 

of imaged curves is developed in two and three views. A set of results 

are given for both conics and non-aigebraic curves. It is shown that the 

homography between the images induced by the plane of the curve can 

be computed from two views given only the epipolar geometry, and that 

the trifocal tensor can be used to transfer a conic or the curvature from 

two views to a third. 

The second innovation is an algorithm for automatically matching in- 

dividuai curves between images. The algorithm uses both photometric 

information and the multiple view geometric results. For image pairs 

the homography facilitates the computatioa of a neighbourhood cross- 

correlation based matching score for putative curve correspondences. 

For image triplets cross-correlation matching scores are used in conjunc- 

tion with curve transfer based on the trifocal geometry to disambiguate 

matches. Algorithms are developed for both short and wide baselines. 

The algorithms are robust to deficiencies in the curve segment extrac- 

tion and partial occlusion. 

Experimental results are given for image pairs and triplets, for varying 

motions between views, and for different scene types. The method is ap- 

plicable to curve matching in stereo and trinocular rigs, and as a starting 

point for curve matching through monocular image sequences. 

1 Introduction 

This paper has two strands. The first is set of novel geometric results for curves 

in two and three views. The results are developed for both algebraic (conics) and 

non-algebraic curves. The key unifying idea is that the plane of the geometric 

entity can be computed from two views. The plane can then be used to transfer 

that  entity into a third view via the trifocal tensor [8, 22, 23]. The transfer of 

points and lines via the trifocal tensor is well known and explored. This paper 

extends transfer to conics and curvature. 

The second strand is an application of these results to the automatic matching 

of curves over multiple views. The idea here is that  in addition to the geometric 

constraints that  must be satisfied by matched curves, there are also photometric 

constraints on the intensity neighbourhood of the curve. These constraints are 

realised by computing intensity neighbourhood cross-correlation mediated by the 

homography (projective transformation) induced by the plane of the curve. 
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This paper can justly be seen as extending two papers by Faugeras and 

Roberts. The first, [7], dealt with the transfer of conics and curvature from two 

views to a third via epipolar transfer; in this paper the transfer is via the tri- 

focal tensor and so does not suffer from the failings of epipolar transfer [28]. The 

second, [18], dealt with the trinocular matching of curves using only geometric 

constraints; in this paper these constraints are augmented by photometric con- 

straints based on neighbourhood intensity correlation. In our previous work [20] 

this photometric constraint was shown to be a powerful disambiguation measure 

for line matches over two and three views. 

1.1 R e l a t e d  l i t e r a t u r e  o n  c u r v e  m a t c h i n g  

Curve matching is a reoccurring topic in the stereo and motion literature, with 

the main application being the recovery of 3D geometry. A subsidiary goal 

has been to qualitatively distinguish between surface curves and apparent con- 

tours [2, 25]. Curves are a natural next step after lines, since they are a more 

faithful representation of a contour which would otherwise be represented by a 

polygonal chain. In this paper we are not considering closely spaced views where 

snake tracking is viable. 

Basic criteria for curve matching in stereo pairs were established by Pollard 

et al in the PMF Stereo Algorithm [16]. Their primary criteria were the epipolar 

and ordering constraints, but these were supplemented by figural continuity to 

overcome problems where curves coincide with epipolar lines (since if the curve 

coincides with an epipolar line, point correspondences cannot be determined). 

Zhang and Gerbrands [27] again used epipolar geometry as their primary con- 

straint, but  followed this with criteria on the variation in disparity along the 

putatively matched curves. Brint and Brady [4] matched curves in trinocular 

views. Their primary matching constraint was a similarity measure based on 

the deformation between a curve and its putative match in another view. This 

measure was used to eliminate many potential mismatches. Trinocular consist- 

ency constraints were only used as a final verification. An alternative to matching 

curves individually is to first carry out a monocular grouping, and then match 

the groups. This is the approach adopted by Chung and Nevatia [5], and con- 

tinued in work at USC by Havaldar and Medioni [10]. In this paper we match 

curves individually without first grouping. 

Nayar and Bolle [15] developed a photometric matching constraint based 

on the ratio of intensities across region boundaries. This ratio of intensities has 

good invariance to lighting conditions. However, it is less general than the neigh- 

bourhood intensity correlation presented in this paper because it only applies to 

homogeneous regions, and it is also less discriminating. 

1.2 O v e r v i e w  

Section 2 describes the geometry of conics and general curves in two and three 

views. Conic and curvature transfer methods are given, and these methods are 

assessed in section 3 by an implementation on reM images. Matching is described 
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in section 4. Algorithms are given for two and three views, and for short and 

wide baselines. 

Two sequences are used to evaluate the geometry and matching. These are: a 

"plate" sequence, figure 2; and a "bottle" sequence, figure 3. Examples on other 

sequences are given in [21]. Frames are selected from these sequences to form 

image pairs or triplets. The camera motion between the frames is fairly uniform, 

so that  the frame number is a good indicator of the distance between views. 

The matching method developed in this paper requires only projective mul- 

tiple view relations: the fundamental matrix for two views and the trifocal tensor 

for three. Camera calibration is not required. These relations are computed auto- 

matically from point (corner) correspondences [1, 24, 26]. 

2 G e o m e t r y  

a b 

Fig. 1. (a) A conic defines a unique plane in 3-space. This plane is determined up to 

a two-fold ambiguity from the image of the conic in two views. One of the epipolar 

tangents is also shown. (b) The osculating plane of a (non-planar) curve varies, but is 

always defined in 3-space provided the curvature is not zero. This plane is determined 
uniquely from the image of the curve in two views. In both cases the plane induces a 
homography between the images. 

2.1 C on i c  p l a nes  and  h o m o g r a p h y  

In this section we consider the reconstruction of a conic in 3-space given its 

image in two views and the epipolar geometry of the views represented by the 

fundamental matr ix F. An explicit and simple expression is given for the plane of 

the conic and the homography it induces. The geometry is illustrated in figure la. 

Several previous authors have investigated this geometry [12, 17, 19]. The 

most elegant is the approach of Quan [17] who shows, by reasoning on the back 

projected cones from each image conic, that  there is a two fold ambiguity in 

the plane of the space conic. However, Quan's expressions are over complicated 

because he did not explicitly write the two camera matrices in terms of the 

epipolar geometry. Instead he derived correspondence conditions for the conics 
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which are, actually, equivalent to the condition that  the epipolar tangents to the 

conic must correspond (as in the Kruppa equations [13]). 

We now give the main result of this section: 

Given two perspective images of a conic (i.e. not a quadric), and the fundamental 

matrix between the views, then the plane of the conic (and consequently the 

homography induced by this plane) is defined up to a two fold ambiguity. 

Suppose the image conics are represented by 3 • 3 symmetric matrices C and C' 

and the 3 x 4 camera matrices are chosen as 

P = [I[0] P ' =  [A[e'] 

where e' is the epipole in the second view (e is the epipole in the first view). 

Then for the plane ~r T = (a T, 1) and homography x'  = nx where [11] 

H = A + e ' a  T 

and provided e'TC'e ' ~ 0 and eTCe ~ 0, 

a(#) = - (#Ce + ATC'e') / (e'TC 'e') 

e,e, TC,~ e'eTC 

H(#)  ---- I ~ ]  A-- #e,  TC,e , 

and the two values of # are obtained from 

,2 [(eTCe)C _ (Ce)(Ce)T] : A T [(e'TC,e,)C, -- (C'e')(C'e') T] A 

If t is chosen as t : [C'e'] • F then simpler expressions are obtained: 

H(tt) : [C'e']xF --/~e'(Ce) T 

with 

/t 2 [(eTCe)C- (Ce)(Ce) T] (e'TC'e ') = -FT[C'e']xC'[C'e']xF 

where the notation ix] x means the 3 x 3 skew matrix with null space x~ repres- 

enting the vector cross product: [x]xy -- x x y. 

The proof is omitted for lack of Space but simply involves solving for a in 

H = A + e'a T such that the image conics map as C' = H-Tc H -I. Note that when 

e'TC'e ' = eTCe = 0 the epipole is on the conic in each image, and the baseline 

intersects the space conic. In this case the plane is determined uniquely. 

2.2 C u r v e  o s c u l a t i n g  p l anes  

In this section we first show how Euclidean curvature is mapped by a homo- 

graphy, and then how this result is used to determine the osculating plane of the 

curve. The geometry is illustrated in figure lb. 

Suppose a plane curve is imaged in two views, then the image curves are re- 

lated by a homography induced by the curve plane. If the curve is not planar (it 
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has non-zero torsion) then the image curves are not related globally by a homo- 

graphy, but  locally they are related by a homography induced by the osculating 

plane of the space curve. 

If  corresponding curve points are related as x ~ = nx. Then the Euclidean 

curvature at these points is related by 

n' = t~ \ ds' ] ~ {Hi (1) 

where IH] is the determinant of H, and hi T is the i th row of H, i.e. FhlT] 
H = ]h2  T 

[h31- 

and ds is the ratio of arc lengths given by 3~7 

as-- = , / [ ( h i . •  (ha.x) - (h i .x)  (ha.• 2 + [(h2.• (h3.x) - (h2.x) (ha.• 2 

ds V (h3'x)4(Xl 2 + x22) 

the notat ion :~ indicates the derivative of the homogeneous vector x = (xl,  x2, x3)T 

by a curve parameter  which need not be arc length and will not, in general, be 

the same in each image. The proof is omitted through lack of space, but starts  

from the formula of Brill et al [14], page 205. 

We now show tha t  the known curvatures at corresponding points, x <-+ x ' ,  of 

the curves in each image determine the homography H. Suppose the tangent  lines 

at x, x ~, are 1 and 1 ~ respectively. These lines are related by 1 = H-Tlq Given the 

epipolar geometry, there is a one parameter  family of homographies which map 

a line in one image to a line in the other. This family may be writ ten [20] 

I / m H(#) = [1]• + #e  1 

The remaining degree of freedom, #, is determined uniquely using the relation (1) 

between image curvatures a~ and a. We introduce the notat ion A = [lq x F. Note 

that  since 1 = x x • it follows that  H(#)x ---- Ax and n(#)•  = A• so tha t  

h i .x  -- a i .x  etc. After some algebra: 

/z { l l le 'a2a3{ 4-121ale'a31 Jr 131ala2e' l} = ~;2 ( d s t ~  3 (a3.x)  3 

where a i is the i th column of A, and Ixyzl is the determinant of the matr ix  with 

columns x, y, z. 

To summarise, we have shown tha t  

Given two perspective images of a plane curve, and the fundamental matrix 

between the views, then the plane o] the curve (and consequently the homography 

induced by this plane) is defined uniquely from the corresponding tangent lines 

and curvatures at one point. 
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There are two types of degenerate points at which the p lane /homography 

cannot be uniquely determined by this method. The first is at epipolar tangents,  

where the tangent lines contain the epipole (i.e. if 1.e = ll.e I = 0), since in this 

case the line in 3-space which projects to 1 and 11 can not be determined as it 

lies in an epipolar plane. The second is at zero's of curvature (inflections) since 

then the curvature cannot be used to determine #. 

2.3 T r a n s f e r  t o  a t h i r d  v i e w  

The previous two sections have shown how the curve plane can be computed 

from two views. In this section we show that  this plane, together with the trifocal 

tensor of the triplet, defines the mapping of the curve into a third view. This 

will be illustrated for a conic. The transfer of curvature via the osculating plane 

follows by analogy. In detail we show that  

Given two perspective images of a conic and the trifocal tensor, the image of the 

conic in the third view is computed up to a two fold ambiguity 

Suppose the (known) image conics are C and C in views one and two, and 

the sought conic in view three is C' .  The following steps determine C" 

1. Obtain the three P matrices from the trifocal tensor as described by Hart ley [9] 

P = [I[0], P ' =  [A[e'], P ' :  [Ble"]. 

2. Compute  the plane of the homography a (two solutions) from the corres- 

ponding conics C ++ C' as described in section 2.1. 

3. Then the homography x"  = Hlax is H13 = B + e " a  T, and the conic C is 

transferred as C" = H~-JC H~ -1 . 

3 G e o m e t r y  A s s e s s m e n t  

In this section we assess the performance of the methods of section 2 for an 

implementat ion on real images. The accuracy is evaluated from three views of 

a curve as follows: the plane of the curve is estimated from views one and two, 

and the curve and curvature are then transferred by the induced homography 

into the third view. The transfer error is assessed by comparing the transferred 

curve/curvature  with that  of the (veridical) curve imaged in the third view. 

A s s e s s m e n t  C r i t e r i a  The transfer is assessed by two error measures. The first, 

Cx, is the average Euclidean distance between the curves 

= <  d•162  > 

where d• is the distance between the curves in the normal direction from the 

imaged curve c to the transferred curve ct, and the average is performed over an 

arc length curve parameter  s for the curve c. The correspondence between the 
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curves is established by intersecting the curve ct with the normal of c(s). The  

second measure, cs, is the average relative curvature difference of the curves 

I (s) -  t(s)l 
= <  > 

where ~ is the curvature of the imaged curve, and t~ t the curvature of the trans- 

ferred curve. Points at which transfer is not possible, due to degeneracies in 

determining the osculating plane (see section 2.2), are excluded from the aver- 

age. 

The method is assessed for both conics (i.e. plane curves), and space curves. 

A conic allows the conic-specific method of section 2.1 to be compared to the 

general curve method of section 2.2 based on curvature. A conic also allows the 

curvature method to be assessed in two ways. In the first case a conic is fitted 

to the extracted conic boundary (edge chain) and intersections, tangents, and 

curvature are determined from the algebraic curve. This is a global method of 

estimation. In the second case the curve, its tangent, and curvature are determ- 

ined locally (by spline fitting) using only this local information. In general we 

would expect the global estimates to be superior to the local. 

For the plane curves the evaluation images consist of the two image triplets 

shown in figure 2, with the plate providing a conic. The triplets share the same 

first two views, but differ in the third. In triplet II the baseline between the 

second and third views is four times larger than that  in triplet I. Space curves 

are evaluated using the image triplet shown in figure 3. The space curves used 

for the evaluation are superimposed; one is on the bottle, the second on the 

mug. 

Fig. 2. Frames 3, 6, 7 and 10 from the "plate" sequence. The extracted conics are 

superimposed in black. Test triplet I consists of images (a), (b), (c); and test triplet II 

of images (a), (b), (d). 

I m p l e m e n t a t i o n  de ta i l s  Conic outlines are extracted using a subpixel Canny 

edge detector, and the conic estimated by Bookstein's fitting algorithm [3]. The 

local estimate of curvature is obtained by fitting cubic B-splines to the edgel 

chains. The average involved in both error measures, Cx and ~ ,  is computed by 

sampling the conic/B-spline curve at one pixel arc length intervals. 
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Fig. 3. The "bottle" sequence (images 11,15 and 19). Two of the extracted contour 

chains are superimposed. 

3.1 Assess ing  conic transfer 

The conic plane is computed using conics from views one and two and the method 

of section 2.1. In order to have conics consistent with the epipolar geometry, a 

correction is required to ensure tha t  the epipolar tangents to the conic (the 

tangent lines from the epipole to the conic) correspond between the images. 

This correction is achieved by applying the algorithm of [6]. The corrected conic 

is then transferred into the third image as described in section 2.3. The distance 

error and the relative curvature error are computed between the transferred and 

the extracted conic in the third image. The second solution for the conic plane 

can easily be ruled out as the distance error is very large. 

For triplet I, Cx -- 0.15 pixels, and ca -= 0.0024. For triplet II, Cx -- 0.28 

pixels, and ca -- 0.0074. Clearly, the transfer is excellent (visually the conics are 

indistinguishable.). 

3.2 Assess ing  Curvature Transfer 

G l o b a l  curvature e s t imat ion  Tangent lines and curvatures are obtained for 

the conics in each view by implicit differentiation of the fitted conics. The cor- 

respondence between points on the conic in the first and second view is obtained 

by intersecting the conic in the second view with the epipolar line of the point 

in the first view. The conic epipolar tangents and their neighbours are excluded 

from the error measures since curvature cannot be transferred for these points. 

For triplet I, Cx = 0.15 pixels, and c~ = 0.0016. For triplet II, Cx = 0.34 pixels, 

and ca = 0.0047. These results are almost identical to those of the previous 

section where conic transfer is used (section 2.1), as opposed to conic curvature 

transfer. They demonstrate  tha t  given almost perfect curvature (from the fitted 

conic) the curvature transfer is similarly almost perfect. The method of the next 

section investigates the deterioration when the curvature measurement  is local 

and inferior. 

Local curvature e s t imat ion  The conics in image one and two are here rep- 

resented by B-splines fitted to the edgel chain. The tangents,  curvatures and 
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epipolar line intersections are then computed from the B-splines, as opposed to 

the conics. The transferred curvature is compared to the curvature computed 

implicitly from C'. For triplet I, ex = 0.24 pixels, and e~ = 0.046. For triplet II, 

Cx = 0.29 pixels, and ~ = 0.074. 

3.3 C o m p a r i s o n  of  t he  d i f ferent  m e t h o d s  

The position error Cx is of similar value over all methods. This is not surprising 

because the point transfer error only arises because of the difference between the 

fitted curves (conic or B-spline) and the veridical conic. This will be consistently 

sub-pixel because of the sub-pixel acuity of the Canny edge detector used. The 

curvature error c~ is more illuminating. The error is an order of magnitude larger 

when using local estimation of curvatures (via B-splines). This increased error 

is a direct consequence of the error in curvature estimation as can be seen from 

figure 4 which compares (a) the curvatures measured by the two methods in 

view one, and then (b) the resulting transferred curvatures in view three. 

x Io  ~ 
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Fig. 4. (a) Comparison of curvature computed from a local B-spline fit (dashed curve), 

and a global conic fit (continuous curve) to the conic edgel chain. (b) Comparison of 

the transferred curvature using these two fitting methods for triplet I. In both cases 

curvature is plotted against arc length in pixels. The missing curve segments are at 

epipolar tangents where the curvature cannot be transferred. 

3.4 Space  cu rves  

Figure 3 shows the two space curves used for assessing point and curvature trans- 

fer. For the curve on the bottle, (x = 0.43 pixels, and ~ = 0.037. For the curve 

on the mug, ex = 0.71 pixels, and ~ = 0.097. This is a very similar perform- 

ance to the case of B-spline curvature computation for plane curves. Again the 

transfer accuracy is limited by the accuracy of the curvature measurement. 
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3.5 R e j e c t i o n  o f  t h e  i n c o r r e c t  s o l u t i o n  

Two solutions for the conic plane are obtained in practice using either of the 

two view methods. In the algebraic method of section 2.1, the two solutions 

arise because algebraic properties alone do not distinguish the front and back 

faces of the conic plane [17]. In the local curvature method of section 2.2 the two 

solutions arise because a curve point in the first view has two potential matches in 

the second view (since the epipolar line, corresponding to a point on the conic in 

the first view, intersects the conic in the second view twice). Thus the fallacious 

solutions originate for different reasons in the two methods. Consequently, the 

fallacious algebraic solution can be eliminated by simply testing one point with 

the curvature method: the correct solutions from both methods will be the same, 

but in general the fallacious solutions differ. 

4 M a t c h i n g  c u r v e s  o v e r  m u l t i p l e  v i e w s  

The algorithm for automatic curve matching uses both photometric information 

and multiple view constraints. It is an extension to curves of the short and wide 

baseline algorithms for lines described in [20]. Short and wide base line cases are 

distinguished by the severity of the differing perspective distortions in the im- 

ages. In both cases a photometric similarity measure between putatively matched 

contours is obtained from an aggregated neighbourhood cross-correlation score. 

In the short baseline case simple neighbourhood cross-correlation of correspond- 

ing points suffices; in the wide baseline case corresponding points for the cross- 

correlation are determined by a local planar projective transformation. The pro- 

jective transformation is obtained here using the geometric relations of section 2. 

In the three view case curve matches are also verified using the geometric con- 

straints provided by the trifocal geometry. 

4.1 S h o r t  base l ine  b e t w e e n  two v iews  

I m p l e m e n t a t i o n  de ta i l s  Each contour chain is t reated as a list of edgels 

to which neighbourhood correlation is applied as a measure of similarity. The 

similarity score for a pair of contour chains c and c' is computed as the average 

of the individual edgel correlation values. Point correspondences are determined 

by the epipolar geometry. In detail, for an image point x which is an edgel of 

the contour chain c, the epipolar line in the second image is l' e = Fx. This 

line l' e is intersected with the potentially matching edgel chain c r (using linear 

interpolation between edgels). The correlation is between the neighbourhood of x 

and the neighbourhood of the intersection. Here a correlation window of 15x15 is 

used. In the case of multiple intersections the best correlation value is included 

in the overall score, and if there is no intersection, because the chains have 

different lengths, then no value is added to the score. To be robust to occlusion 

an individual correlation value is only included if above a threshold (here 0.6). 

If there are fewer than a minimum number (here 15) of matched edgels for a 
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putative curve match, then that  match is eliminated. No disparity threshold is 

used. Having determined similarity scores between contour pairs, the matches 

are selected using a winner take all scheme. 

For a given pair of contours which have been deemed matched the parts of 

the curve for which there are corresponding edgels in both views are determined 

by only including edgels with correlation above threshold. When moving along 

a curve figural continuity is used to bridge gaps in the edgel correspondence 

arising from epipolar tangencies. If the parts of the curve for which there are 

corresponding edgels are non-contiguous, then only the three longest parts are 

retained. 

M a t c h i n g  p e r f o r m a n c e  In the following we present a number of results using 

the short baseline algorithm. At present the ground-truth matches are assessed 

by hand. The performance varies with the parameters used for contour extraction 

and these are now described. 

The algorithm used for contour extraction is the 'CannyOx'  edge detector and 

linker from the Targetjr I software package. The low and high Canny thresholds 

for the edge detection are the same in all cases (2 and 12 respectively). The 

edgel linker parameters are varied, with their values given in table 1. The two 

parameters are the minimum gradient at which edgels are included in the linked 

chain (min gradient), - -  a high value excludes weak edges; and the minimum 

number of edgels in the linked chain (min length) - -  a high value excludes short 

chains. An example of extracted contours using a minimum gradient of 60 and 

a minimum length of 60 is displayed in figure 5 for the first two bottle images of 

figure 3. 

The matched contours are shown in figure 5 in two ways. First, the complete 

contour chain matches are shown; second, only the parts of the matched contours 

for which there are corresponding edgels in both views are shown. The latter 

choice excludes the parts of the chains along epipolar lines, and also those parts 

of the chain which are detected as edgels in one view but  not in the other. Only 

corresponding parts are shown for the rest of the examples in this paper. 

The number of matched contour chains for different parameters for contour 

extraction are given in table 1. The matching results are extremely good, with 

most of the mismatches arising from specularities on the bottle: For the 60/30 

case there is one false match, the other three are due to specularities; and for the 

30/30 case there are two false matches, the other four are due to specularities. 

Curves arising from specularities can be removed by a pre-process. It is evident 

that  there is little loss in matching performance when the number of contours is 

increased, i.e. when the parameter values are decreased. 

As a second example contours are matched for the first two images of the 

"plate" sequence (cf. figure 2). Results are displayed in figure 6. 80 and 89 

contours chain are obtained for the left and right image, respectively (using min 

grad 30 and rain length 30); 100% of the 40 matched contour chains are correct. 

1 http: //www.esat.kuleuven.ac.be/-t argetjr 
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rain min number number number correct 

g rad  length left right matched 

60 60 37 47 29 97% 

60 30 59 72 41 90% 

30 30 85 85 41 85% 

T a b l e  1. Edge detection parameters and curve matching results for the short baseline 

algorithm applied to an image pair of the "bottle" sequence. 

i 

I 

"@' I 
Fig .  5. Short baseline matching. Upper pair : Contours extracted with CannyOx (para- 

meters: min grad 60, min length 60). 37 and 47 contours are obtained for the left and 

right images respectively; Middle pair : Contours which are matched between views. 

Lower pair : Matched contours showing only the parts which have corresponding edgels 

in both views. 97% of the 29 matches are correct. 
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Fig. 6. Short baseline matching. 100% of the 40 matched contour chains are correct. 

4.2 L a r g e  b a s e l i n e  a l g o r i t h m  b e t w e e n  t w o  v i e w s  

In the case of a large baseline or significant rotat ion simple correlation based on 

square neighbourhoods will fail. However, the mapping between neighbourhood 

points can be determined from a homography based on the local tangent plane 

of the surface. In the case of line matching [20] this homography can only be 

determined up to a one parameter  family because a line in 3D only determines the 

plane inducing the homography up to a one parameter  family. This means that  

for lines a one dimensional search is required. However, in the case of curves the 

osculating plane determines a local plane uniquely (or up to a two-fold ambiguity 

for conics), and no search is required. 

Thus there are two cases: if the curve has sufficient curvature the plane is 

computed as described in section 2.2; however, if the contour chain is straight 

or almost straight, curvature is close to zero and the osculating plane cannot 

be determined. In this case the algorithm developed for long range motion line 

matching (cf. [20]) is used. Lines here are the tangent lines to the contour chain. 

A threshold on local curvature is used to decide which case applies. 

Images 11 and 19 of the "bottle" sequence (cf. figure 3) are matched; results 

are displayed in figure 7. 37 and 48 contour chains were extracted for the left and 

right images, respectively. 88% of the 16 matched contour chains are correct. 

\ \ LJ 

Fig. 7. Wide base line matching. 88% of the 16 matched contour chains are correct. 
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4.3 Three view matching 

In the three view case there are three geometric constraints available for match- 

ing curves [18]: the curve point, its tangent, and its curvature. Here only the 

point is used directly as a geometric constraint. The tangent and curvature are 

used indirectly to determine the osculating plane, and hence provide a strong 

photometric constraint based on neighbourhood cross-correlation via the homo- 

graphy induced by the plane. 

The three view matching builds on the curve matches provided by the two 

view algorithm. The point correspondences for matched chains in the first and 

second view are transferred into the third view using the trifocal tensor and 

are checked for coincidence with a contour chain in the third image (geometric 

constraint). A photometric score is then computed by correlating the point pair 

between images 2 and 3. If sufficient corresponding point triples are obtained for 

a putative contour triple, its mean correlation score is used to rank the match; 

otherwise the putative match is eliminated. This score is used in a winner take 

all scheme over three views which rules out multiple matches. 

In the following results are given for two image triplets: "bottle" (images 

11, 15, 17 of figure 3), and "plate" (images 3, 6, 7 of figure 2). Results on other 

triplets are given in [21]. Contours are extracted using the same parameters in 

all cases (min grad 30, min length 30). 

Fig. 8. Three view matching. 25 contour chains are matched. There is only one incorrect 
match which arises from a specularity on the bottle. 

Figure 8 shows results for three view matching for the "bottle" images (cf. 

figure 3). 85, 85 and 90 contour chains are obtained for the left, middle and right 

image, respectively. 25 contour chains were matched. Note, that  the outline of 

the bottle is correctly not matched over the three views since it is an apparent 

contour and not rigidly attached to the scene. Annoyingly, the non-rigidity was 

insufficient to eliminate the only incorrect match which arose from the specu- 

larity on the bottle. In figure 9 matched contours are displayed for the "plate" 

images (cf. figure 2). 80, 89 and 84 contour chains are obtained for the left, 

middle and right image, respectively. 100% of the 30 matched contour chains are 

correct. 

The three view matching gives excellent results. These matches will now form 

the foundation for a second pass where curves broken by the contour extraction 
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Fig. 9. Three view matching. 100% of the 30 matched contour chains are correct. 

can be rejoined, and edge evidence sought for curve portions which are matched 

in only two of the three views. Such post processing substantially reduces curve 

fragmentat ion [20]. 

5 D i s c u s s i o n  a n d  e x t e n s i o n s  

We have derived and implemented new geometric results for conics and gen- 

eral curves over multiple views. These results have been applied to automat ic  

curve matching over two and three views using a combination of geometric and 

photometr ic  constraints. 

The short baseline algorithm gives substantial  disambiguation and generally 

excellent results being extremely robust with three views. The wide baseline al- 

gori thm also gives very good results, but relies on computing the osculating plane 

of the curve in order to determine a homography to map intensity neighbour- 

hoods for correlation. There are two potential problems here: first, the osculating 

plane is only est imated accurately if the torsion of the curve is sufficiently small. 

However, this condition holds in many practical cases; second, the osculating 

plane of the curve may not coincide with the local tangent plane of the surface 

(think of the circular curve at the mouth of a mug). Fortunately, the intensity 

cross correlation is quite forgiving, and provides disambiguation even if the plane 

is imprecise. 
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