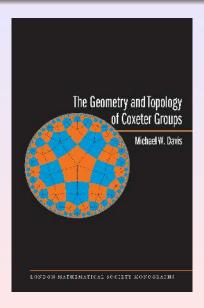
The Geometry and Topology of Coxeter Groups

Mike Davis

Mathematical Sciences Center Tsinghua University

May 10, 2013 http://www.math.osu.edu/~davis.12/

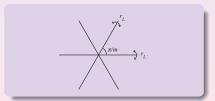


- Geometric reflection groups
 - Some history
 - Properties
- Abstract reflection groups
 - Coxeter systems
 - First realization: the Tits representation
 - Second realization: the cell complex Σ

Dihedral groups

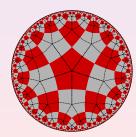
A *dihedral group* is any group which is generated by 2 involutions, call them s, t. Such a group is determined up to isomorphism by the order m of st (m is an integer ≥ 2 or ∞). Let \mathbf{D}_m denote the dihedral group corresponding to m.

For $m \neq \infty$, \mathbf{D}_m can be represented as the subgroup of O(2) which is generated by reflections across lines L, L', making an angle of π/m .



- In 1852 Möbius determined the finite subgroups of O(3) generated by isometric reflections on the 2-sphere.
- The fundamental domain for such a group on the 2-sphere is a spherical triangle with angles $\frac{\pi}{\rho}$, $\frac{\pi}{q}$, $\frac{\pi}{r}$, with p, q, r integers ≥ 2 .
- Since the sum of the angles is $> \pi$, we have $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} > 1$.
- For $p \ge q \ge r$, the only possibilities are: (p, 2, 2) for any $p \ge 2$ and (p, 3, 2) with p = 3, 4 or 5. The last three cases are the symmetry groups of the Platonic solids.

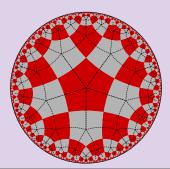
Later work by Riemann and Schwarz showed there were discrete groups of isometries of \mathbb{E}^2 or \mathbb{H}^2 generated by reflections across the edges of triangles with angles integral submultiples of π . Poincaré and Klein: similarly for polygons in \mathbb{H}^2 .



In 2^{nd} half of the 19^{th} century work began on finite reflection groups on \mathbb{S}^n , n > 2, generalizing Möbius' results for n = 2. It developed along two lines.

- Around 1850, Schläfli classified regular polytopes in \mathbb{R}^{n+1} , n > 2. The symmetry group of such a polytope was a finite group generated by reflections and as in Möbius' case, the projection of a fundamental domain to \mathbb{S}^n was a spherical simplex with dihedral angles integral submultiples of π .
- Around 1890, Killing and E. Cartan classified complex semisimple Lie algebras in terms of their root systems. In 1925, Weyl showed the symmetry group of such a root system was a finite reflection group.
- These two lines were united by Coxeter in the 1930's. He classified discrete groups reflection groups on \mathbb{S}^n or \mathbb{E}^n .

Let K be a fundamental polytope for a geometric reflection group. For \mathbb{S}^n , K is a simplex (= generalization of a triangle). For \mathbb{E}^n , K is a product of simplices. For \mathbb{H}^n there are other possibilities, eg, a right-angled pentagon in \mathbb{H}^2 or a right-angled dodecahedron in \mathbb{H}^3 .



- Conversely, given a convex polytope K in \mathbb{S}^n , \mathbb{E}^n or \mathbb{H}^n so that all dihedral angles have form π /integer, there is a discrete group W generated by isometric reflections across the codimension 1 faces of K.
- Let S be the set of reflections across the codim 1 faces of K. For $s,t\in S$, let m(s,t) be the order of st. Then S generates W. The faces corresponding to s and t intersect in a codim 2 face iff $m(s,t)\neq \infty$, and for $s\neq t$, the dihedral angle along that face is $\pi/m(s,t)$. (m(s,t) is an $S\times S$ symmetric matrix called the *Coxeter matrix*.) Moreover,

$$\langle S \mid (st)^{m(s,t)}, \text{ where } (s,t) \in S \times S \rangle$$

is a presentation for W.

0

Coxeter diagrams

Associated to (W, S), there is a labeled graph Γ called its "Coxeter diagram."

$$Vert(\Gamma) := S$$
.

Connect distinct elements s, t by an edge iff $m(s,t) \neq 2$. Label the edge by m(s,t) if this is > 3 or $= \infty$ and leave it unlabeled if it is = 3. (W,S) is *irreducible* if Γ is connected. (The components of Γ give the irreducible factors of W.) The next slide shows Coxeter's classification of irreducible spherical and cocompact Euclidean reflection groups.

Spherical Diagrams

$$\mathbf{D}_n$$
 \longrightarrow \cdots

$$\mathbf{I}_{2}(p)$$
 $\stackrel{p}{\longrightarrow}$

Euclidean Diagrams

$$\widetilde{\mathbf{B}}_n$$
 $\overset{4}{\longrightarrow}$ \cdots

$$\widetilde{\mathbf{C}}_n$$
 $\overset{4}{\longleftarrow}$ \cdots $\overset{4}{\longleftarrow}$

$$\widetilde{\mathbf{D}}_n$$
 \longrightarrow \cdots

Coxeter systems First realization: the Tits representation Second realization: the cell complex Σ

Question

Given a group W and a set S of involutions which generates it, when should (W, S) be called an "abstract reflection group"?

Two answers

- Let Cay(W, S) be the Cayley graph (ie, its vertex set is W and $\{w, v\}$ spans an edge iff v = ws for some $s \in S$)). **First answer**: for each $s \in S$, the fixed set of s separates Cay(W, S).
- Second answer: W has a presentation of the form:

$$\langle S \mid (st)^{m(s,t)}, \text{ where } (s,t) \in S \times S \rangle.$$

These two answers are equivalent!

Explanations of the terms

Cayley graphs

Given a group G and a set of generators S, let Cay(G,S) be the graph with vertex set G which has a (directed) edge from g to gs, $\forall g \in G$ and $\forall s \in S$. The group G acts on Cay(G,S) (written $G \curvearrowright Cay(G,S)$), the action is simply transitive on the vertex set and the edges starting at a given vertex can be labelled by the elements of S or S^{-1} .

Presentations

Suppose S is a set of letters and \mathcal{R} is a set of words in S. Let F_S be the free group on S and let N be the smallest normal subgroup containing \mathcal{R} . Then put $G := F_S/N$ and write $G = \langle S \mid \mathcal{R} \rangle$. It is a *presentation* for G.

Coxeter systems

First realization: the Tits representation Second realization: the cell complex $\boldsymbol{\Sigma}$

If either of the two answers holds, (W, S) is a *Coxeter system* and W a *Coxeter group*. The second answer is usually taken as the official definition:

W has a presentation of the form:

$$\langle S \mid (st)^{m(s,t)}, \text{ where } (s,t) \in S \times S \rangle.$$

where m(s, t) is a Coxeter matrix.

Question

Does every Coxeter system have a geometric realization?

Answer

Yes. In fact, there are two different ways to do this:

- the Tits representation
- the cell complex Σ .

Both realizations use the following construction.

The basic construction

A *mirror structure* on a space X is a family of closed subspaces $\{X_s\}_{s\in S}$. For $x\in X$, put $S(x)=\{s\in S\mid x\in X_s\}$. Define

$$\mathcal{U}(W,X) := (W \times X)/\sim$$

where \sim is the equivalence relation: $(w, x) \sim (w', x') \iff x = x'$ and $w^{-1}w' \in W_{S(x)}$ (the subgroup generated by S(x)). $\mathcal{U}(W, X)$ is formed by gluing together copies of X (the *chambers*). $W \curvearrowright \mathcal{U}(W, X)$. (Think of X as the fundamental polytope and the X_S as its codimension 1 faces.)

Properties a geometric realization should have

It should be an action of W on a space \mathcal{U} so that

- W acts as a reflection group, i.e., $\mathcal{U} = \mathcal{U}(W, X)$.
- The stabilizer of each $x \in \mathcal{U}$ should be a finite group.
- ¼ should be contractible.
- \mathcal{U}/W (= X) should be compact.

The Tits representation

Linear reflections

Two pieces of data determine a (not necessarily orthogonal) reflection on \mathbb{R}^n :

- linear form $\alpha \in (\mathbb{R}^n)^*$ (the fixed hyperplane is $\alpha^{-1}(0)$).
- a (-1)-eigenvector $h \in \mathbb{R}^n$ (normalized so that $\alpha(h) = 2$).

The formula for the reflection is then

$$\mathbf{v} \mapsto \mathbf{v} - \alpha(\mathbf{v})\mathbf{h}$$
.

Symmetric bilinear form

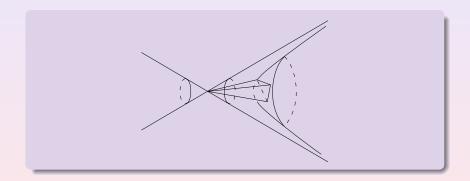
Let $(e_s)_{s \in S}$ be the standard basis for $(\mathbb{R}^S)^*$. Given a Coxeter matrix m(s,t) define a symmetric bilinear form B on $(\mathbb{R}^S)^*$ by $B(e_s,e_t)=-2\cos(\pi/m(s,t))$.

For each $s \in S$, we have a linear reflection $r_s: v \mapsto v - B(e_s, v)e_s$. Tits showed this defines a linear action $W \curvearrowright (\mathbb{R}^S)^*$. We are interested in the dual representation $\rho: W \to GL(\mathbb{R}^S)$ defined by $s \mapsto \rho_s := (r_s)^*$.

Properties of Tits representation $W \to GL(\mathbb{R}^S)$

- The ρ_s are reflections across the faces of the standard simplicial cone $C \subset \mathbb{R}^S$.
- $\rho: W \hookrightarrow GL(\mathbb{R}^S)$, that is, ρ is injective.
- $WC (= \bigcup_{w \in W} wC)$ is a convex cone and if \mathcal{I} denotes the interior of the cone, then
- $\mathcal{I} = \mathcal{U}(W, C^f)$, where C^f denotes the complement of the nonspherical faces of C (a face is *spherical* if its stabilizer is finite).
- So, W is a "discrete reflection group" on \mathcal{I} .

A hyperbolic triangle group



Coxeter systems First realization: the Tits representation Second realization: the cell complex Σ

One consequence

 ${\it W}$ is virtually torsion-free. (This is true for any finitely generated linear group.)

Advantages

 \mathcal{I} is contractible (since it is convex) and \mathbf{W} acts properly (ie, with finite stabilizers) on it.

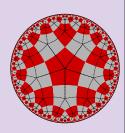
Disadvantage

 \mathcal{I}/W is not compact (since C^f is not compact).

Remark

By dividing by scalar matrices, we get a representation $W \to PGL(\mathbb{R}^S)$. So, $W \curvearrowright P\mathcal{I}$, the image of \mathcal{I} in projective space. When W is infinite and irreducible, this is a proper convex subset of $\mathbb{R}P^n$, n+1=#S.

Vinberg showed one can get linear representations across the faces of more general polyhedral cones. As before, $W \curvearrowright \mathcal{I}$, where \mathcal{I} is a convex cone; $P\mathcal{I}$ is a open convex subset of $\mathbb{R}P^n$. The fundamental chamber is a convex polytope with some faces deleted. Sometimes it can be a compact polytope, for example, a pentagon.



Yves Benoist has written a series of papers about these projective representations $W \hookrightarrow PGL(n+1,\mathbb{R})$. In particular, there are interesting examples which have fundamental chamber a compact polytope and which are not equivalent to Euclidean or hyperbolic reflection groups.

Question

For (W, S) to have a a reflection representation into $PGL(n+1,\mathbb{R})$ with fundamental chamber a compact convex polytope P^n there is a necessary condition: the simplicial complex L given by the spherical subsets of S must be dual to ∂P^n for some polytope P^n . Is this sufficient? (Probably not.)

Coxeter systems First realization: the Tits representation Second realization: the cell complex Σ

Question

Are there irreducible, non-affine examples of such $W \subset PGL(n+1,\mathbb{R})$ and $P^n \subset \mathbb{R}P^n$ for n arbitrarily large?

The cell complex Σ

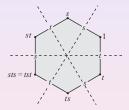
The second answer is to construct of contractible cell complex Σ on which W acts properly and cocompactly as a group generated by reflections. Its advantage is that Σ/W will be compact.

There are two dual constructions of Σ .

- Build the correct fundamental chamber K with mirrors K_s , then apply the basic construction, $\mathcal{U}(W,K)$.
- "Fill in" the Cayley graph of (W, S).

Filling in the Cayley graph

The Cayley graph of a finite dihedral group



Cayley graph of an infinite Coxeter group

Let $W_{\{s,t\}}$ be the dihedral subgroup $\langle s,t \rangle$. Whenever $m(s,t) < \infty$ each coset of $W_{\{s,t\}}$ spans a polygon in Cay(W,S). If we fill in these polygons, we get a simply connected 2-dimensional complex, which is the 2-skeleton of Σ .

If we want to obtain a contractible space then we have to fill in higher dimensional polytopes ("cells").

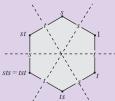
Definition

A subset $T \subset S$ is *spherical* if the subgroup W_T , which is generated by T, is finite. Let S denote the poset of spherical subsets of S.

Corresponding to a spherical subset T with #T = k, there is a k-dimensional convex polytope called a *Coxeter zonotope*. When k = 2 it is the polygon associated to the dihedral group.

Coxeter zonotopes

Suppose W_T is finite reflection group on \mathbb{R}^T . Choose a point x in the interior of fundamental simplicial cone and let P_T be convex hull of $W_T x$.



The 1-skeleton of P_T is Cay(W_T , T).

When $W_T = (\mathbb{Z}/2)^n$, then P_T is an n-cube.

Geometric realization of a poset

Associated to any poset \mathcal{P} there is a simplicial complex $|\mathcal{P}|$ called its *geometric realization*.

Filling in Cay(W, S)

Let WS denote the disjoint union of all spherical cosets (partially ordered by inclusion):

$$WS := \coprod_{T \in S} W/W_T$$
 and $\Sigma := |WS|$.

Filling in Cay(W, S)

There is a cell structure on Σ with $\{\text{cells}\} = WS$.

This follows from fact that poset of cells in P_T is $\cong W_T S_{\leq T}$. The cells of Σ are defined as follows: the geometric realization of subposet of cosets $\leq wW_T$ is \cong barycentric subdivision of P_T .

Properties of this cell structure on Σ

- W acts cellularly on Σ.
- Σ has one *W*-orbit of cells for each spherical subset $T \in \mathcal{S}$ and dim(cell) = Card(T).
- The 0-skeleton of Σ is W
- The 1-skeleton of Σ is Cay(W, S).
- The 2-skeleton of Σ is the Cayley 2 complex of the presentation.
- If W is right-angled (i.e., each m(s, t) is 1, 2 or ∞), then each Coxeter zonotope is a cube.
- Moussong: the induced piecewise Euclidean metric on Σ is CAT(0) (meaning that it is nonpositively curved).

More properties

- Σ is contractible. (This follows from the fact it is CAT(0)).
- The W-action is proper (by construction each isotropy subgroup is conjugate to some spherical W_T).
- Σ/W is compact.
- If W is finite, then Σ is a Coxeter zonotope.

Typical application of CAT(0)-ness

∃ nonpositively curved (polyhedral) metric on a manifold that is not homotopy equivalent to a nonpositivley curved Riemannian manifold.

The dual construction of Σ

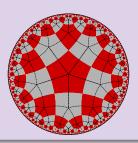
- Recall S is the poset of spherical subsets of S. The fundamental chamber K is defined by K := |S|. (K is the cone on the barycentric subdivision of a simplicial complex L.)
- Mirror structure: $K_s := |S_{>\{s\}}|$.
- $\Sigma := \mathcal{U}(W, K)$.
- So, K is homeomorphic to Σ/W .

Coxeter systems First realization: the Tits representation Second realization: the cell complex Σ

The construction of Σ is very useful for constructing examples. The basic reason is that the chamber K is the cone over a fairly arbitrary simplicial complex (for example, L can be any barycentric subdivision). This means we can construct Σ with whatever local topology we want. (So K can be very far from a polytope.)

Relationship with geometric reflection groups

If W is a geometric reflection group on $\mathbb{X}^n = \mathbb{E}^n$ or \mathbb{H}^n , then K can be identified with the fundamental polytope, Σ with \mathbb{X}^n and the cell structure is dual to the tessellation of Σ by translates of K.



Relationship with Tits representation

- Suppose W is infinite. Then K is subcomplex of $b\Delta$, the barycentric subdivision of the simplex $\Delta \subset C$.
- Consider the vertices which are barycenters of spherical faces. They span a subcomplex of $b\Delta$. This subcomplex is K. It is a subset of Δ^f .
- So, $\Sigma = \mathcal{U}(W, K) \subset \mathcal{U}(W, \Delta^f) \subset \mathcal{U}(W, C^f) = \mathcal{I}$.
- Σ is the "cocompact core" of \mathcal{I} .

 Σ is the cocompact core of the Tits cone \mathcal{I} .

Book

M.W. Davis, *The Geometry and Topology of Coxeter Groups*, Princeton Univ. Press, 2008.