The Geometry and Topology of Coxeter Groups

Mike Davis

Mathematical Sciences Center
Tsinghua University

May 10, 2013
http://www.math.osu.edu/~davis.12/

(1) Geometric reflection groups

- Some history
- Properties
(2) Abstract reflection groups
- Coxeter systems
- First realization: the Tits representation
- Second realization: the cell complex Σ

Dihedral groups

A dihedral group is any group which is generated by 2 involutions, call them s, t. Such a group is determined up to isomorphism by the order m of $s t$ (m is an integer ≥ 2 or ∞). Let \mathbf{D}_{m} denote the dihedral group corresponding to m.

For $m \neq \infty, \mathbf{D}_{m}$ can be represented as the subgroup of $O(2)$ which is generated by reflections across lines L, L^{\prime}, making an angle of π / m.

- In 1852 Möbius determined the finite subgroups of $O(3)$ generated by isometric reflections on the 2 -sphere.
- The fundamental domain for such a group on the 2 -sphere is a spherical triangle with angles $\frac{\pi}{p}, \frac{\pi}{q}, \frac{\pi}{r}$, with p, q, r integers ≥ 2.
- Since the sum of the angles is $>\pi$, we have $\frac{1}{p}+\frac{1}{q}+\frac{1}{r}>1$.
- For $p \geq q \geq r$, the only possibilities are: $(p, 2,2)$ for any $p \geq 2$ and $(p, 3,2)$ with $p=3,4$ or 5 . The last three cases are the symmetry groups of the Platonic solids.

Later work by Riemann and Schwarz showed there were discrete groups of isometries of \mathbb{E}^{2} or \mathbb{H}^{2} generated by reflections across the edges of triangles with angles integral submultiples of π. Poincaré and Klein: similarly for polygons in \mathbb{H}^{2}.

In $2^{\text {nd }}$ half of the $19^{\text {th }}$ century work began on finite reflection groups on $\mathbb{S}^{n}, n>2$, generalizing Möbius' results for $n=2$. It developed along two lines.

- Around 1850, Schläfli classified regular polytopes in \mathbb{R}^{n+1}, $n>2$. The symmetry group of such a polytope was a finite group generated by reflections and as in Möbius' case, the projection of a fundamental domain to \mathbb{S}^{n} was a spherical simplex with dihedral angles integral submultiples of π.
- Around 1890, Killing and E. Cartan classified complex semisimple Lie algebras in terms of their root systems. In 1925, Weyl showed the symmetry group of such a root system was a finite reflection group.
- These two lines were united by Coxeter in the 1930's. He classified discrete groups reflection groups on \mathbb{S}^{n} or \mathbb{E}^{n}.

Let K be a fundamental polytope for a geometric reflection group. For \mathbb{S}^{n}, K is a simplex (= generalization of a triangle). For \mathbb{E}^{n}, K is a product of simplices. For \mathbb{H}^{n} there are other possibilities, eg, a right-angled pentagon in \mathbb{H}^{2} or a right-angled dodecahedron in \mathbb{H}^{3}.

- Conversely, given a convex polytope K in $\mathbb{S}^{n}, \mathbb{E}^{n}$ or \mathbb{H}^{n} so that all dihedral angles have form $\pi /$ integer, there is a discrete group W generated by isometric reflections across the codimension 1 faces of K.
- Let S be the set of reflections across the codim 1 faces of K. For $s, t \in S$, let $m(s, t)$ be the order of $s t$. Then S generates W. The faces corresponding to s and t intersect in a codim 2 face iff $m(s, t) \neq \infty$, and for $s \neq t$, the dihedral angle along that face is $\pi / m(s, t) .(m(s, t)$ is an $S \times S$ symmetric matrix called the Coxeter matrix.) Moreover,
-

$$
\left.\langle S|(s t)^{m(s, t)}, \quad \text { where }(s, t) \in S \times S\right\rangle
$$

is a presentation for W.

Coxeter diagrams

Associated to (W, S), there is a labeled graph Γ called its "Coxeter diagram."

$$
\operatorname{Vert}(\Gamma):=S
$$

Connect distinct elements s, t by an edge iff $m(s, t) \neq 2$. Label the edge by $m(s, t)$ if this is >3 or $=\infty$ and leave it unlabeled if it is $=3$. $\quad(W, S)$ is irreducible if Γ is connected. (The components of Γ give the irreducible factors of W.) The next slide shows Coxeter's classification of irreducible spherical and cocompact Euclidean reflection groups.

Abstract reflection groups

Some history

Properties

Spherical Diagrams

Question

Given a group W and a set S of involutions which generates it, when should (W, S) be called an "abstract reflection group"?

Two answers

- Let Cay (W, S) be the Cayley graph (ie, its vertex set is W and $\{w, v\}$ spans an edge iff $v=w s$ for some $s \in S$)). First answer: for each $s \in S$, the fixed set of s separates $\operatorname{Cay}(W, S)$.
- Second answer: W has a presentation of the form:

$$
\left.\langle S|(s t)^{m(s, t)}, \text { where }(s, t) \in S \times S\right\rangle
$$

These two answers are equivalent!

Explanations of the terms

Cayley graphs

Given a group G and a set of generators S, let $\operatorname{Cay}(G, S)$ be the graph with vertex set G which has a (directed) edge from g to $g s, \forall g \in G$ and $\forall s \in S$. The group G acts on $\operatorname{Cay}(G, S)$ (written $G \curvearrowright \operatorname{Cay}(G, S)$), the action is simply transitive on the vertex set and the edges starting at a given vertex can be labelled by the elements of S or S^{-1}.

Presentations

Suppose S is a set of letters and \mathcal{R} is a set of words in S. Let F_{S} be the free group on S and let N be the smallest normal subgroup containing \mathcal{R}. Then put $G:=F_{S} / N$ and write $G=\langle S \mid \mathcal{R}\rangle$. It is a presentation for G.

If either of the two answers holds, (W, S) is a Coxeter system and W a Coxeter group. The second answer is usually taken as the official definition:
W has a presentation of the form:

$$
\left.\langle S|(s t)^{m(s, t)}, \text { where }(s, t) \in S \times S\right\rangle
$$

where $m(s, t)$ is a Coxeter matrix.

Question

Does every Coxeter system have a geometric realization?

Answer

Yes. In fact, there are two different ways to do this:

- the Tits representation
- the cell complex Σ.

Both realizations use the following construction.

The basic construction

A mirror structure on a space X is a family of closed subspaces $\left\{X_{s}\right\}_{s \in S}$. For $x \in X$, put $S(x)=\left\{s \in S \mid x \in X_{s}\right\}$. Define

$$
\mathcal{U}(W, X):=(W \times X) / \sim,
$$

where \sim is the equivalence relation: $(w, x) \sim\left(w^{\prime}, x^{\prime}\right) \Longleftrightarrow$ $x=x^{\prime}$ and $w^{-1} w^{\prime} \in W_{S(x)}$ (the subgroup generated by $S(x)$). $\mathcal{U}(W, X)$ is formed by gluing together copies of X (the chambers). $W \curvearrowright \mathcal{U}(W, X)$. (Think of X as the fundamental polytope and the X_{s} as its codimension 1 faces.)

Properties a geometric realization should have

It should be an action of W on a space \mathcal{U} so that

- W acts as a reflection group, i.e., $\mathcal{U}=\mathcal{U}(W, X)$.
- The stabilizer of each $x \in \mathcal{U}$ should be a finite group.
- \mathcal{U} should be contractible.
- $\mathcal{U} / W(=X)$ should be compact.

The Tits representation

Linear reflections

Two pieces of data determine a (not necessarily orthogonal) reflection on \mathbb{R}^{n} :

- linear form $\alpha \in\left(\mathbb{R}^{n}\right)^{*}$ (the fixed hyperplane is $\alpha^{-1}(0)$).
- a (-1)-eigenvector $h \in \mathbb{R}^{n}$ (normalized so that $\alpha(h)=2$).

The formula for the reflection is then

$$
v \mapsto v-\alpha(v) h
$$

Symmetric bilinear form

Let $\left(e_{S}\right)_{s \in S}$ be the standard basis for $\left(\mathbb{R}^{S}\right)^{*}$. Given a Coxeter matrix $m(s, t)$ define a symmetric bilinear form B on $\left(\mathbb{R}^{S}\right)^{*}$ by $B\left(e_{s}, e_{t}\right)=-2 \cos (\pi / m(s, t))$.

For each $s \in S$, we have a linear reflection
$r_{s}: v \mapsto v-B\left(e_{s}, v\right) e_{s}$. Tits showed this defines a linear action $W \curvearrowright\left(\mathbb{R}^{S}\right)^{*}$. We are interested in the dual representation $\rho: W \rightarrow G L\left(\mathbb{R}^{S}\right)$ defined by $s \mapsto \rho_{s}:=\left(r_{s}\right)^{*}$.

Properties of Tits representation $W \rightarrow G L\left(\mathbb{R}^{S}\right)$

- The ρ_{s} are reflections across the faces of the standard simplicial cone $C \subset \mathbb{R}^{S}$.
- $\rho: W \hookrightarrow G L\left(\mathbb{R}^{S}\right)$, that is, ρ is injective.
- $W C\left(=\bigcup_{w \in W} w C\right)$ is a convex cone and if \mathcal{I} denotes the interior of the cone, then
- $\mathcal{I}=\mathcal{U}\left(W, C^{f}\right)$, where C^{f} denotes the complement of the nonspherical faces of C (a face is spherical if its stabilizer is finite).
- So, W is a "discrete reflection group" on \mathcal{I}.

Geometric reflection groups Abstract reflection groups

Coxeter systems
First realization: the Tits representation Second realization: the cell complex Σ

A hyperbolic triangle group

One consequence

W is virtually torsion-free. (This is true for any finitely generated linear group.)

Advantages

\mathcal{I} is contractible (since it is convex) and W acts properly (ie, with finite stabilizers) on it.

Disadvantage

\mathcal{I} / W is not compact (since C^{f} is not compact).

Remark

By dividing by scalar matrices, we get a representation $W \rightarrow P G L\left(\mathbb{R}^{S}\right)$. So, $W \curvearrowright P \mathcal{I}$, the image of \mathcal{I} in projective space. When W is infinite and irreducible, this is a proper convex subset of $\mathbb{R} P^{n}, n+1=\# S$.
Vinberg showed one can get linear representations across the faces of more general polyhedral cones. As before, $W \curvearrowright \mathcal{I}$, where \mathcal{I} is a convex cone; $P \mathcal{I}$ is a open convex subset of $\mathbb{R} P^{n}$. The fundamental chamber is a convex polytope with some faces deleted. Sometimes it can be a compact polytope, for example, a pentagon.

Yves Benoist has written a series of papers about these projective representations $W \hookrightarrow P G L(n+1, \mathbb{R})$. In particular, there are interesting examples which have fundamental chamber a compact polytope and which are not equivalent to Euclidean or hyperbolic reflection groups.

Question

For (W, S) to have a a reflection representation into $P G L(n+1, \mathbb{R})$ with fundamental chamber a compact convex polytope P^{n} there is a necessary condition: the simplicial complex L given by the spherical subsets of S must be dual to ∂P^{n} for some polytope P^{n}. Is this sufficient? (Probably not.)

Question

Are there irreducible, non-affine examples of such $W \subset P G L(n+1, \mathbb{R})$ and $P^{n} \subset \mathbb{R} P^{n}$ for n arbitrarily large?

The cell complex Σ

The second answer is to construct of contractible cell complex Σ on which W acts properly and cocompactly as a group generated by reflections. Its advantage is that Σ / W will be compact.

There are two dual constructions of Σ.

- Build the correct fundamental chamber K with mirrors K_{s}, then apply the basic construction, $\mathcal{U}(W, K)$.
- "Fill in" the Cayley graph of (W, S).

Filling in the Cayley graph

The Cayley graph of a finite dihedral group

Cayley graph of an infinite
Coxeter group

Let $W_{\{s, t\}}$ be the dihedral subgroup $\langle s, t\rangle$. Whenever $m(s, t)<\infty$ each coset of $W_{\{s, t\}}$ spans a polygon in Cay (W, S). If we fill in these polygons, we get a simply connected 2-dimensional complex, which is the 2-skeleton of Σ.

If we want to obtain a contractible space then we have to fill in higher dimensional polytopes ("cells").

Definition

A subset $T \subset S$ is spherical if the subgroup W_{T}, which is generated by T, is finite. Let \mathcal{S} denote the poset of spherical subsets of S.

Corresponding to a spherical subset T with $\# T=k$, there is a k-dimensional convex polytope called a Coxeter zonotope. When $k=2$ it is the polygon associated to the dihedral group.

Coxeter zonotopes

Suppose W_{T} is finite reflection group on \mathbb{R}^{T}. Choose a point x in the interior of fundamental simplicial cone and let P_{T} be convex hull of $W_{T} x$.

The 1-skeleton of P_{T} is $\operatorname{Cay}\left(W_{T}, T\right)$.

When $W_{T}=(\mathbb{Z} / 2)^{n}$, then P_{T} is an n-cube.

Geometric realization of a poset

Associated to any poset \mathcal{P} there is a simplicial complex $|\mathcal{P}|$ called its geometric realization.

Filling in Cay (W, S)

Let $W \mathcal{S}$ denote the disjoint union of all spherical cosets (partially ordered by inclusion):

$$
W \mathcal{S}:=\coprod_{T \in \mathcal{S}} W / W_{T} \quad \text { and } \quad \Sigma:=|W \mathcal{S}| .
$$

Filling in $\operatorname{Cay}(W, S)$

There is a cell structure on Σ with $\{$ cells $\}=W \mathcal{S}$.

This follows from fact that poset of cells in P_{T} is $\cong W_{T} \mathcal{S}_{\leq T}$. The cells of Σ are defined as follows: the geometric realization of subposet of cosets $\leq w W_{T}$ is \cong barycentric subdivision of P_{T}.

Properties of this cell structure on Σ

- W acts cellularly on Σ.
- Σ has one W-orbit of cells for each spherical subset $T \in \mathcal{S}$ and $\operatorname{dim}($ cell $)=\operatorname{Card}(T)$.
- The 0 -skeleton of Σ is W
- The 1 -skeleton of Σ is $\operatorname{Cay}(W, S)$.
- The 2-skeleton of Σ is the Cayley 2 complex of the presentation.
- If W is right-angled (i.e., each $m(s, t)$ is 1,2 or ∞), then each Coxeter zonotope is a cube.
- Moussong: the induced piecewise Euclidean metric on Σ is CAT(0) (meaning that it is nonpositively curved).

More properties

- Σ is contractible. (This follows from the fact it is CAT(0)).
- The W-action is proper (by construction each isotropy subgroup is conjugate to some spherical W_{T}).
- Σ / W is compact.
- If W is finite, then Σ is a Coxeter zonotope.

Typical application of CAT(0)-ness

\exists nonpositively curved (polyhedral) metric on a manifold that is not homotopy equivalent to a nonpositivley curved Riemannian manifold.

The dual construction of Σ

- Recall \mathcal{S} is the poset of spherical subsets of S. The fundamental chamber K is defined by $K:=|\mathcal{S}|$. (K is the cone on the barycentric subdivision of a simplicial complex L.)
- Mirror structure: $K_{s}:=\left|\mathcal{S}_{\geq\{s\}}\right|$.
- $\Sigma:=\mathcal{U}(W, K)$.
- So, K is homeomorphic to Σ / W.

The construction of Σ is very useful for constructing examples. The basic reason is that the chamber K is the cone over a fairly arbitrary simplicial complex (for example, L can be any barycentric subdivision). This means we can construct Σ with whatever local topology we want. (So K can be very far from a polytope.)

Relationship with geometric reflection groups
If W is a geometric reflection group on $\mathbb{X}^{n}=\mathbb{E}^{n}$ or \mathbb{H}^{n}, then K can be identified with the fundamental polytope, Σ with \mathbb{X}^{n} and the cell structure is dual to the tessellation of Σ by translates of K.

Relationship with Tits representation

- Suppose W is infinite. Then K is subcomplex of $b \Delta$, the barycentric subdivision of the simplex $\Delta \subset C$.
- Consider the vertices which are barycenters of spherical faces. They span a subcomplex of $b \Delta$. This subcomplex is K. It is a subset of Δ^{f}.
- So, $\Sigma=\mathcal{U}(W, K) \subset \mathcal{U}\left(W, \Delta^{f}\right) \subset \mathcal{U}\left(W, C^{f}\right)=\mathcal{I}$.
- Σ is the "cocompact core" of \mathcal{I}.

Σ is the cocompact core of the Tits cone \mathcal{I}.

Book

M.W. Davis, The Geometry and Topology of Coxeter
Groups, Princeton Univ. Press, 2008.

