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ABSTRACT

In the recent study of nine transversely oscillating coronal loops Verwichte et al. (2004) found that in two events the fundamental
mode and the first overtone were observed simultaneously, and the ratio of their periods was different from two predicted by the
uniform tube model. This observation inspired Andries et al. (2005a, ApJ, 624, L57) to use this ratio for determining the atmospheric
scale height. When doing so these authors assumed that the loop has a semicircular shape. In our paper we address the question how
strongly the method suggested by Andries et al. (2005a) depends on the assumed loop shape. We found that this dependence is fairly
strong, so that observations of frequencies of the fundamental mode and first overtone have to be supplemented with observations of
the loop shape.

Key words. magnetohydrodynamics (MHD) – plasma – waves – Sun: oscillation – Sun: corona

1. Introduction

Recent space based observations of transverse coronal loop
oscillations, first reported by Aschwanden et al. (1999) and
Nakariakov et al. (1999), prompted various theoretical stud-
ies on the subject and gave a new boost to coronal
seismology approach first suggested by Uchida (1970) and
Roberts et al. (1984). Solar coronal seismology is basically a
comparison of the wave properties obtained from the observa-
tions with those derived from theoretical investigation to pro-
duce seismic information on the physical parameters in the so-
lar corona. Nakariakov et al. (1999) first suggested to model the
observed standing transverse coronal loop oscillations as fast
kink modes of magnetic flux tubes. This approach has been
widely used since then. As far as periods are concerned, the
uniform tube model gives a good agreement with observations,
but appears to be unable to provide information on the damp-
ing rates since it does not take the radial density variation into
account. To explain the rapid damping of coronal loop oscilla-
tions Ruderman & Roberts (2002) solved the initial value prob-
lem for a tube with the radially dependent density and obtained
the expression for the damping rate due to resonant absorption.
Observations by Schrijver et al. (2002) revealed that oscillations
occur in loops with heights comparable with the density scale
height in the corona, which suggests that the stratification is
significant. Andries et al. (2005b) and Arregui et al. (2005) took
this effect into account in the numerical study of the fast kink
mode of transverse oscillations of a magnetic tube with the equi-
librium density varying both in the radial and longitudinal di-
rection. Dymova & Ruderman (2006) solved the same problem
analytically. They found that the damping rate does not depend
on the stratification and is given by the same expression as in
the unstratified case. If radial density variation is confined to a
thin layer at the tube boundary, it only causes a weak resonant
damping rate and a small and thus negligible shift of the oscilla-
tion frequency. To single out the effect of longitudinal density
stratification on the oscillation frequencies we assume in the

present study that the density is a function of the longitudinal
coordinate only.

When analyzing 9 cases of standing transverse coronal loop
oscillations observed by TRACE Verwichte et al. (2004) found
multiple harmonic oscillations. In two loops they detected two
different frequencies and interpreted them as the fundamental
mode, with the amplitude maximum at the apex, and the first
overtone with a node at the apex. An important feature of these
oscillations is that the ratios of the periods of the fundamen-
tal mode and the first overtone, Pf/Po = 1.81 ± 0.25, 1.64 ±
0.23, for these two loops are clearly different from the the-
oretically obtained value of 2 for the uniform tube model.
Andries et al. (2005a) suggested that this deviation of Pf/Po
from 2 can be an efficient seismological tool for obtaining infor-
mation on the density scale height in the corona. They consid-
ered a magnetic flux tube of a semi-circular shape embedded in
an isothermal atmosphere, and numerically calculated the depen-
dence of Pf/Po on the atmospheric scale height. Then they used
this dependence to determine the atmospheric scale height in the
two cases of multiple harmonic loop oscillations reported by
Verwichte et al. (2004). As a result, Andries et al. (2005a) ob-
tained quite reasonable values for the atmospheric scale height,
65 Mm and 36 Mm. Unfortunately, the lack of precision in ob-
servational data leads to significant error bars for these computed
scale heights, even allowing negative scale heights.

It was also pointed out by Andries et al. (2005a) that the lon-
gitudinal density stratification might not be the only cause for the
deviation of Pf/Po from the uniform value of 2. They wrote that
“non-circular curvature of the loop, variable cross section, etc.,
could influence the ratio of the frequencies as well”. The main
purpose of the present paper is to investigate further the possibil-
ity of calculating coronal density scale height from the observed
parameters of oscillating loops. In this study we aim to analyse
the dependence of Pf/Po on the density stratification parameter,
stratification profile and, in particular, the geometry of the loop.
We use the method developed by Dymova & Ruderman (2005)
to calculate the ratio Pf/Po in a thin longitudinally stratified loop
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Fig. 1. The sketch of the equilibrium state. The ends of the magnetic
tube are assumed to be frozen in a dense photospheric plasma.

with a sharp boundary. Since Dymova & Ruderman (2005) ap-
proach allows arbitrary longitudinal density profile we choose it
dependent on the loop shape.

2. Analysis

We use the method for calculating the kink MHD mode of
loop oscillations developed by Dymova & Ruderman (2005).
The equilibrium configuration (Fig. 1) is a straight cylindrical
flux tube of radius a and length 2L with constant magnetic field B
directed along the tube axis. We take the densities inside the
tube, ρi(z), and in the surrounding coronal medium, ρe(z), to be
functions of longitudinal coordinate z only. We also adopt the as-
sumption of uniform stratification, i.e. ρe(z)

ρi(z) = χ < 1 is constant.
Here we would like to make two comments on the equi-

librium configuration considered in this paper. The first com-
ment concerns the shape of coronal magnetic loops. The real
coronal loops are curved magnetic flux tubes. In our papers we
use a straight magnetic tube with the same variation of den-
sity along the tube as in a curved coronal loop. This simplifi-
cation is only acceptable if the “straightening” of a loop does
not affect very much the eigenfrequencies of its transverse oscil-
lations. Van Doorsselaere et al. (2004) studied analytically the
transverse oscillations of a thin magnetic tube of semi-circular
shape with the density varying only in the direction perpendicu-
lar to the tube axis. They found that the difference between the
eigenfrequencies of transverse oscillations of the straight and
semi-circular tubes is of the order ε2 = (a/L)2. We do not see
any reason why this estimate should change when the tube is
stratified, i.e. when the density varies along the tube as well.
Since for real coronal loops ε2 � 10−3, we believe that the loop
“straightening” practically does not change the eigenfrequencies
of its transverse oscillations.

Our second comment concerns the radial dependence of the
density. In general, we cannot choose the magnetic configuration
and the density distribution arbitrarily. Rather we have to calcu-
late them by solving the magnetostatic equation determining the
equilibrium in the presence of gravity,

∇p − 1
µ0

(∇ × B) × B = g ρ, (1)

where p, B and ρ are the equilibrium pressure, magnetic field
and density respectively, g is the gravity acceleration, and µ0 is
the magnetic permeability of free space. The projection of this
equation on the magnetic field direction yields

b · ∇p = gBρ, (2)

where b = B/B is the unit vector in the magnetic field direc-
tion, and gB = b · g is the projection of the gravity acceleration
on the magnetic field direction. Supplemented with the relation
between p and ρ, e.g. p = const × ρ for an isothermal atmo-
sphere, this equation determines the density variation along the
magnetic field lines. The component of (1) perpendicular to the
magnetic field reads

(∇p)⊥ − 1
µ0

(∇ × B) × B = g⊥ρ, (3)

where the perpendicular component of any vector f is defined as
f⊥ = f − b(b · f ).

In a low-beta plasma, like in the solar corona, we can ne-
glect the perpendicular gradient of plasma pressure, (∇p)⊥, in
comparison with the second term on the right hand side of
Eq. (3). In coronal loops the characteristic scale of magnetic
field variation in the perpendicular direction is the loop radius
a ∼ 1 Mm. Taking B ∼ 30 G we obtain that the second term
on the left-hand side of Eq. (3) is of the order 10−3 kg m−2s−2.
On the other hand, since g ≈ 274 m s−2 and the typical value
of the density in a coronal loop is ρ = 10−11 kg m−3, we obtain
g⊥ρ ∼ 3 × 10−8 kg m−2s−2. These estimates imply that the right-
hand side of Eq. (3) can be neglected in comparison with the sec-
ond term on its left-hand side, so that, with a very good accuracy,
we can consider magnetic field in the solar corona as force-free,
i.e. (∇ × B) × B = 0. Hence, when considering equilibrium con-
figurations in the solar corona, we can choose the dependence of
density in the directions perpendicular to the magnetic field ar-
bitrarily. The equilibrium conditions only determine the density
variation along the magnetic field lines.

In particular, we can consider equilibrium configurations
with the density having a jump across definite magnetic surfaces.
Of course, in the reality, the density is a continuous function
of spatial coordinates. However, if we allow continuous density
variation in the radial direction, then it will cause resonant damp-
ing of coronal loop oscillations (e.g., Ruderman & Roberts 2002;
Dymova & Ruderman 2006). In order to get read of this effect
we consider in this paper an idealized piece-wise constant in the
radial direction density profile.

It has been shown by Dymova & Ruderman (2005) that, in
the first order approximation with respect to the small parameter
ε = a/L, the squared frequencies of the kink tube oscillations
are the eigenvalues of the Sturm-Liouville problem

dQ
dz2
+
ω2

C2
k(z)

Q = 0, Q = 0 at z = ±L, (4)

where

Q =
A

ρi − ρe
, C2

k =
2B2

µ0(ρi + ρe)
· (5)

Here A(z) is the magnetic pressure perturbation at the tube
boundary and C2

k is the square of the kink speed of the tube
which, in a stratified tube, is a function of z.

In the absence of longitudinal stratification, when ρi and ρe
are constants, problem (4) has a well-known solution

ω2
m =

(
πm
L

)2 2B2

µ0(ρi + ρe)
, (6)
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Fig. 2. The shape of a loop is an arc of a circle of radius R. The centre
of the circle is at distance l form the photosphere, l being positive when
the centre is below the photosphere and negative otherwise; ha is the
loop height.
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Fig. 3. Longitudinal density profiles given by expression (8) with ha =
H. Solid black, solid grey, dotted, dashed and dash-dotted lines corre-
spond to the values of geometrical parameter λ = 0, 0.5, 0.9,−0.5,−0.9
respectively.

where m is a number of mode. It is clear that the ratio of the
periods of the fundamental mode, m = 1, and the first overtone,
m = 2, is equal to 2 in the unstratified case.

Since our equilibrium configuration allows arbitrary equi-
librium density profile we consider different density profiles
(Fig. 3) to calculate the frequencies of the kink mode of tube
oscillations and compare the results. Let us consider an expo-
nentially stratified atmosphere, i.e.

ρ(h) = ρf exp(−h/H), (7)

where h is the height in the solar atmosphere, H is the den-
sity scale height and ρf is the density at the photospheric level.
We consider a loop in the form of an arc of a circle of ra-
dius R (Fig. 2). The centre of the circle is at distance l from
the photosphere, l being positive when the centre is below
the photosphere and negative otherwise; l = 0 corresponds to
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Fig. 4. The ratio of periods, Pf/Po, of the fundamental kink mode and
its first overtone as a function of the density stratification. Solid black,
solid grey, dotted, dashed and dash-dotted lines correspond to the values
of geometrical parameter λ = 0, 0.5, 0.9,−0.5,−0.9 respectively.

a semicircular loop. The stratification function (7) projected on
this curved loop yields the following density profile,

ρi(z) = ρf exp

(
−ha

H
cos(ζϕ) − λ

1 − λ
)
, (8)

where λ = l/R, ϕ = arccosλ, ζ = z/L and ha is the height of the
loop apex point. The density profiles given by (8) are shown in
Fig. 3 for different values of λ.

Substituting (8) into the Sturm-Liouville problem (4) we
obtain

d2Q
dζ2
+ Ω2 exp

(
−ha

H
cos(ζϕ) − λ

1 − λ
)

Q = 0, (9)

Q = 0 at ζ = ±1,

where Ω2 = ω2L2

C2
k f

, with C2
k f =

2B2

µ0ρf (1+χ)
being the kink speed at

the footpoints.
The relative height of the loop as compared with the den-

sity scale height, ha/H = L(1 − λ)/(ϕH), is used as a mea-
sure of stratification. Figure 4 shows the ratios of the period of
the fundamental mode of the tube kink oscillations to its first
overtone period, Pf/Po = Ωo/Ωf, versus stratification param-
eter ha/H for different values of λ. In fact, this ratio only de-
pends on the stratification and the loop shape, while it is inde-
pendent of all other parameters of the model, such as density
contrast between the loop and its environment χ. Solid black,
solid grey, dotted, dashed and dash-dotted lines correspond to
the values of geometrical parameter λ = 0, 0.5, 0.9,−0.5,−0.9
respectively. For ha/H = 0 the frequency of the first overtone
is exactly double that of the fundamental one, while the ratio
of the frequencies decreases as ha/H increases. The black solid
line for λ = 0 is in good agreement with Fig. 1b from the numer-
ical study by Andries et al. (2005a) for a semicircular loop in an
exponentially stratified atmosphere. In particular for the loop C
from Verwichte et al. (2004) with Pf/Po = 1.81 and height of
70 Mm we obtain an estimate for the density scale height about
65 Mm, and for the loop D with Pf/Po = 1.64 and loop height
of 73 Mm the density scale height estimate is 36 Mm, which are
the same as those obtained by Andries et al. (2005a). The ap-
proximate coronal density scale heights in Mm for two loops C
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Table 1. Approximate values of the density scale height H in the corona
are given in Mm for different values of the geometrical parameter λ.

λ Case C Case D
0 65 36

0.5 61 34
0.9 59 33

–0.5 70 38
–0.9 79 42

and D from Verwichte et al. (2004) are given in Table 1 for some
values of the geometrical parameter λ. Positive values of λ cor-
respond to loops flattened to the photosphere, e.g. λ = 0.9 cor-
responds to an almost straight loop. Negative values of λ, on the
contrary, correspond to loops more stretched out into the corona.
Unfortunately at present observational error bars for the values
of Pf/Po are larger than the variation of this ratio due to the loop
shape parameter. But, as the present study shows, even if the pa-
rameter Pf/Po could be measured with a sufficient precision we
would still need to know the loop shape to determine coronal
density scale height correctly.

3. Conclusions

Inspired by the recent simultaneous observations of multiple
harmonic coronal loop oscillations we looked at the effect of
the loop geometry on the important observational parameter, the
ratio of the periods of the fundamental mode, Pf , and the first
overtone, Po. We considered loops in the form of an arc of a cir-
cle of radius R with the centre at distance l from the photosphere.

The shape of the loop is determined by the parameter λ = l/R.
We calculated the dependence of Pf/Po on the ratio of the loop
height to the atmospheric scale height, ha/H, for different val-
ues of λ. Our main conclusion is that Pf/Po depends not only
on ha/H, but also on the loop shape determined by the param-
eter λ. Hence, in order to use the observed values of Pf/Po for
determining the scale height H, we also need to know the loop
shape.
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