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Abstract. In this paper, we investigate the structure of several convex cones that arise in the
study of Lyapunov functions. In particular, we consider cones associated with quadratic Lyapunov
functions for both linear and non-linear systems, as well as cones that arise in connection with
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thus obtained can lead to new results on the problem of common Lyapunov function existence.
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1. Introduction and motivation. Recently, there has been considerable inter-
est across the mathematics, computer science, and control engineering communities
in the analysis and design of so-called hybrid dynamical systems [15, 7, 22, 23, 19].
Roughly speaking, a hybrid system is one whose behaviour can be described math-
ematically by combining classical differential/difference equations with some logic
based switching mechanism or rule. These systems arise in a wide variety of engineer-
ing applications with examples occurring in the aircraft, automotive and communi-
cations industries. In spite of the attention that hybrid systems have received in the
recent past, important aspects of their behaviour are not yet completely understood.
In particular, several questions relating to the stability of hybrid systems have not yet
been settled satisfactorily [15, 7]. Given how pervasive these systems are in practice,
in particular in safety critical applications, understanding their stability properties is
an issue of paramount importance.

In this paper we consider a number of mathematical problems motivated by
the stability of an important and widely studied class of hybrid dynamical systems;
namely switched linear systems of the form

ẋ(t) = A(t)x(t) A(t) ∈ A = {A1, . . . , Am} ⊂ R
n×n,(1.1)

(where x(t) ∈ R
n) constructed by switching between a set of linear vector fields. In the

stability analysis of both linear and non-linear systems, Lyapunov functions have long
played a key role and one approach to establishing the stability of a switched linear
system under arbitrary switching rules is to demonstrate that a common Lyapunov
function exists for its constituent linear time-invariant (LTI) systems

ΣAi
: ẋ = Aix, 1 ≤ i ≤ m.
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In this context, it is usual to assume that the constituent LTI systems are all stable,
meaning the the eigenvalues of the matrices Ai, 1 ≤ i ≤ m all lie in the open left half
plane. Such matrices are said to be Hurwitz.

There are many close links between Lyapunov functions and the theory of convex
cones. For instance, a classical result of Lyapunov established that an LTI system ΣA

is stable if and only if the convex cone

PA = {P = P T > 0 : AT P + PA < 0}(1.2)

is non-empty. If P is in PA, then the function V (x) = xT Px is said to be a quadratic
Lyapunov function for the system ΣA. In the context of switched linear systems, the
existence of a common quadratic Lyapunov function (CQLF) for the constituent LTI
systems ΣAi

, 1 ≤ i ≤ m is sufficient for the stability of the system (1.1). Formally,
V (x) = xT Px is a CQLF for the LTI systems ΣA1

, . . ., ΣAm
if P = PT > 0 and

AT
i P + PAi < 0,

for 1 ≤ i ≤ m.
While there are now powerful numerical techniques available [3] that can be used

to test whether or not a family of LTI systems has a CQLF, concise analytic conditions
for CQLF existence are still quite rare. In fact, this is true even for the case of a pair of
LTI systems. Many of the results in the literature on this problem provide conditions
for CQLF existence for specific system classes that exploit assumptions about the
structure of the system matrices. For instance, results are known for the cases of
symmetric, normal or triangular system matrices [21, 28].

The problem of CQLF existence naturally leads to the study of intersections of
two or more cones of the form PA. Specifically, given Hurwitz matrices A1, . . . , Am

in R
n×n, the LTI systems ΣA1

, . . . ,ΣAm
have a CQLF if and only if the intersection

(which is also a convex cone)

P{A1,...,Am} = PA1
∩ PA2

· · · ∩ PAm

is non-empty. A number of authors have studied the structure of cones of the form
P{A1,...,Am} and how it relates to the problem of CQLF existence [9, 5, 6, 14]. In this
context we should also note the work done on the closely related class of cones given
by

AP = {A ∈ R
n×n : AT P + PA < 0},

for a fixed symmetric matrix P [1, 5]. Cones of the form AP belong to the class of
so-called convex invertible cones (CICs) and cones of this form have been studied in
a recent series of papers wherein many of their basic properties have been elucidated
[5, 14].

In a recent paper [13], general theoretical conditions for CQLF existence for pairs
of LTI systems have been derived. Moreover, the work of this paper indicates how the
boundary structure of individual cones of the form PA can influence the complexity of
the conditions for CQLF existence, with the conditions for a general pair of systems
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being extremely complicated and difficult to check. In this paper, we shall investigate
the geometry of cones of the form PA, and present a number of results on the boundary
structure of these cones. We shall see how certain properties of the boundary of the
cone PA can give insights into the types of intersections that are possible between two
such cones. Moreover we shall see that by making certain simplifying assumptions
about the boundary structure of these cones, it is sometimes possible to obtain simple
conditions for CQLF existence. We shall also present some preliminary results on
convex cones related to the problem of CQLF existence for non-linear systems.

Two other convex cones associated with Lyapunov functions arise in connection
with the stability of positive linear systems. The state variables of such systems
are constrained to remain non-negative for any non-negative initial conditions, and
their stability is known to be equivalent to the existence of both diagonal and linear
copositive Lyapunov functions. Both of these types of Lyapunov function are naturally
associated with convex cones and we shall present several results on the structure of
the relevant cones here as well as indicate the significance of these results for the
question of common Lyapunov function existence.

The layout of the paper is as follows. In the next section, we introduce the
principal notations used throughout the paper as well as some mathematical back-
ground for the work of the paper. In Section 3, we study convex cones associated
with quadratic Lyapunov functions for linear systems and indicate the relevance of
the structure of such cones to the CQLF existence problem. In Section 4, we turn our
attention to the stability of positive linear systems and study convex cones associated
with both diagonal Lyapunov functions and linear copositive Lyapunov functions for
such systems. In Section 5, we present some initial results on convex cones connected
with CQLF existence for non-linear systems. Finally, in Section 6 we present our
concluding remarks.

2. Notation and preliminaries. In this section, we introduce some of the
main notations used throughout the paper as well as quoting a number of preliminary
mathematical results that shall be needed in later sections.

Throughout, R denotes the field of real numbers, R
n stands for the vector space

of all n-tuples of real numbers and R
n×n is the space of n × n matrices with real

entries. Also, S
n×n and D

n×n denote the vector spaces of symmetric and diagonal
matrices in R

n×n respectively.

For a vector x in R
n, xi denotes the ith component of x, and the notation x � 0

(x � 0) means that xi > 0 (xi ≥ 0) for 1 ≤ i ≤ n. Similarly, for a matrix A in R
n×n,

aij denotes the element in the (i, j) position of A, and A � 0 (A � 0) means that
aij > 0(aij ≥ 0) for 1 ≤ i, j ≤ n. A � B (A � B) means that A−B � 0 (A−B � 0).
The notation x ≺ 0 (x � 0) means that −x � 0 (−x � 0).

We shall write AT for the transpose of the matrix A and for P = P T in R
n×n

the notation P > 0 means that the matrix P is positive definite.

The spectral radius of a matrix A is denoted by ρ(A) and we shall denote the
maximal real part of any eigenvalue of A by µ(A). Thus A is Hurwitz if and only if
µ(A) < 0.

Convex cones and tangent hyperplanes:
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A subset C of a real normed vector space V is said to be a convex cone if for all
x, y ∈ C and all real λ > 0, µ > 0, λx + µy is also in C. We shall use C to denote the
closure of C with respect to the norm topology on V , and the boundary of C is then
defined to be the set difference C/C = {x ∈ C : x /∈ C}.

Let C be an open convex cone in V . Then for a linear functional f : V → R, we
say that the corresponding hyperplane through the origin Hf given by

Hf = {x ∈ V : f(x) = 0},

is tangential to C at a point x0 in its closure C if
(i) f(x0) = 0;
(ii) f(x) 6= 0 for all x ∈ C.
The Lyapunov operator LA:

Let A ∈ R
n×n be Hurwitz. Then LA denotes the linear operator defined on the

space S
n×n by

LA(H) = AT H + HA for all H ∈ S
n×n.(2.1)

If the eigenvalues of A ∈ R
n×n are λ1, . . . , λn, then the eigenvalues of LA are given

by λi + λj for 1 ≤ i ≤ j ≤ n [11]. In particular, LA is invertible (in fact all of its
eigenvalues lie in the open left half plane) if A is Hurwitz.

Hyperplanes in S
n×n:

Finally for this section, we recall the following lemma from [30] which relates two
equivalent parameterizations of the same hyperplane in the space S

n×n.
Lemma 2.1. Let x, y, u, v be non-zero vectors in R

n. Suppose that there is some
k > 0 such that for all symmetric matrices P ∈ Sym(n, R)

xT Py = −kuT Pv.

Then either

x = αu for some real scalar α, and y = −(
k

α
)v

or

x = βv for some real scalar β and y = −(
k

β
)u.

3. CQLF existence and the cones PA. In this section, we study the cone

PA = {P = P T > 0 : AT P + PA < 0}(3.1)

for a Hurwitz matrix A in R
n×n. In particular, we present some initial results on the

boundary structure of the cone PA and indicate the relevance of these results to the
CQLF existence problem for pairs of stable LTI systems. We also present a number of
related facts about possible intersections between two cones PA1

, PA2
where A1 and
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A2 are both Hurwitz as well as a technical fact about the left and right eigenvectors
of singular matrix pencils that follows from results on CQLF existence.

Note that the closure of the open convex cone PA (with respect to the topology
on S

n×n given by the matrix norm induced from the usual Euclidean norm on R
n) is

given by

{P = PT ≥ 0 : AT P + PA ≤ 0},(3.2)

and the boundary of PA is

{P = PT ≥ 0 : AT P + PA ≤ 0,det(AT P + PA) = 0}.(3.3)

The cones PA and PA−1 :

The following result, derived by Loewy in [16], completely characterises pairs of
Hurwitz matrices A,B in R

n×n for which PA = PB .
Theorem 3.1. Let A,B be Hurwitz matrices in R

n×n. Then PB = PA if and
only if B = µA for some real µ > 0 or B = λA−1 for some real λ > 0. An
immediate consequence of Theorem 3.1 is that, for a Hurwitz matrix A, the two sets
PA and PA−1 are identical. This means that a result on CQLF existence for a family
of LTI systems ΣA1

, . . . ,ΣAk
can also be applied to any family of systems obtained

by replacing some of the matrices Ai with their inverses A−1
i .

Tangent hyperplanes to PA:

We shall now consider hyperplanes in S
n×n that are tangential to the cone PA.

Specifically, we shall characterize those hyperplanes that are tangential to the cone
PA at certain points in its boundary, and show how an interesting result on CQLF
existence follows in a natural way from this characterization.

Now, consider a point P0 in the closure of PA for which AT P0 + P0A ≤ 0 has
rank n − 1. The next result shows that, in this case, there is a unique hyperplane
tangential to PA that passes through P0, and moreover that this hyperplane can be
parameterized in a natural way.

Theorem 3.2. Let A ∈ R
n×n be Hurwitz. Suppose that AT P0 + P0A = Q0 ≤ 0

and rank(Q0) = n − 1, with (AT P0 + P0A)x0 = 0, x0 6= 0. Then:
(i) there is a unique hyperplane tangential to PA at P0;
(ii) this hyperplane is given by

{H ∈ S
n×n : xT

0 HAx0 = 0}.

Proof: Let

Hf = {H ∈ S
n×n : f(H) = 0}

be a hyperplane that is tangential to PA at P0, where f is a linear functional defined
on S

n×n. We shall show that Hf must coincide with the hyperplane

H = {H ∈ S
n×n : xT

0 HAx0 = 0}.

Suppose that this was not true. This would mean that there was some P in S
n×n

such that f(P ) = 0 but xT
0 PAx0 < 0.
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Now, consider the set

Ω = {x ∈ R
n : xT x = 1 and xT PAx ≥ 0},

and note that if Ω was empty, this would mean that P was in PA, contradicting the
fact that Hf is tangential to PA. Thus, we can assume that Ω is non-empty.

Note that the set Ω is closed and bounded, hence compact. Furthermore x0 is
not in Ω and thus xT P0Ax < 0 for all x in Ω.

Let M1 be the maximum value of xT PAx on Ω, and let M2 be the maximum
value of xT P0Ax on Ω. Then by the final remark in the previous paragraph, M2 < 0.
Choose any constant δ > 0 such that

δ <
|M2|

M1 + 1
= C1

and consider the symmetric matrix

P0 + δ1P .

By separately considering the cases x ∈ Ω and x /∈ Ω, xT x = 1, it follows that for all
non-zero vectors x of Euclidean norm 1

xT (AT (P0 + δP ) + (P0 + δP )A)x < 0

provided 0 < δ < |M2|
M1+1 . Since the above inequality is unchanged if we scale x by any

non-zero real number, it follows that AT (P0 + δP ) + (P0 + δP )A is negative definite.
Thus, P0 + δP is in PA. However,

f(P0 + δP ) = f(P0) + δf(P ) = 0,

which implies that Hf intersects the interior of the cone PA which is a contradiction.
Thus, there can be only one hyperplane tangential to PA at P0, and this is given by

{H ∈ S
n×n : xT

0 HAx0 = 0},

as claimed.
Tangent hyperplanes and the CQLF existence problem:

We now show the relevance of the previous result on the structure of the cone
PA to the problem of CQLF existence. Specifically, we demonstrate how it leads in a
natural way to a result that has previously appeared in [30].

Let A1, A2 ∈ R
n×n be two Hurwitz matrices such that the LTI systems ΣA1

, ΣA2

do not have a CQLF. Further assume that there does exist a positive semi-definite
P = PT ≥ 0 such that AT

i P + PAi = Qi ≤ 0, with rank(Qi) = n − 1 for i = 1, 2.
Then:

(i) there exists a hyperplane, H, through the origin in S
n×n that separates the

disjoint open convex cones PA1
, PA2

[25];
(ii) any hyperplane separating PA1

, PA2
must contain the matrix P , and be

tangential to both PA1
and PA2

at P ;
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(iii) there exist non-zero vectors x1, x2 in R
n such that Qixi = 0 for i = 1, 2.

Now on combining (i) and (ii) with Theorem 3.2, we can see that in fact there is a
unique hyperplane H separating PA1

, PA2
. Furthermore, we can use (iii) and Theorem

3.2 to parameterize H in two different ways. Namely:

H = {H ∈ S
n×n : xT

1 HA1x1 = 0}(3.4)

= {H ∈ S
n×n : xT

2 HA2x2 = 0}.

It now follows that there must be some constant k > 0 such that

xT
1 HA1x1 = −kxT

2 HA2x2,

for all H in S
n×n. Applying Lemma 2.1 now immediately yields the following result.

Theorem 3.3. [30] Let A1, A2 be Hurwitz matrices in R
n×n such that ΣA1

, ΣA2

do not have a CQLF. Furthermore, suppose that there is some P = P T ≥ 0 such that

AT
i P + PAi = Qi ≤ 0, i ∈ {1, 2}(3.5)

for some negative semi-definite matrices Q1, Q2 in R
n×n, both of rank n − 1. Under

these conditions, at least one of the matrix products A1A2 and A1A
−1
2 has a negative

real eigenvalue.
Boundary structure of PA:

In the following lemma, we examine the assumption that the rank of AT
i P +PAi

is n−1 for i = 1, 2 in Theorem 3.3. In particular, we note that those matrices P such
that AT P + PA = Q ≤ 0 with rank(Q) = n − 1 are dense in the boundary of PA.
So, in a sense, the ‘rank n − 1’ assumption of Theorem 3.3 is not overly restrictive.
In the statement of the lemma, ‖.‖ denotes the matrix norm on R

n×n induced by the
usual Euclidean norm on R

n [10].
Lemma 3.4. Let A ∈ R

n×n be Hurwitz, and suppose that P = P T ≥ 0 is such
that AT P + PA ≤ 0 and rank(AT P + PA) = n− k for some k with 1 < k ≤ n. Then
for any ε > 0, there exists some P0 = PT

0 ≥ 0 such that:
(i) ‖P − P0‖ < ε;
(ii) AT P0 + P0A = Q0 ≤ 0;
(iii) rank(Q0) = n − 1.
Proof: Let Q = AT P +PA, and note that as the inverse, L−1

A , of the Lyapunov
operator LA is continuous, there is some δ > 0 such that if ‖Q′ − Q‖ < δ, then
‖L−1

A (Q′) − L−1
A (Q)‖ < ε. Now, as Q is symmetric and has rank n − k, there exists

some orthogonal matrix T in R
n×n such that

Q̃ = TT QT = diag{λ1, . . . , λn−k, 0, . . . , 0},

where λ1 < 0, . . . , λn−k < 0. Now, define

Q̃0 = diag{λ1, . . . , λn−k,−δ/2, . . . ,−δ/2, 0},

and let Q0 = TQ̃0T
T . Then we have that:

(i) Q0 ≤ 0, and rank(Q0) = n − 1;
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(ii) ‖Q − Q0‖ < δ.
It now follows that the matrix P0 = L−1

A (Q0) lies on the boundary of PA and satisfies:
(i) ‖P0 − P‖ < ε;
(ii) rank(AT P0 + P0A) = n − 1,

as required
Necessary and sufficient conditions for CQLF existence:

Two of the most significant classes of systems for which simple verifiable condi-
tions for CQLF existence are known are the classes of second order systems [31, 4] and
systems whose system matrices are in companion form [24, 29]. In a number of recent
papers [30, 27], it has been demonstrated that, in a sense, Theorem 3.3 provides a
unifying framework for both of these results.

Second order systems:
In particular, it can be readily shown that any two Hurwitz matrices A1, A2 in

R
2×2 such that:

(i) the LTI systems ΣA1
, ΣA2

do not have a CQLF;
(ii) for any α > 0, the LTI systems ΣA1

, ΣA2−αI have a CQLF,
will satisfy the conditions of Theorem 3.3. This fact can be used to give a simple
proof of the known result [31, 4] that two stable second order LTI systems ΣA1

, ΣA2

(A1, A2 ∈ R
2×2) have a CQLF if and only if the matrix products A1A2 and A1A

−1
2

have no negative real eigenvalues.
Systems differing by rank one:
Moreover, it has been shown in [27] that Theorem 3.3 can also be applied gener-

ically 1 to the case of a pair of Hurwitz matrices A,A − ghT ∈ R
n×n in companion

form. More specifically, let A,A − ghT be two such matrices in R
n×n such that:

(i) the LTI systems ΣA, ΣA−ghT do not have a CQLF;
(ii) for any k with 0 < k < 1, the LTI systems ΣA, ΣA−kghT have a CQLF.

Then for all ε > 0, there exists some h′ ∈ R
n with ‖h − h′‖ < ε such that A and

A − gh′T satisfy the hypotheses of Theorem 3.3. This fact can then be used to show
that a necessary and sufficient condition for a pair of companion matrices A, A− ghT

in R
n×n to have a CQLF is that the matrix product A(A− ghT ) has no negative real

eigenvalues. In fact, the following result on CQLF existence for a pair of stable LTI
systems (not necessarily in companion form) differing by a rank one matrix has been
derived in [27].

Theorem 3.5. Let A1, A2 be Hurwitz matrices in R
n×n with rank(A2−A1) = 1.

Then the LTI systems ΣA1
, ΣA2

have a CQLF if and only if the matrix product A1A2

has no negative real eigenvalues.
Simultaneous solutions to Lyapunov equations:

In Theorem 3.3, we considered a pair of Hurwitz matrices A1, A2 in R
n×n for

which there exists some P = P T ≥ 0 such that AT
i P +PAi = Qi ≤ 0 with rank(Qi) =

n − 1 for i = 1, 2. In the following lemma we again investigate the question of
simultaneous solutions to a pair of Lyapunov equations. Specifically, we consider a
pair of Hurwitz matrices A1, A2 in R

n×n with rank(A2 − A1) = 1 and demonstrate

1Essentially, we need to assume that the entries of the system matrices do not satisfy a specific
polynomial equation. For details consult [27]
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that in this situation, there can exist no P = P T > 0 that simultaneously satisfies

AT
1 P + PA1 = Q1 < 0

AT
2 P + PA2 = Q2 ≤ 0

with rank(Q2) < n − 1.
Lemma 3.6. Let A1 ∈ R

n×n be Hurwitz and suppose that P is in the boundary
of PA1

with

AT
1 P + PA1 = Q1 ≤ 0.

Then if P ∈ PA2
for some Hurwitz matrix A2 ∈ R

n×n with rank (A2 − A1) = 1, the
rank of Q1 must be n − 1.

Proof: Let B = A2 − A1. To begin with, we assume that B is in Jordan
canonical form so that (as B is of rank 1) either

B =











λ 0 . . . 0
0 . . . . . . 0
...
0 . . . . . . 0











,(3.6)

for some λ ∈ R, or

B =











0 . . . . . . 0
1 . . . . . . 0
...
0 . . . . . . 0











.(3.7)

Now partition Q1 = AT
1 P + PA1 as

Q1 =

(

c1 qT
1

q1 Q

)

where c1 ∈ R, q1 ∈ R
n−1 and Q is a symmetric matrix in R

(n−1)×(n−1). It can be
verified by direct computation that Q2 = AT

2 P + PA2 takes the form

Q2 =

(

c2 qT
2

q2 Q

)

with the same Q as before.
From the interlacing theorem for bordered symmetric matrices [10], it follows that

the eigenvalues of Qi for i = 1, 2 must interlace with the eigenvalues of Q. However
as P ∈ PA2

, Q2 < 0 and thus Q must be non-singular in R
(n−1)×(n−1). Therefore, as

the eigenvalues of Q1 must also interlace with the eigenvalues of Q, it follows that Q1

cannot have rank less than n − 1.
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Now suppose that B is not in Jordan canonical form and write Λ = T−1BT where
Λ is in one of the forms (3.6), (3.7). Consider Ã1, Ã2 and P̃ given by

Ã1 = T−1A1T, Ã2 = T−1A2T, P̃ = TT PT.

Then it is a straightforward exercise in congruences to verify that

Ã2
T
P̃ + P̃ Ã2 = TT Q2T < 0

and that

Ã1
T
P̃ + P̃ Ã1 = TT Q1T ≤ 0.

Furthermore rank(Ã1− Ã2) = 1 and Ã1, Ã2 are both Hurwitz. Hence by the previous
argument, T T Q1T must have rank n−1, and thus by congruence the rank of Q1 must
also be n − 1.

Comments:
The above result shows that for Hurwitz matrices A1, A2 ∈ R

n×n with rank(A2−
A1) = 1, there are definite restrictions on the type of simultaneous solutions possible
to the two corresponding Lyapunov inequalities. In fact, it can be seen from examining
the proof of the lemma that there can be no solution P = P T ≥ 0 with AT

1 P +PA1 =
Q1 ≤ 0, AT

2 P + PA2 = Q2 ≤ 0 and |rank(Q2) − rank(Q1)| ≥ 2.
Right and left eigenvectors of singular matrix pencils:

Finally for this section, we note a curious technical fact about the left and right
eigenvectors of singular matrix pencils, which follows from Theorem 3.5.

Theorem 3.7. Let A1, A2 be Hurwitz matrices in R
n×n with rank(A2−A1) = 1.

Suppose that there is exactly one value of γ0 > 0 for which A−1
1 + γ0A2 is singular.

Then for this γ0:
(i) Up to scalar multiples, there exist unique vectors x0 ∈ R

n, y0 ∈ R
n such that

(A−1
1 + γ0A2)x0 = 0, yT

0 (A−1
1 + γ0A2) = 0;

(the left and right eigenspaces are one dimensional)
(ii) for this x0 and y0, it follows that

yT
0 A−1

1 x0 = 0, yT
0 A2x0 = 0.

Proof: Write B = A2 − A1. Without loss of generality, we can take B to
be in Jordan canonical form. Note that the hypotheses of the theorem mean that
det(A−1

1 + γA2) = det(A−1
1 + γA1 + γB) never changes sign for γ > 0, as A−1

1 and
A2 are both Hurwitz. We assume that det(A−1

1 + γA1 + γB) ≥ 0 for all γ > 0. (The
case det(A−1

1 + γA1 + γB) ≤ 0 for all γ > 0 may be proven identically.)
Now, for k > 0, γ ≥ 0, we can write

det((A−1
1 + γ(A1 + kB)) = M(γ) + kN(γ)(3.8)

where M and N are polynomials in γ with:
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(i) M(γ) = det(A−1
1 + γA1) > 0 for all γ > 0 ((A−1

1 + γA1) is always Hurwitz
for γ > 0);

(ii) M(0) + kN(0) = M(0) > 0 for any k > 0 > 0.
Now, if for some k with 0 < k < 1, det(A−1

1 + γ(A1 + kB)) = 0 for some γ > 0,
then it follows from (i), (ii) and (3.8) that for the same γ, det(A−1

1 +γ0(A1 +B)) < 0
which contradicts the hypotheses of the Theorem. Thus, for all k, with 0 < k < 1,

det(A−1
1 + γ(A1 + kB)) > 0

for all γ > 0. But by Theorem 3.5, this means that for 0 < k < 1 there exists a CQLF
for the LTI systems ΣA1

and ΣA2
and hence, by Theorem 3.1, for the systems ΣA

−1

1

and ΣA2
.

It now follows from the results of Meyer, [20] that there must exist some P =
PT > 0 such that

A−T
1 P + PA−1

1 ≤ 0

AT
2 P + PA2 ≤ 0.

Furthermore as xT
0 P (A1 + γ0A2)x0 = 0, it follows that

(A−T
1 + γ0A

T
2 )Px0 + P (A−1

1 + γ0A2)x0 = 0.(3.9)

But, (A−1
1 + γ0A2)x0 = 0 and hence we must have,

(A−T
1 + γ0A

T
2 )Px0 = 0,

and Px0 = λy0 for some real λ 6= 0. Now,

yT
0 A−1

1 x0 + γ0y
T
0 A2x0 = 0

implies that

xT
0 PA−1

1 x0 + γ0x
T
0 PA2x0 = 0,

from which we can conclude the result of the theorem.
Comments:
The above result shows that the left and right eigenvectors x0 and y0 of the

singular pencil at γ0 are quite strongly constrained.

4. Positive switched systems, diagonal and copositive Lyapunov func-

tions. A dynamical system is said to be positive if its state vector is constrained to
remain within the non-negative orthant for all non-negative initial conditions. This
class of systems is of considerable importance and arises in numerous applications,
including communications, economics, biology and ecology [8, 26, 17, 12]. In this
section, we turn our attention to problems motivated by the stability of the class of
positive switched linear systems constructed by switching between a family of positive
LTI systems.
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Two special types of Lyapunov function arise in connection with the study of pos-
itive linear systems. Specifically, it is natural to consider diagonal Lyapunov functions
and copositive Lyapunov functions when analysing the stability of such systems. We
shall see below how such Lyapunov functions are related to certain convex cones and
how to exploit this relationship to derive results on common diagonal Lyapunov func-
tion (CDLF) and common copositive Lyapunov function existence for pairs of positive
LTI systems. First of all, we recall some basic facts about positive LTI systems and
their stability.

Positive LTI systems and Metzler matrices:

An LTI system ΣA is positive if and only if the system matrix A is a so-called
Metzler matrix [8], meaning that aij ≥ 0 for i 6= j. The next result recalls some
fundamental facts about Metzler matrices, positive LTI systems and stability. In the
statement of the following theorem, D

n×n denotes the space of diagonal matrices in
R

n×n.
Theorem 4.1. [2, 8] Let A ∈ R

n×n be Metzler. Then the following statements
are equivalent.

(i) A is Hurwitz.
(ii) There is some vector v � 0 in R

n such that AT v ≺ 0.
(iii) −A−1 is a non-negative matrix.
(iv) There is some positive definite diagonal matrix D in D

n×n such that AT D +
DA < 0.

Thus, three convex cones arise in connection with the stability of positive linear
systems; namely the cone PA studied in the previous section, the cone of diagonal
solutions to the Lyapunov inequality and the cone of vectors v � 0 with AT v ≺ 0.
In the remainder of this section, we shall study the second and third of these cones
and indicate how their structure can provide insights into the problem of common
Lyapunov function existence for positive systems.

Irreducible Metzler matrices:

Later in this section, we shall derive a necessary and sufficient conditions for
common diagonal Lyapunov function (CDLF) existence for a pair of positive LTI
systems whose system matrices are irreducible. Recall that a matrix A ∈ R

n×n is said
to be reducible [10] if there exists a permutation matrix P ∈ R

n×n and some r with
1 ≤ r < n such that PAP T has the form

(

A11 A12

0 A22

)

(4.1)

where A11 ∈ R
r×r, A22 ∈ R

(n−r)×(n−r), A12 ∈ R
r×(n−r) and 0 is the zero matrix in

R
(n−r)×r. If a matrix is not reducible, then it is said to be irreducible. We shall later

make use of the following fundamental result for irreducible Metzler matrices which
corresponds to the Perron Frobenius Theorem for irreducible non-negative matrices
[10].

Theorem 4.2. Let A ∈ R
n×n be Metzler and irreducible. Then

(i) µ(A) is an eigenvalue of A of algebraic (and geometric) multiplicity one;
(ii) there is an eigenvector x � 0 with Ax = µ(A)x.
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4.1. The convex cones DA and common diagonal Lyapunov functions.

Theorem 4.1 establishes that a positive LTI system ΣA is stable if and only if the
convex cone in D

n×n, given by

DA = {D ∈ D
n×n : D > 0, AT D + DA < 0},(4.2)

is non-empty. In view of this fact, when studying the stability of positive switched
linear systems, it is natural to consider the problem of common diagonal Lyapunov
function (CDLF) existence. Formally, given Metzler, Hurwitz matrices A1, . . . , Am

in R
n×n, determine necessary and sufficient conditions for the existence of a single

positive definite matrix D ∈ D
n×n such that AT

i D + DAi < 0 for 1 ≤ i ≤ m. We
shall concentrate on the problem of CDLF existence for a pair of stable positive LTI
systems (m = 2).

Tangent hyperplanes to the cone DA:

In the next result, we consider hyperplanes in D
n×n that are tangential to the

cone DA at points D on its boundary for which AT D + DA has rank n − 1. As
in Theorem 3.2, there is a unique such hyperplane in this case and, moreover, this
plane can be parameterized in a natural way. We omit the proof of this result as it is
practically identical to the proof of Theorem 3.2 given above.

Theorem 4.3. Let A ∈ R
n×n be Metzler and Hurwitz. Suppose that D0 lies

on the boundary of the cone DA, and that the rank of AT D0 + D0A is n − 1, with
(AT D0 + D0A)x0 = 0, x0 6= 0. Then:

(i) there is a unique hyperplane tangential to DA at D0;
(ii) this plane is given by

{D ∈ D
n×n : xT

0 DAx0 = 0}.

The boundary structure of DA:

We have seen in Lemma 3.4 that for a Hurwitz matrix A in R
n×n, those matrices

P on the boundary of PA for which the rank of AT P + PA is n − 1 are dense in the
boundary. For the case of an irreducible Metzler Hurwitz matrix A and the cone DA,
we can say even more than this.

We shall show below that for an irreducible Metzler, Hurwitz matrix A in R
n×n,

and any non-zero diagonal matrix D in the boundary of DA, the rank of AT D + DA
must be n − 1. The first step is the following simple observation.

Lemma 4.4. Let A ∈ R
n×n be a Metzler matrix. Then for any diagonal matrix

D in R
n×n with non-negative entries, AT D + DA is also Metzler.

The next result is concerned with diagonal matrices D on the boundary of the set
DA, for irreducible Metzler Hurwitz matrices A. It establishes that, for such A, any
non-zero diagonal D ≥ 0 such that AT D + DA ≤ 0 must in fact be positive definite.

Lemma 4.5. Let A in R
n×n be Metzler, Hurwitz and irreducible. Suppose that

AT D + DA ≤ 0 for some non-zero diagonal D in R
n×n. Then D > 0.

Proof: The key fact in the proof of this result is that if Q ∈ R
n×n is positive

semi-definite, and for some i = 1, . . . , n, qii = 0, then qij = 0 for 1 ≤ j ≤ n [10].
We argue by contradiction. Suppose that D is not positive definite. Then we

may select a permutation matrix P in R
n×n such that

D′ = PDPT = diag{d′
1, . . . , d

′
n},
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with d′
1 = 0, . . . , d′

r = 0 and d′
r+1 > 0, . . . , d′

n > 0, for some r with 1 ≤ r < n. It
follows by congruence that writing A′ = PAPT , we have

A′T D′ + D′A′ ≤ 0.

The (i, j) entry of A′T D′ +D′A′ is given by a′
ijd

′
i +d′

ja
′
ji. Now for i = 1, . . . , r, d′

i = 0

and hence the corresponding diagonal entry, 2d′
ia

′
ii, of A′T D′+D′A′ is zero. From the

remarks at the start of the proof, it now follows that for 1 ≤ j ≤ n, a′
ijd

′
i + d′

ja
′
ji = 0

also, and in particular that for j = r + 1, . . . , n, a′
ji = 0.

To summarize, we have shown that if D is not positive definite, then there is
some permutation matrix P , and some r with 1 ≤ r < n such that for i = 1, . . . r and
j = r + 1, . . . , n, a′

ji = 0 where A′ = PAPT . But this then means that A′ is in the
form of (4.1) and hence that A is reducible which is a contradiction. Thus, D must
be positive definite as claimed.

Lemma 4.6. Let A ∈ R
n×n be Metzler, Hurwitz and irreducible. Suppose that for

some non-zero diagonal D in R
n×n, AT D+DA = Q ≤ 0. Then Q is also irreducible.

Proof: Once again, we shall argue by contradiction. Suppose that Q is reducible.
Then there is some permutation matrix P in R

n×n such that, if we write A′ = PAPT ,
D′ = PDPT , Q′ = PQPT , then

(i) A′T D′ + D′A′ = Q′ ≤ 0;
(ii) there is some r, with 1 ≤ r < n, such that for i = r + 1, . . . , n, j = 1, . . . , r,

q′ij = 0.

It follows from (ii) that a′
ijdi + a′

jidj = 0 for i = r + 1, . . . , n, j = 1, . . . , r. But
from Lemma 4.5, d′

i > 0 for 1 ≤ i ≤ n, and hence (as A is Metzler) a′
ij = 0 for

i = r + 1, . . . , n, j = 1, . . . , r. This would mean that A′ was in the form of (4.1) and
hence that A was reducible which is a contradiction. Thus Q must be irreducible as
claimed.

The rank of matrices in the boundary of DA:

The previous technical results establish a number of facts about diagonal matrices
on the boundary of DA where A is an irreducible Metzler, Hurwitz matrix in R

n×n.
In particular, we have shown that for any non-zero D on the boundary of DA:

(i) D must be positive definite;
(ii) AT D + DA is Metzler and irreducible.

Combining (i) and (ii), we have the following result on the boundary structure of the
cone DA.

Theorem 4.7. Let A ∈ R
n×n be Metzler, Hurwitz and irreducible. Suppose that

D ∈ D
n×n satisfies AT D + DA = Q ≤ 0. Then rank(Q) = n − 1, and there is some

vector v � 0 such that Qv = 0. Proof: It follows from Lemma 4.4 and Lemma
4.6 that Q is an irreducible Metzler matrix. Furthermore, as Q ≤ 0, µ(A) = 0. The
result now follows from Theorem 4.2.

Conditions for CDLF existence:

As with the CQLF existence problem, it is possible to use the above results
concerning the boundary structure of the cone DA to derive conditions for CDLF
existence for positive LTI systems.
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Let A1, A2 ∈ R
n×n be irreducible Hurwitz, Metzler matrices such that the LTI

systems ΣA1
, ΣA2

have no CDLF. Further, assume that there exists some non-zero
D0 ≥ 0 in D

n×n such that AT
i D0 + D0Ai = Qi ≤ 0 for i = 1, 2. Then:

(i) it follows from Theorem 4.7 that the rank of Qi is n− 1 for i = 1, 2, and that
there are vectors x1 � 0, x2 � 0 with Qixi = 0;

(ii) it follows from Theorem 4.3 that there is a unique hyperplane in Dn×n that
separates the open convex cones DA1

, DA2
;

(iii) this hyperplane can be parameterized as

{D ∈ D
n×n : xT

1 DA1x1 = 0},

and

{D ∈ D
n×n : xT

2 DA2x2 = 0}.

It follows from (iii) and the fact that the cones DA1
, DA2

are disjoint that there is
some positive constant k > 0 such that

xT
1 DA1x1 = −kxT

2 DA2x2(4.3)

for all D ∈ D
n×n. Following similar arguments to those presented in [18], it can be

shown that there must be some D > 0 in D
n×n with A1 + DA2D singular. This fact

can then be used to derive the following algebraic necessary and sufficient condition
for CDLF existence for pairs of stable positive LTI systems.

Theorem 4.8. [18] Let A1, A2 in R
n×n be Hurwitz, Metzler and irreducible.

Then a necessary and sufficient condition for the stable positive LTI systems, ΣA1
,ΣA2

,
to have a CDLF is that A1 + DA2D is non-singular for all diagonal D > 0.

4.2. Linear copositive Lyapunov functions. Given that the trajectories of a
positive system are constrained to remain within the non-negative orthant, requiring
the existence of a Lyapunov function that works on the entire state space may be
an overly restrictive condition for stability. This has led to the consideration of co-
positive Lyapunov functions for positive systems, and we shall now show how convex
cones arise once again in the study of such functions.

We shall only consider the class of linear copositive Lyapunov functions in this
paper. Formally, V (x) = vT x is a common linear copositive Lyapunov function for
the positive LTI systems ΣA1

, . . ., ΣAm
if v ∈ R

n is such that v � 0 and

AT
i v ≺ 0 for 1 ≤ i ≤ m.(4.4)

In this context, the natural cone to study is given by

VA = {v ∈ R
n : v � 0 and AT v ≺ 0}.(4.5)

Theorem 4.1 establishes that for a Metzler matrix A ∈ R
n×n, A is Hurwitz if and only

if the cone VA is non-empty. It should be noted that in contrast to the earlier situa-
tions, the cone VA is a polyhedral cone which makes the question of linear copositive
function existence less complex than the CQLF or CDLF existence problems. In fact,

VA = {A−T v : v ≺ 0}.(4.6)
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Tangent hyperplanes to the cone VA:

First of all, in analogy with the approach described above to the CQLF and CDLF
existence problems, we shall characterize hyperplanes in R

n that are tangential to the
cone VA at points on its boundary.

Lemma 4.9. Let A ∈ R
n×n be Metzler and Hurwitz, and let z ∈ R

n be such that
the hyperplane

H = {x ∈ R
n : zT x = 0}

is tangential to the cone VA. Then there is some non-zero vector w � 0 such that

H = {x ∈ R
n : (Aw)T x = 0}.

Proof: As H is tangential to the cone VA, it follows that either zT x < 0 for all
x ∈ VA or zT x > 0 for all x ∈ VA. Without loss of generality, we may assume that
zT x < 0 for all x ∈ VA. It now follows from (4.6) that zT A−T v < 0 for all v ≺ 0.
Thus, A−1z = w � 0, and the result now follows immediately.

Common linear copositive Lyapunov functions:

The above characterization of hyperplanes that are tangential to the cone VA can
be used to obtain the following result on common linear copositive Lyapunov function
existence for a pair of positive LTI systems.

Theorem 4.10. Let A1, A2 be Metzler, Hurwitz matrices in R
n×n. Then a

necessary and sufficient condition for the systems ΣA1
, ΣA2

, to have a common linear
copositive Lyapunov function is that there are no non-zero vectors w1 � 0, w2 � 0
such that A1w1 + A2w2 = 0. Proof:

Necessity: Let vT x be a common linear copositive Lyapunov function for ΣA1
,

ΣA2
. Then AT

i v ≺ 0 for i = 1, 2. Suppose that there are two vectors w1 � 0, w2 � 0
such that A1w1 + A2w2 = 0. Then

(vT A1w1 + vT A2w2) = 0(4.7)

also. However, the expression (4.7) will be strictly negative unless w1 = 0 and w2 = 0.
Sufficiency: Conversely, assume that the cones VA1

and VA2
do not intersect. Then

there is some hyperplane H through the origin in R
n that separates these cones. This

hyperplane will be tangential to both cones at the origin and hence from Lemma 4.9
there are non-zero vectors w1 � 0, w2 � 0 such that

H = {x ∈ R
n : wT

1 AT
1 x = 0}

= {x ∈ R
n : wT

2 AT
2 x = 0}.

Moreover, it now follows from the fact that VA1
and VA2

are disjoint that there is
some k > 0 such that

wT
1 AT

1 = −kwT
2 AT

2 .(4.8)

The result now follows from (4.8).
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5. Non-linear systems, Lyapunov functions and convex cones. In the
previous sections, we have studied several convex cones that arise when considering the
stability question for dynamical systems constructed by switching between a family of
stable linear time-invariant systems. We shall next consider ways of extending some
of these ideas to non-linear systems, highlight the role played by convex cones in this
context and present some initial results on the CQLF existence problem for non-linear
systems.

The cone Pf :

Let f : R
n → R

n be a non-linear vector field and denote the corresponding
dynamical system by Σf ,

Σf : ẋ = f(x).(5.1)

In analogy with the cone PA for LTI systems, we introduce the set Pf defined by

Pf = {P = P T > 0 : xT Pf(x) < 0 for all non-zero x ∈ R
n}.(5.2)

If P ∈ Pf , then V (x) = xT Px is said to be a quadratic Lyapunov function for the
non-linear system Σf . It is straightforward to check that Pf is a convex cone.

Given two vector fields f1, f2, we say that the corresponding systems, Σf1
, Σf2

have a common quadratic Lyapunov function (CQLF) if the cones Pf1
, Pf2

have a
non-empty intersection. As we are interested in the question of CQLF existence,
throughout this section we shall assume that the systems considered have quadratic
Lyapunov functions. However, it should be noted that while the stability of the LTI
system ΣA is equivalent to the cone PA being non-empty, this need not in general be
the case for non-linear systems.

The relationship between Pf and Pf−1 :

Theorem 3.1 establishes that for a stable LTI system ΣA, the cones PA and PA−1

coincide exactly. In the next result, we show that for an invertible vector field f , this
result also holds for non-linear systems. 2

Lemma 5.1. Let f : R
n → R

n be an invertible vector field, with inverse f−1.
Then for any positive definite matrix P = P T > 0,

xT Pf(x) < 0 for all non-zero x ∈ R
n

if and only if

xT Pf−1(x) < 0 for all non-zero x ∈ R
n.

Proof: Let P be a positive definite matrix in R
n such that

xT Pf(x) < 0 for all non-zero x ∈ R
n.(5.3)

2The second named author wishes to express his gratitude to Dr. Paul Curran of University
College Dublin for helpful discussions on the subject of this result.
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Now let y be any non-zero vector in R
n. Then, f−1(y) will also be non-zero and it

follows from (5.3) that (f−1(y))T Py < 0, and thus that yT Pf−1(y) < 0. Hence, we
have shown that

xT Pf(x) < 0 for all non-zero x ∈ R
n

implies that

xT Pf−1(x) < 0 for all non-zero x ∈ R
n.

The converse follows by interchanging the roles of f and f−1 in the previous argument.
Necessary conditions for CQLF existence:

It is known [27, 31] that if two stable LTI systems ΣA1
, ΣA2

have a CQLF
then the matrix pencils A1 + γA2 and A1 + γA−1

2 are non-singular for all γ > 0.
Equivalently, the matrix products A1A

−1
2 , A1A2 have no negative real eigenvalues.

We now derive corresponding necessary conditions for CQLF existence for a pair of
non-linear systems Σf1

, Σf2
.

Lemma 5.2. Let f1 : R
n → R

n, f2 : R
n → R

n be invertible vector fields, and
suppose that there exists a CQLF for the associated systems Σf1

, Σf2
. Then for all

γ > 0, and all non-zero x ∈ R
n:

f1(x) + γf2(x) 6= 0;

f−1
1 (x) + γf2(x) 6= 0.

Proof: Let V (x) = xT Px be a CQLF for Σf1
, Σf2

. Then it follows using Lemma
5.1 that for all non-zero x ∈ R

n,

xT Pf1(x) < 0, xT Pf2(x) < 0, xT Pf−1
1 (x) < 0.

Thus, for any non-zero x in R
n and any γ > 0,

xT P (f1(x) + γf2(x)) < 0

xT P (f−1
1 (x) + γf2(x)) < 0.

The result now follows immediately.
Comments:
The above result shows that if there exists a CQLF for the systems Σf1

, Σf2
, then

there can be no non-zero vector x in R
n for which f−1

1 (f2(x)) = −λx, or f1(f2(x)) =
−λx with λ > 0. Thus Lemma 5.2 extends the fact that a necessary condition for two
stable LTI systems, ΣA1

, ΣA2
, to have a CQLF is that the matrix products A−1

1 A2

and A1A2 have no negative real eigenvalues.
Tangent hyperplanes and CQLF existence for non-linear systems:

Finally for this section, we show how the arguments used earlier to derive Theorem
3.3 can be carried over to a non-linear setting. In the statement of the next theorem,
we assume that the vector fields being considered are homogeneous of degree one,
where a mapping f : R

n → R
n is said to be homogeneous of degree one if f(λx) =

λf(x) for all λ ∈ R, x ∈ R
n.
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Theorem 5.3. Let f : R
n → R

n be invertible and homogeneous of degree one.
Suppose that P0 lies on the boundary of Pf , and that there is some non-zero vector
x0 ∈ R

n such that

{x ∈ R
n : xT Pf(x) = 0} = {x ∈ R

n : x = λx0 for λ ∈ R}.

Then:
(i) there is a unique hyperplane tangential to the cone Pf at P0;
(ii) this plane is given by

{H ∈ S
n×n : xT

0 Hf(x0) = 0}.

Proof: This result can be proven in the same way as Theorem 3.2 using the
homogeneity of the vector field f .

In analogy with the linear case, the above characterization of hyperplanes tangen-
tial to the cone Pf can be used to obtain the following non-linear version of Theorem
3.3.

Theorem 5.4. Let f1 : R
n → R

n, f2 : R
n → R

n be invertible vector fields, homo-
geneous of degree one, such that the systems Σf1

, Σf2
have no CQLF. Furthermore,

suppose that there is some positive definite P = P T > 0 such that, for i = 1, 2:
(i) xT Pfi(x) ≤ 0 for all x in R

n;
(ii) there is a non-zero vector xi ∈ R

n such that

{x ∈ R
n : xT Pfi(x) = 0} = {x ∈ R

n : x = λxi for λ ∈ R}.

Then either
(i) there exists some non-zero x in R

n and some γ > 0 such that f1(x)+γf2(x) = 0
or
(ii) there exists some non-zero x in R

n and some γ > 0 such that f−1
1 (x) +

γf2(x) = 0. Note that under the hypotheses of Theorem 5.4, the necessary conditions
for CQLF existence given in Lemma 5.2 are violated.

6. Concluding remarks. In this paper, we have considered three types of Lya-
punov function that are closely related to the theory of convex cones. Specifically, we
have presented results on the structure of cones that arise in the study of quadratic
Lyapunov functions for both linear and non-linear systems, as well as a number of
results on cones of diagonal Lyapunov functions and linear copositive Lyapunov func-
tions for positive linear systems. The relevance of the structure of these cones to the
problem of common Lyapunov function existence has been discussed, and it has been
demonstrated how this structure can be used to derive conditions for the existence of
such functions.
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