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Abstract

We show that the porous medium equation has a gradient �ow

structure which is both physically and mathematically natural� In or�

der to convince the reader that it is mathematically natural� we show

the time asymptotic behaviour can be easily understood in this frame�

work� We use the intuition and the calculus of Riemannian geometry

to quantify this asymptotic behavior�
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� The porous medium equation as a gradient

�ow

��� The porous medium equation

The porous medium equation is given by

��

�t
�r��m � �� ��


Throughout the article� � � � should be thought of as a �time�dependent

density function on the whole N�dimensional space IRN � Here� ��

�t
denotes

the �partial
 derivative w� r� t� time t � ����
� r denotes the gradient with
respect to the spatial variables x � IRN � r� the divergence w� r� t� x and
r� the Laplacian w� r� t� x� In section �� we will give a brief derivation of
��
 from assumptions on the physics of a gas �ow through a porous medium�
We restrict our attention to the case where the exponent satis	es m � �� �

N

and m � N
N��

� the reason for these restrictions will become apparent in the
sequel�

The porous medium equation is a parabolic equation� more precisely� a dif�
fusion equation for �� In case of m � �� the di�usion degenerates for � � ��

�



This for instance has the e�ect of preserving a compact support and hence
is called �slow di�usion�� The case m � � is called fast di�usion� In a weak
setting� which will be intruduced in section 
� the Cauchy problem for ��
 is
well�posed� Therefore� ��
 de	nes an evolution of densities on IRN � in other
words� a semi group on the space of densities on IRN � We will show that this
semi group has the structure of a gradient �ow�

��� Abstract gradient �ow

We claim that the porous medium equation can be interpreted as a gradient
�ow� Let us 	rst introduce the notion of a gradient �ow in the generality we
need� The mathematical structure required to make sense of a gradient �ow
is

� a di�erentiable manifoldM�

� a metric tensor g onM� which makes �M� g
 a Riemannian manifold�

� and a function�al
 E onM�

We call the dynamical system in M given by the autonomous di�erential
equation

d�

dt
� �gradEj� ��


the gradient �ow of E on �M� g
� Observe that the metric tensor g is a
necessary ingredient to the notion� It converts the di�erential di� E of E�
which is a cotangent vector 	eld� into the gradient gradE of E� which is a
tangent vector 	eld�

g�gradE� s
 � di�E�s for all vector 	elds s onM� ��


Hence ��
 can be expanded into

g��
d�

dt
� s
 � di�Ej��s � � for all vector 	elds s along �� ��


We point out that the basic property of a gradient �ow is that the energy is
decreasing along trajectories�

d

dt
E��
 � di�Ej��

d�

dt

���
� �g��

d�

dt
�
d�

dt

� �



�



��� Two interpretations of the porous medium equa�

tion as gradient �ow

It is actually well known that the porous medium equation can be interpreted
as a gradient �ow� We will introduce this �traditional� gradient �ow inter�
pretation in this section� Parallel to this� we will introduce a new gradient
�ow interpretation� In the following two sections� we will try to convince the
reader that our new way of interpreting the porous medium equation is more
natural than the traditional way�

The evolution de	ned by ��
 preserves non negativity of � and its mass
R
��

In both approaches� the manifold is accordingly given by

M �
n
non negative functions � on IRN with

R
� � �

o
�

We will be deliberately sloppy about the di�erential structure of the manifold
and think of the tangent space as follows

T�M �
n
functions s on IRN with

R
s � �

o
�

We now come to the metric tensor� Both approaches are based on an iden�
ti	cation of the tangent vector space

T�M ��
n
functions p on IRN

o
� � � ��


where the identi	cation is de	ned via the elliptic equation

�r�p � s for the traditional approach ��


and
�r � ��rp
 � s for the new approach� ��


The ��� in ��
 is to indicate that we identify p�s which only di�er by an
additive constant� Now� the metric tensor is de	ned by

g��s�� s�
 �
Z
rp� � rp� for the traditional approach

and
g��s�� s�
 �

Z
�rp� � rp� for the new approach� ��


�



where pi is related to si via ��
 resp� ��
� For further reference� we notice
that this implies

g��s�� s�
 �
Z
s� p� for both approaches� ���


Finally the functional� It is given by

E��
 � �
m��

Z
�m�� for the traditional approach

and

E��
 �

���
��

�
m��

Z
�m for m �� �Z

� ln � for m � �

���
�� for the new approach� ���


Observe that the di�erential of the functional is given by

di� E��
�s �
Z
�m s for the traditional approach ���


and

di� E��
�s �

���
��
Z

m
m��

�m�� s for m �� �Z
�ln � � �
 s for m � �

���
�� for the new approach� ���


We now have to show that the porous medium equation indeed coincides with
the gradient �ow of E on �M� g
 for both approaches� First the traditional
approach� According to ���
 and ���
� the identity ��
 takes on the form

Z ��

�t
p �

Z
�m s � ��

where p is related to s via �r�p � s� We substitute s accordingly and obtain

Z ��

�t
p �

Z
�mr�p � ��

and after integration by parts

Z
�
��

�t
� r��m
 p � ��






Since p is arbitrary� we recover the porous medium equation�

Now the new approach� According to ���
 and ���
� the identity ��
 takes
on the form ���

��
Z

��
�t
p � m

m��

Z
�m�� s � � for m �� �Z

��
�t
p �

Z
�ln � � �
 s � � for m � �

���
�� �

where p is related to s via �r � ��rp
 � s� We substitute s accordingly and
obtain ���

��
Z

��
�t
p �

Z
m

m��
�m��r � ��rp
 � � for m �� �Z

��
�t
p �

Z
�ln �� �
r � ��rp
 � � for m � �

���
�� �

We obtain after integration by partsZ
�
��

�t
� r��m
 p � ��

Also here� we recover the porous medium equation�

In case of the traditional approach� g does not depend on � and therefore
is a scalar product on the space of functions s with mean value zero� In
fact� it is the homogeneous part of the H���scalar product� Hence� in the
traditional approach� the Riemannian space �M� g
 carries the structure of a
convex subspace of a Euclidean space� On the other hand� the new approach
is genuinely Riemannian� Hence we must bring forth good reasons for con�
sidering the more complicated� new structure� We will attempt to do this in
the next two sections�

� A physical argument in favor of the new

gradient �ow

We give a brief physical derivation of the porous medium equation� The
function � describes the mass density of a gas in a porous medium� The 	rst
assumption is conservation of mass� expressed in the continuity equation

��

�t
�r � �� u
 � �� ���


�



where the vector 	eld u on IRN describes the �average
 velocity of the gas�
The second assumption is Darcy�s law

u � �M�rp�

where the function p on IRN describes the pressure of the gas and the matrix
M describes the mobility of the gas in the porous medium� M depends on
the permeability of the medium and the viscosity of the gas� We assume
that the permeability is isotropic and homogeneous� so that K � id by an
appropriate non�dimensionalization�

u � �rp� ��



The third assumption comes from thermodynamics�

p �
�E

��
� ���


where E denotes the free energy and �E
��
its functional derivative with respect

to �� In case of a free energy of the form

E �
Z
e��
�

where the function z �	 e�z
 describes how the free energy density e depends
on the density �� ���
 reads

p � e���
� ���


Hence ���
� ��

 and ���
 combine to

��

�t
�r����
 � �� ���


where the function z �	 ��z
 describes how the osmotic pressure � depends
on the density � and is related to z �	 e�z
 via

��z
 � z e��z
� e�z
� ���


From ���
 we see that ���
 turns into the porous medium equation ��
� that
is�

��z
 � zm ���


�



if and only if

e�z
 �

�
�

m��
zm for m �� �

z ln z for m � �

�
� ���


Hence� only in the new formulation does E have a physical meaning�

Also the metric tensor g of the new formulation has a physical meaning�
For this we observe that the de	nition ��
 of g in the new approach can be
reformulated as

g��s� s
 � inf
	Z

� juj�



 for all vector 	elds u on IRN

with s�r � �� u
 � � g �
���


Indeed� the minimizer u of the quadratic variational problem in ���
 satis	es

Z
v � u for all vector 	elds v on IRN with r � v � ��

so that there exists a function p on IRN such that

u � �rp�

We now observe that the quantity
R
� juj� in ���
 has a physical meaning�

It is the rate of dissipation of kinetic energy by friction when the gas moves
with velocity u through the pores of the porous medium� Hence g��s� s

measures the minimal rate of dissipation of kinetic energy by friction required
to produce the rate of change s of the density �� This allows for a nice physical
interpretation of �

� that is

d

dt
E��
 � �g��

d�

dt
�
d�

dt

�

The right hand side is the rate of change of the free energy� the left hand
side is the rate of dissipation of kinetic energy by friction� the dynamics are
such that both quantities are equal� In general terms� The merit of the
right gradient �ow formulation of a dissipative evolution equation is that it
separates energetics and kinetics� The energetics endow the state space M
with a functional E� the kinetics endow the state space with a �Riemannian

geometry via the metric tensor g�

�



� A mathematical argument in favor of new

gradient �ow

��� Self similar solutions and asymptotic behaviour

It is well�known that the long�time asymptotics of the porous medium equa�
tion is described by the Barenblatt solution� Let us make this more precise�
The porous medium equation allows for a self�similar solution of the form

���t� x
 �
�

tN�
����

x

t�



where the pro	le ��� is given implicitly in the �pressure variable� �for a mo�
tivation of this wording see the previous section


e������y

 �

�����
����

m
m��

����y

m�� � maxf�� 	 �

�
jyj�� �g for m � �

ln ����y
 � � � �� 	 �
�
jyj� for m � �

m
m��

����y

m�� � �� 	 �

�
jyj� for m 
 �

�����
����
�

Here

	 �
�

N �m� �
 � �

and � is such that Z
��� � ��

These solutions were discovered by Barenblatt and Prattle ��� ����

The Barenblatt solution describes the long�time asymptotics of an arbitrary
solution � in the following sense� Rescale time and space according to

x � t� y and t � exp��
�

In terms of density functions� this means� pass from � to �� given by

��t� x
 �
�

tN�
���ln t�

x

t�



Then �� approaches the pro	le ��� of the Barenblatt solution for large times�
In case of m � �� Friedman� Kamin and Vazquez �in ���� and ����
 have
proved that the pro	les converge uniformly

lim
���

k��� ���kL��IRN � � � �

�



Their proof is based on a C��a priori estimates for the solution of the porous
medium equation by Ca�arelli and Friedman �
��

��� A new asymptotic result

Hoping to convince the reader of our new approach� we will derive a new
and more quantitative asymptotic result using it� Our arguments are based
on a simple Riemannian calculus applied to the in	nite dimensional �M� g
�
From now on� the notation g and E pertains solely to the new approach�
that is� it is de	ned like in ��
 and ���
� Next to the metric tensor g� which
we also denote by h�� �i� and its induced norm j � j� we will need a few notions
from Riemannian geometry� like the gradient gradF � the Hessian HessF of a
function F on M� the latter being de	ned via the covariant derivative� see
for instance ���� Section ������� and the induced distance d� see ���� Section

����

The three key ingredients for our asymptotic result are

� �� satis	es
d��

d�
� �gradFj��� ���


In words� �� evolves according to the gradient �ow on the same Rieman�
nian manifold �M� g
 of an augmented functional F given by

F ���
 � E���
 � 	M���
�

where M denotes the second moment of the density ��

M���
 �
Z

�
�
jyj� ���y
 dy�

� ��� satis	es
F ���
� F ����
 � � for all �� � M� ���


In words� ��� is a minimizer of F onM� Hence it it is also a stationary
point of F � that is

� � �gradFj���� ��



��



� F satis	es
HessFj�� � 	 id for all �� � M

in the sense of

hs�HessFj��si � 	 jsj� for all s � T��M and �� � M� ���


In words� F is uniformly strictly convex on �M� g
� This is a conse�
quence of

HessEj�� � � and HessMj�� � id for all �� � M� ���


We will check ���
 and ���
 in subsection ���� ���
 will be established in
subsection ���� The condition m � � � �

N
is the one which ensures that E

is convex on �M� g
� The condition m � N
N��

ensures that E����
 and M����

are well�de	ned and 	nite�

As we will see in subsection ��
� ���
� ��

 and ���
 yield by formal but basic
Riemannian calculus

d

d�

�
exp��	 �
 jgradFj��j

�
�

 �� ���


d

d�
�exp��	 �
 �F ���
� F ����


 
 �� ���


d

d�

�
exp��	 �
 d���� ���


�
�

 �� ���


We consider these three inequalities the main result of this paper� Observe
that ���
� ���
 and ���
 express a single fact in di�erent form� The single fact
being� �� converges to ��� with rate 	� More precisely� 	 is an exponential rate
with respect to � or a polynomial rate with respect to t� The di�erent forms
being� jgradFj��j in ���
 measures how far �� is from being a stationary point
of F � F ���
� F ����
 in ���
 is measuring how far �� is from being a minimizer
of F and 	nally d���� ���
 in ���
 is measuring how far �� is from ����

In subsection ���� we will identify jgradFj��j
� as the functional

jgradFj��j
� �

Z
�� jrpj� where p�y
 � e�����y

 � 	

�

�
jyj�

��



and e is the energy density given in ���
� In subsection ���� we will identify
the induced metric d with the Wasserstein metric� that is

d����� ���

� � inf

��� � 	
���

Z
��� jid� �j

��

where ����� denotes the push forward of the density ��� under the transfor�
mation � of IRN � By carefully mimicking the formal Riemannian calculus
from subsection ��
� we will make the above results rigorous in Theorem � in
section 
� A relationship� not in the above concise form though� between the
porous medium equation� its self similar solution and the Wasserstein metric
was discovered by the author in �����

In the linear case m � �� above results are known to the Fokker�Planck
community in a di�erent form� In this case�

jgradFj��j
� �

Z
�� jrpj�

�
Z
�� j
�

��
r��� 	 yj�

�
Z �

��
jr��j� � �	N

Z
��� 	�

Z
��jyj�

�
Z �

��
jr��j� � �	N � �	�M���
�

In particular� � � jgradFj���j
� �

R �
���
jr���j

� � �	N � 	�M����
� so that

jgradFj��j
� �

Z �

��
jr��j� �

Z �

���
jr���j

� if M���
 � M����
�

The quantity
R �

��
jr��j� is called the �Fisher information functional�� Also in

this case

F ���
� F ����
 �
Z
�� ln ���

Z
��� ln ��� if M���
 � M����


and the quantity
R
�� ln �� is called the �entropy functional�� The decay of the

Fisher information functional and the entropy functional expressed in ���

resp� ���
 for m � � seems to be due to McKean ���� and Toscani ���� Re�
cently and independently of our work� these ideas for ���
 resp� ���
 have been

��



extended to the case m �� � by Carrillo  Toscani ��� �for m � �
 and Dol�
beault  del Pino ���� �for m 
 �
� Forerunners in this Liapunov�functional
based approach were also Newman ���� and Ralston ��
�� The novelty of our
above results is their formulation� interpretation and proof in framework of
Riemannian geometry� which make the approach more transparent and the
calculations seem less arbitrary�

��� The asymptotic result expressed in a more tradi�

tional framework

Convergence with rate 	 in a more traditional way can be derived from ���

with help of

� the inequalities

F ���
� F ����


�
� H���� ���
 for m � �
� H���� ���
 for m 
 �

�
� ���


where

H����� ���
 �
Z
fe����
� e����
� e�����
 ���� � ���
g � ��

Here the e is the energy density� see ���
� and in the case m 
 �� we
set H����� ���
 � �� if ��� vanishes on a set of positive measure�

� the estimate for m 
 �

Z
j��� � ���j 
 C


Z
����m�

� �

�

H����� ���

�

� � ���


where C is a constant which only depends on m�

It is conceivable that convergence of rate 	 in stronger traditional norms can
be derived from ���
� ���
 and ���
� But this is not the focus of this paper�

The inequality ���
 will be established in subsection ���� the non negativity
of H follows immediately from the convexity of e� In the case of m � �� we
have

e�z�
� e�z�
� e��z�
 �z� � z�
 �
z

z�
ln

z

z�
z� � �z� � z�
�

��



so that

H����� ���
 �
Z ���
���
ln
���
���
���� ���


Therefore� H����� ���
 is also called the relative entropy of ��� w� r� t� ���� The
estimate ���
 is known to the Fokker�Planck community under the name of
Csiszar�Kullback inequality �����

Let us now establish ���
� Since m 
 � implies

e���w
 � mwm�� � m for w � ��� ��

we have

�
m��

wm � �
m��

� m
m��

wm�� �w � �


� e�w
� e��
� e���
 �w � �


� �
�
inf
�����

e�� �w � �
�

� m
�
�w � �
� for all w � ��� ��� ���


We observe that since Z
���� � ���
 � ��

we have Z
j��� � ���j � �

Z
f�������g

j��� � ���j�

On the other hand� setting

u �

���
��
���
���

if ��� 
 ���

� else

���
�� � ��� ���

we haveZ
f�������g

j��� � ���j

�
Z
��� ju� �j




Z

����m�

Z
��m� �u� �


�
� �

�

��



����




Z

����m�
�
m

Z
��m�

n
�

m��
um � �

m��
� m

m��
um�� �u� �


o� �

�

�

�Z
����m�

�
m

Z
f�������g

n
�

m��
��m� �

�
m��

��m� �
m

m��
��m��� ���� � ���


o� �

�

�

��� Veri�cation of key ingredients to asymptotic result

Let us now check ���
� It is left to the reader to verify that �� satis	es the
equation

���

��
� r�

y ��
m � 	ry � ��� y
 � �� ��



!From now on� we drop the subscript y� We observe that the di�erential of
F is given by

di� F ���
�s �

���
��
Z
� m
m��

��m�� � 	 �
�
jyj�
 s for m �� �Z

�ln ��� � � 	 �
�
jyj�
 s for m � �

���
�� �

According to this and ���
� the identity ��
 takes on the form
Z

���
��
p �

Z
� m
m��

��m�� � 	 �
�
jyj�
 s � � for m �� ��Z

���
��
p �

Z
�ln �� � � � 	 �

�
jyj�
 s � � for m � ��

where p is related to s via �r � ���rp
 � s� We substitute s accordingly and
obtain after an integration by partZ

f���
��

� r � ���r � m
m��

��m�� � 	 �
�
jyj�
�g p � � for m �� ��Z

f���
��

� r � ���r �ln �� � � � 	 �
�
jyj�
�g p � � for m � ��

Hence ��
 can be rewritten as

���

��
� r � ���r �

m

m� �
��m�� � 	 �

�
jyj�
� � � for m �� ��

���

��
� r � ���r �ln ��� � � 	 �

�
jyj�
� � � for m � ��

which turns into ��

�

�




Let us now check that in the notation of ���
�

F ���
� F ����


�
� H���� ���
 for m � �
� H���� ���
 for m 
 �

�
� ���


This validates both ���
 and ���
� In order to show ���
 in case of m �� ��
we observe that by de	nition of H���� ���


E���
 � E����
 �H���� ���
 �
Z

m
m��

��m��� ���� ���
�

so that by de	nition of F �

F ���
 � F ����
 �H���� ���
 �
Z
� m
m��

��m��� � 	 �
�
jyj�
 ���� ���
�

In case of m 
 �� we have by de	nition of ���

m
m��

��m��� � 	 �
�
jyj� � ��

so that we obtain

F ���
 � F ����
 �H���� ���
 � �
Z
���� ���
 � F ����
 �H���� ���
�

In case of m � �� we have by de	nition of ����

� m
m��

��m��� � 	 �
�
jyj�
 ���� ���
 � � ���� ���
 for all y � IRN � ���


Indeed� if y is such that ��	 �
�
jyj� � � then m

m��
��m��� � ��	 �

�
jyj� and the

inequality ���
 turns into an equality� On the other hand� if y is such that
� � 	 �

�
jyj� 
 �� ��� � � and the above inequality turns into 	

�
�
jyj� �� � ����

which is true since �� � �� Hence we obtain in this case only an inequality

F ���
 � F ����
 �H���� ���
 � �
Z
���� ���
 � F ����
 �H���� ���
�

The identity ���
 in case of m � � is also quite obvious� From de	nition of
F and ��� we obtain

F ���
 �
Z
�ln �� � 	 �

�
jyj�
 �� �

Z
�ln ��� �� ln ���
 ��

����
� H���� ���
 � ��

��



In particular F ����
 � �� so that

F ���
� F ����
 � H���� ���
�

As announced� we will now argue that

jgradFj��j
� �

Z
�� jrpj� where p�y
 � e�����y

 � 	

�

�
jyj��

Indeed� we have by the abstract de	nition ��
 of the gradient

�

�
g���gradFj��� gradFj��
 � sup

s�T��M

	
dFj���s�

�

�
g���s� s


�
�

By de	nition of our functional F �

dFj���s �
Z
p s with p as above�

By de	nition of our inner product

Z
p s�

�

�
g���s� s
 �

Z
��rp � rq �

Z
��
�

�
jrqj��

if s � T��M and the function q on IRN are related by

�r � ���rq
 � s�

Hence

�

�
g���gradFj��� gradFj��
 � sup

function pon IRN

	 Z
��rp � rq �

Z
��
�

�
jrqj�

�

�
Z
��
�

�
jrpj��

��� Derivation of asymptotic result by formal Rieman�

nian calculus

Let us now show how ���
� ��

 and ���
 imply ���
� ���
 and ���
 by formal
Riemannian calculus� For this� we forget about where our structure �M� g


��



and F came from and work exclusively within the abstract framework� The
derivation of ���
 is easiest�

d

d�
jgradFj��j

� � � hgradFj���
D

D�
gradFj��i

� � hgradFj���HessFj��
d

d�
�i

����
� �� hgradFj���HessFj�� gradFj��i
����


 ��	 jgradFj��j
�� ���


Here D
D�
denotes the covariant derivative along the curve ��� The 	rst equality

comes from the fundamental property of the covariant derivative ���� Section
������� the second equality follows from the de	nition of the Hessian ����
Section �������

We now tackle ���
 and ���
� There are di�erent ways to derive ���
 and ���

from ���
� ��

 and ���
 by Riemannian calculus� We choose the one we are
able to make rigorous in section 
� We need the following auxiliary result�
We recall the de	nition of the induced metric d����� ���


� as the in	mum of the

energy �modulo a factor �

R �
� j

d
��
d�
j� d� over all curves ��� �� � � �	 "����
 � M

which connect ��� to ����

d����� ���

� �

n R �
� j

d
��
d�
j� d� j ��� �� � � �	 "����
 � M

with "����
 � ���� "����
 � ��� g �

Let ��� �� � � �	 "����
 denote a curve of least energy between ��� and ���� that
is�

d����� ���

� �

Z �

�
j
d"��

d�
j� d�� ���


In particular� ��� �� � � �	 "����
 is a geodesic� that is

D

d�

d"��

d�
� �� ���


which implies
d

d�
j
d"��

d�
j� � � h

d��

d�
�
D

d�

d"��

d�
i � �� ���


��



The auxiliary result we claim is

F ����
� F ����
 � h
d"��

d� j���
� gradFj���i� 	

�

�
d����� ���


�� ���


Indeed� this is a consequence of

d

d�
F �"��
 � h

d"��

d�
� gradFj
��i

and

d�

d��
F �"��
 � h

D

d�

d"��

d�
� gradFj
��i� h

d"��

d�
�
D

d�
gradFj
��i

����
� h

d"��

d�
�HessFj
��

d"��

d�
i

����

� 	 j
d"��

d�
j�

���������
� 	 d����� ���


��

By symmetry� we also have

F ����
� F ����
 � �h
d"��

d� j���
� gradFj���i� 	

�

�
d����� ���


�� ���


Adding ���
 and ���
 yields

h
d"��

d� j���
� gradFj���i � h

d"��

d� j���
� gradFj���i � 	 d����� ���


�� ���


For later reference� we note that ���
 also implies

F ���
� F ���
 � �j
d"��

d� j���
j jgradFj��� j

���������
� d����� ���
 jgradFj��� j�

hence by symmetry�

jF ���
� F ���
j 
 d����� ���
 maxfjgradFj��� j� jgradFj���jg� ��



��



We now derive ���
 by formal Riemannian calculus� Because of ��

� �����
 �
��� de	nes a �stationary
 solution of ���
� Hence it su#ces to show the con�
traction property

d�

d�
d����� ���


� 
 �	d����� ���

� ���


for two solutions ��i of ���
� Here�
d�

d�
denotes

d�

d� j��
f � lim sup

����

f��
� f���


� � ��
�

We 	x a ��� For any � � let ��� �� � � �	 "����� �
 � M be a curve between
"����� �
 � �����
 and "����� �
 � �����
� We may arrange for that it is the curve
of least energy for � � �� and depends smoothly on � � so that

d����� ���

�

������
�����
�

Z �

�
j
�"��

��
j� d� for � � ��



Z �

�
j
�"��

��
j� d� for any �

������
�����
� ���


Hence for � � ���

d�

d� j��
d����� ���


�
����



d

d� j��

Z �

�
j
�"��

��
j� d�

� �
Z �

�
h
�"��

��
�
D

�� j��

�"��

��
i d�

� �
Z �

�
h
�"��

��
�
D

��

�"��

�� j��
i d�

� �
Z �

�

�
d

d�
h
�"��

��
�
�"��

�� j��
i � h

D

��

�"��

��
�
�"��

�� j��
i

�
d�

����
� �

Z �

�

d

d�
h
�"��

��
�
�"��

�� j��
i d�

� �

�
h
d"��

d� j���
�
d���
d�
i � h

d"��

d� j���
�
d���
d�
i

�

����
� ��

�
h
d"��

d� j���
� gradFj���i � h

d"��

d� j���
� gradFj���i

�

����


 ��	 d����� ���

��

��



which establishes ���
�

We 	nally show how to get ���
 by formal Riemannian calculus� We need
the ingredient that

lim
���
�F ���
� F ����

 � �� ���


which in a 	nite dimensional context would immediately follow from ���
 in
the weakened form of

lim
���

d���� ���
 � �� ���


In our in	nite dimensional context� we obtain ���
 from ���
 and from ���

in the weakened form of

lim
���

jgradFj��j � � �
�


via the interpolation inequality

jF ���
� F ����
j 
 jgradFj��j d���� ���
 for all �� � M�

which we obtain from ��

� using gradFj���
����
� ��

We now derive ���
 in form of

d

d�
�F ���
� F ����

 
 ��	 �F ���
� F ����

�

We 	rst observe that

d

d�
�F ���
� F ����

 � hgradFj���

d��

d�
i

����
� �jgradFj��j

�� �
�


Hence we get

d

d�
�F ���
� F ����



����
� �jgradFj��j

�

����
�

Z �

�

d

d�
jgradFj��j

� d�

����


 ��	
Z �

�
jgradFj��j

� d�

����
� �	

Z �

�

d

d�
�F ���
� F ����

 d�

����
� ��	 �F ���
� F ����

�

��



� The geometry of �M� g�

The best way to understand the geometry of �M� g
 is� It is induced by a �at
Riemannian space �M�� g�
 via a submersion �� The intuition behind this
is the following� The porous medium equation describes the di�usion of gas
particles through a porous medium� M describes the state via the particle
densities � $ an Eulerian description� M� will describe the state via the
particle coordinates or �ow map � $ a Lagrangian description�

��� The isometric submersion �

We 	x a �� � M� We start by introducing the manifoldM� and the sub�
mersion ��M� 	 M� The manifold is the set of all di�eomorphisms of
IRN �

M� �
n
di�eomorphisms � of IRN

o
�

And � � ���
 is given by the push forward of the reference density �� under
the map �� More precisely�Z

� 
 �
Z
�� 
 � � for all functions 
 on IRN � �
�


We also use the notation
� � �����

We now endowM� with a metric tensor g�� Again� we will be sloppy about
the di�erential structure ofM� and think of the tangent space as the space
of all vector 	elds on IRN

T	M
� �

n
vector 	elds v on IRN

o
�

which we endow with the scalar product

g�	�v�� v�
 �
Z
�� v� � v��

In other words� �M�� g�
 carries the geometry of the ambient L��space with
weight ��� In particular �M

�� g�
 is �at�

We now argue that � is an isometric submersion from �M�� g�
 into �M� g
�
for the notion of isometric submersion� see for instance ���� Chapter ����� We

��



have to show� For any � � M� the tangential

T	��T	M
� 	 T�M �
�


of � at � has the property

g��s� s
 � inf
T���v�s

g	�v� v
 for all s � T�M� �
�


where � � ���
� We observe that �
�
 implies that T	� is an isometry when
restricted to the orthogonal complement �kerT	�


� of its kernel ker T	� 

T	M

�� In the language of di�erential geometry� A tangent vector in kerT	�
is called %vertical�� a tangent vector in �ker T	�


� is called %horizontal��

In order to establish property �
�
� we give a characterization of the tangen�
tial T	� and the spaces ker T	� and �ker T	�


�� It is convenient to do so
in terms of the identi	cation ��
 of tangent vectors s � T�M with potentials
p and the following identi	cation of tangent vectors v � T	M

� with velocity
	elds u�

T	M
� ��

n
vector 	elds u on IRN

o
�




via
v � u � ��

We observe that in terms of u� the metric tensor g� assumes the form

g�	�v�� v�
 �
Z
� u� � u�� where � � ���
� �
�


We now show that in terms of p and u�

� T	��u is the function p on IR
N �determined up to additive constants


which solves
�r � ��rp
 � �r � �� u
� �
�


� u � kerT	� if and only if the vector 	eld u on IR
N satis	es

r � �� u
 � �� �
�


� u � �kerT	�

� if and only if the vector 	eld u on IRN satis	es

u � rp for some function p on IRN � �
�


��



The line �
�
 follows immediately from �
�
� The line �
�
 follows from �
�

easily� Because of �
�
 and �
�
� u � �kerT	�


� meansZ
w � u � � for all vector 	elds w on IRN with r � w � ��

which implies �
�
 by elementary vector calculus�

It remains to establish �
�
� which we will do in the variational formZ
�rp � r
 �

Z
� u � r
 for all functions 
 on IRN � ���


Obviously�
� "�

��
��
 � u � "���
� "���
 � � ���


de	nes a curve � �	 "���
 � M� which for � � � passes through � and
has tangent u there� Now consider the image � �	 "���
 of this curve under
�� It su#ces to show that its tangent p at � � � satis	es ���
� Indeed� by
de	nition of ��Z

"���
 
 �
Z
�� �
 � "���

 for all functions 
 on IRN � ���


which we di�erentiate w� r� t� � and evaluate at � � ��

Z �"�

�� j���



����
�

Z
�� �r
 � �
 � �u � �


�
Z
�r
 � u for all functions 
 on IRN �

On the other hand� we have by de	nition ��
 of p� after integration by parts�

Z
�r
 � rp �

Z �"�

�� j���

 for all functions 
 on IRN �

This establishes ���
�

In view of the de	nition ��
 and of �
�
� the identity �
�
 turns intoZ
� jrpj� � inf

T���u�p

Z
� juj��

which now is an immediate consequence of the characterization ���
 of T	��u�

��



��� A property of the map �

The map � has the following important property� Let � �	 ���
 be a geodesic
on �M�� g�
� Then

d�

d�
��
 � �kerT	����


� implies
d�

d�
��
 � �kerT	����


� for all �� ���


Let us establish this property� Since �M�� g�
 carries the geometry of the
ambient euclidean L��space with weight ��� the geodesic equation is

���

���
� ��

We express the geodesic equation in terms of the tangent 	eld � �	 u��

given by by

��

��
� u � �� ���


Since

���

���
����
�

�

��
�u � �


�
�u

��
� � � �Du � �
�

��

��
����
�

�
�u

��
�Du�u

�
� ��

where Du denotes the Jacobian of u w� r� t� the spatial variables� the geodesic
equation reads

�u

��
�Du�u � �� ��



According to �
�
� the left hand side of ���
 means that there exists a function
p� on IRN such that u��
 � rp�� Now let the function "p��� x
 solve the
Hamilton�Jacobi equation

�"p

��
�
�

�
jr"pj� � � with initial data p��

Then its spatial gradient "u � r"p solves

�"u

��
�D"u�"u � � with initial data rp��

�




Hence "u and u solve the same evolution equation with identical initial data�
Therefore� "u and u coincide� In particular�

u��
 � r"p��
 for all ��

which according to �
�
 entails the right hand side of ���
�

��� Identi�cation of geodesics and induced distance

We will 	rst characterize geodesics and the induced distance on �M� g
 in
terms of geodesics and the induced distance on �M�� g�
� For this� we forget
about where our structure �� �M�� g�
	 �M� g
 came from and work exclu�
sively within the abstract framework of a Riemannian submersion with the
additional property established in the previous subsection�

The 	rst observation states how the %energy� of curves transforms under ��
Let � �	 ���
 be a curve onM�� Consider its image � �	 ���
 onM under
�� that is� ���
 � �����

� Then

Z
g��

d�

d�
�
d�

d�

 d� 


Z
g�	�

d�

d�
�
d�

d�

 d� ���


with equality if
d�

d�
� �kerT	�


��

Indeed� we have d�
d�
� T	��

d	
d�
� and therefore� according to �
�
�

g��
d�

d�
�
d�

d�

 
 g�	�

d�

d�
�
d�

d�

�

with equality if d	
d�
� �kerT	�


��

The second observation states what happens to geodesics under ��

If � �	 ���
 is a geodesic on �M�� g�
 with d	
d�
� �kerT	�


��
then its image � �	 ���
 is a geodesic on �M� g
�

�
���


If � �	 ���
 is a geodesic on �M� g
 with ���
 � ��� then there
exists a geodesic � �	 ���
 on �M�� g�
 with ���
 � id�d	

d�
�

�kerT	�

� and such that � �	 ���
 is its image under ��

���
�� ���


��



Indeed� for ���
� it su#ces to show that � �	 ���
 has lowest energy among
all small variations on small ��intervals� using the fact that � �	 ���
 has
the same property� Let ��� �
 �	 "���� �
 be a given variation of � �	 ���
� that
is� "���� �
 � ���
� Since T	� is an isomorphism of �kerT	�


� onto T��	�M�
and since d	

d�
� �kerT	�


�� we can %lift� the variation ��� �
 �	 "���� �
 to a

variation ��� �
 �	 "���� �
 of � �	 ���
� that is� ��"���� �

 � "���� �
� with
d
	
d�

� �kerT
	�

�� Therefore the energy of � �	 ���
 does not exceed the

energy of the variation � �	 "���� �
 for any ��Z
g��

d�

d�
�
d�

d�

 d�

����
�

Z
g�	�

d�

d�
�
d�

d�

 d�



Z
g�
	�

d"�

d�
�
d"�

d�

 d�

����
�

Z
g
��

d"�

d�
�
d"�

d�

 d��

The argument for ���
 goes as follows� Let � �	 ���
 be a geodesic on �M� g

with ���
 � ��� Let � �	 ���
 be the geodesic on �M�� g�
 with ���
 � id
and

T	�����
d�

d�
��
 �

d�

d�
��
 and

d�

d�
��
 � �kerT	����


��

According to the previous subsection� namely ���
� the last property is pre�
served along the geodesic�

d�

d�
��
 � �kerT	����


� for all ��

By ���
� this implies that the image under �� � �	 �����

� is a geodesic on
�M� g
� By construction� it has the same initial data as � �	 ���
� Hence
both geodesics coincide�

�����

 � ���
 for all ��

The third observation states what happens to the induced distance under ��
Let d� denote the induced distance on �M�� g�
 and d the one on �M� g
�
Let � � M be arbitrary� then

� For all � with ���
 � ��

d���� �

� 
 d��id��
�� ���


��



� There exists a � with ���
 � � and

d���� �

� � d��id��
�� ���


We observe that ���
 and ���
 imply

d���� �

� � inf

��	���
d��id��
�� ���


Let us start with ���
� Indeed� let ��� �� � � �	 "���
 be any curve on M�

with "���
 � id and "���
 � �� Consider its image ��� �� � � �	 "���
 under
�� By assumption� "���
 � �� and by de	nition of �� "���
 � ��� Therefore

d���� �

� 


Z �

�
g
��

d"�

d�
�
d"�

d�

 d�

����



Z �

�
g�
	�

d"�

d�
�
d"�

d�

 d��

Since "� was an arbitrary curve connecting id to �� this inequality yields ���
�
Now let ��� �� � � �	 "���
 be a curve connecting �� to � with minimal energy�
According to ���
� there exists a curve ��� �� � � �	 "���
 on �M�� g�
 such
that

d"�

d�
� �kerT
	�


�� "���
 � id and ��"���

 � "���
�

In particular� � �� "���
 satis	es ���
 � �� and we have

d���� �

� �

Z �

�
g
��

d"�

d�
�
d"�

d�

 d�

����
�

Z �

�
g�
	�

d"�

d�
�
d"�

d�

 d�

� d��id��
��

This establishes ���
�

We will now use the above characterization of geodesics on �M� g
 in terms
of geodesics on �M�� g�
 and our good understanding of the latter to identify
the former� Since �M�� g�
 carries the geometry of the ambient L��space
with weight ��� geodesics � �	 ���
 are characterized by

���

���
� �� ���


��



Now let � �	 ���
 be a geodesic on �M� g
 with the initial data

���
 � �� and
d�

d�
��
 � s� ���


We represent the tangent vector s � T��M by

�r � ���rp
 � s� ���


According to ���
� there exists a geodesic � �	 ���
 on �M�� g�
 with ���
 �
id�d	

d�
� �kerT	�


� and such that � �	 ���
 is its image under �� that is

���
 � ���
��� for all ��

Since in particular� ���
 � id and

Tid��
d�

d�
��
 � s and

d�

d�
��
 � �kerTid�


��

we must have by our characterization of Tid�

��

��
��
 � rp�

Together with ���
� we infer that ���
 is of the form

���
 � r�
�

�
jyj� � � p
�

Therefore� we have characterized our geodesic � �	 ���
 with initial data
���
 as

���
 �
�
r�
�

�
jyj� � � p


�
���� ��



where p is related to s by ���
�

We will now use the above characterization of the induced distance on �M� g

in terms of the induced distance on �M�� g�
 and our good understanding of
the latter to identify the former� Since �M�� g�
 carries the geometry of the
ambient L��space with weight ��� d

� is given by

d�������

� �

Z
�� j�� � ��j

��

We therefore obtain from ���
 that

d���� �

� � inf

��	
��

Z
�� jid� �j

�

Hence we have identi	ed the induced distance onM with what is called the
Wasserstein distance� which we formally introduce in section 
�

��



��� Computation of the Hessians HessE and HessM

The Hessian HessF of a function F on a Riemannian manifold �M� g
 can be
computed by taking second derivatives of F along geodesics� More precisely�
if � �	 ���
 is a geodesic on �M� g
 with

���
 � �� and
d�

d�
��
 � s�

then

g���s�HessFj��s
 �
d�

d��
F ����

j���� ���


As always� we represent the tangent vector s � T��M by

�r � ���rp
 � s�

In the previous subsection� we characterized the geodesic � �	 ���
 as

���
 � r���
���� ���


where the function ���
 on IRN is given by

���� y
 �
�

�
jyj� � � p�y
� ���


Hence convexity of a function F on the Riemannian manifold �M� g
 reduces
to McCann�s %displacement convexity� ���� McCann introduced� established
and used this notion for our energy functional E to prove uniqueness for a
variational problem onM $ without referral to the Riemannian structure�
As a guideline for our rigorous arguments in the next section� it will be
convenient to explicitly 	nd HessEj�� �as opposed to just showing that it is
positive semi de	nite
� Therefore the calculation which now follows deviate
a bit from McCann�s�

We observe that ���
 can be reformulated as

detD����
 ����
 � r���

 � ���

so that

E����

 �
Z
e

�
��

det D����


�
detD����
� ���


��



where D����
 denotes the N � N�matrix of second spatial derivatives of
���
 and e the energy density� as de	ned in ���
�

Guided by the above� we consider a curve � �	 A��
 in the space of symmetric
and positive de	nite N � N�matrices and a positive number z � �� Let us
recall that the energy density e and the osmotic pressure � �de	ned in ���


are related by

��z
 � z e��z
� e�z
�

Therefore� we have

d

d�

�
e



z

detA

�
detA

�
� ��



z

detA

�
d

d�
detA�

d�

d��

�
e



z

detA

�
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�
� ��



z

detA

�
z

�detA
�
�
d

d�
detA
�

� �



z

detA

�
d�

d��
detA�

By elementary linear algebra�

d

d�
detA � tr�A�� �A

��

 detA�

d�

d��
detA � �tr

�
A�� �A

��

��

detA�

�
tr�A�� �A

��



��

detA

� tr�A�� d
�A

d��

 detA�

Hence if the curve � �	 A��
 additionally satis	es d�A
d��

� �� we obtain

d�

d��

�
e



z

detA

�
detA

�
� �w ���w
� ��w



�
tr �A��B


��
detA

� ��w
 tr
�
A��B

��
detA�

where we have used the abbreviations

B ��
dA

d�
and w ��

z

detA
�

Since

�A��B
� � A��
�C�A�
� with C �� A��
�BA��
��

��



where C is a symmetric matrix� we have

tr
�
A��B

��
� trC� �

�

N
�trC
� �

�

N

�
tr �A��B


��
� ���


Since ��w
 � wm � �� we therefore obtain
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d��

�
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z

detA

�
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� �w ���w
� ���

�

N

 ��w
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tr �A��B


��
detA�

Since w ���w
 � �� � �
N

 ��w
 � �m � �� � �

N


wm � � by our assumption

m � �� �
N
� this implies
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d��

�
e



z

detA

�
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�
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For later reference� we notice that if in addition A��
 � id�

d�

d�� j���

�
e



z

detA

�
detA

�
� �z ���z
� ��z

 �trB
� � ��z
 trB�� ���


Now consider D����
� We observe that �
 D����
 is symmetric� �
 D����
 is
positive de	nite �for su#ciently small �
 since D����
 � id� �
 ��

���
D����
 � �

because of ���
� Hence we may apply the above to A��
 � D����
 and obtain

d�

d��
E����
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�
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�
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Since �
�� j���

D��
����
� D�p and D����
 � �� we also get
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 �
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�
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�
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o
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We conclude by

g���s�HessEj�� s
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�p
�
o

� �� ���


��



This establishes the 	rst part of ���
� Let us point out again that it is the
condition m � �� �

N
which ensures that E is convex on �M� g
�

Let us now identify HessMj��� It follows immediately from ���
 that

M����

 �
Z
��
�

�
jr���
j��

Hence we obtain

g���s�HessMj��s

����
�

d�

d�� j���
M����



����
�

Z
�� j

�r�

�� j���
j�

����
�

Z
�� jrpj

�

���
� g���s� s
� ���


This establishes the second part of ���
�

� Rigorous results

��� Weak solutions of the porous medium equation

In case of m � � and for non�zero initial data with compact support� there
is no �classically
 di�erentiable solution of the porous medium equation� We
therefore must work with the notion of a weak solution� The well�established
existence and uniqueness theory for weak solutions is based on the traditional
gradient �ow approach� as presented in the subsection ���� In particular� ex�
istence is based on the identity �

 in subsection ���� which in the traditional
approach reads as

d

dt

Z
�

m��
��t
m�� � �

Z
jr�m�t
j��

This identity yields the essential a priori estimates� Uniqueness is based on
the convexity of the functional in the traditional approach� which leads to a
contraction property of the semi group in the induced norm �remember that
in the traditional approach� the space carries the geometry of a convex subset

��



of a euclidean function space� so that intrinsic convexity of the functional
reduces to ordinary convexity
� Here that means that if ��� �� are solutions�
then

d

dt

Z
jrp�t
j �

Z
����t
� ���t

 ����t


m � ���t

m
 
 ��

where� in the spirit of ��
�

�r�p�t
 � ���t
� ���t
�

De	nition � Let �� be a measurable and non negative function on IRN with

Z
�

m��
�m��
� 
 ��

Let � be a measurable and non negative function on ����
� IRN with

ess sup
t������

Z
�

m��
��t
m�� 
 ��

Then �m is locally integrable� more precisely

ess sup
t������

Z
��m�t

�m���� 
 ��

where �m� �
� denotes the dual exponent to m� �� Assume further that �m

has a distributional spatial gradient r�m satisfying

Z �

�

Z
jr�m�t
j� dt 
 ��

Then � is called a weak solution of the porous medium equation with initial
data �� if

Z
������IRN

�
��

�


�t
�r�m � r


�
�

Z
�� 
��


for all 
 � C�
� ������
� IRN
�

��



��� The Wasserstein metric

In subsection ���� we formally derived that the induced metric d on �M� g

is given by

d���� ��

� � inf

���	
��

Z
�� jid� �j

��

Morally speaking� this is the Wasserstein metric� The precise de	nition of
the Wasserstein metric relaxes the above variational problem� This is done
by embedding the set of one�to�one transformations � with �� � ���� into
the set of all probability measures � on IRN � IRN with marginals given by
the Lebesgue densities ��� �� via

� � �id� �
���� ��



that is Z

�x�� x�
��dx�dx�
 �

Z
���x�
 
�x����x�

 dx�

for all 
 � C�
� �IR

N � IRN
�

Then Z
�� jid� �j

� �
Z
jy� � y�j

� ��dy�� dy�
�

and it is the latter functional one minimizes on the set of all probability
measures � with marginals �� dy� and �� dy�� The relaxed variational problem
is one version of the Monge�Kantorowicz mass transference problems� the
��s are called �transference plans�� the function jy� � y�j

� is the �cost� of
transferring a unit mass from y� to y��

De	nition � For two non negative Borel measures �� and �� of equal mass�
we introduce

P ���� ��


�
n

non negative Borel measure � on IRN � IRN



Z


�y�
��dy� dy�
 �
Z

�y�
���dy�
 andZ


�y�
��dy� dy�
 �
Z

�y�
���dy�
 for all 
 � C�

� �IR
N


o
�

�




d���� ��

� is de�ned as

d���� ��

� � inf

��P �������

Z
jy� � y�j

� ��dy� dy�
 � ���


If �� and �� have Lebesgue densities �� � �� dy� resp� �� � �� dy�� we also
write

d���� ��

� � d���� ��


��

The space P ���� ��
 always contains the product measure �� � ��� Hence
d���� ��
 � ����� is well de	ned� If the second moments of �� and �� are
	nite� then the transference plan �� � �� has 	nite cost� so that d���� ��
 �
����
� It is then an easy exercise in soft methods that the variational problem
���
 admits a minimizer of 	nite cost� It has been known to the probabilists
for a long time that d indeed de	nes a metric on the space of probability mea�
sures on IRN with 	nite second moments� This distance function is popular
in probability theory since it metrizes the topology of weak�& convergence
�up to second moments
� We found the few results on d we need in ���� or
����� We summarize them in the following Lemma�

Lemma � Let f����g��� and f����g��� be two sequences of non negative
Borel measures on IRN � We assume that the masses of ���� and ���� are
�nite and equal and that there exist two non negative Borel measures �� and
�� on IRN of �nite mass such that

Z

 d�i � lim

���

Z

 d�i�� for all 
 � C�

� �IR
N 
 and i � �� ��

Then
d���� ��


� 
 lim inf
���

d������ ����

��

If in addition

Z �

�
jyj� d�i � lim

���

Z �

�
jyj� d�i�� for i � �� ��

then
d���� ��


� � lim
���

d������ ����

��

��



The variational problem in ���
 has recently received some attention by ana�
lysts� If the measures �� and �� have bounded support and Lebesgue densities
�� � �� dy� resp� �� � �� dy�� Brenier ��� has shown uniqueness of the mini�
mizing transference plan � and proved that the support of � is the graph of
the gradient of a �generically non smooth
 convex function� more precisely�

� � �id�r�
���� ���


A glance back to ��

 then shows that the initial relaxation from one�to�
one transformations � to transference plans � is non essential and just of
technical convenience� In particular� ���
 yields that

�� � r����� ���


We also invite the reader to compare ���
 with ���
 in subsection ����

Ca�arelli ��� and Gangbo  McCann ���� ��� �
� have extended Brenier�s re�
sult to more general strictly convex cost functions� The case of cost functions
of degenerate convexity ���� and concave cost functions ��
� is qualitatively
di�erent�

��� The statement of the rigorous result

Theorem � Let m satisfy m � N
N��

and m � � � �
N
� Let � be a weak

solution of the porous medium equation with initial data �� in the sense of
De�nition �� We assume that additionallyZ

�� � � and
Z
��
�

�
jxj� 
 ��

We consider the function �� on �����
� IRN given by

��t� x
 �
�

tN�
���ln t�

x

t�

�

where 	 � �
�m���N��

� Then� in a distributional sense�
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h
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 jgradFj�����j

�
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 ��
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�exp��	 �
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� F ����
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 ��

d
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h
exp��	 �
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� ���


�
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 ��
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with the understanding that the quantities in the square brackets are �nite
for � � ��� The precise meaning of jgradF��j

� and F ���
�F ����
 is given in
���� resp� ����� d denotes the Wasserstein distance as in De�nition 	�

Let us now explain what we understand by jgradF��j
� and F ���
 � F ����
 in

Theorem �� In subsection ����
� we have identi	ed jgradF��j
� as

jgradFj��j
� �

Z
�� jrpj� where p�y
 � e�����y

 � 	

�

�
jyj��

We observe that thanks to the fundamental relationship z e���z
 � ���z
 be�
tween energy density ���
 and osmotic pressure ���
� we have

�

��
r����
 � ��re����


and thus Z �

��
jr����
 � 	 �� yj� �

Z
�� jrpj�� ���


provided �� is locally bounded away from zero� Observe that even if this is
not the case� the l� h� s� of ���
 is well de	ned as a number in ������ since
r����
 vanishes almost everywhere on the set where �� vanishes� It is this
weak formulation

jgradF��j
� �

Z �

��
jr����
 � 	 �� yj�� ���


we use in Theorem ��

By F ���
� F ����
 we understand

F ���
� F ����
 ���
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�
�R

e���
 � 	
R
�� �
�
jyj�

�
�
�R

e����
 � 	
R
���

�
�
jyj�

�
for m � ��R

fe���
� e����
� e�����
 ���� ���
g for m 
 �

��
� �

The second line is inspired by the identity ���
 in subsection ���� We point
out that in both lines� the integrands are non negative� hence the number
F ���
� F ����
 � ����� is well de	ned�

��



The main technical di#culty in mimicking the Riemannian calculus is the
possible lack of regularity of solutions of the porous medium equation� Our
approach is to mimic the Riemannian calculus in a completely smooth setting
�Proposition �
 and then to use an approximation argument �in the proof of
Theorem �
�

Proposition � Let e and � be smooth functions on ����
 related by

��z
 � z e��z
� e�z
 and thus ���z
 � z e���z
 ���


and satisfying

��z
 � � and z ���z
� ���
�

N

 ��z
 � �� ���


limz��e
��z
 � �� and limz��e�z
 � �� ���


Let the open ' 
 IRN satisfy

' is convex and �' is smooth�

Let the function �� of be a smooth and positive function on �����
 � '
which solves

���

��
�r � ���rp
 � � in �����
� '� ��



��rp � � � � on �����
� �'� ���


where

p � e����
 � 	
�

�
jyj�

for some �xed 	 � �� We observe that the evolution equation ��
���� con�
serves mass� Thanks to ��
�� there exists a smooth stationary solution ��� of
��
���� with the same mass� it is given by

e������y
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where

F ���
 � E���
 � 	M���
 �
Z
�
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 � 	

Z
�
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�

�
jyj��

��� Proof of the Proposition

We start with the proof of ���
� At the center of our attention is

p�y
 � e�����y

 � 	
�

�
jyj��

that is� p �� gradFj�� � �
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jgradFj��j
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D
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gradFj��i� We now split p into
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that is� p� �� gradEj�� and p� �� gradMj��� We will show that
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where v � II�v denotes the second fundamental form of �'� This mimics

�hgradFj���
D

d�
gradEj��i � hgradFj���HessEj�� gradFj��i�

as can be seen from ���
� On the other hand� it is obvious thatZ
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as can be seen from ���
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Let us establish the identity ����
� For this� we write the 	rst part of the
integrand of the l� h� s� in ����
 as follows�

���rp � r��p�
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 �� ���
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Thanks to the formula
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Let us consider the boundary integral in ����
� The Neumann boundary con�
dition ���
 means that rp is a tangential vector 	eld on �'� Di�erentiating
the Neumann boundary condition along this tangential vector 	eld yields

� �D�p�rp�rp � II�rp � � on �'� ����


We use the identity ����
 to substitute � �D�p�rp in ����
 and obtainZ
�
��rp �

h
r��p� �D

�p��rp
i

�
Z
�

n
r�p �����
r � ���rp
 � ����
r � �D�p�rp


o

�
Z
��

����
rp � II�rp� ���
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We reconsider the 	rst part of the bulk integrand on the r� h� s� in ���

�

�����
r � ���rp
r�p � �����
 �� �r�p
� � �����
r�� � rpr�p

� �����
 �� �r�p
� �r�����
� � rpr�p

and perform a last integration by partsZ
�
r�����
� � rpr�p

� �
Z
�
����
r � �r�prp
 �

Z
��

����
 � � rpr�p
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Z
�
����
r � �r�prp
�

Hence we obtainZ
�
��rp �

h
r��p� �D

�p��rp
i

�
Z
�

n
�����
 �� �r�p
� � ����


h
�r � �r�prp
 �r � �D�p�rp
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�
Z
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����
rp � II�rp�

We conclude the proof of identity ����
 by evoking the formula

�r � �r�prp
 �r � �D�p�rp
 � tr�D�p
� � �r�p
��

In order to conclude

d

d�

Z
�
�� jrpj� 
 ��	

Z
�
�� jrpj��

and thereby the proof of ���
� it remains to show that the right hand side of
����
 is non negative� that is� hs�HessEj��si � �� Here we use our assumptions
on � and '� The integral over ' is non negative� since its integrand is non
negative�

������
 ��� ����

 �r�p
� � ����
 tr �D�p
�

����

� ������
 ��� ����

 �r�p
� � ����

�

N
�r�p
�

����

� ��

��



where we have used trC� � �
N
�trC
� for a symmetric N �N�matrix C as in

���
 of subsection ���� The integral over �' is non negative since its integrand
is non negative� Our assumption ���
 on � implies that the 	rst factor ����

is non negative� the convexity of ' implies that the second fundamental form
II of �' is positive semi de	nite� hence also the second factor rp � II�rp is
non negative�

Let us now tackle ����
� Following the lines of subsection ��
� we start by
deriving an auxiliary result� Let ���� ��� be smooth and positive functions on '�
We think of ��i �i � �� �
 as being extended on IR

N by zero so that according
to ���
�

F ���i
 � E���i
 � 	M���i
 �
Z
e���i
 � 	

Z
��i
�

�
jyj��

Let � denote an optimal transference plan in the de	nition of d����� ���

�� We

consider pi �� gradFj��i � that is�

pi�y
 � e����i�y

 � 	
�

�
jyj��

The auxiliary result states that

F ����
� F ����
 �
Z
rp��y�
 � �y� � y�
��dy�dy�
 � 	

�

�
d����� ���


�� ����


The integral is well de	ned� since p� is smooth on ' and � is supported on
' � '� In order to derive and interpret inequality ����
� we need the curve
��� �� � � �	 ��� of least energy between ��� and ���� In this sense� ����
 mimics
���
 in subsection ��
� that is�

F ����
� F ����
 � hgradFj��� �
d��

d� j���
i� 	

�

�
d����� ���


��

In terms of ��� �� � � �	 ���� inequality ����
 obviously is a consequence of

d�

d� j���
F ����
 �

Z
rp��y�
 � �y� � y�
��dy�dy�
 ����


and
d�

d��
F ����
 � 	 d����� ���


�� ����


��



The latter obviously splits into

d�

d��
E����
 � � and ����


d�

d��
M����
 � d����� ���


�� ����


For these statements to make sense� we need the existence of a �weak
 curve
��� �� � � �	 ��� of least energy between ��� and ���� It is provided by results
of McCann ���� which rely on earlier work by Brenier ���� Let us state these
results� According to Brenier ���� there exists a convex function �� on IRN

such that

� � �id�r��
���� and in particular ��� � r������� ����


According to McCann ��� Proposition ��� �ii
��

��� � r������ where ���y
 � ��� �

�

�
jyj� � � ���y


de	nes a non negative and integrable function ��� on IR
N � A glance back to

��

 in subsection ��� will convince the reader of our interpretation of � �	 ���
as a geodesic $ which by construction is the curve of least energy between
��� and ���� We observe that in terms of ��Z

��� 
 �
Z

�� y� � ��� �
 y�
��dy�dy�
 for all 
 � C�

� �IR
N 
� ����


Furthermore� McCann shows in ��� Theorem ���� that the transformation
formula ���
 in subsection ��� can be made rigorous� For all � � ��� �
 we
have

Z
e�����y

 dy �

Z
e

�
����y�


detD����y�


�
detD����y�
 dy�� � ����


We recall that a convex function � has a gradient r� and a Hessian D�� in
the sense that for almost every y��

��y


� ��y�
 � �y � y�
 � r��y�
 � �y � y�
 �D
���y�
��y � y�
 � o��y � y�


�
�

�




A proof of this result of Alexandrov can be found in ��� Theorem A�����
The symmetric and positive semi de	nite matrix D����y�
 in ����
 is to be
understood in this sense� We observe that D����y�
 � �D���y�
� ����
 id
is positive de	nite for � 
 �� Hence the division by detD���y�
 in ����

causes no problem�

Let us start with ����
� We note that our assumptions on e and � imply the
convexity of ����
 � z �	 e�z
� Indeed�

z� e���z

����
� z ���z


����

� z ���
�

N

 ��z


����

� � for all z � ��

Therefore� we have

e�z
� e�z�
 � e��z�
 �z � z�
 for all z � � and z� � ��

We thus obtain

E����
� E����
 �
Z
e�����
 ���� � ���
�

Trivially�

M����
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 �
Z �
�
jyj� �����y
� ����y

 dy�

so that by de	nition of p�

�

�
�F ����
� F ����

 ����


�
Z
p�
�

�
���� � ���


�����
�

Z �

�
�p��� y� � ��� �
 y�
� p��y�

��dy�dy�
� ���



We observe that ��
 the ��integral is supported on '�'� ��
 for all �y�� y�
 �
'�' we have� as a consequence of the convexity of '� � y������
 y� � '�
��
 p� is smooth in '� This implies that

lim
���

�

�
�p��� y� � ��� �
 y�
� p��y�

 � rp��y�
 � �y� � y�


uniformly in �y�� y�
 in the support of ��

��



Therefore� the passage to the limit � � � in the inequality ���

 yields ����
�

Convexity of E along geodesics as expressed in ����
 can be derived from
the representation ����
 by copying the arguments given in subsection ��
�
The argument for the strict convexity of M along geodesics as quanti	ed in
����
 is simpler� According to ����
�

M����
 �
Z �

�
jyj�����y
 dy �

Z �
�
j� y� � ��� �
 y�j

� ��dy�� dy�
�

and therefore

d�

d��
M����
 �

Z
jy� � y�j

� ��dy�� dy�
 � d����� ���

��

Now that we have established our auxiliary result ����
� we observe that by
symmetry� we also have
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� F ����
 � �
Z
rp��y�
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��dy�dy�
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�

�
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�� ����


Adding ����
 and ����
 yieldsZ
�rp��y�
�rp��y�

 � �y� � y�
��dy�dy�
 � 	 d����� ���


�� ����


Furthermore� we obtain from ����
� dropping the 	 �
�
d����� ���
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�
Z
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j
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�
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Z

�
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�
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�
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and thus by symmetry
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�
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We now are in the position to prove that for two smooth and positive solutions
��� and ��� of ��
���
 we have

d�

d�
d����� ���


� 
 ��	 d����� ���

�� ����


Since �����
 � ��� de	nes a �stationary
 smooth and positive solution of
��
���
� this proves ����
� In order to prove ����
� we consider the smooth
velocity 	elds

ui � �rpi where pi�y
 � e����i�y

 � 	
�

�
jyj�� ����


Since ��i satis	es ��
���
� we have

���i
��

�r � ���i ui
 � � in ����
� '�

ui � � � � on ����
� �'�

Let us 	x a time �� and show that the last two lines imply that

d�

d� j����
d������
� �����



�


 �
Z
�u����� y�
� u����� y�

 � �y� � y�
����� dy�dy�
� ����


where ����
 is an optimal transference plan in the de	nition of the Wasser�
stein metric d�������
� ������



�� Obviously� ����
 together with the de	nition
����
 of the velocities and the inequality ����
 imply ����
� In order to prove
����
� we observe that

��i

��
��
 � ui��
 � �i��
 and �i���
 � id�

de	nes a family f�i��
g� of di�eomorphism of ' which are such that for any
� � �����

��i��
 � �i��
���i���
�

Therefore�
���
 � �����
� ����

�����


��



de	nes an admissible transference plan in the de	nition of d������
� �����


�

�observe that ����
 is supported in ' � '� where ����
� ����
 is de	ned
�
Hence for all � � ���

�

� � ��

�
d������
� �����



� � d�������
� ������


�
�
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Z
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�
Z
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�
Z �

� � ��

�
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� ����� y�
j

� � jy� � y�j
�
�
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We observe that by de	nition of �i
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�

� � ��

�
j����� y�
� ����� y�
j

� � jy� � y�j
�
�

� � �u����� y�
� u����� y�

 � �y� � y�


uniformly in �y�� y�
 in the support of ����
�

Therefore� the passage to the limit � � �� in the inequality ����
 yields ����
�

We 	nally address ���
� As in our formal calculus in subsection ��
� we need
to know beforehand that

lim
���
�F ���
� F ����

 � �� ����


As in subsection ��
� we obtain ����
 from ���
 and ����
 in the weakened
form of

lim
���

Z
�
�� jrpj� � � resp� lim
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via the interpolation

jF ���
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which follows from ����
 and ���
� The other ingredient is d
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�F ���
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 � �jgradFj��j
�� that is�
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The rest of the argument follows the few corresponding lines in subsection
��
�

��� Proof of the Theorem	 part I

Deriving Theorem � from Proposition � is an uninspiring exercise in approx�
imation arguments� For convenience� we set again

e�z
 �

�
�

m��
zm for m �� �

z ln z for m � �

�
�

��z
 � zm�
��z
 � �

m��
zm��

and observe that these functions are related by

z e���z
 � ���z
 and ���z
 � ��z
�

We divide the statement of the theorem into two parts� The 	rst part is to
show that for a� e� �� and a� e� � with � � �� we have
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where ��� � �����
� We start by observing that for a� e� �� � ln�t�
 we haveZ
��� � � and

Z
����
 
 ��

�����
 � L�
loc�IR

N
 and r�����
 � L��IRN
�

where �� � ��t�
� We 	x such a �� � ln�t�
� W� l� o� g� we may assume that
the r� h� s� of ����
� ���

� ����
 and ����
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the latter being a consequence of the assumption that d����� ���
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 � and

the fact that
R
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�
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We now approximate ���� We will construct functions ����� and R� 
� such
that
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We construct ����� in three steps� The 	rst step� For R 
� we set
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where we have used in the last line that the integrand of the boundary integral
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Now for the case of m 
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This can be done in two steps� The 	rst step is to mollify �� into a ���
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