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Abstract

The act of distributing and the resulting distribution are notions which lie at the kernel of any
distributed system. The basic algebra of such distributions and their use in formal specifications has
already been developed in terms of indexed monoids (i.e., function spaces with valuations in monoids)
and their morphisms. Complementary to such algebra is a body of emerging geometry/topology of formal
specifications, one critical aspect of which is the fibre bundle, and more generally the sheaf.

Fibre bundles are used to model the nature and shape of geometrical objects and to associate a
field with points in a space. They find particular application in theoretical physics, for example. We
demonstrate here that fibre bundles occur naturally in specifications and models associated with formal
methods.

keywords: distributed system, fibre bundle, formal method, geometry, sheaf.

1 Prologue

In an earlier paper Towards a New Conceptual Framework for the Modelling of Dynamically Distributed
Systems [18] we set forth a framework whereby we might set some recent research results into the formal
modelling and specification of distributed systems and, in particular, to the harmonious arrangement whereby
process algebras might comfortably settle with the standard model-theoretic methods of Z and VDM.

Of even greater interest and concern was the possibility that there might be a geometry of formal methods,
a geometry which would complement the algebra which had proven so fruitful and successful over a period of
twenty years. We were fully aware of the Cartesian duality, algebra↔ geometry, thereby entailed. A certain
success in this regard was reported in a previous workshop in Ilkley [18] where we demonstrated rigorously
that the tail-recursive forms of the len homomorphism on words was isomorphic to a translation subgroup
of the real number line.

1.1 Geometric algebra

The specific advantage of having a geometry of a specification in addition to the algebra lies in the fact
that with the geometry one immediately grasps the whole picture at a glance as it were. The geometry
provides a qualitative view of specifications (cf., Poincaré: “Ces théorèmes ont été présentés sous une forme
géométrique qui avait à mes yeux l’avantage de mieux faire comprendre la genèse de mes idées . . . ” quoted
in [2, 83]). With the algebra, necessary in its own right for the subsequent development and programming,
everything is detail. Since the geometry of a specification bears little resemblance to the ‘every day’ notion
of geometry that most people seem to have, some care is needed in its exposition. This is as true for those
in formal methods as for others.

It would appear that algebra and logic is the ‘natural language’ of representation for a formal specification.
That there might be a corresponding geometry is entirely plausible. Since the geometry is brought in to
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(PW,∪, ∅)
DS-�

∪/ ◦ rng
(L → PW,©∪ , θ)

Figure 1: A distribution and its retrieval

elucidate the algebra of the specification we call it geometric algebra. Our work is, of course, directly
related to Logical Geometry or geometric logic [10] [8, 458 et seq.] [3], it being the counterpart to the
constructionist intuitionistic mathematics that we normally use in formal specifications.

In this paper we will focus exclusively on the single notion of distribution and examine it in detail. To
motivate the discussion we consider some elementary examples. Let there be given a collection of words,
U ∈ PW , which is used to model a spelling-checker dictionary such as might be used in the trade-marked
game Scrabble. Let us now consider the dictionary to be distributed over a network (such as that of the
World-Wide Web). We shall insist that such a distribution is a partition of the original dictionary, i.e., that
a word can not be found in more than one location. Such a distribution δ in L → PW is an element of an
indexed monoid [16], denoted ((L → PW )′,©∪ , θ), which is essentially a function space with target the base
monoid, here (PW,∪, ∅), the monoid of sets under union. The priming of the space denotes the exclusion of
elements of the form l 7→ ∅. Composition of distributions δj and δk is ‘pointwise’

(δj ©∪ δk)(l) = δj(l) ∪ δk(l)

For the present we will denote the act of distributing thus

DS : PW −→ (L → PW )

and shall explore the meaning to be given to DS(U) = δ in a geometrical setting, where U denotes a set of
words and S = dom δ denotes the set of sites or locations.

To collect together the distributed components of the dictionary is usually known as a retrieval and one
strives to ensure that such a retrieval is a homomorphism. Such a collecting together is the inverse operation
of the act of distributing and the corresponding structures or spaces are complements. In the case of the
distributed dictionary the retrieval homomorphism is a reduction with respect to set union, ∪/ ◦ rng, as
shown in Fig. 1. Thus for distributed dictionaries δi and δj we have

∪/ ◦ rng(δi ©∪ δj) = ∪/ ◦ rng(δi) ∪ ∪/ ◦ rng(δj)

The creative aspect of such a dictionary is the addition of a new word. Let Au denote the addition of a
new word u to the original dictionary and Al,u the addition of the same word to the distributed dictionary
at location l. We shall not worry for the moment about the mechanism which determines the location at
which the new word is added to the distributed dictionary. The specification of each of the operations is

Auδ = δ ∪ {u}

and

Al,uδ = δ ©∪ [l 7→ {u}]

Repeated addition of new words gives rise to the monoids (PW,∪, ∅) and (L → PW,©∪ , θ), respectively.
From the perspective of algebra and formal specifications it is important to note that not everything in

L → PW will denote a distributed dictionary. Therefore, we must supply an appropriate well-formedness
constraint or invariant which singles out that space of distributed dictionaries in which we are interested. In
addition, the specifications of the addition operations are incomplete. Both require pre-conditions to single
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out the appropriate meanings. In the case of Al,u we must unfold the operation into the two basic ones of
extension and strict override:

Al,uδ = δ ©∪ [l 7→ {u}] =
{
δ t [l 7→ {u}], if ¬χδ(l)
δ † [l 7→ δ(l) ∪ {u}], otherwise

We will show that in the geometry of such distributions there is no need for invariants and pre-conditions.
The geometry will say it all. On the other hand the geometry is complementary to the algebra. Even if
the geometry is determined one will still have to return to the algebra together with the invariants and
pre-conditions.

2 The algebra of distributions

We have already introduced a simple example of a distribution—the spelling checker dictionary. Now we
wish to look at another well-known and practical distribution—the hash table. Our primary exemplar or
prototype of a distribution function in computing is the hash function which is used to map words to
distinct addresses or locations. In the case that two distinct words hash to the same address we use an
overflow list. This implementation strategy is usually known as hashing with overflow chaining on collision
and the resulting storage structure a hash table [13, 513]. We will wish to extend this prototype to cover
a variety of distributions and, therefore, we need to abstract away the concrete details. A rudimentary
specification of such a hash table is given in the appendix. From the specification it is clear that everything
depends on the nature of the hash function.

Let W denote the space of words, which in general we shall take to stand for the space of words over the
alphabet Σ, denoted by Σ?, or the corresponding free group over Σ, denoted by FG(Σ). The context will
make clear which interpretation is more appropriate. Let PW denote the space of all sets of words taken
from W , the powerset domain of W , which in topological terms is the discrete topology for W in which every
subset (or element of PW ) is open (see Appendix). The additive abelian group of integers modulo a prime
p is denoted by Zp or alternatively by the quotient Z/pZ. The space of partial maps from W to Zp is the
usual domain of hash functions and the subspace of total functions from W to Zp is denoted by ZWp .

We have already demonstrated clearly that whereas we work within constructive mathematics there
is a seamless transition from the classical mathematics of total functions to the discrete mathematics of
finite partial maps [18]. Consequently, let (η, U) in ZWp × PW denote a total function η which distributes
elements of the set U into distinct locations. The resulting distribution may be expressed by the restriction
of the total function η to the set of elements U , expressed thus / U (η) (or classically as η|U ). A hash table
is often expressed as the inverse map, (/ U (η))−1, and expressed in the “completed” or totalized form as
∅Zp † (/ U (η))−1. A simple example will make this clear.

Let U = {u, v, w} be a set of words which hash under η to the not necessarily distinct elements η(u) = i,
η(v) = j and η(w) = k in Zp. Then the distribution is given by

/
U

(η) =

 u 7→ i
v 7→ j
w 7→ k


Distributions are combined using glueing :

/
U

(η) ∪ /
V

(η) = /
U∪V

(η)

We will find that this combination is in full agreement with the geometric form. Supposing that words u
and v hash to the same location under η, i.e., that i = j, then the hash table has the usual form

Dη,S(U) = (/
U

(η))−1 =
[
i 7→ {u, v}
k 7→ {w}

]
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It is this latter form which suggested to us the idea of a hash table, and distributions in general, as a fibre
bundle, discussed later in a separate section on the geometry of specifications. However, looking ahead, we
wish to emphasize here that this form does not prove to be very fruitful. Note also that we have chosen to
use Dη,S to denote the resulting distribution and that we have

(∪/ ◦ rng) ◦ Dη,S = I

Before turning to consider in detail the geometry of distributions it will be helpful and useful to explore
further some of the algebra which is now suggested by the problem of distribution.

2.1 Distributions with algebraic structure

Specifically, it is of interest to pose the question whether or not such distributions (cf., [11]) can be combined
and in analogy to Fourier analysis, we seek a mechanism by which a suitable distribution function η might
be obtained as a linear combination of basis functions ηi:

η(w) = (a1η1(w) + a2η2(w) + . . .+ anηn(w)) (mod p)

where the coefficients aj are taken from the (finite) field Zp. As a first step in this direction we consider the
composition

(η, S) + (κ, T ) = (η + κ, S ∪ T )

where the sum of functions η and κ is given pointwise:

(η + κ)(w) = η(w) + κ(w) (mod p)

Choosing κ = η gives us (η, S) + (η, T ) = (η + η, S ∪ T ) and, in general, η + η 6= η. This result is at first
disconcerting. In the concrete case of hashing, we expect that if η is a hash function and it we hash a set S
and then hash a set T under the same function η then we expect the result to be exactly the same as if we
hashed S∪T under η. Moreover, if we hash a single word, say w, i.e., if S = T = {w}, then (η+η)(w) 6= η(w)
implies that if we hash it twice in a row we will not get the same location!

On the other hand we can introduce constant functions ηi which map a strict subset Si of words onto i.
In this case, using map extension, we may form the hash function

η = η0 t η1 t . . . ηi t . . . t ηp−1

such that the corresponding disjoint domains add up to the original word space, i.e., S0 ∪ S1 ∪ . . . ∪ Si ∪
. . . ∪ Sp−1 = W . If we are prepared to allow for the possibility of some or all of the Si to overlap, then we
may introduce glueable hash functions ηi (i.e., functions which agree on their common domain intersections)
which are no longer constant but which combine in the expected manner:

η = η0 ∪ η1 ∪ . . . ηi ∪ . . . ∪ ηp−1

Without wishing to prejudice the outcome, let us for the present abandon the interpretation in the domain
of hashing and explore the consequences of the law of composition. In other words, we anticipate that in
the more general setting of distributions, it may very well be the case that the law of composition is fruitful.
First, it may readily be demonstrated that the constant (0W , ∅) is an identity element under addition:

(0W , ∅) + (η, S) = (η, S) = (η, S) + (0W , ∅)

The operation is associative:

(η, S) +
(

(κ, T ) + (λ,U)
)

=
(

(η, S) + (κ, T )
)

+ (λ,U)
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and commutative

(η, S) + (κ, T ) = (κ, T ) + (η, S)

Thus our space of distributions is an additive abelian monoid. Might it be possible that we could construct
a group of distributions? In short, for a distribution (η, S) we seek an inverse distribution (κ, T ) such that

(η, S) + (κ, T ) = (0W , ∅)

By the law of composition we have η + κ = 0W and S ∪ T = ∅. Since Zp is an additive abelian group then
there always is a κ(w) such that η(w) + κ(w) (mod p) = 0W (w) = 0. Hence there is a total function κ such
η + κ = 0W . For the second part it is clear that there is no T such that S ∪ T = ∅. However, were one to
use symmetric difference, 4, then we do have an abelian group on sets.

Definition 2.1 The symmetric difference of two sets S and T , denoted S 4 T , is the union of the
two sets less their common intersection. Traditionally, this is written as

S 4 T = (S ∪ T )\(S ∩ T ) = (S\T ) ∪ (T\S)

and is equivalent to

S 4 T = /−
S∩T

(S ∪ T ) = /−
T

(S) ∪ /−
S

(T )

Consequently, with the inner law of composition defined by

(η, S) + (κ, T ) = (η + κ, S 4 T )

then (ZWp × PW,+) is an abelian group of distributions.

2.2 Construction

Let us return now to the domain of hashing. The algebraic excursion above did not seem to advance us much
on the path to modelling the real hash table. A more conventional approach is to consider the construction
of a hash table through the addition of a new word which may readily be modelled by

Aw(η, S) = (η, S ∪ {w})

and since one normally derives the inner law of composition on structures from such additive operations

(Au ◦Av)(η, S) = Au(Av(η, S))
= Au(η, S ∪ {v})
= (η, S ∪ {v} ∪ {u})
= A{u, v}(η, S)

then we have the result

AT (η, S) = (η, S ∪ T ) = A(S∪T )(η, ∅)

Therefore, we would expect to find a similar construction in the geometric form. It does indeed turn out to
be the case.
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2.3 Rehashing

Finally, we will use rehashing as a check on the validity of the geometric form. Rehashing is the practical
process which is required whenever a hash table becomes ‘too full’. Formally, we may think of rehashing in
terms of a morphism α from ZWp × PW to ZWq × PW where p and q are primes and q > p. For complete
generality we shall allow also the possibility of p ≥ q. The map α : (η, S) 7→ (κ, S) transforms a hash function
η into a hash function κ while leaving the set of words hashed invariant. Applying α to the restricted hash
function gives

α(/
S
η) = /

S
α(η) = /

S
κ

Therefore, we expect that rehashing will turn out to be a morphism also of suitable geometric objects.

3 Isomorphic Representations

It is remarkable how the choice of representation suggests a development that is totally unexpected. For
many years we had used a simple ‘implementation-oriented’ model of a hash table. With the introduction of
the more abstract (η, S) ∈ ZWp ×PW we have been able not only to model the original hash table accurately
and concisely but also to develop a more general theory of distributions. We shall see later how this model
also opened the way to another ‘chapter’ in the application of geometry of formal methods.

One of the significant advantages of embracing algebra in its totality is the potentiality of transferring to
and exploring other isomorphic representations. Here we illustrate the new results arrived at in this process.
Using the notation p = {0, . . . , p− 1} (see [6]) and recalling that PW is isomorphic to 2W we may express
our fundamental model in the form of the product of two total function spaces (η, χS) ∈ pW × 2W , where
χS denotes the (total) characteristic function associated with S, defined simply as follows:

χS(w) =
{

1, if w ∈ S
0, otherwise

Using our example of the previous section we have

(η, χS) =
(


... 7→
...

u 7→ i
v 7→ j
w 7→ k
... 7→

...

 ,


... 7→ 0
u 7→ 1
v 7→ 1
w 7→ 1
... 7→ 0


)

where only those words which are hashed map to the value 1 in the characteristic function χS .
There is clearly a one to one correspondence between S and χS . The advantage of the latter is simply that

it is a total function. Since we are in an isomorphic space, then we immediately have a group of distributions
as before, (pW × 2W ,+), where the law of composition is

(η, χS) + (κ, χT ) = (η + κ, χS 4 χT )

and the symmetric difference on characteristic functions is just that on sets. Before we give a formal definition
of symmetric difference on characteristic functions, let us consider a simple example. If u and v are two
distinct words such that η(u) = i and η(v) = j, then the union of {u} and {v} is the same as the symmetric
difference of {u} and {v}:

{u} ∪ {v} = {u, v} = {u} 4 {v}
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On the other hand, we will want the symmetric difference of the corresponding total functions χ{u} and
χ{v} to have the form

χ{u} 4 χ{v} = χ{u, v} = χ
({u}4{v})

Using a totalizer [18], we may write the characteristic function in terms of an override operator on the zero
function:

χ{u, v} = 0W † [u 7→ 1, v 7→ 1]

With this notation we are able to elaborate the meaning of symmetric difference on characteristic functions:

χ{u} 4 χ{v} = (0W † [u 7→ 1, v 7→ 0])4 (0W † [u 7→ 0, v 7→ 1])

Note in particular that considering characteristic functions as sets of pairs and applying either set union or
symmetric difference leads to strange results:

{. . . , (u, 1), (v, 0), . . . } ∪ {. . . , (u, 0), (v, 1), . . . } = {. . . , (u, 0), (u, 1), (v, 0), (v, 1), . . . }
Since there can never be any possibility of confusion then it is quite proper to use χ{u, v} to stand for the
right hand side partial function in a totalizer of the form

0W † [u 7→ 1, v 7→ 1]

This identification of the total function χS with the, as yet to be totalized partial function, is of considerable
practical importance in formal specification.

Before we complete this section by introducing our final example of an isomorphic representation of a
distribution, it seems appropriate to remark here upon how one may generalize from ‘binary’ or ‘boolean’
systems, as expressed by 2 = {0, 1}.

If we should choose 3 = {0, 1, 2} as the basis for our characteristic function space, 3W , then we have the
basis for a three-valued logic on distributions. A word w is hashed to a location (χS(w) = 2), a word w is
not hashed to a location (χS(w) = 0), or . . .

Generalization to n gives an n-valued logic basis with respect to distributions in (pW ×nW ,+) and if we
are prepared to use the continuous real line interval, I = [0, 1], as the basis then we are set up for fuzzy set
theory and fuzzy logic in (pW × IW ,+).

For the final isomorphic representation of

Zp × PW ≡ pW × 2W

we may employ the law of exponents to write

Zp × PW ≡ pW × 2W ≡ (p× 2)W

This new total function space from words w ∈ W to pairs (h, b) ∈ (p × 2)W can also be expressed in the
form of a space of total functions of the direct sum of the two abelian groups Zp and Z2

δ ∈ (Zp ⊕ Z2)W

where we have chosen δ to emphasize that here we are dealing with a space of distributions. That one
should cast the model in terms of direct sums lies directly at the heart of the search for a geometry of formal
methods. If we use our simple running example, then we can represent δ as

δ =



... 7→ ( , 0)
u 7→ (i, 1)
v 7→ (j, 1)
w 7→ (k, 1)
... 7→ ( , 0)
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0 0 0p-1 p-1

0

0

1

1

Z

Z 2

p

Figure 2: Direct sum Zp ⊕ Z2

We may think of (Zp ⊕ Z2) as representing a 2-dimensional discrete space modulo p in the ‘X-direction’
and modulo 2 in the ‘Y -direction’. For convenience, we may exhibit this space as an embedding within the
standard euclidean plane and tiling the 2-dimensional plane with a period parallelogram as shown (Fig. 2).
On the other hand, it is quite natural to wrap this space onto a torus (Fig. 3). Note that only the points

(p-1,1)

(k,0)

(1,1)
(2,1)(0,1)

Figure 3: Direct sum Zp ⊕ Z2 on the torus

marked are part of the discrete space. Such a discrete torus consists of the product of p vertical rings times 2
horizontal rings. Points of the form (k, 0) are shown on the inner horizontal ring. In either case, it is obvious
that the natural ‘orthonormal’ basis is given by (0, 1) and (1, 0). Words which are distributed under δ occupy
those positions or sites indicated by the discs on the outer horizontal ring.

4 Geometry

From a geometrical perspective a hash table may be considered to be a cross-section (abbreviated section)
η of a fibre bundle, a result which was briefly mentioned in an earlier paper [18, 11–2]. Our intuition at
that time was based on Fig. 4 and it seemed abundantly clear that the “fibre over some j ∈ Zp, denoted
h−1(j), is nothing other than the set of words which hash to j”. But when it came to checking details
and in particular when care was taken to establish an exact correspondence with the usual definition of fibre
bundle, we realized that it would be more appropriate to invert the relation and adopt what appeared to be
a completely counter-intuitive view (at least from the usual perspective of the computer scientist/software
engineer)! Lest the informed reader have any doubts, let us briefly remark that the hash function has already
been identified as one of the numerous Σ?-morphisms of the free monoid [15]. Consequently, should the base
space of words prove to be the ‘right view’, then all other Σ?-morphisms immediately become candidates as
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h (j)-1

j

Figure 4: Fibre bundles as asparagus

sections of suitably abstracted/generalized fibre bundles or possibly as bundle morphisms. This would be a
major result in the geometry of formal methods!

First let us give a working definition of fibre bundle (and here we are cautious to point out that we do
deliberately omit all considerations of a topological nature at this point but return to the matter at the end
of the paper), adopted from Burke [4, 85–7] who, from the perspective of (theoretical) physics, considers
(i) the idea of a field to be a simple extension of a function whereby at each point in a given space some
geometric object is specified and (ii) to generalize so as to arrange for the comparison of field values at
different points. For the very special case with which we are concerned the geometric object is the additive
abelian group Zp which curiously/fortuitously is also known as a finite field (see [14]). This ambiguity in
the meaning of field will allow us to use the word in the working definition:

Definition 4.1 A fibre bundle is a pair of spaces, say, E and M , and a projection map from E to
M , π : E →M . The space M is the base space whereon the field is defined. The space of interest,
E, is that larger space where we graph the field, and the projection π, is a map that assigns to each
point on the graph the point in M where that field variable is defined.

Such a fibre bundle may be denoted simply as

E
π - M

Our original intuition seems to be entirely in agreement with this definition, in the following sense. The
base space M is, of course, the (discrete) space of points {0, 1, . . . , j, . . . p− 1} taken from Zp and the space
of interest E is the product of the base Zp and the space of set of words PW . The projection is naturally
the hash function h. We sum up this interpretation with the diagram

Zp × PW
h - Zp

Thus, associated with a point j (the hash value) we have a particular set of words h−1(j) (the words which
hash to j). The fibre over j, Ej , may be written as {j} × PW . [Aside: Technically speaking, all of the
fibre bundles that we have unearthed in the specifications of formal methods so far have been trivial bundles
globally and hence are simply products. We are actively searching for (instances of) bundles which are not
globally products. Such a discovery would suggest new directions for computing.]

2nd BCS-FACS Northern Formal Methods Workshop 9
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For a given fibre bundle, the concept of a (cross-)section is important. Essentially, from each of the
‘heads’ of the fibre we select a particular element. Formally, again from Burke [4]

Definition 4.2 A particular field is called a section and is given by a map from the base space to
the larger space of interest:

Γ : M → E

such that the projection back down to the base brings us to the point from which we started:

π ◦ Γ(u) = u

Applying this notion to our intuitive understanding of the hash table puts us in a quandry. Specifically, from
a practical point of view, which is extremely important if not all important in applied mathematics, we did
not find a reasonable or sensible interpretation originally! Why should a particular collection of p words or
fewer have a particular meaning in the context of hashing? Then, one interpretation emerged. Such a small
collection of words is directly related to the search for the perfect hash table as used for the keywords of a
programming language. If we have p distinct keywords then they form the section for the perfect hashing
function. If there are just m words, m not a prime, and p is the next prime number larger than m then we
can fill the section with null words. Such a fibre bundle may be written as

W - Zp ×W
h - Zp

where W is the standard fibre. A typical fibre over a page index j has the form (j, u) for some word u

which hashes to j under h. [Aside: Strictly one would have expected to see PW → Zp ×W h→ Zp. But
since elements of the fibres are of the form (j, {u}) then we may identify singleton words with words and use
elements of the form (j, u).] Referring back to Fig. 4 it is clear that our original intuitive understanding of
hash table as fibre bundle is really very special.

We will now develop an alternative view of hash table in the next sub-section, one which initially seemed
so counter-intuitive, but which proved much more fruitful and exciting.

4.1 Hash table as section of a bundle

Originally, we had chosen Zp as the base for the fibre bundle associated with the hash table. It was in the
course of trying to determine the meaning of rehashing in such a general context that it occurred to us to
take the opposite view and to choose W as the base, where for completeness we consider the words to be
elements of a (non-abelian) free group. In this case we have

F - E
π - M

where the standard fibre F = Zp, the space of interest is E = W × Zp, and the base is M = W = FG(Σ).
For each word u in W the fibre over u, denoted Eu, is nothing other than (u, j) where j is the page

number to which u would be hashed under the hashing function.
A section η : M → E associates with each word u in the base space, the pair (u, j), where j is a suitably

chosen element of the additive abelian group Zp. Thus, in this model, a section is the hash function.
Consequently, we may restrict this map to a set of words S to give us the (finite) hash table

(η, S) ∈ (EM ,PM) = ((W × Zp)W ,PW )

Comparison with the original algebraic form (η, S) ∈ (ZWp ,PW ) given earlier would appear to indicate that
there is very close agreement between the two results.
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The Geometry of Distributions in Formal Methods

We have proposed a fibre bundle geometry for a hash table (and by extension for distributions). What
use can we make of it? Does it assist us better to understand the specification of distributions? In what way
does it complement the algebra? We shall explore the answers to these questions now.

Consider first the constant zero section η : u 7→ (u, 0). It turns out to be of particular practical interest!
Such a constant hash function which maps all words to the same location has been considered convenient
“when debugging a program” [13, 513]. It also has theoretical significance (see below).

Now let us turn our attention to the composition of sections η ∗ κ where the binary operator ∗ is to be
determined. We expect this to be given in pointwise fashion over the space of words

(η ∗ κ)(u) = η(u) ∗ κ(u)
= (u, j) ∗ (u, k)
= (u, f(j, k))

where we have chosen f(j, k) to denote the most general combination of pages j and k. In the earlier part of
the paper on the algebraic aspects of distributions we were guided by the fact that Zp was an abelian group
and were somehow ‘forced’ to define

f(j, k) = j + k (mod p)

From the geometrical perspective it is clear that there are many different possibilities. The important aspect
is that whatever the decision of the choice of f(i, j) we must get a fibre over the word u. In other words the
combination of different sections can only refer to combinations in the fields and not to the base! This clears
up one of the misunderstandings that arose in the algebra. Note also that the operator ∗ is determined by
the function f on field elements j and k.

With respect to the application of hashing one reasonable choice for f(j, k) is to choose the override
operator. Therefore, η † κ forces the choice of

f(i, j) = j

Now if we start with the zero section, denoted η0, then we can gradually build up a desired hash function
and hash table by repeated overrides. There may be other interesting possibilities for distributions other
than hashing, and even for hashing itself! It is worth noting that Knuth [13, 521] refers to the use of a pair
of hash functions, say (η, κ), in order to implement hashing using open addressing. This is used to avoid the
overflow chaining mechanism which we have assumed. This practical hashing algorithm may be set in the
following geometric context of the fibre bundle. Given sections η and κ. What is the relationship between
η(u) and κ(v) for all words u and v? How might such pairs (η, κ) be chosen?

Finally let us consider expressions of the form η(u) ∗ η(v) where we are interested in the same section η.
What might be the nature of the operation? Expanding out we obtain

η(u) ∗ η(v) = (u, j) ∗ (v, k)
= (u ∗ v, j ∗ k)

Could the resulting page index j ∗ k be related to the structure of the word space and in particular to the
composition u ∗ v? Suppose that u ∗ v denoted the concatenation of u and v. What would j ∗ k correspond
to?

These questions prompt us to explore the possibility of determining trajectories which might correspond to
incremental changes in words (Fig. 5). Suppose that we started with a word u = ‘art ’ and by concatenation
passed through the points u1 = ‘artist ’, u2 = ‘artistic’, ending up at v = ‘artistically ’. It is intuitively clear
that we traverse a curve or trajectory in the base space of words. Might there not be a comparable trajectory
in the fibre space? Does not such a trajectory constitute a section? Might one not therefore construct a
hash function that takes into account such smoothness?

The questions are by their very nature extremely interesting from both a geometrical perspective—
the geometry of computing—and from an algorithmic perspective—algorithms/programs are paths in an
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pZ

pZ

pZ

pZ

u = 'art'

v = 'artistically'

'artist'

'artistic'

(u,j) (v,k)

Figure 5: Trajectories

appropriate geometric computation space. With respect to the specific problem domain of hashing it is
noteworthy that Knuth has already referred to the importance of the multiplicative hash method in taking
advantage of nonrandomness of words [13, 510]. Admittedly, he cites clusters such as {typea, typeb,
typec} which are of a different nature to those on the trajectory. But the principle is there and is worth
exploring. The other important aspect is clearly the notion of smooth curve or trajectory, both in the word
space and in the bundle space. Smoothness calls to mind continuity (of varying orders or degrees). Later in
the paper we will show that there is indeed first order continuity of curves in the word space.

4.2 Rehashing as bundle morphism

To test further the appropriateness of this geometrical approach let us revisit the practical phenomenon of
rehashing introduced earlier. We will show that rehashing may be considered to be a fibre bundle morphism
[5, 122] (Fig. 6)

Φ(u, j) = (ϕ(u), guj)

where gu is a morphism from the additive abelian group Zp to Zq. [Aside: In computing, gu might be

u

Φ

ϕ

(u)ϕ

(u,j) qZpZ

(u)ϕ gu( )j,

Figure 6: Bundle morphism

written as g[[u]] to emphasize that it is a curried function or operator.] Note that the diagram (Fig. 6) has
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the form of a commuting diagram that would be familiar to anyone who conducts reification proofs in formal
methods. This may be made more explicit by introducing sections Γ and Γ′. Then the bundle morphism
may be expressed in terms of

(Φ ◦ Γ)(u) = (Γ′ ◦ φ)(u′)

Since we require that the same words be rehashed then we will naturally choose ϕ to be the identity function
on words. In this case the bundle morphism takes the form

Φ(u, j) = (u, guj)

Consequently it is easy to see that everything depends on the group morphism gu : Zp → Zq. For rehashing
we require that q be somewhat bigger than p. If we adhere to this relationship then the group morphism g
can not possibily cover all elements of Zq. It must be an inclusion or a permutation of an inclusion. If we
want to locate rehashing within this structural scheme then we interpret the group morphism in the opposite
sense, a morphism from the already rehashed structure Zq to the original Zp, in which case the morphism
arrows of Fig 6 will be reversed.

For gu to be a group morphism, we must have the relations that (1) the image of the identity in Zp is
the identity in Zq and (2) if k is the image of an element j then their inverses must also match up:

gu0 = 0, guj = k, gu(p− j) = q − k

Rehashing is clearly a morphism of sections, i.e., of hash tables. This is the result we seek. It remains for
us to investigate if there are practical consequences of this geometrical view.

4.3 Parikh mapping

Let us consider another example of a fibre bundle constructed on the base of words W . In this case we will
use the Parikh mapping ψ which returns a vector of the counts of the letters in a given word. For definiteness
we will consider the alphabet Σ = {a, b, c} and extend the words to elements of the corresponding free group.
Consider, for example, the application of mapping ψ to a few words for illustration:

ψ(abc) = (1, 1, 1), ψ(abac) = (2, 1, 1), ψ(abāc) = (0, 1, 1)

For the fibre we will choose the direct sum F = Z⊕Z⊕Z and the basis elements are (1, 0, 0), (0, 1, 0), and

u

ϕ

(u)ϕ

(u,v)

Z + Z + Z

Z + ZΦ

(u)ϕ vgu( , )

Figure 7: Parikh mapping

(0, 0, 1) which correspond to the letters a, b, and c, respectively.
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(W → PD)
DS-�
R

(L → (W → PD))

Figure 8: Distribution and retrieval

Let us now introduce a bundle morphism by specifying ϕ = /− a. Since we are working in the free group,
we intend /− a to have the meaning of the removal of both a and its formal inverse ā. In these circumstances,
the morphism is

Φ(u,v) = (/−
a
u, guv)

The group element gu : Z⊕ Z⊕ Z→ Z⊕ Z forgets the first coordinate gu(i, j, k) = (j, k) and consequently
is a projection mapping.

This fibre bundle turns out to be a paradigmatically useful geometrical model for a variety of specifications
including the distribution of the dictionary introduced in the prologue. It is paradigmatic in the sense that we
might consider a location, node, etc., as being represented by an element in a direct sum space of dimension n,
⊕/(Z)i, 1 ≤ i ≤ n. For example, if we wish to model a crossword then a fibre bundle is a natural choice. The
base is W , the space of words. For the standard fibre we choose Z⊕Z⊕Z. The section Γ: u 7→ (u, (i, j, k))
gives the crossword where the word u is to be filled in at coordinates (i, j) and has length k.

Now let us determine the fibre bundle for the spelling-checker dictionary introduced in the Prologue. In
the light of the previous example, it is clear that we ought to consider the dictionary to be given by a section
of the bundle

L - W × L π - W

where we define the section Γ: W →W ×L by Γ: u 7→ (u, l). Clearly this corresponds exactly to Al,u : δ 7→
δ ©∪ [u 7→ {l}]. In addition, the latter expression is the algebraic equivalent of the intersection of the section
and the ‘level curve’ for location l.

To complete this introduction to the application of fibre bundles to specifications let us consider a slightly
more complex version of the distributed dictionary introduced in the Prologue. Suppose that we start with
a simple dictionary modelled as the space of maps from words to their definitions

δ ∈ DICT = W → PD

Now we distribute the dictionary over several locations such that there is no overlap or sharing of words and
their definitions. In short, the resulting distributed dictionary is to be a partition of the original. We may
model this distributed dictionary as the space of maps from locations to dictionaries

δ ∈ DICT = L → (W → PD)

subject to an appropriate invariant and retrieval function. We propose to define this distribution com-
pletely by a fibre bundle and hence we refuse to pre-judge the form of the retrieval function R as shown in
Fig. 8. For the standard fibre F = L it is obvious that we ought to choose a direct sum space F = ⊕/(Z)i to
stand for any reasonable space which will model locations (and this would include both hardware addresses
as well as WWW URLs). For the base we will choose the space of dictionaries. Hence with each dictionary
δj we will associate a location j. From the geometry, it is clear that we ought to define the distributed
dictionary as a section Γ: M →M × E such that

Γ(δj) = (δj , j)
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where j ranges over locations. Based on our analysis of the hash table earlier we look at (i) the composition
of distinct sections Γ1 ∗ Γ2 which are defined pointwise over the base space

(Γ1 ∗ Γ2)(δ) = Γ1(δ) ∗ Γ2(δ)

and (ii) compositions of the form Γ(δ) ∗ Γ(δ′), where the operator ∗ is yet to be determined. Expansion of
the pointwise composition gives

(Γ1 ∗ Γ2)(δ) = Γ1(δ) ∗ Γ2(δ)
= (δ, l1) ∗ (δ, l2)
= (δ, f(l1, l2))

where we use f(l1, l2) again to denote a general composition on locations. As for the case of the hash table
the only practical meaningful choice would appear to be the override operator. That does not mean that
there are no others . . . We just have not been able to find them.

The second composition Γ(δ) ∗ Γ(δ′) leads to

Γ(δ) ∗ Γ(δ′) = (δ, l1) ∗ (δ′, l2)
= (δ ∗ δ′, l1 ∗ l2)

By the assumption that the distribution is a strict partition, then we have dom δ ∩ dom δ′ = ∅ and the
composition may be written

Γ(δ) ∗ Γ(δ′) = (δ t δ′, f(l1, l2))

But there are other ways in which to combine dictionaries. In the beginning of the paper we saw that a
‘natural’ algebraic structure was obtained if the space of dictionaries was an indexed monoid. Thus for
two dictionaries δ and δ′, we may combine them to obtain δ ©∪ δ′. In the geometry the combination is to
be on the sections Γ(δ) and Γ(δ′). At present we can only speculate that perhaps if we give up the idea
of strict partitioning then we can find a bundle endomorphism such that the composition Γ(δ) ∗ Γ(δ′) is
directly related to the composition of dictionaries δ ©∪ δ′. Finally, we would expect that in analogy to the
spelling checker dictionary the intersection of the section and the level curve for a location l would lead to
an algebraic expression of the form κ©∪ 2 [l 7→ δ], where

κ©∪ 2 [l 7→ δ] =
{
κ t [l 7→ δ], if ¬χκ(l)
κ † [l 7→ κ(l)©∪ δ], otherwise

4.4 Topological considerations

There is more to fibre bundles [19]. All of the bundles we have seen so far are trivial bundles. They are
nothing other than the cartesian products of a pair of spaces, the base space and the fibre. To illustrate
that more is involved in the concept of a fibre bundle we will pick a classical illustration from geometry (see
Fig. 9) Both the cylinder and the Möbius band are constructed as ruled surfaces, i.e., they are nothing
more than collections of straight lines (i.e., bundles of fibres). The cylinder is generated by the quaternion
equation

S(u, q) = qLu(a, b)q−1

where q = exp(nθ/2) and the generator line Lu(a, b) = (1 − u)a + ub, u ∈ [0, 1], is rotated about an axis
with direction vector n = (b− a)/|b− a|. The point a moves on the circle. As a fibre bundle it is completely
given by

R - S1 ×R
π - S1
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R

S
1S

1

π
π

Figure 9: Cylinder and Möbius band

The fibre bundle may clearly be regarded as a decomposition of the cylinder. In the case of the Möbius band
the quaternion equation of which has the form

S(u, q) = q
(
eϕt(Lu(a, b)−m)

)
q−1 + qmq−1

it is the midpoint m of the generator line Lu(a, b) which moves on the circle. The generator line rotates
about a central axis n and about a tangent vector t to the circle at the same time. The fibre bundle is
different from that of the cylinder:

R - E
π - S1

where we have used E to denote the bundle space in question. The difference between the two structures
is explained by the twist in the Möbius band. Topologically, the difference may be described by transition
functions. Hitherto all of our bundles are trivial and hence the group of transition functions is the trivial
group of the identity. It is an open question whether there are non-trivial bundles of interest to specifications
in formal methods. There is one other point to be resolved.

In order that we might use the term fibre bundle validly to describe this geometry we need to be able
to demonstrate that our spaces are manifolds in some real sense. We need to produce open sets and hence
demonstrate continuity of functions. Relevant technical details are relegated to the appendix.

Let the base W = (Σ ∪ Σ̄)N be equipped with the finite topology of function spaces. The open sets Ou,k
are indexed with words u in (Σ∪ Σ̄)N and consists of all those words v which share the same initial segment
(i.e., prefix) of length k, denoted in Eilenberg’s notation u[k] = v[k] [6, 358]. Next take the standard fibre F .
Equip it at least with the discrete topology. The product manifold E = W ×F may now be given the usual
product set topology. The fibres over u, denoted Eu, are contained in open sets π−1(Ou,k) and the sections
Γ: W → E are continuous. This sets the scene for a fibre bundle geometry over words, lists, sequences.

But more is possible. The finite topology of function spaces Y X is applicable also to subsets of the total
function space (via the induced topology) and hence to the usual domains of maps (i.e., partial functions)
in VDM and Z. Therefore, the base space of the distributed dictionary, M = W → PD, may also be given
the finite set topology and hence the corresponding sections, i.e., distributions, are continuous. We believe
that with this paper we have opened the door on an exciting new world of geometric algebra, the geometry
of formal specifications.

5 Epilogue

“Both [Abel and Jacobi] had arrived at the key idea of working with inverse functions of the
elliptic integrals [and thus discovered the beautiful domain of elliptic functions]” [12, 646]
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There is a geometry of specifications. A first account of initial results was reported at the North-
ern Formal Methods Workshop in Ilkley, UK, 1996 [18]. Then we demonstrated that tail-recursive func-
tions/algorithms correspond to affine transformations. Here we present for the first time the setting of
data structures and by extension the spaces of distribution models in a fibre bundle context.

The discovery of the geometry of fibre bundles in specifications is similar to that of the discovery of elliptic
functions in the sense that it was only possible by using the principle of inversion [17]. By this we mean
that it was necessary to invert the way in which we thought about hash functions and hash tables in order
to obtain our results. Now it all seems so obvious. In 1996 it was not so.

There are many directions now opened up for future development. Outstanding is the search for non-
trivial bundles of data structures. Such bundles can probably be constructed. Whether they prove to be of
use in practical implementations is not yet known.

The section in the paper on isomorphic representations which terminated with the use of the torus for
the embedding of the hash function clearly indicates that there are probably many points of contact between
the geometric algebra being developed and ‘geometry in the classical sense’.

Finally, it behoves us make a remark or two upon our choice of fibre bundles over sheaves. In a more
general setting, it is clear that sheaves (and Sheaf Theory) offer much more potential for the kind of geometry
that we seek. The work by Goguen, for example, on the semantics of concurrent (object-oriented) systems [7]
shows what is possible. However, we have always felt that we understand exactly how engineers really think
and we are convinced that in the first instance any introduction of fibre bundle will be much more acceptable
than sheaf. On the other hand, we recognize that we were very fortunate to choose an example—the hash
table—that permitted us to introduce some of the key aspects of fibre bundles as distinct from sheaves: the
group actions and (finite) fields. In order that sheaf theory be seen to be of practical benefit then practical
examples such as that given on hashing and distributions must be exhibited/constructed. This is clearly
work for another day.
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6 Appendix

6.1 Hash table specification

For convenience we present an outline of an abstract model of a hash table as a sequence of p pages, p a
prime, each page containing a sorted sequence of words:

δ ∈ HASH TABLE = PAGEp

PAGE = W ?

subject to an appropriate invariant:

inv-PAGE(δη(w))
4
= (σ(δη(w)) = δη(w)) ∧ (| elems δη(w)| = | len δη(w)|)

where σ denotes the sort morphism. That a given word can only appear on one page is deemed to be a
property of the hash function. A hash function is an element of

η ∈ HASH FUNC = W → Zp

The addition of a new word w is given by

A : HASH FUNC×W −→ HASH TABLE −→ HASH TABLE

A(η, w)(δl · 〈 δη(w) 〉 · δr)
4
= (δl · 〈σ(〈w 〉 · δη(w)) 〉 · δr)

where δl · 〈 δη(w) 〉 · δr denotes the partitioning of a hash table δ uniquely into left δl, middle 〈 δη(w) 〉 and
right δr parts. The concept of newness is guaranteed by the pre-condition

pre-A(η, w)(δl · 〈 δη(w) 〉 · δr)
4
= ¬χδ(η(w))(w)

Removal of an existing word w is specified by

R : HASH FUNC×W −→ HASH TABLE −→ HASH TABLE

R(η, w)(δl · 〈 δη(w) 〉 · δr)
4
= (δl · 〈 /−w δη(w) 〉 · δr)

That the word w already exists in the hash table requires a pre-condition.
To look up an existing word w is specified by

L : HASH FUNC×W −→ HASH TABLE −→ B

L(η, w)(δl · 〈 δη(w) 〉 · δr)
4
= χδ(η(w))(w)

[Aside: Note that we have used A(η, w)(δl · 〈 δη(w) 〉 · δr) instead of Aη,w(δl · 〈 δη(w) 〉 · δr), for clarity.]

6.2 Topology

In order to be able to claim that we do have a geometry of formal methods we must at least give some
indication that there is a sensible topology associated with our spaces.

Discrete topology Let us begin with a simple definition [1, 28].

Definition 6.1 A topology on a set X is a nonempty collection of subsets of X, called open sets,
such that any union of open sets is open, any finite intersection of open sets is open, and both X
and the empty set are open. A set together with a topology on it is called a topological space.

For each set X we may use PX to form the discrete topology on X. Specifically, every element in PX is an
open set. This is the largest possible topology on X. With this topology any function with domain W is
continuous [1, 14].

Consider the set W of words. Let W be equipped with the discrete topology.
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Subspace topology Given a topological space X and a subset Y of X. Form the intersection of all the
open subsets of X with Y to obtain the subspace or induced topology on Y [1, 28].

Let S be a subset of W , the space of words furnished with the discrete topology. Then the subspace
topology on S is the induced discrete topology. The open sets are elements of PS.

Basic open sets Given a topology on a set X, and a collection B of open sets such that every open set is
a union of members of B. Then S is called a base for the topology and elements of B are called basic open
sets [1, 30].

Consider the discrete topological space W . Define B to be the set which consists of the empty set and
all the singleton sets of PW . Then B is a base for the discrete topology. Since the intersection of any pair
of elements in B is the empty set then we say that B forms a discrete base.

Continuous functions Let X and Y be topological spaces. A function from X to Y is continuous if and
only if the inverse image of each open set of Y is open in X [1, 32]. One way in which to determine if a
function is continuous is to investigate the inverse images of the elements of the base B for Y . Let f be a
function from X to Y . If B is a base for Y and the inverse image of each element of the base is open in X
then f is continuous.

Product topology Let X and Y be topological spaces and let B denote the family of all subsets of X×Y
of the form U × V , where U is open in X and V is open in Y . Then ∪/B = X × Y and the intersection of
any two members of B lies in B. Therefore B is a base for a topology on X ×Y . This topology is called the
product topology [1, 52].

The functions p1 : X × Y → X and p2 : X × Y → Y defined by p1(x, y) = x and p2(x, y) = y are called
projections. The projection functions are continuous.

Finite topology for function spaces Let X and Y be arbitrary sets for which Y has the discrete
topology. Then the set of maps Y X can be given the product topology formed out of |X| copies of Y [9,
469]. A base for the open sets of this topology, called the finite topology for Y X , consists of the sets O

f,{xi}
where f is a map X → Y , {xi | 1 ≤ i ≤ n} a finite subset of X, and

O
f,{xi} = {g ∈ Y X | g(xi) = f(xi), 1 ≤ i ≤ n}

Now let us choose X = N and Y = Σ. The corresponding function space Y X = ΣN consists of (potentially
infinite) words over the alphabet Σ. We choose to extend this to include formal letter inverses: (Σ ∪ Σ̄)N.
Let u ∈ (Σ ∪ Σ̄)N denote a typical word and k = {1, 2, . . . , k} the set of the first k natural numbers. The
open sets, indexed by u, are all the words v which have a common prefix with u,

Ou,k = {v ∈ (Σ ∪ Σ̄)N | vi = ui, 1 ≤ i ≤ k}

If we denote by W this topological word space, then it may be shown that W is compact [6, 361] with a
distance function δ given by

δ(u, v) = 1/n if u[n] 6= v[n], u[n−1] = v[n−1]

where u[n] denotes the initial segment of length n of u. The distance function turns (Σ ∪ Σ̄)N into a metric
space. Moreover, and most importantly for the fibre bundle treatment of the paper, for a fixed u ∈ Σ ∪ Σ̄?,
the function v → uv is continuous (details in [6, 359]).
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7 Glossary

∅, θ empty set, empty map
{a}, [x 7→ y] singleton set, singleton map
PX powerset of X
X → Y the space of all (partial) functions from X to Y
Y X th e space of all total functions from X to Y ; Y X ⊂ X → Y
U 4 V symmetric difference of two sets
f ◦ g f after g
∪/,

⋃
reduction with respect to set union

δj t δk map extension, disjoint union of two maps; defined if dom δj ∩ dom δk = ∅
δj ©∪ δk relational union
δj † δk override
χδ(l), χ[[l]]δ characteristic function or subobject classifier, l in dom δ
/ U (η),η|U restriction of η to U
/−U (η), η\U removal of η by U
Al,u, A[[l, u]] curried function with args l and u
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