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The Geometry of Generic

Sliding Bifurcations∗

M. R. Jeffrey†

S. J. Hogan†

Abstract. Using the singularity theory of scalar functions, we derive a classification of sliding bi-
furcations in piecewise-smooth flows. These are global bifurcations which occur when
distinguished orbits become tangent to surfaces of discontinuity, called switching mani-
folds. The key idea of the paper is to attribute sliding bifurcations to singularities in the
manifold’s projection along the flow, namely, to points where the projection contains folds,
cusps, and two-folds (saddles and bowls). From the possible local configurations of orbits
we obtain sliding bifurcations. In this way we derive a complete classification of generic
one-parameter sliding bifurcations at a smooth codimension one switching manifold in n

dimensions for n ≥ 3. We uncover previously unknown sliding bifurcations, all of which
are catastrophic in nature. We also describe how the method can be extended to sliding
bifurcations of codimension two or higher.
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1. Introduction. Bifurcation theory for systems of ordinary differential equations
describes how smooth variations of parameter values can, through topological changes,
cause sudden changes in dynamics. This paper considers the effect of discontinuous
variation in the differential equations themselves, which give rise to the discontinuity-
induced bifurcations [6] of piecewise-smooth dynamical systems.

We will study bifurcations that affect individual orbits as a single parameter
varies. The flowbox theorem [23] shows that in the neighborhood U of a point where
a flow is smooth and nonvanishing, all orbits are smoothly equivalent. We cannot,
therefore, study the global bifurcation of a distinguished orbit Γ passing through U

by studying dynamics in U alone. The same is not true if the flow is piecewise-smooth
in U with a discontinuity along a surface Σ. Then parameter variation can lead to
local changes in the intersection between Γ and Σ. If the change involves orbits
which are confined to “sliding” along the discontinuity, then this is called a sliding

bifurcation. Provided that the discontinuity occurs along a smooth codimension one
switching manifold, we will show that all one-parameter sliding bifurcations in R

n are
equivalent to just eight cases, each of which occurs generically in R

2 or R
3, and of

which only four are already known.
Piecewise-smooth systems are widespread in applications such as engineering, eco-

nomics, medicine, biology, and ecology. Problems with impacts, friction, or switching
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506 M. R. JEFFREY AND S. J. HOGAN

are piecewise-smooth. For recent accounts of such systems, see [6, 21, 34]. The sys-
tems we consider are expressible in the form

(1.1) ẋ = f(x, t;µ),

where x ∈ R
n is a state vector, µ ∈ R is a parameter (which may more generally be a

vector), and ẋ = dx/dt with t ∈ R. The function f : Rn+2
→ R

n is piecewise-smooth,
with discontinuities occurring across a hypersurface through phase space, called the
switching manifold.

To fully define solutions of (1.1), a rule must be given to prescribe the dynamics at
the switching manifold. If the rule is to apply a map from one point on the manifold to
another, the solution x(t) can be discontinuous, leading to hybrid or impact systems
[6]. The subject of this paper is systems where the solution x(t) remains continuous,
but can be nonunique at the manifold [10]. A local form for such systems is

(1.2) ẋ = f(x;µ) =

{

f+(x;µ) if h(x) > 0,
f−(x;µ) if h(x) < 0,

where h(x) = 0 implicitly defines the switching manifold. Each of the vector fields f+

and f− is smooth and defined for all x. At h = 0, trajectories either cross through
the switching manifold or slide along it; see Figure 1.1.

f −

f +

f 
slh=0

f −

f +

f −

f +

f 
sl

(i) (ii) (iii)
crossing

stable
sliding

unstable
sliding

h=0 h=0

Fig. 1.1 Piecewise-smooth vector fields in regions of (i) crossing, (ii) stable sliding, and (iii) unstable
sliding. The sliding vector field fsl (double arrows) is a convex combination of f+ and f−.
This formalism is due to Filippov [10] and Utkin [32] and is said to define a Filippov
system.

Sliding trajectories are solutions of

(1.3) ẋ = f sl
≡ (1− λ)f+ + λf−, where λ =

Lf+h
(Lf+ − Lf−)h

,

defined on h = 0 wherever (Lf+h)(Lf−h) < 0, where Lf denotes the Lie derivative

Lf ≡ f · d
dx

along the flow of f and d
dx

is the gradient. (Later we will also make use of
the n-th derivative Ln

f ≡ (Lf )
n.) The sliding vector field f sl is a convex combination

of f+ and f−, with λ defined such that f sl is always tangent to the manifold.
Definition 1.1. An orbit segment is a smooth curve which is a trajectory of

(1.2) in the regions h > 0 or h < 0. A sliding segment is a smooth curve which

is a trajectory of (1.3) on h = 0. An orbit is a continuous curve x(t) that is a

concatenation of orbit segments and sliding segments.

Definition 1.2. A topological equivalence between Filippov systems F = {f, f sl}
and F ′ = {f ′, f sl′} is a homeomorphism on R

n that sends orbits of F to orbits of F ′,

preserving orbit segments, sliding segments, and time direction.
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For more detailed definitions, see [10, 20]. Note this is stronger than a definition
given in [1] because orbits, not just segments, are preserved. This is essential in the
present paper, as it respects the intersection of orbits with the switching manifold.

Orbits are then continuous, but need not be differentiable (following Filippov’s
convention [10]). Where λ < 0 or λ > 1 in (1.3), we have (Lf+h)(Lf−h) > 0; then
orbit segments either side of h = 0 can be concatenated to form an orbit that crosses
the switching manifold (see Figure 1.1(i)).

Orbit segments can also be concatenated with sliding segments. Orbits with
sliding segments are nonunique in the sense that infinitely many orbits pass through
any point in the sliding region. Sliding regions on h = 0 satisfy 0 < λ < 1 and come
in two forms. If Lf+h < 0 < Lf−h, then the sliding is stable (see Figure 1.1(ii)):
orbits reach the manifold in finite time and follow the sliding vector field f sl along
it. If Lf+h > 0 > Lf−h, then the sliding is unstable (see Figure 1.1(iii)): orbits
follow the sliding vector field on the switching manifold, but also escape into h > 0
and h < 0. The stability type can be interchanged by reversing the arrow of time.
Unstable sliding, sometimes called “escaping,” has historically received less attention,
but will play a vital role in what follows.

Boundaries between sliding and crossing occur where Lf+h or Lf−h vanish, im-
plying that f+ or f− in (1.2) are tangent to the switching manifold. Since Lf+h =
0 ⇒ λ = 0 and Lf−h = 0 ⇒ λ = 1, from (1.3) we have the following boundary
conditions for f sl:

(1.4)

{

f sl = f+ if Lf+h = 0,
f sl = f− if Lf−h = 0.

A tangency is called visible or invisible depending on whether orbits locally curve
away from, or toward, the manifold, as illustrated in Figures 1.2(i)–(ii). It is also
possible for sliding segments to be tangent to the sliding region’s boundary, and these
similarly are referred to as either visible or invisible, as shown in Figures 1.2(iii)–(iv).
When a tangency occurs in the vector field, we say that an orbit there is grazing.

(i) (iii)(ii) (iv)
visible
tangency

invisible
tangency

visible
tangency

invisible
tangency

f − f −

f +
f +

f 
sl

f 
slf 

slf 
sl

Fig. 1.2 Tangencies in a piecewise-smooth system. Visible (i) and invisible (ii) tangencies form
the boundaries between sliding (shaded) and crossing (unshaded). Tangencies between the
sliding vector field and the sliding region’s boundary can also be visible (iii) or invisible
(iv).

Hence, a grazing orbit is a nongeneric trajectory which, under perturbation, loses
or gains points of intersection with the manifold. This leads to the observation that
orbits in Filippov systems can undergo a variety of topological changes, called sliding

bifurcations. Originally proposed in the Russian literature [9], until recently only the
cases sketched in Figure 1.3 were known [20]. The aim of this paper is to give a
systematic classification of sliding bifurcations, and this will reveal hitherto unknown
cases where unstable sliding plays a vital role.

We will now define sliding bifurcations and introduce the central result of the
paper, Theorem 1.4. The different sliding bifurcations will be described in section 5.
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(i)          (ii)           (iii)         (iv)

grazing-
sliding

adding-
sliding

switching-
sliding

crossing-
sliding

Fig. 1.3 Four sliding bifurcations: (i) grazing-sliding, (ii) crossing-sliding, (iii) switching-sliding,
and (iv) adding-sliding [6]. In each case the sliding region (shaded) is stable. These have
been found, for example, in relay circuits, dry-friction oscillators, and predator-prey models
[6, 7, 8, 20].

A bifurcation occurs in a system if an arbitrarily small perturbation gives topo-
logically nonequivalent orbits according to Definition 1.2. If topological equivalence is
lost due to a change in a particular orbit’s intersection with the switching manifold,
we say it undergoes a sliding bifurcation, defined as follows.

Definition 1.3. A distinguished orbit x(t;µ) of (1.2)–(1.3) undergoes a sliding
bifurcation at x = µ = 0 if the vector field f+(0; 0) or f−(0; 0) is tangent to the

switching manifold, and an arbitrarily small perturbation in µ gives a topologically

nonequivalent orbit. We will refer to the µ-family of orbits as an unfolding of the

sliding bifurcation.

There are three types of tangency that will feature in this paper. The simplest is a
quadratic contact between the vector field and the manifold, as in Figures 1.2(i)–(ii),
called a fold. The next is a cubic contact, called a cusp, which is responsible for the
sliding tangencies shown in Figures 1.2(iii)–(iv). The third is a quadratic contact to
both sides of the manifold, called a two-fold. We need not consider any higher-order
tangencies because of the following theorem, which we prove in section 5.7.

Theorem 1.4. A generic one-parameter sliding bifurcation in R
n for any n ≥ 3

occurs at either a fold, cusp, or two-fold.

The rest of this paper is organized as follows. We conclude the present section
with a brief discussion of what is meant by the term “sliding bifurcation.” In section
2, we properly define the tangencies that occur generically in Filippov systems in R

2

and R
3. In section 3, we give an explicit local form for Filippov systems as straight

vector fields either side of a curved switching manifold. This leads to the key idea
of the paper, in section 4, to derive normal forms for the manifold from singularity
theory [2, 3, 11], and then to add dynamics to derive sliding bifurcations in each
setting. This is an alternative to previous uses of singularity theory in nonsmooth
systems, where normal forms were derived for divergent diagrams [22, 28] and for
vector fields tangent to a switching manifold [30] or to a boundary [26, 33].

The main results of the paper follow in section 5, where we first derive an unfolding
around nongeneric trajectories and then use it to find a complete classification of one-
parameter sliding bifurcations. In section 5.7, we show that these form the building
blocks for all one-parameter sliding bifurcations in R

n, and some codimension two
sliding bifurcations are described in section 5.8. In the appendix we show that our
geometric approach reproduces the normal forms for vector fields at flat switching
manifolds, which are equivalent to those provided by other authors, and thus applies
to generic Filippov systems.

1.1. What Is a Sliding Bifurcation?. A key insight behind Theorem 1.4 is that
the topological instability constituting a sliding bifurcation is localized to the neigh-
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borhood of the switching manifold [8]. Consider a distinguished orbit entering the
neighborhood U of a point on the switching manifold. The orbit is distinguished by
global conditions, but the changes it can undergo relative to the manifold, in U , de-
pend only on the configurations of orbits that are possible in U . As the orbit explores
these different configurations it undergoes sliding bifurcations, and the same bifurca-
tions therefore affect, for example, (i) an unstable manifold and (ii) a periodic orbit,
as shown in Figure 1.4. Thus, sliding bifurcations are local mechanisms for global

bifurcations.

(i)

μ<0 μ=0 μ>0

(ii)

Fig. 1.4 Sliding bifurcations as a local mechanism for global bifurcations. As µ changes a sliding
segment is created in (i) the stable manifold to a saddle and (ii) a periodic orbit. The
topological change is the same: locally (gray box) the phase portraits for (i) and (ii) are
equivalent.

One way of describing this is to let x(t;µ) denote, for each µ > 0, an orbit of
(1.2)–(1.3) that is an organizing center of the global dynamics. Let this graze at x = 0
when µ = 0. Define a map Tµ : Rn !→ R

n that induces a map on the vector fields
f(x;µ) and f sl(x;µ), given in the neighborhood of x = 0 by

(1.5) Tµ

(

f(x; 0), f sl(x; 0)
)

= {f(x;µ), f sl(x;µ)}.

Assume that Tµ does not induce any bifurcation of f+ or f−. Nevertheless, typically
the orbit x(t;µ) is no longer grazing for µ #= 0 and thus has undergone a sliding
bifurcation by Definition 1.3. If we now apply the inverse map T−1

µ to the vector

field, it returns locally to the form {f(x; 0), f sl(x; 0)}, but the orbit x(t;µ) is defined
globally, so it will map to some new orbit whose local expression is x̃(t;µ) and satisfies
x̃(t; 0) = x(t; 0). The sliding bifurcation then unfolds locally as a µ-family of orbits
x̃(t;µ) in the unchanging vector field given by {f(x; 0), f sl(x; 0)}. We will use such
µ-families in an unchanging vector field to unfold the sliding bifurcations in section 5.

2. Singularities and the Vector Field. In this section, we introduce the tan-
gencies of piecewise-smooth vector fields that are generic in R

3, as proven in [30].
Because we are interested only in tangencies between the vector field and the man-
ifold, let us assume that f+ and f− are linearly independent throughout the local
region of interest. This implies that f± #= 0 and, from (1.3), that f sl #= 0.

The simplest tangency is a quadratic contact between the switching manifold and
one of the vector fields f±. Without loss of generality let us choose a tangency with
f+, which occurs where Lf+h = 0, which is quadratic if L2

f+h #= 0. Depending on the

sign of Lf+h the tangency is visible or invisible (see Figures 1.2(i)–(ii)), and since f−

is not tangent to h = 0 we have Lf−h #= 0. We call a point where these conditions
are satisfied a fold. It is generic in R

n for n ≥ 2 and defined as follows.
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Definition 2.1. At a fold, Lf+h = 0, L2
f+h != 0, Lf−h != 0, and the fold is

1. visible if L2
f+h > 0,

2. invisible if L
2
f+h < 0.

The contact between the vector field and the manifold is cubic if L2
f+h also van-

ishes and L
3
f+h != 0. Then f+ and, by (1.4), f sl are tangent to the set of fold points

where Lf+h = 0. The signs of L3
f+h and Lf−h determine whether the tangency of f sl

is visible or invisible (see Figures 1.2(iii)–(iv)). We call a point where these conditions
are satisfied a cusp, defined as follows.

Definition 2.2. At a cusp, Lf+h = L
2
f+h = 0, L3

f+h != 0, Lf−h != 0, and the

vectors d
dx
h, d

dx
Lf+h, d

dx
L2
f+h are linearly independent. The cusp is

1. visible if (L3
f+h)(Lf−h) < 0,

2. invisible if (L3
f+h)(Lf−h) > 0.

The fold and cusp lie on the boundary of stable sliding if Lf−h > 0 and of unstable
sliding if Lf−h < 0 (recall Figure 1.1 for the types of stability). If a quadratic contact
occurs between the manifold and both of the vector fields f+ and f− at the same
point, then Lf+h = Lf−h = 0, but the second derivatives are nonzero. Thus, we have
a fold with respect to both f+ and f−, each of which may be visible or invisible, and
we call such a point a two-fold, defined as follows.

Definition 2.3. At a two-fold, Lf+h = Lf−h = 0, L2
f±h != 0, and the vectors

d
dx
h, d

dx
Lf+h, d

dx
Lf−h are linearly independent. The two-fold is

1. visible if Lf+h > 0 and Lf−h < 0,
2. invisible if Lf+h < 0 and Lf−h > 0,
3. visible-invisible if (Lf+h)(Lf−h) > 0.

Given Theorem 1.4, the conditions in Definitions 2.1–2.3 are necessary and suf-
ficient for the existence of one-parameter sliding bifurcations. To find what those
bifurcations look like, we will begin by finding an explicit local approximation for the
piecewise-smooth system.

3. Local Piecewise-Straightening. Having fixed f+ and f− to be linearly in-
dependent, let us now consider them to lie along the axes of a coordinate system
x = (x1, x2, x3) in R

3, so that the vector field in (1.2) becomes simply

(3.1) ẋ = f(x) =

{

f+ = (1, 0, 0) if h(x) > 0,
f− = (0, 1, 0) if h(x) < 0,

hence its Lie derivative is given by Lf = Lf+ ≡ ∂

∂x1
for h > 0 and Lf = Lf− ≡ ∂

∂x2

for h < 0. We can reverse time in h > 0 or h < 0 by changing the signs of f+ or f−.
We can also extend this to R

n for n > 3 by adding zeros beyond the third component.
It remains to derive typical forms of h in such a system. Letting the switching

manifold h = 0 be a general curved surface, we will relate tangencies in the system to
the manifold’s geometry. Moreover, in the appendix we show that previous authors’
normal forms for piecewise-smooth vector fields with folds, cusps, or two-folds [10, 20,
30] are equivalent to (3.1) with appropriate forms of h which we find in section 4.

Let us now consider the form of the switching manifold. If there is a fold or
cusp at x = 0 in (3.1), then, applying the Lie derivatives for (3.1) to Definitions 2.1–
2.2, we have ∂h(0)/∂x2 != 0. Then we can find coordinates x = (x1, x2, x3), where
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h(x) = x2 + V (x), given ∂V (0)/∂x2 = 0. To lowest order in x2 (for small x),

(3.2) h(x1, x2, x3) = x2 + V (x1, x3).

If instead there is a two-fold at x = 0, then applying the Lie derivatives for (3.1) to
Definition 2.3 shows that the coordinate axes x1 and x2 lie in the tangent plane of the
switching manifold. Thus, the only nonvanishing first derivative of h is ∂h/∂x3 != 0,
and to lowest order in x3 (for small x) we can write

(3.3) h(x1, x2, x3) = x3 + V (x1, x2),

where ∂V (0)/∂x3 = 0. In the following section we will use results from singularity
theory to find local expressions for the function V .

4. Singularity Theory and the Switching Manifold. We now introduce some
standard results of singularity theory applied to smooth surfaces. We cover only the
ideas required for this paper and refer the reader to [2, 3, 11] for particularly readable
accounts of the precise statements and theory behind them.

A scalar-valued function V (u, a) of a variable u ∈ R
p and a parameter a ∈ R

q

can be characterized by locally classifying its stationary points where the gradient
dV/du vanishes. For a function V with a nondegenerate stationary point at u = 0,
the Morse lemma [24] states that we can find local coordinates u = (u1, u2, . . . , un)
in which V (u, a) = V (u) = ± 1

2
u2

1
± 1

2
u2

2
· · · ± 1

2
u2

n
. The set h = 0 of a function

h(u, v) = v + V (u), for v ∈ R, then has a fold singularity in the space of (u, v) when
projected along any of the coordinate axes of u. The zero set of h with a fold along
u1 is illustrated in Figure 4.1(i), plotted in coordinates (x1, x2) = (u1, v). Folds along
u1 and u2 are illustrated in Figures 4.1(iii)–(iv) in the space (x1, x2, x3) = (u1, u2, v).

A stationary point is degenerate if the Hessian determinant vanishes, so |d2V/du2|
= dV/du = 0. At a degenerate stationary point an invertible coordinate transforma-
tion can typically be found to express V in a “normal form,” which belongs to a
parameterized family of functions called a universal unfolding. The universal unfold-
ing displays the nondegenerate components making up the degeneracy over the space
of u, in which, as parameters vary, sets of nondegenerate stationary points emanate
from the degeneracies. A universal unfolding is structurally stable, that is, the pat-
tern of stationary points and degeneracies persists under small perturbations to the
unfolding.

For a scalar function V with a degenerate stationary point dV (0)/du = d2V (0)/du2

= 0 != d3V (0)/du3, we can find a local coordinate u = u1 such that V (u1) = 1

3
u3

1
.

This is structurally unstable. The normal form of its universal unfolding is V (u1, a) =
1

3
u3

1
+ au1, where a is a real parameter, so that ∂2V (0, 0)/∂u1∂a != 0 ensures struc-

tural stability [24]. For a function h(u, v, a) = v + V (u, a), the level sets of h have
curves of fold singularities when projected along the u1-coordinate axis in the space
of (u1, v, a), except at u1 = a = 0, where the projection has a cusp at which two-folds
meet. This is illustrated in Figure 4.1(ii) in coordinates (x1, x2, x3) = (u1, v, a).

In general, the dimension of the parameter a in V (x, a) is the smallest possible for
the unfolding to be stable, called the codimension. Only the singularities in Figure 4.1
(of codimension 0 or 1) will feature in this paper. We discuss the role of higher
codimension singularities in sliding bifurcations in sections 5.7–5.8.

These ideas are of use in dynamical systems if a problem can be reduced to con-
sidering a scalar function; for example, in a gradient dynamical system u̇ = dV (u)/du,
an unfolding V (u1, a) =

1

3
u3

1
+au1 would describe a saddle-node bifurcation [19]. The
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fold cusp

(iii) (iv)(i) (ii)
bowlsaddle

x1

x3 x3

x1

x1

x2x2

x3

x2

x1

x2

Fig. 4.1 Generic singularities of the function h = 0 for (i) the fold h = x2 + 1

2
x2

1
; (ii) the cusp

h = x2 +
(

1

3
x3

1
+ x3x1

)

; the two-fold, which is either (iii) a saddle h = x3 +
(

1

2
x2

1
−

1

2
x2

2

)

or (iv) a bowl h = x3 +
(

1

2
x2

1
+ 1

2
x2

2

)

. Writing h(u, v, a) = v + V (u, a), the x-coordinates

correspond to (i) (x1, x2) = (u1, v), (ii) (x1, x2, x3) = (u1, v, a), and (iii)–(iv) (x1, x2, x3) =
(u1, u2, v).

central idea of the present paper is to exploit (3.2)–(3.3), whereby the switching man-
ifold is expressed as the zero set of a scalar function h = v + V . Then, at a fold or
cusp, from (3.2), the switching manifold is given by h(x1, x2, x3) = x2+V (x1, x3) = 0.
In the straightened vector field of (3.1) there are no dynamics in the x3 direction,
and hence x3 behaves like a parameter, so we can map (u1, v) onto the coordinates
(x1, x2) as in Figure 4.1(i), or map (u1, v, a) onto the coordinates (x1, x2, x3) as in
Figure 4.1(ii). Transformations on the coordinates x1 only are sufficient to put V into
either of the normal forms V = ±

1

2
x2

1
or V = 1

3
x3

1
+ x3x1, since x3 can be chosen

arbitrarily because ẋ3 = 0 in (3.1). It is easily verified, by applying the Lie derivatives
for (3.1), that the straightened vector field with

(4.1) h(x1, x2) = x2 ±
1

2
x2

1

describes a fold in the vector field consistent with Definition 2.1, and with

(4.2) h(x1, x2, x3) = x2 +
1

3
x3

1
+ x3x1

describes a cusp in the vector field consistent with Definition 2.2.
At a two-fold, according to (3.3), we can express the switching manifold as

h(x1, x2, x3) = x3 + V (x1, x2) = 0. If we simply let (u1, u2, v) = (x1, x2, x3), then the
vector field in (3.1) would lie tangent to the fold curves on h = 0 and violate the non-
degeneracy conditions in Definition 2.3. Instead, we map a linear combination of u1

and u2 to x1 and x2, obtaining a general expression for V as V = c1x
2

1
+c2x

2

2
+c3x1x2.

We are free to choose the constants ci to give

(4.3) h(x1, x2, x3) = x3 +
1

2
αx2

1
−

1

2
βx2

2
+ x1x2,

where the parameters α and β describe the alignment of the folds to the coordinate
axes and must be nonzero. Applying the Lie derivatives for (3.1), it is easily seen
that the straightened vector field in (3.1), with V given by (4.3), describes a two-fold
consistent with Definition 2.3.

5. Sliding Bifurcations. This section concerns the dynamics implied by the local
geometry. We have derived a local expression in which the vector field is straight,
(3.1), while the switching manifold is curved and specified by one of (4.1)–(4.3). In
this section we will characterize the flow by finding a surface composed of a generic
family of orbits. The surface will be expressed implicitly as a function ψ(x) = 0 and
describes the typical shape of orbits in the piecewise-smooth flow. By considering
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how the surfaces ψ = 0 and h = 0 intersect, we can study how orbits lose or gain
points of intersection with the switching manifold near grazing.

In general, if a scalar function ψ(x) in R
3 satisfies Lfψ(x) = 0, then a surface

defined by ψ(x) = 0 consists of a one-parameter family of orbits of a system ẋ = f ,
where f != 0. For (3.1), a suitable scalar function is

(5.1) ψ(x) = ρ(x3)− xi + h(x)− h(x)g(x) with g =
Lf (h− xi)

Lfh
,

where ρ is a smooth function and g is piecewise-constant (as we show in (5.3) below).
The coordinate xi is the x component preceding V in each of the expressions of the
form h = xi + V given by (4.1)–(4.3). The surface ψ = 0 is piecewise-smooth. When
ρ = 0, it contains an orbit intersecting the origin, and therefore ψ = 0 is an unfolding
of a sliding bifurcation as defined in Definition 1.3.

The surface ψ = 0 is comprised of a family of orbits in each of the vector fields
f+ and f−, which have a common intersection on h = 0. Generically, the portions of
ψ = 0 in h > 0 and h < 0 will each be transverse to h = 0. This implies that dψ/dx
and dh/dx must be linearly independent. Then the intersection between ψ = 0 and
the switching manifold h = 0 is a smooth curve xi = ρ(x3), and hence ρ determines
the shape of the surface ψ = 0. We parameterize this intersection curve as x0(µ)
for µ ∈ R, and we call points x = x0(µ) the impact coordinates. They are found by
solving

(5.2) h(x0) = 0 and ψ(x0) = 0.

We will use the impact coordinates x0 as initial data for orbits in the unfolding.
The piecewise-constant g must be evaluated on each side of the switching mani-

fold. On a given side, if grazing occurs, then Lfxi = 0 and g = 1; otherwise we must
have Lf (h− xi) = 0 over a neighborhood of x = 0, giving g = 0. Therefore,

(5.3) g =

{

1 if Lfxi = 0,
0 if Lf (h− xi) = 0

at x = 0.

Note that only one of the two is possible on each side of the manifold.
In the remainder of this section we make explicit the unfoldings ψ = 0 given by

(5.1). In this way we classify and unfold the one-parameter sliding bifurcations that
are possible in the neighborhood of the singularities in section 4. The reader may find
it useful to also refer to Figure A.1 in the appendix, where we reproduce these results
for a flat switching manifold.

5.1. Sliding Bifurcation at a Visible Fold: Grazing Case. Consider the vector
field in (3.1) with switching manifold h(x) = x2 +

1

2
x2
1 = 0 from (4.1). By result (1)

of Definition 2.1, this represents a visible fold. By setting ρ = x3 in (5.1), we obtain
an unfolding of the sliding bifurcation at a visible fold, given by ψ = 0, where

ψ(x) = x3 − x2 + h(x)Θ [−h(x)] and(5.4)

h(x) = x2 +
1

2
x2
1,

where Θ is the unit step function Θ [h] = 1

2
(1+sgn[h]). We have simplified (5.4) using

the identity Θ [h] = 1 − Θ [−h]. This unfolding is shown in Figure 5.1(i). We will
now describe this figure, and we remind the reader that the vector field f− in h < 0
is vertical and points toward the switching manifold (for clarity the arrows of f− are
not shown in Figure 5.1(i)). Note that the sliding region is stable because Lf−h > 0.
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x2
(iv) invisible fold

x3

x1

x2

x3

x1

x2

x3

x1

(i) visible fold

     (grazing)

impact 
curve

impact 
curve

ψ=0

ψ=0

ψ=0

ψsl=0 ψsl=0

h=0

h<0

h>0

h<0

h>0

(ii) visible fold

     (crossing)

(iii) visible fold

       (catastrophic)
x2

x3

x1

ψ=0

ψ=0

h=0

h=0

h=0

Fig. 5.1 Sliding bifurcation at a fold. The switching manifold is the shaded surface h = x2±
1

2
x2

1
= 0.

A nongeneric orbit intersects the origin. Its unfolding is ψ = 0, with sliding separatrix
ψsl = 0 (in (i)–(ii) only). The sliding bifurcations are classified as (i) at a visible fold
(grazing case), where the nongeneric orbit visibly grazes at the boundary of stable sliding;
(ii) at a visible fold (crossing case), where the nongeneric orbit crosses the manifold at the
boundary of stable sliding; (iii) at a visible fold (catastrophic case), where the nongeneric
orbit splits into grazing, crossing, and sliding solutions at the boundary of unstable sliding;
(iv) at an invisible fold, where the nongeneric orbit hits the fold transversally. Arrows can
be reversed in each case to obtain the same four phase portraits with the opposite stability
of sliding.

Orbits cross the switching surface h = 0 where x1 > 0 and slide where x1 < 0.
Sliding orbits (double arrows) flow toward the fold (as implied by the conditions in
(1.4)), then escape into h > 0. The segments of orbits leaving the switching manifold
at the fold form a surface given by ψsl = 0, where

(5.5) ψsl(x) = −x2 + h(x)Θ [−h(x)] , x1 ≥ 0.

This is the sliding separatrix that separates orbits with sliding dynamics from those
with crossing dynamics. The solution of ψsl = 0 is simply x2 = 0 for h > 0 (the section
of horizontal plane in Figure 5.1(i)) and x1 = 0 for h < 0, and is the nongeneric zero
level surface of (5.1) with ρ = 0, whose intersection with h = 0 is the fold.

Using (5.2), we find that impact points in the unfolding satisfy 0 = x3 + 1

2
x2
1.

If we parameterize this curve as x0(µ) = (±
√
−2µ, µ, µ), then µ labels a family of

orbits originating in h > 0. The nongeneric orbit at µ = 0 grazes the manifold;
see Figure 5.1(i). This implies a sliding bifurcation: for µ > 0, each orbit is a
smooth trajectory in h > 0, and for µ < 0, each orbit impacts on the curve x0(µ) =
(−

√
−2µ, µ, µ). We call this the grazing case of the sliding bifurcation at a visible

fold. See also Figure A.1(1), where this is illustrated for a flat switching manifold. It
describes, for instance, the grazing-sliding of a limit cycle shown in Figure 1.3(i).
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5.2. Sliding Bifurcation at a Visible Fold: Crossing Case. Orbits that originate
in h < 0 in the unfolding given by (5.4) behave somewhat differently, as shown in
Figure 5.1(ii). We can reparameterize the curve of impact coordinates as x0(µ) =
(µ,− 1

2
µ2,− 1

2
µ2), and consider the nongeneric orbit at µ = 0. This is transverse to

the switching manifold, but it intersects the fold from h < 0, implying a different
sliding bifurcation to section 5.1. On one side of the bifurcation, µ > 0, the orbit
crosses the manifold. On the other side, µ < 0, the orbit has a sliding segment
connecting the curve {x0(µ) : µ < 0} to the fold, and it escapes the manifold on the
sliding separatrix ψsl = 0 given by (5.5). We call this the crossing case of the sliding
bifurcation at a visible fold. See Figure A.1(2) for its illustration at a flat switching
manifold. It describes, for instance, the crossing-sliding of a limit cycle shown in
Figure 1.3(ii).

5.3. Sliding Bifurcation at a Visible Fold: Catastrophic Case. If we reverse the
time direction for h < 0 in the system (3.1), so that Lf−h < 0, and keep the same
unfolding from (5.4), then orbits originating in h > 0 undergo a discontinuous change
as they pass through grazing, as shown in Figure 5.1(iii).

As for the grazing case, in section 5.1, we can label orbits by parameterizing the
impact coordinates as x0(µ) = (±

√

−2µ, µ, µ). The nongeneric orbit at µ = 0 grazes
the manifold. When it grazes, the solution becomes nonunique, since it can remain
in h > 0 as a smooth orbit, or cross through to h < 0, or enter the unstable sliding
region; all three possibilities are shown in Figure 5.1(iii).

For µ > 0, the orbit is smooth, lies in h > 0, and does not impact the manifold.
For µ < 0, the orbit crosses the manifold on the curve x0(µ) = (−

√

−2µ, µ, µ), and
the outgoing trajectory crosses to h < 0. This is the catastrophic case of the sliding
bifurcation at a visible fold. The phase portrait is equivalent to neither the grazing
nor the crossing cases from sections 5.1–5.2. The sliding bifurcation is catastrophic
in the sense that perturbing the grazing orbit causes a discontinuous change in its
outset from the neighborhood of the fold, while its inset changes continuously. See
Figure A.1(5) for its illustration at a flat switching manifold.

This sliding bifurcation describes, for instance, the catastrophic destruction of
a limit cycle by grazing-sliding. As a catastrophic event, it is qualitatively different
from the sliding bifurcations in sections 5.1–5.2 and those in sections 5.4–5.5 which
follow, yet it arises naturally in our classification. It has been suggested before by
numerical simulations; see section 8.6.1 of [6], where it is referred to as “catastrophic
grazing-sliding.” It has since been observed in a model of a superconducting resonator
[15], which to our knowledge is the first time is has been identified in experiments.

By inspection, sections 5.1–5.3 exhaust the possible sliding bifurcations of orbits
in the unfolding given by (5.4). Reversing the arrow of time reverses the stability of
sliding but, up to time direction, all cases are equivalent to the three described above.

5.4. Sliding Bifurcation at an Invisible Fold. Consider the system given by tak-
ing h(x) = x2 −

1

2
x2
1
from (4.1) with the straightened vector field of (3.1). By result

(2) of Definition 2.1 this describes an invisible fold. We treat this similarly to the
visible fold, again setting ρ = x3 in (5.1). Hence, we find that an unfolding of the
sliding bifurcation at an invisible fold is given by ψ = 0, where

ψ(x) = x3 − x2 + h(x)Θ [−h(x)] and(5.6)

h(x) = x2 −
1

2
x2

1
.

This is shown in Figure 5.1(iv). We will now describe this figure.
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The sliding region on h = 0 is in x1 > 0, and sliding segments flow away from
the fold. Orbits impact the manifold on the curve x0(µ) = (µ, 1

2
µ2, 1

2
µ2), and we

can label orbits by µ. Every orbit near an invisible fold must cross the manifold and
hence has an impact coordinate. At µ = 0 a nongeneric orbit hits the fold, implying
a sliding bifurcation. This orbit hits the manifold transversally from h < 0, then
slides. For µ > 0, orbits impact the manifold from below and then slide. For µ < 0,
orbits cross the manifold into h > 0, then impact again at x1 = −µ and slide. See
Figure A.1(3) for the illustration of this at a flat switching manifold. It describes, for
example, switching-sliding of a limit cycle as shown in Figure 1.3(iii).

The case with unstable sliding is found by reversing time in (3.1), but by inspec-
tion, up to time reversal, no sliding bifurcations other than Figure 5.1(iv) are possible.
So far we have shown that three of the known sliding bifurcations (grazing-sliding,
crossing-sliding, and switching-sliding in Figure 1.3) and a new one (catastrophic
grazing-sliding) take place at a fold. In the next section we show that the only other
previously known sliding bifurcation, adding-sliding in Figure 1.3(iv), takes place at
a cusp.

5.5. Sliding Bifurcation at a Visible Cusp. Now consider the vector field in (3.1)
with the switching manifold h(x) = x2 +

1

3
x3
1
+ x3x1 = 0 from (4.2). By Definition

2.2, this has a cusp at the origin. From (5.1), the unfolding is the surface ψ = 0,
where

ψ(x) = ρ(x3)− x2 + h(x)Θ [−h(x)] and(5.7)

h(x) = x2 +
1

3
x3

1 + x3x1,

as shown in Figure 5.2. Solving (5.2), we find that the impact coordinates satisfy
ρ(x3) = x2 = −

1

3
x3
1 − x3x1. Hence, we can parameterize the impact coordinates as

(5.8) x0(µ1, µ2) = (µ1,−
1

3
µ3

1
− µ1µ2, µ2).

Since x3 is constant along the flow, substituting ρ = −
1

3
µ3
1
− µ1µ2 into (5.7) gives

(5.9) ψ(x) = 1

3
(x1 − µ1)(x

2

1 + x1µ1 + µ2

1 + 3µ2)− h(x)Θ [h(x)] .

Because this requires two parameters, µ1 and µ2, an orbit at the cusp has a two-
parameter unfolding. This means that a one-parameter family of orbits does not
generically intersect the cusp directly from h > 0 or h < 0.

Curves of fold points branch from the origin: a visible fold along x = x0(
√

−µ2, µ2)
and an invisible fold along x = x0(−

√

−µ2, µ2), for µ2 < 0. The separatrix between
sliding and crossing dynamics is the surface ψsl = 0 whose impact coordinates lie
along a visible fold, where µ1 =

√

−µ2, which is therefore given by

(5.10) ψsl =
1

3
(x1 −

√

−µ2)
2(x1 + 2

√

−µ2)− h(x)Θ [h(x)] .

As shown in Figure 5.2, orbits in a stable sliding region flow toward the visible fold,
then escape the switching manifold within the sliding separatrix. By Definition 2.2
there are two cases to consider. The system in (3.1) gives an invisible cusp, since
(L3

f+h)(Lf−h) > 0. This has sliding segments only for µ2 < 0 (or x3 < 0, h = 0)

and is shown in Figure 5.2(i). Furthermore, the sliding segment tangent to the cusp
consists of only a single point, and therefore cannot give rise to sliding bifurcations.

If we reverse the time direction in h > 0 of (3.1) so that (L3

f+h)(Lf−h) < 0, we

obtain the visible cusp as shown in Figure 5.2(ii). In this case there is a nongeneric
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x3

x2(i) invisible cusp             (ii) visible cusp

x3

x2

x1
x1

ψsl=0

h=0
h=0

h<0 h<0

h>0h>0

Fig. 5.2 The cusp, with switching manifold h = x2 +
1

3
x3

1
+ x3x1 = 0 and sliding separatrix ψsl = 0

given by (5.10). Sliding segments are shown with double arrows. (i) At the invisible cusp
the sliding region is h = 0, x3 < −x2

1
. (ii) At the visible cusp the sliding region is h = 0,

x3 > −x2

1
. The vector field in h < 0 is vertically upward for stable sliding; reverse arrows

for unstable sliding.

sliding segment with a visible tangency to the sliding boundary at the cusp (recall Fig-
ure 1.2(iii) for the definition of a visible tangency). This means that a one-parameter
sliding bifurcation can occur, and its unfolding is given by the separatrix ψsl = 0
combined with sliding segments on h = 0. Since (5.10) has only one parameter, µ2,
it defines a one-parameter unfolding for the sliding bifurcation at a visible cusp.

Reversing the overall time direction, we obtain visible and invisible cusps with
unstable sliding. The phase portraits are the same as the stable cases up to time
direction, so the only distinct one-parameter sliding bifurcation at a cusp is the vis-
ible case, shown in Figure 5.2(ii). This is illustrated at a flat switching manifold
in Figure A.1(4). An example of it is adding-sliding of a limit cycle, as shown in
Figure 1.3.

By considering the map (µ1, µ2) !→ x0(µ1, µ2) from (5.8), we can obtain the
bifurcation diagram for sliding bifurcations near a cusp as shown in Figure 5.3. Sliding
bifurcations at a fold take place at the visible fold (V) or the invisible fold (I), and
degenerate combinations occur at the cusp. The separatrix from (5.10) impacts the
switching manifold along the curve µ2 = −µ2

1
/4 (R).

cusp cusp

B

R        I         VR        I         V

A

μ1

μ2μ2

μ1

μ2=−μ1
2

μ2=− 
μ1

2

4

μ2=−μ1
2

μ2=− 
μ1

2

4

B

(i)                           (ii)

A

Fig. 5.3 Bifurcation curves in parameter space (µ1, µ2) for (i) the invisible cusp and (ii) the visible
cusp. Visible (V) and invisible (I) fold branches separate sliding (shaded) and crossing
(unshaded). Grazing orbits impact along R. The flow in h > 0 maps points from region A
to B.

If we return to (5.7), we can obtain a typical unfolding by letting ρ(x3) = ρ1+ρ2x3,
where ρ1 and ρ2 are constants that, respectively, specify the height and angle, with
respect to the switching manifold, of a family of orbits parameterized by x3. Such a
surface has four topologically different forms, depending on the signs of the quantities
ρ1 and ρ1−

1

3
ρ3
2
: the unfolding contains one visible grazing orbit if ρ1 < 0, one invisible
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x1

x3

x2

(i) (ii) (iii) (iv)

x1

x3

ψ=0

h=0

Fig. 5.4 The family of unfoldings from (5.7) with (i) ρ1 > 0 and ρ1 − ρ3
2
/3 > 0, (ii) ρ1 > 0 and

ρ1 − ρ3
2
/3 < 0, (iii) ρ1 < 0 and ρ1 − ρ3

2
/3 > 0, and (iv) ρ1 < 0 and ρ1 − ρ3

2
/3 < 0. The

intersections h = ψ = 0 are depicted inset and have turning points along the folds (dotted).

ψsl=0 ψsl=0ψsl=0

ψ=0

ψ=0

h=0
(i)          (ii)        (iii)         (iv)

Fig. 5.5 An example of the unfoldings from (5.7) with ρ1 < 0 and ρ1 < ρ3
2
/3. (i)–(iii) show a visible

cusp, and (iv) shows an invisible cusp. These exhibit sliding bifurcations: (i)–(ii) at a
visible cusp (from Figure 5.2(ii)), and (iii)–(iv) at an invisible fold (from Figure 5.1(iv)).
Sliding orbits escape on the separatrix ψsl = 0. Stable sliding cases are shown; simply
reverse arrows for unstable sliding.

grazing orbit if ρ1 > 0, and three grazing orbits in total if ρ1(ρ1−
1

3
ρ3
2
) < 0. These are

shown in Figure 5.4. They unfold the generic series of sliding bifurcations that will
be observed by one-parameter variation of an orbit near a cusp, including all possible
sliding bifurcations at the folds.

An example of a one-parameter unfolding is given in Figure 5.5, showing the same
surface unfolding orbits around a cusp whether it is visible (i)–(iii) or invisible (iv).

5.6. Catastrophic Sliding Bifurcations at a Two-Fold. Up to now we have seen
four sliding bifurcations in which an orbit changes continuously, but nondifferentiably,
and one catastrophic case where the orbit changes discontinuously. In this section we
show that there are three further sliding bifurcations that are catastrophic in nature,
hitherto unclassified, and all originating from the two-fold.

Consider the vector field in (3.1), with the switching manifold h(x) = x3 +
1

2
αx2

1
−

1

2
βx2

2
+ x1x2 = 0 from (4.3). If the Hessian determinant over x1, x2, given by

(∂2h/∂x2

1
)(∂2h/∂x2

2
)− (∂2h/∂x1∂x2)

2 = −(1 +αβ), is negative, then the manifold is
a saddle; if it is positive, then the manifold is a bowl (similar to Figure 5.7).

Because the two-fold consists of tangencies to both sides of the manifold, the
constant g in (5.3) is 1. Hence, by (5.1), the unfolding ψ = 0 is given by

ψ(x) = ρ(x3)− x3 and(5.11)

h(x) = x3 +
1

2
αx2

1
−

1

2
βx2

2
+ x1x2.

By (5.2), impact coordinates satisfy ρ(x3) = x3 = −

1

2
αx2

1
+ 1

2
βx2

2
− x1x2 and can be

parameterized as

(5.12) x0(µ1, µ2) = (µ1, µ2,−
1

2
αµ2

1
+ 1

2
βµ2

2
− µ1µ2).

The folds lie along Lf+h = αµ1 +µ2 = 0 and Lf−h = µ1 − βµ2 = 0, with the signs of
the second derivatives L2

f+h = α and L2

f−
h = −β, respectively, determining whether
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they are visible or invisible. At a visible fold, orbits escape the switching manifold
and form sliding separatrices. By solving ψ = 0 so that its impact coordinates lie
along a fold, we find that the sliding separatrices are given by ψsl = 0, where

(5.13) ψsl = −x3 +
1 + αβ
2αβ

{

βx2
2 if h ≥ 0,

−αx2
1 if h ≤ 0.

An orbit will not generically hit the two-fold from h > 0 or h < 0, since this requires
that both of the parameters µ1 and µ2 vanish. Similarly to the cusp, to find sliding
bifurcations we must consider sliding segments.

Without analyzing the sliding vector field f sl in detail, we can use its boundary
conditions, (1.4), to infer what forms are topologically possible. These conditions
state that the sliding vector field f sl, at a point along a fold, is equal to whichever of
f+ or f− is tangent to the switching manifold at that point. Thus, f sl = f+ where
Lf+h = αx1 + x2 = 0, and f sl = f− where Lf−h = x1 − βx2 = 0. This implies that
f sl points outwards from the stable sliding region at a visible fold and inwards at an
invisible fold. (It does the opposite in the unstable sliding region.) Then only the
sliding topologies shown in Figure 5.6 are possible. It is a straightforward exercise to
verify this by calculating the sliding vector field explicitly using (1.3). These have been
listed before [10, 15, 30], but not considered to be the source of sliding bifurcations
aside from for remarks made in [14].

(i) (iii)(ii) (iv)

visible two-fold invisible two-fold

(v) (vii)(vi) (viii)

visible-invisible
 two-fold

visible-invisible
 two-fold

f −

f +

f 
sl f 

sl

Fig. 5.6 The sliding vector field topologies at the two-folds. Shading regions are shaded. There are

two topologies at a visible two-fold (i)–(ii), where α, β < 0, two at an invisible two-fold

(iii)–(iv), where α,β < 0, and four at a visible-invisible two-fold (v)–(viii), where αβ < 0.

Only the cases in Figures 5.6(i), (vi), and (vii) give rise to one-parameter sliding
bifurcations. These are the only cases in which not only does a sliding segment hit the
two-fold, but its intersection with the switching manifold changes under perturbation
as well. (In Figure 5.6(v) no sliding segments hit the two-fold; in the remaining cases
any sliding bifurcations are trivial by Definition 1.3.) The unfoldings are illustrated in
Figure 5.7, found by combining sliding trajectories with the sliding separatrices from
(5.13).

Figure 5.7(i) depicts the sliding bifurcation at a visible two-fold. This occurs when
α,β > 0, in which case the Hessian determinant of h over x1, x2 is −(1 + αβ) < 0,
so the switching manifold is a saddle. If the sliding vector field has the form of
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(i) visible-visible

     two-fold

(ii) visible-invisble

      two-fold 

     (simple case)

(iii) visible-invisble

  two-fold 

      (robust case)

x3

x1

x2

x2

x1

S
+

S
−

x3
S
−

x3

S
−

h=0
h=0

h>0

h<0

x2

x1

x3

h=0

h>0

h<0

h<0

h>0 ψsl=0

ψsl=0 ψsl=0

ψsl=0

Fig. 5.7 Catastrophic sliding bifurcations at a two-fold for (i) the visible two-fold (ii) the visible-
invisible two-fold (simple case); and (iii) the visible-invisible two-fold (robust case). The
stable and unstable sliding regions are bounded by folds marked S+, where αx1 + x2 = 0,
and S−, where x1 − βx2 = 0, at which orbits escape and form the separatrices ψsl = 0
given by (5.13). At the two-fold singularity the solutions are nonunique, producing orbits
that enter the unstable sliding region (canards) and orbits that escape the manifold.

Figure 5.6(i), then a nongeneric sliding segment intersects the two-fold. At the two-
fold singularity itself the dynamics is nonunique, since both boundary conditions in
(1.4) apply there and are contradictory. Thus, an orbit may escape into h > 0 or
h < 0 or enter the unstable sliding region as shown. Depending on which way we
perturb the nongeneric orbit, we find that an orbit escapes the manifold into either
h > 0 or h < 0 on the sliding separatrix ψsl given by (5.13).

Figures 5.7(ii)–(iii) depict the two cases of the sliding bifurcation at a visible-

invisible two-fold. These can occur if αβ < 0. The switching manifold can be either
a saddle or bowl depending on the sign of the Hessian determinant of h; the figure
shows bowls with −1−αβ > 0. In both cases, a nongeneric sliding segment intersects
the two-fold. At the two-fold point the dynamics is nonunique, since orbits can either
escape the manifold or enter the unstable sliding region. Perturbing the nongeneric
orbit in one direction gives a sliding segment that intersects the visible fold and escapes
h = 0 along the sliding separatrix. Perturbing in the opposite direction leads to two
possible scenarios. Given the vector field from Figure 5.6(vi), the orbit will remain
locally on the manifold, as shown in Figure 5.7(ii). We call this the simple case.
Alternatively, given the vector field from Figure 5.6(vii), there is a one-parameter
family of orbits that intersects the two-fold, as shown in Figure 5.7(iii). Here the
intersection with the singularity persists and we call this the robust case.

Sliding orbits that pass through the two-fold point are “canards” as defined in
[27]—trajectories that pass from stable to unstable invariant manifolds (sliding re-
gions). In Figures 5.7(i)–(ii), the only canard is the nongeneric orbit, while in Fig-
ure 5.7(iii) there is a one-parameter family of canards, hence the “singular” and
“robust” classification.

In the neighborhood of an invisible two-fold, given by α < 0 and β < 0, orbits
map repeatedly back onto the switching manifold. This case is interesting in its own
right and has been extensively studied in [10, 13, 29]. The unfoldings ψ = 0, given
by (5.11), form invariant surfaces around which orbits rotate until they impact and
slide. These are associated with local bifurcations studied in [16], but the invisible
two-fold does not produce any sliding bifurcations.

5.7. Completeness of the Classification. A general switching manifold may
contain any number of the singularities we have studied. Their genericity, however,
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Table 5.1 The eight one-parameter sliding bifurcations. The catastrophic cases are 5–8.

Sliding bifurcation Figure
1. at a visible fold, grazing case Figure 5.1(i)
2. at a visible fold, crossing case Figure 5.1(ii)
3. at an invisible fold Figure 5.1(iv)
4. at a visible cusp Figure 5.2(ii)
5. at a visible fold, catastrophic case Figure 5.1(iii)
6. at a visible two-fold Figure 5.7(i)
7. at a visible-invisible two-fold, simple case Figure 5.7(ii)
8. at a visible-invisible two-fold, robust case Figure 5.7(iii)

means that when any singularity is perturbed it will degenerate into folds. The
sliding bifurcations are generic in the sense that any system can be perturbed to one
exhibiting only those bifurcations listed in Table 5.1.

To prove that this classification is complete is a rather straightforward exercise.
We consider what singularities will generically be hit (intersected) by orbits, either
individually or in one-parameter families. Recall from Definition 1.1 that a generic
orbit is a concatenation of generic trajectories of (1.2) and of (1.3), and that a singu-
larity is a point where, without loss of generality, Lf+h = h = 0. Then we have the
following lemma:

Lemma 5.1. If an orbit of (1.2)–(1.3) in R
n, for n ≥ 2, hits a singularity, the

singularity is generically a fold.

Proof. This is an immediate consequence of the fact that orbits can generically
contain sliding segments, which are one-dimensional curves on the switching manifold,
and the fold is the only codimension one singularity of h = 0, provided that, at the
singularity, L2

f+h(x∗) "= 0 and Lf−h(x∗) "= 0 (see Definition 2.1).

Lemma 5.2. If a one-parameter family of orbits of (1.2)–(1.3) in R
n, for n ≥ 3,

hits a singularity, the singularity is generically a fold, a cusp, or a two-fold.

Proof. From Lemma 5.1, an orbit with a sliding segment may generically hit
a fold, but will miss singularities of higher codimension. However, the intersection
of a one-parameter family of orbits with a fold is a one-dimensional curve. Since a
cusp or two-fold occurs at an isolated codimension one set in the locus of folds, it
can occur generically along such a one-dimensional intersection and hence be hit by a
one-parameter family of orbits. Now consider a higher codimension singularity. This
is a codimension r set in a locus of folds with r > 1, and therefore does not occur
generically in the one-dimensional intersection between a fold and a one-parameter
family of orbits. This result is independent of the number of dimensions provided
that n ≥ 3, so the fold, cusp, and two-fold occur generically and therefore the lemma
holds in R

n for n ≥ 3.
We therefore have the central result of this paper, repeated from section 1.
Theorem 1.4 A generic one-parameter sliding bifurcation in R

n for any n ≥ 3 is

a sliding bifurcation at a fold, a cusp, or a two-fold.

Proof. A generic one-parameter sliding bifurcation takes place at a tangency
between the vector field and the switching manifold, which corresponds to a singularity
where Lf+h = h = 0. Its unfolding is a one-parameter family of orbits, which,
by Lemma 5.2, may generically hit a fold, a cusp, or a two-fold, but not a higher
codimension singularity.

If the derivatives that define a fold, cusp, or two-fold vanish, but the nondegen-
eracy conditions given in Definitions 2.1–2.3 are violated, then the singularity they
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define has a higher codimension. Higher codimension singularities can be derived from
section 4 with V taking the form of swallowtail and butterfly catastrophe manifolds
[24], or by taking intersections of folds with cusps/two-folds, and so on. Lemma 5.2
implies that for an orbit to hit these, at least two parameters are required. We discuss
these parameters briefly in the next section.

5.8. Two-Parameter Sliding Bifurcations. Surfaces ψ = 0 of the form given by
(5.1) can also be used to describe unfoldings of higher codimension sliding bifurcations.
Consider the cusp or two-fold. An orbit that hits the cusp from h > 0 or h < 0 has
the form 0 = 1

3
x3

1 + hΘ [h], x3 = 0 (see (5.7)). By varying the two parameters µ1 and
µ2, we obtain a two-parameter unfolding. This codimension two scenario has been
described in [17] for a visible or invisible cusp with stable sliding. Similarly, an orbit
that hits the two-fold from h > 0 or h < 0 can be reached only by control of two
parameters in the unfolding from (5.11). This has not been considered before in the
literature on sliding bifurcations. By varying x3 and either µ1 or µ2, we obtain a
two-parameter unfolding.

Also among the two-parameter sliding bifurcations are cases where a sliding seg-
ment intersects a codimension three singularity. We can refer to singularity theory, as
in section 4, to find that for the piecewise-straightened vector fields in (3.1), the switch-
ing manifold h = 0 can take the form of the swallowtail h = x2+(1

4
x4
1+

1

2
x3x

2
1+x4x1),

the lips h = x2 + (1
3
x3

1
+ (x2

3
+ x4)x1) or beak-to-beak h = x2 + (1

3
x3

1
− (x2

3
+ x4)x1),

and the fold-cusp h = x4+(1
3
x3

1
+x3x1+

1

2
x2

2
), where “± 1

2
x2

2
” is a Morse term similar

to that which describes a fold.
In every case, two-parameter sliding bifurcations take place at singularities that

arise as subsets along the locus of folds, cusps, and two-folds. They are therefore
comprised of degenerate combinations of the eight one-parameter sliding bifurcations
introduced in section 5.

6. Concluding Remarks. By considering a piecewise-straight vector field with
a curved switching manifold, we have studied the geometry that gives rise to sliding
bifurcations. We have thus found that eight sliding bifurcations can occur as one
parameter is varied in a generic Filippov system. They can be divided into two types:
the regular sliding bifurcations 1–4 in Table 5.1, in which an orbit changes continuously
and remains unique, and the catastrophic sliding bifurcations 5–8 in Table 5.1, in
which an orbit changes discontinuously and is nonunique at the bifurcation itself.

This paper aims to provide a foothold for a bifurcation theory of piecewise-smooth
systems that is as yet in its infancy. We have singled out the geometry of discontinuity
induced bifurcations in sliding systems, focusing on the singularities and bifurcations
that arise through loss of transversality between a vector field and a switching man-
ifold. To these fundamentals we must add bifurcations on switching manifolds that
have self-intersections or corners, and bifurcations of equilibria or invariant manifolds.
The study of these for dimension n > 2 has barely begun.

It is worth reemphasizing that sliding bifurcations are global bifurcations (see
Figure 1.4). They affect global sets (limit cycles, stable manifolds, etc.) that graze
the switching manifold, but the bifurcation relies only on the geometry in the neigh-
borhood of grazing. Global conditions give orbits in the unfolding a specific identity.
A sliding bifurcation can be viewed locally as a bifurcation of orbits with no actual
bifurcation of the underlying vector field.

The catastrophic sliding bifurcations are characterized as perturbations of orbits
that impact a boundary of unstable sliding. Interpreted as the piecewise-smooth limit
of a regularized vector field [31], the nonuniqueness of solutions at the bifurcation can
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be interpreted as a cascade of orbits that penetrate the unstable sliding region. Far
from being a pathological result of nonsmoothness, they are a common feature of
real world models. They occur in singular perturbation problems such as the van der
Pol system with relation to canards and relaxation oscillations [5, 12, 18], where the
sliding vector field is comparable to the “reduced” (or slow) subsystem. They have
also been proposed as the mechanism for sudden temperature oscillations observed in
superconducting resonators [15, 25], and have been shown to be generic in switched
feedback controllers [4].

A truly pathological feature of Filippov systems is the nondeterminism faced
where both vector fields are tangent to the switching manifold (the two-fold, fold-cusp,
etc.). This presents an ongoing dilemma for the interpretation of piecewise-smooth
models, particularly since, in the sliding bifurcation at a visible-invisible two-fold (see
Figure 5.7(ii)), a limit cycle can jump instantly from sliding to robust nondeterministic
behavior. The resolution is likely to lie in closer study of the sliding bifurcations at
two-folds in models of real world systems.

Appendix. Normal Forms at a Flat Switching Manifold. Given the piecewise-
constant vector field in (3.1) and normal forms for singularities of the switching man-
ifold in section 4, we now find coordinates in which the switching manifold is flat (and
the vector field is no longer straight). These are more common in the literature on
piecewise-smooth systems, and therefore useful for illustration.

Given a manifold written locally in the form h(x) = xi + V (x) as in (4.1)–
(4.3), we make the smooth transformation to coordinates y = (y1, y2, y3) in which
the switching manifold is given by yi = 0. The unfolding function (5.1) is then given
by ψ(y) = ρ(y3) + V (y) − yig(y). We now demonstrate the transformation for each
of the singularities in Definitions 2.1–2.3.

Near the fold, as described in section 5.1, a transformation to (y1, y2, y3) =
(x1, h, x3) gives

(A.1) (ẏ1, ẏ2, ẏ3) =

{

(1,±y1, 0) if y2 > 0,
(0, 1, 0) if y2 < 0.

Sliding bifurcations at a fold in these coordinates are shown in parts 1, 2, 3, and 5 of
Figures A.1.

Near the cusp in section 5.5, a transformation to (y1, y2, y3) = (x1, h, x3) gives

(A.2) (ẏ1, ẏ2, ẏ3) =

{

(1, y2
1
+ y3, 0) if y2 > 0,

(0, 1, 0) if y2 < 0.

The sliding bifurcation at a visible cusp is shown in part 4 of Figure A.1.
Near the two-fold in section 5.6, we transform to (y1, y2, y3) = (x1, x2, γh), where

γ is a scaling constant that can take different values either side of the switching
manifold. A similar constant at the fold or cusp has no topological effect, but at the
two-fold it must be included for the sliding vector field to realize all of the topologies
in Figure 5.6. Without loss of generality, we can let γ = 1 for h > 0 and let γ = γ−

for h < 0. Then the two-fold vector field near a flat switching manifold is given by

(A.3) (ẏ1, ẏ2, ẏ3) =

{

(1, 0,αy1 + y2) if y3 > 0,
(0, 1, (y1 − βy2)γ

−) if y3 < 0.

The sliding bifurcations at a two-fold then are shown in parts 6–8 of Figure A.1.
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y2

y3

y1

1. visible fold (grazing)

cf. Fig.5.1(i)

ψ=0
ψsl=0h=0

4. visible cusp

y
1

y
3

y
2

cf. Fig.5.2(ii)

ψsl=0
h=0

2. visible fold (crossing)

cf. Fig.5.1(ii)

ψ=0

ψ=0

ψsl=0

h=0

7. visible-invisible two-fold

  (simple)

unstable
stable

y2

y1

y3

cf. Fig.5.6(ii)

h=0 ψsl=0

h=0

8. visible-invisible two-fold

  (robust)

unstable
stable

y2

y1

y3

cf. Fig.5.6(iii)

ψsl=0

h=0

5. visible fold (catastrophic)

ψ=0

ψ=0

h=0

cf. Fig.5.1(iii)

y2

y3

y1

ψ=0

ψ=0

h=0

3. invisible fold

cf. Fig.5.1(iv)

6. visible two-fold

y3

y2

y1

unstable stable

cf. Fig.5.6(i)

ψsl=0

ψsl=0
h=0

Fig. A.1 The eight generic one-parameter sliding bifurcations, shown in coordinates where the

switching manifold h = 0 is flat. The labels 1–8 correspond to the classification in Table

5.1. The surface ψ = 0 is the unfolding. Sliding segments are shown with double arrows,

and leave h = 0 on the sliding separatrix ψsl = 0.

The piecewise-smooth vector fields in (A.1)–(A.3) are equivalent to normal forms
defined by previous authors, up to coordinate transformations that are linear in h > 0
and h < 0 and continuous at h = 0. The fold, cusp, and two-folds all appear in the
seminal work by Filippov [10], with local vector fields similar to (A.1)–(A.3). Normal
forms have since been derived for each of these. The cusp follows directly from the cusp
at the boundary of a manifold given in [26]. Teixeira’s normal forms for two-folds [29,
30] are obtained from (A.3) by letting (x, y, z) = (y1+α−1y2, (y1−βy2)γ

−, y3), then f+

is written in [29, 30] as X(x, y, z) = (1, γ−, x) and f− as Y (x, y, z) = (α−1,−βγ−, y),
in terms of the parameters α,β, γ− (this excludes Teixeira’s case “a5,” where the
vector fields are not everywhere transverse).

The cusp is also equivalent to the codimension one “double tangency” studied in
planar Filippov systems in [20]. There, a parameter (called α) replaces the coordinate
y3 in (A.3) (which is valid since ẏ3 = 0). The two-folds are referred to as “collisions
of tangencies,” but in this case the vector fields are not equivalent, since the two-fold
requires at least three dimensions to express generically.
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