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THE GEOMETRY OF JULIA SETS

JAN M. AARTS AND LEX G. OVERSTEEGEN

Abstract. The long term analysis of dynamical systems inspired the study of
the dynamics of families of mappings. Many of these investigations led to
the study of the dynamics of mappings on Cantor sets and on intervals. Julia
sets play a critical role in the understanding of the dynamics of families of
mappings. In this paper we introduce another class of objects (called hairy
objects) which share many properties with the Cantor set and the interval: they
are topologically unique and admit only one embedding in the plane. These
uniqueness properties explain the regular occurrence of hairy objects in pictures
of Julia sets—hairy objects are ubiquitous. Hairy arcs will be used to give
a complete topological description of the Julia sets of many members of the
exponential family.

0. Introduction

The topological structure of the Julia sets (the unstable sets) of the quadratic
family fi(z) = z2 + c and the exponential family fit ,a2(z) = Xxez + X2e~z has
not yet been fully elucidated. This paper is mainly concerned with the Julia sets
of exponential mappings. Our work on Julia sets in this family is based on work
by Devaney and coauthors [Dl, D2, D4, DKr] who had shown that the Julia set
Jx of Ei(z) = Xez (for real 0 < X < l/e) was a "Cantor bouquet," the closure
of a particular union of sets of the form (Cantor set) x [0, oo) in the com-
plex plane [DKr]. Devaney observed that apparently similar Cantor bouquet
Julia sets occur for a wide variety of transcendental entire functions, including
z —> X sin z, and z —► X cos z for certain complex values of the parameter X
[DT]. It was not clear whether these Cantor bouquets were in fact homeomor-
phic one to another, either within a family, or across families. Compare the
frequent occurrence of Cantor sets in dynamics: whether or not the dynamics
are conjugate, the Cantor sets themselves are all topologically equivalent, and,
in the planar case, must be equivalently embedded. We will show that these
Julia sets are indeed homeomorphic and all of them are equivalently embedded
in the plane. This is in spite of the fact that there are no nonzero values of X
and p for which z —> Xez and z —> p sin z axe conjugate. It also stands in
contrast to a result of McMullen's which shows that the Cantor bouquets in the
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898 J. M. AARTS AND L. G. OVERSTEEGEN

exponential family have Hausdorff dimension 2 and plane Lebesgue measure 0,
while those in the sine family have Hausdorff dimension 2 but positive plane
Lebesgue measure [EL, McM]. We shall also present a very simple model for
these Julia sets, which reveals all of its topological properties.

Our investigations of Julia sets of exponential mappings led to the notion of
hairy objects. Objects with essentially the same properties have a long history
preceding our interest by many decades (see for example [L]). However, the first
indications that these objects are unique appears to be quite recent (cf. [BO,
C]). The hairy objects introduced in this paper also share a stronger form of
uniqueness: planar hairy objects of the same type are all ambiently homeomor-
phic. They share this strong form of uniqueness with the arc and the Cantor
set and it explains their regular occurrence in pictures of Julia sets—hairy ob-
jects are ubiquitous. All planar hairy objects are closed subsets of the plane
consisting of an uncountable number of half rays (referred to as hairs), which
are connected either at oo or through a (base) circle or arc, such that each
hair is approximated (smoothly) from two sides in the plane by other hairs.
Every hairy object is locally compact and the set of endpoints of the hairs is a
dense, 1-dimensional and totally disconnected set. We hope that the study of
hairy objects will also shed light on the topological structure of Julia sets in the
quadratic family.

The paper is organized as follows: In § 1 we will study the Julia set of the
exponential map z —> Xez. This leads to the notion of an hairy arc which is
introduced in §2. In §3 we study hairy arcs in detail by proving their uniqueness
and providing an internal characterization. In §4 we study embeddings of hairy
arcs in the plane. The last section (§5) is devoted to Julia sets of hyperbolic
functions.

1.  THE EXPONENTIAL MAP

In this section we give a precise description of the Julia sets in the one-
parameter family of exponentials Ex(z) = Xez, where A is a real number with
0 < X < ¿ . In §5 other examples of Julia sets will be discussed. An introduction
into the subject can be found in the books [D3 and DKe]. The dynamical
behavior of the exponential family has been studied by various authors. The
pioneering work has been done by Misiurewicz [M] and Devaney [Dl, D2,
D4, DKr]. The result that the Julia set of Ex is the complex plane, for all
X > i , is essentially due to Misiurewicz [M]. The dynamics of the systems
Ex, 0 < X < j , in particular the geometry of their Julia sets J(EX) has been
revealed in [DKr and D4]. Our work in this section utilizes ideas and notions
from both papers. The construction of the topological map of the Julia sets, to
be presented in this paper, is a modification of the construction of the crowns
in the Cantor bouquets. What is new here is the construction of special models
of the Julia sets, which are called straight brushes. The construction shows
that the Julia sets are "smooth compacta" (smooth in the topological sense; see
3.9 for a definition). From the results in the subsequent sections it will follow
that all straight brushes are ambiently homeomorphic and, consequently, that
all Julia sets are ambiently homeomorphic. This result is not only valid for
the systems Ex, 0 < X < £ , for which the result also follows from the quasi-
conformal conjugacy of any two such systems [DG], but also holds for other
systems which are not equivalent to a system Ex for some X.
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THE GEOMETRY OF JULIA SETS 899

1.1. We shall define straight brushes as subsets of the product [0, oo) x ZZP
of the half line and the irrational numbers. Two structures of the set Z?
of irrational numbers (in ZZ% ) are used, namely, the product structure and
the order structure. By considering partitions of ZP by means of collections
^o, ^i, ^2 > • • • °f pairwise disjoint intervals in £P (with rational endpoints)
such that each element of ^4 is the union of a doubly infinite sequence of ele-
ments of $4+i, k = 0,1,2, ... , while mesh (^4) —> 0 as k —> oo, one can see
that ZP is homeomorphic to the countable infinite product XffzT=o3Z °f C0Pies
of the integers Z. The indexing of the partitions can be arranged in such a
way that the homeomorphism between ZP and n^o •% x% a^so an 0T^er isomor-
phism between Z? with the natural order, inherited from ZPt , and the product
n^o-ST with the lexicographic order. We shall use the product structure and
the order structure interchangeably. In particular we identify [0, oo) x ZP with
a subset of ZP2 in a natural way.

1.2. Definition. A straight brush is a subset B of the set [0, oo) x ZP in ZP2
with the following properties.

a. Hairiness. For each (y, a) e B, there is a ta e [0, oo) such that
{t\(t, a) e B} = [ta, oo). The point ea = (ta, a) is the endpoint of the
hair ha = [ta, oo) x {a} at a .

b. Density. The set {a\(y, a) e B for some y} is dense in ZP and, for
each (y, a) e B, there exist sequences (/?„) and (y„) in ZP such that
ßn Î a,  yn[a,  tßn -> ta and t7n -> ta .

c. Compact sections. B is a closed subset of ZP2.

1.3. Let a be a (fixed) real number with 0 <X<\ . Let px denote the unique
fixed point of Ex with Px > I ■ It is to be noted that |Tv|(z)| > 1 for all z
with Re z > px. By standard arguments, involving Schwarz's lemma, it may be
proved that the open half plane {z\ Re z < Px} and the strips {z\(2k - j)n <
Im z < (2k + \)n), k e Z2Z, are subsets of the Fatou set of Ex. The rays
{z\ Re z > px, Im z = 2kn}, k e ZZ, belong to the Julia set J(Ex) of Ex .
Recall that a ray is a closed subset of the plane, which is homeomorphic to the
half line [0, oo).

We see that the rays {z\ Re z > px, Im z = kn], k e 2Z, alternately belong
to the Julia and Fatou sets. By taking preimages we find interleaved collections
of rays in the Julia and the Fatou set of Ex .

A large part of this section is devoted to the proving of the following main
result.

1.4. Theorem. Suppose 0 < X < -\ . There exists a straight brush B in [0, oo) x
£P and a homeomorphism cp of B onto the Julia set J(Ef) of Ek.

The following is a preliminary definition.

1.5. Definition. For each x e [0, oo) and n e S, the square at (x, 2n) is
defined by

S(x, n) = {¿¡ + in\x < â, < x + n,  (2n - {)n < n < (2n + \)n}.

It is to be noted that S(x, n) n JiEx) ^ 0 , for all x > px - n and n e2Z.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



900 J. M. AARTS AND L. G. OVERSTEEGEN

1.6. Construction of B and definition of cp. We define a straight brush B
in [0, oo) x ZP and a continuous map cp of B into J(Ex). The additional
properties of cp will become apparent later on. Let x > px and aeZP . Using
the product representation of ZP we let a = (no, nx, n2, ...) with n, e 2Z.
We shall decide whether or not (x, a) e B . If (x, a) e B, the image cp(x, a)
is defined in such a way that

(2nk - \)n < lm(Ek(cp(x, a))) < (2nk + \)n.
Inductively on k we define real numbers xk and squares R(xk, nk). We let

xq = x and R(xq, no) = S(x, no). Suppose that x¡ and R(x¡, n¡) have been
defined for I < k . We consider two cases.

(1) R(xk , nk) í 0 and there exists £ with

(*) S(Ç,nk+x)cEx(R(xk,nk)).
Let ¿¡m = min{<^|<^ satisfies (*)}. If ¿¡,„ > px , we put xk+x = £m and

R(xk+X, nk+x) = S(im , nk+x).

If ím < Px , we let xk+x = xk and R(xk+X, nk+x ) = 0 .
(2) If case (1) does not apply, we let xk+x = xk and R(xk+X, nk+x) = 0 .

For each k e JV, let Bk = Efk(R(xk, nk)), where we choose the branch of
Efk such that Bk c Bo . The straight brush B is defined by

B = {(x, a)\R(xk , nk) / 0,  for all k).
For each (x, a) e B , v/e define

cp(x,a) = f]{Bk\k = 0, 1,2,...}.
It is to be noted that Bk+X c Bk c ••• c B0, for k > 0, and that

diam(T?i:) —» 0 as k —> oo, since |T^| > 1 in the half plane Re z > px . It
follows that cp is a well-defined map of B into W .

1.7. Lemma. T? is a straight brush and cp is an injective continuous map of B
into the Julia set J(Ek).
Proof. First observe that, for any square S(x , n) with x > px , Ex(S(x, n)) is
an annular region, centered at the origin, with width > 22, while the diagonal
of any square S(y, m) has length < 4.5 . The proof consists of six parts.

1. First we show that <p is one-to-one. Suppose that (x, a) and iy, ß)
axe distinct points of B. Let a = (n0, nx , ...) and ß = (m0, mx, ...). If
a ^ ß , then nk ^ mk for some k , whence Rixk , nk) n R(yk , mk) = 0 . If
a = ß , then x ^ y, and we may assume x < y . Then xk <yk, for all k , as
is easily seen, and in fact yk - xk —► oo as k —> oo . Hence there exists k such
that R(xk , nk) n T?(y^ , mk) = 0.

2. The continuity of 9» follows from the following observation. Let (x, a)
e B and a = (no, nx, n2, ...). If ß = (mo, mx, ...) e ZP has n, = m,, for
all i < k, then we can choose ô > 0 such that |v - x\ < ô and (y, ß) e B
imply T?(jt,-, «,)nT?(y,, m¡) / 0 , for all i < k . It follows that cp(x, a) is close
to <p(y,ß).

3. Let (x, a) e B and a = (no, nx, n2, ...). We have R(xk , nk) n
/(T^) ^ 0 for all fc . It follows that d(cp(x, a), J(EX)) = 0, whence cp(x, a) e
/(^).
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THE GEOMETRY OF JULIA SETS 901

4. We discuss the hairiness of B . Let (x, a) e B with a = (no, nx, ...)
and suppose x < y. We show that (y, a) e B. By induction it follows
that Xk < yk and Riyk,nk) / 0, for all k. Consequently, (y, a) e B.
Now suppose that (z, a) £ B. Consider the smallest k with R(zk,nk) #
0, but R(zk+X, nk+l) = 0 Then, either there exists no ¿; with 5(i, n^+i) c
Ex(R(zk, nk)) or there does exist such a £, but for the minimal t\m with that
property, we have Çm < Px- In both cases the same holds true for all y slightly
larger than z . It follows that {x\(x, a) e B) is of the form [ta, oo).

5. As for the density of B, that {a\(y, a) e B for some y} is dense
in ZP follows from the observation in 1.3 about the interleaved collections
of rays in the Julia and the Fatou set. Now suppose (x, a) e B. Let a =
(no, nx,n2, ...)). Choose a y which is slightly bigger than x. Then the
inner radius of Ex(R(yk-\, nk-X)) wm De much bigger than the inner radius of
Ex(Rk-\(Xk-], rtjt-i), for k sufficiently large. It follows that (y, ß) e B for
ß = (n0,nx, ... ,nk-x,nk± 1,0,0, ...).

6. It remains to prove that B is a closed subset of R2. Suppose that
(x, s) $. B. We shall construct an open rectangle 5 such that (x, s) e S c
R2\B . We only discuss the case that 5 is rational, as that is the more difficult
case (for the case that 5 is irrational, see also 4 above).

Consider the minimal k such that s £ {)% (notation of 1.1). There
is a unique «¿. such that, for all m e Z2Z, (n0, nx, ... , nk, m,...)< s <
(no, nx, ... , «¿-I, nk + l, m, ...). A close look at the definition of B reveals
that we can choose TV so large that no point (x, y) belongs to B, where y has
the form

y = (no, ... , nk_x, nk , m, ...), for some m > N, or
y = (n0, ... , nk_x, nk + 1, m , ... ), for some m < -N .

For any such y, we have R(xk+X, m) = 0. It also follows that there is a
S > 0 such that, for all y with |x - y\ < ô, we have T?(y*+i, m) = 0, for
all m > N and all m < -N. Let o = (no,... , nk, N,0, ...), and x =
(n0, ... , nk-x, nk + l,-N,0,...) and S = {(y, 0ll*-:H <s, o <t<x).
Then (x, s) € S C R2 \ B.

We define the inverse of cp , which is named y/ .

1.8. Construction of y/ : J(EX) —> B . Let z e J(EX). For each k e J", there
is a unique nke2Z such that

(2nk - \)n < Im Ek(z) < (2nk + ¿)n.

This defines the itinerary n(z) = (no, nx, n2, ...) of z . For each k e yf,
we let Rkk = S(u, nk), where u is minimal with respect to the properties
u > px and Ek(z) e T?£ . For each k e N, we define Rk for i = k to / = 0
inductively as follows. If Rk has been defined , we let Rk_{ = S(v, n/_i),
where v is maximal with respect to the property Rk c Ex(Rk_x). Note that
the last condition ensures that the square Rk hits the inner radius of the semi-
annulus Ex(Rk_x) in exactly one point. For each k e JZ, we define xk by the
condition R\ = S(xk , no).

It is to be noted that z e R\ , for each k e jV . It follows that

Re z - n < xn < Re z, and x0 < xk < xk+x < Re z + n,    for all k.
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902 J. M. AARTS AND L. G. OVERSTEEGEN

Finally we define
x°° = lim xk and ip(z) = (x°°, n(z)).

k-+oo

1.9. Lemma,   cp o ip = idj^E^ .
Proof. We use the notation of 1.8. Define T?g° = S(x°° , n0). We have T?°° =
lim^^oo Rq in the Hausdorff metric. For / = 1,2,... , Rf> = limi._00 Rk .
As follows from the observation in 1.8, by the continuity of Ex the square Rf
hits the inner radius of the annulus ExiRfZx) in exactly one point w¡. It is to
be noted that Re w¡ > px. Using these observations we compute cp(\p(z)) for
a z e J(Ex). Applying the construction of 1.6 we find

T?(x£° ,nk(z)) = Rf,        keJ^,
and

<p(ip(z)) = <p(x°° , n(z)).
It follows that y/(z) e B and E%(tp(ip(z)) e Rf , k e JZ . Consequently

<p(xp(z)) = <p(x°° , n(z)) = Ç\{Efk(Rf)\k e^) = z.

1.10. Lemma. The map cp is a homeomorphism from B onto J(Ex) with in-
verse \p.
Proof. This follows in a standard fashion from Lemmas 1.7 and 1.9 once we
have noticed that y/ sends bounded sets to bounded sets.

Theorem 1.4 has an interesting corollary. Using the product representation
of ZP the shift a : ZP —> ZP is defined by cr(«o, nx ,...) = (nx, n2, ...). The
shift induces a map a* on the endpoints of the straight brush B as follows:

o*(la) = a*(ta, a) = (ta(a), cria)).

1.11. Corollary. The map cp is a conjugation of a* to the restriction of Ex to
the set of endpoints of JiEx).

In condition b of Definition 1.2 the order of the irrationals ZP is involved.
To capture the order in a topological way we shall attach the hairs of the brush
to an arc, which will be called the base of the brush. We shall do this by means
of a suitable compactification of ^.

1.12. Compactifying the brush. The most natural way of compactifying f is
undoubtedly the one-point compactification. After identification of ZP2 with
^ the one-point compactification of ^ entails that of the straight brush B.
The resulting space is a smooth Cantor bouquet [BO]. A serious drawback of
this compactification is that not all embeddings of the Cantor bouquet in the
plane are topologically equivalent. Specifically, a variation of condition 1.2.b
may fail to hold in countably many points. For this reason we shall describe
another construction by which £P is compactified to a topological disc.

We let 31* denote the extended real numbers—ZM* = {-oo}u^U{oo}—
with the usual order and topology. Identifying ZP2 and 'to , we can compactify
^ by Z%* x Z%*. The set E = chj>. x,s?. B is called a straight hairy arc. In this
compactification E of B the hairs of B axe attached to the base {oo} Y.ZP* of
E (or B ). Topological copies of E are called hairy arcs. These are the objects
to be studied in the subsequent sections of the paper.
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We shall indicate how to compactify £f such that J(Ef) (0 < X < \) com-
pactifies to a hairy arc. To this end we describe an embedding of W(ZP2) into
92* x92*. The embedding of 92 x92 into 92* x92* is the natural one with the
following exception. The edge {(oo, t)\t e ZP*} is attached to f in a differ-
ent way, which is conveniently described by specifying a collection of open sets
containing neighborhood bases for all points of this edge. By Theorem 1.4 there
exist a straight brush B c [0, oo) x ZP and a homeomorphism cp : B —> J(Ef).
Denote by D the dense subset {a\(y, a) e B for some y} of ZP. For each
a e D we define the open sets of the following forms:

1. {(oo, t)\t > a, te ZP*) together with the points in the points in
92x92* which lie above the ray <p([ta, oo) x {a}) and to the right of {u+iy\y e
ZP*) , where u > ta + n .

2. Similarly as in 1, but taking the union of {(oo, t)\t <a, te ZP*} and
the set of points in 92 x ZP* which lie under the ray cp([ta, oo) x {a}) and to
the right of the half-line.

The collection of all finite intersections of sets obtained in this way contains
the neighborhood bases for the points of the edge {(oo, t)\t e ZP*}. In this
way we have defined an embedding of ZP2 in ZP* x 92*. The closure of J(Ex)
in this compactification is easily seen to be homeomorphic to the straight hairy
arc E, related to B (see §2).

2. Hairy arcs
In this section we shall define the notion of a hairy arc (abbreviated ha).

This will be accomplished by first giving a geometric definition of a straight
one-sided hairy arc (abbreviated sosha) in the plane. A ha will be defined to be
any topological image of a sosha. It will follow from the results in §3 that all
soshas (and hence all hairy arcs) are homeomorphic. Moreover we shall show
in §4 that, under mild conditions, all hairy arcs are equivalently embedded in
the plane. Our exposition follows the pattern that sometimes is used for the
discussion of the arc or the Cantor set, namely, that of geometric definition,
prototype, uniqueness and tameness.

The unit interval is denoted by I.

2.1. Definitions. A straight one-sided hairy arc (abbreviated sosha) X is a
compact subset of the unit square I2 of the following form. There exists a
function / : I —> I, called the length function, such that

1. For all (x, y) e I2 we have (x, y) e X if and only if 0 < y < l(x) ;
2. The sets {x € T|/(x) > 0} and {x e T|/(x) = 0} are both dense in

[0, 1] and /(0) = /(l) = 0.
3. For each x e I with l(x) > 0 there exist sequences (p„) and (q„) in

I such that p„ î x, qn [ x and liml(pn) = liml(qn) = l(x).

For each x e I, the set {(x, y)|0 < y < l(x)} is called the hair at x . The
set {(x, y)\(x, y) e X, y > 0} is called the straight brush of the sosha. The
set I x {0} is called the base.

We have already encountered a sosha in 1.12. Identifying ZP* with I, it can
be seen that E = cl.gg.x^- B is a sosha and that B in the straight brush of the
sosha. A simple construction of a sosha follows.
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904 J. M. AARTS AND L. G. OVERSTEEGEN

2.2. Prototype of a sosha. The sosha X is constructed as the intersection of
a sequence (T„) of subsets of I2, all containing the base T x {0} . Each T„
will be a finite union of rectangles R(n, j) with sides parallel to the x- and
y-axis and intersecting each other at most in a subset of a vertical edge. In
each rectangle R(n,j) we will select (2n + 1) rectangles R(n , j, k). Tn+X
will be the union of all these rectangles R(n, j, k), which will be relabeled as
R(n + 1, j). The desired prototype is X = f){Tn\n = 0, 1,2,...} (see Figure
1).

Let To = Tx = I2. Partition the base I x {0} of Tx into three intervals of
equal length, labeled Ix , I2, T3 from left to right. Over each interval I¡, j =
1,2,3, erect a rectangle of height \ , 1 and \ from left to right, respectively.
Suppose T„ is a finite union of rectangles R(n,j) whose bases B(n , j) parti-
tion [0, 1] into intervals of equal length. Let h(n,j) denote the height of rect-
angle R(n,j). Partition each interval B(n , j) into (2/1 + 1) intervals of equal
length labeled I(n, j, k), k=l,...,2n+l, from left to right. Erect over
each interval I(n, j, k) a rectangle R(n, j, k) of height "+'->+'-fr| -h(n , j).
Put Tn+X ={JR(n,j,k) and X = f]{Tn\n = 0,1,2,...}. Note that the cen-
ter line of each rectangle will be a hair contained in X . It is easily verified that
X is a sosha. In particular, since each T„ is a continuum and Tn+X c Tn, X
is a continuum. We will refer to the set D = {(x, 0)| 0 < x < 1} as the base of
the sosha X.

2.3. Definition. A hairy arc (abbreviated ha) is any topological image of any
sosha. A one-sided hairy arc (abbreviated osha)  is an embedding cp of a hairy

1/3 2/3

Figure 1
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THE GEOMETRY OF JULIA SETS 905

arc X, with base D, into the plane such that all hairs are attached to the same
side of the base <p(D).

It is to be noted that there are no hairs attached to the endpoints of the base
D. Therefore it is not difficult to define the "sides" of cp(D) in the plane. We
collect some basic properties of soshas.

2.4. Proposition. Let I be the length function of a sosha X. The function I is
upper semicontinuous. Let [a,b] be any subinterval of [0, 1]. The function I
attains a maximum M on [a, b] and assumes on [a, b] all values between 0
and M.
Proof. The upper semicontinuity of / is an easy consequence of the com-
pactness of X. In a standard fashion it follows that / is bounded. Let
M = sup{/(x)|x € [a, b]}. From the compactness of E it follows that the
value M is attained by /. For each c e [0, M) the set C = {x|/(x) > c} is
nonempty and, by 3 of Definition 2.1, dense in itself. It follows that cl(C) is a
Cantor set. As any Cantor set in [0, 1 ] has endpoints, by way of contradiction
it follows from 3 of Definition 2.1 that the set of values attained by / on these
endpoints equals {c}.

We omit the proof of the following corollary.

2.5. Corollary. The set (of endpoints) Q = {(x, l(x))\l(x) > 0} is dense in the
sosha X. The set Q U (T x {0}) is connected.

3. Uniqueness and characterization of the hairy arc

In this section we shall show that any two soshas, considered as subsets of
922, axe ambiently homeomorphic. It follows that any two hairy arcs are home-
omorphic.

3.1. We shall consider special partitions of the first factor of the unit square.
Recall that a partition P of [0, 1] is a finite subset {xn, ••• , xk} of [0, 1]
such that 0 = Xo < Xi < ■ ■ ■ < xk = 1 . If Pj and P2 axe partitions and Px c P2,
then P2 in called a refinement of Px . Let E be a sosha (Definition 2.1). The
partitions P = [xo, ■■■ , xk} to be considered in the sequel have the additional
property that l(x¿) = 0, 0 < i < k. We define M, = max{/(x)|x,_i < x <
Xi}, i = I, ... ,k . For each i e {I, ... , k} we pick a c, e [x,_i, x,] such
that l(Ci) = Mi. The bump function b related to the partition P and the length
function / is defined as follows. Let x e [x,_i, x¡]. Then x e [x,_i, c¡] or x e
[Ci, Xi]. In the first case we define

¿(x) = max{/(£)|£e[x,_1,x]}.

If x e [c¡, x¡], we let

b(x) = max{l(i)\te[x,Xi]}.
It is to be observed that the bump function is independent of the choices of the
c¡, i = I, ... , k. Note that the bump function is piecewise monotone. By
Proposition 2.4 the bump function is continuous. When sequences of partitions
are to be considered, we shall use two lower indices, the first index referring to
the ordinal number of the partition.
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The following theorem says that there is only one sosha up to homeomor-
phism. So the straight hairy arc of 1.12 and the prototype of 2.2 are homeo-
morphic.

3.2. Theorem. Let Ex  and E2  be soshas.   Then there is a homeomorphism
tf) : 922 —► 922 such that cp(Ex ) = E2. In other words, Ex and E2 are ambiently
homeomorphic.
Proof. Let Ex and E2 be soshas. We shall use upper indices 1 and 2 to distin-
guish between mathematical objects in Ex and E2. Without loss of generality
we may assume that

max{ls(x)\xe[0, !]} = {,       s = 1, 2.

The proof is broken down in several lemmas.

3.3. Lemma. For 5=1,2 there are sequences (P¡)) of partitions Psn = {xsn 0,
... , x* k } such that the following properties hold.

(1) T>*+1 is a refinement ofPsn ,        n e JZ, s = 1, 2.

(2) mesh(^) < ,        n > 2, s = 1, 2.

(3) The sequences (Px) and (P2) are isomorphic in the following sense: for
each n e JZ the partitions Px and P2 have the same number of elements,
namely, kn , and for each i e {1, ... , kn+x} and j e {1, ... , k„},

[■*»+l,i-l ' xn+\,i\ C ixn,j-\ , Xn,j\     W   [*n+l,i-l > xn+\,i\ C lxn,j-\ > xn,j\-

(4) For each neJZ,if [xsn+l ,_,, xsn+l ¡] C [xsnJ_x, xsn j] for some i and
j, then

1 _L      .Mn+l,i.Mn+l,i       . 1
(n + 2)2       M2nj   ■   Mxnj + (n + 2)2'

Remark. From 4, in an elementary way, the following formulas follow.
(5) For n, i and j as in 4,

1      \ M2        M2 ,  ■      / l      \ M2
(n + 2)2J Mxj     Mxn+Ul      V       (n + 2)2J Mx  Z

(6) For all n and i with 1 < i < k„ ,

Mn   i0.5 <—^< 1.91.

Proof. The proof is by induction on n . For s = 1, 2, we let Pq = {0, 1}. We
have made the assumption M0X , = Mq , = \ . We assume that Pq , ■■ ■ , Ps„ ,
s = 1,2, have been constructed. We assume that n is even. For odd n the
construction is similar with interchange of 1 and 2. The partition P2+x is a
refinement of P2 such that

mesh(^) < (--r^-
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The reason for using '3)2 instead of (nx2)2 is that in the next step we have
no control over the mesh of P2+2 ■ The number of elements in P2 and P2+l
is denoted by k„ and kn+x respectively. We shall define the partition Px+l .
Let 1 < t < k„ . As P2+l is a refinement of P2 there are u and v with
1 < u, v < kn+x such that

xn+i ,u ~ xn,t-\ anO xn+\ ,v = xn,f

The points x\ ,_, and x\t belong to Px. We define

xn+\,u = xn,t-\ ano- xn+\,v = xn,f

We shall define the points x,J+1 r for u < r < v. For 5 = 1,2, pick points
csn t from [x* t-1, xft ¡] with ls(csnJ) = Msnt. There is a unique w > u such
that

•^«-l-l ,u <- ' ' ' < -*7i+l ,)D-1 < cn ,i < xn+\ ,w < ' ' ' < -^ri+l ,u-

(If to = «+ 1 or tu = ?; - 1, the sequence is a little bit different.) By induction
on r from u + 1 up to to - 1 and from v - 1 backwards to w we shall
define the xxn+x r. For notational convenience we discuss only the construction
of xxn+x u+i . For r = u + 1 we argue as follows. Consider the bump function
on [xxn+x u,cxn ,]. There exists yln+Xu+x suchthat

(i)   Xn+l,u<yn+l,u+l <Cn,t,   and
fill     1   _ 1 s       (^n+l ,u+l)   .   ™n+1 , «+1    ^   1     i 1
W     i („+2)2   < Ml  ( •       M2 ;        <   1  +  (n+2)2  •

By slightly moving yln+x^u+x to the right we find xxn+x u+x such that
("J) xUi,u < xn+i,u+i < cl„j and lx(xxn+i u+i) = 0.
(iv) The inequality (4) is satisfied for n , i = u + 1 and j = t.
We are going to construct a homeomorphism <p of the unit square [0, 1 ] x

[0,1] onto itself such that <p(Ex) = E2. From the construction of cp it will be
obvious that cp can be extended to a homeomorphism of 922 onto itself. The
homeomorphism <j> is obtained as composition of tpx and cp2. The homeomor-
phism (px affects only the first coordinate and the homeomorphism <p2 affects
only the second coordinate.

The following lemma is a preparation for the definition of <px .

3.4. Lemma. There is a unique continuous map cp : [0, 1] —► [0, 1] such that
cp(xxn ¡) = x2 j forall neyV andall i e {0, ... , k„}. Themap <p isauniform
equivalence. For each x e [0, 1], /' (x) = 0 if and only if l2(tp(x)) = 0.
Proof. By defining cp(xxn ■) = x2 ,, for n e N and i e {0, ... , k„}, we get
an order preserving map of {x* ¡ \ n e JZ, i e {0, ... , k„}} onto {x2¡\n e
JV, i e {0, ... , k„}}. That cp is order preserving follows from (3) in Lemma
3.3. Because these sets are dense, there is a unique continuous extension to
a map cp : [0, 1 ] —* [0, 1 ]. That cp is a uniform equivalence follows from
condition 2 in Lemma 3.3.

For any x which is not a point of any partition, there is a unique sequence
(xi , ) such that x e [x\ , , , xx„ , ], n e JV. It is to be observed that /'(x) =
lim„_00 M\ j , as /' is upper-semicontinuous and mesh(T'„1) —» 0 as n —► oo .
By the construction of <p  as an extension to the order completion we have
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cp(x) e [x2nin_x, x2 ,J, n e jV , and l2(cp(x)) = lim^^M2 ,n . From (6)
following Lemma 3.3 we get

lx(x) = 0   if and only if   l2(cp(x)) = 0.
For the construction of <p2 we shall use a type of map which is described in the
following lemma.
3.5. The bump shaping lemma. Let I be the length function of some sosha. We
assume /(x) < \ for all x e [0,1]. Let P = [xo, ... , x„} be a partition
of [0, 1] such that l(x¡) = 0, i = 0, ... , n and let b be its bump function.
Let yx, ... , y„ be real numbers such that for some fixed a and ß with 0 <
a < ß < 2 we have a < y¡ < ß, i = 1, ... , n. The bump shaping function
\p: I2 —> I2 (related to P, I, yx, ... ,yn) is defined as follows.

Let x e I. If b(x) = 0, we define y/(x, y) = (x, y). If b(x) =¿ 0, there is a
unique i with x¡_i < x < x,. We define

( (x, y¡y), for0<y< b(x),
ip(x ,y) = \ (x, 2b(x)) - (2b(x) - y)(2 - y,),    for b(x) < y < 2b(x),

( (x,y), for2b(x)<y< 1.
The mapping xp is a homeomorphism and d(\p(x,yx),\p(x,y2)) >

\yx -y2|min{a, 2- ß}, for all x ,yx, y2 and d(ip, id) < max{|/?- 1|, \a- l\}
in the supremum metric.
Proof. The lemma is proved by a straightforward computation. Note that
{(x, 2è(x))|x e 1}—the graph of lb—is pointwise fixed under \p and that
ip is the identity above the graph of 2b .
3.6. Final part of the proof of Theorem 3.2. Let cp be the map defined by
Lemma 3.4. Define

4>x(x, y) = (cp(x), y), ix,y)el2.
The map cpx is a homeomorphism of I2 onto itself. The action of cf>2 will
consist of hair stretching and shrinking in the sosha <f>x(Ex). It is to be noted
that 0i carries the partitions Px to P2, n eJZ. The map <j>2 will be defined
as the limit of homeomorphisms Hn , n e JZ , that keep the first coordinate
fixed. Let TTn = id and suppose that Ho, ... ,H„ have been defined. Let
ipn = H„ o ■ ■ ■ o Ho . Observe that y/n(<fi\ (Ex)) is a sosha and let /„ be its length

function. Let Hn+X be the bump shaping function related to P2, ln and    "1M :
n.j

M1
"f'1  (where j is determined by i). Define y/n+x = Hn+X o \pn . Note that

d(Vn+\, ¥n) = d(Hn+x, id) < (n + 2)2'
The inequality in the previous formula follows from (4) in 3.3. It follows that
iy/„) is a Cauchy sequence in the space of continuous function of I2 into itself
with the maximum metric. Its limit is denoted by 4>2. That cf>2 is injective,
whence a homeomorphism, follows from the fact that

iT(/T„+I(x,y,),TTn+1(x,y2))>|yi-y2| ( 1 - („ + 2)2) >        neJV.

We omit the easy proofs of the following corollaries.
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3.7. Corollary. In a hairy arc X there are five homeomorphism types of points.
Any two points of the same type can be mapped into each other by a homeomor-
phism of X. The list of types for a sosha is as follows:

A = {(0,0), (1,0)},
P2 = {(x,0)\xe(0, 1) andl(x) = 0},
Pi = {(x, 0)|xe(0, 1) andl(x) > 0},
P4 = {(x,l(x))\xe(0, 1) andl(x) > 0},
P5 = {(x,y)\xe(0,l), 0<y</(x)}.

Any point of Px U P2 U T>3 is called a base point, any point of P4 is called an
endpoint. The points of P2 and Px axe called hairless base-points.

3.8. Corollary. Every base point in the hairy arc X has arbitrarily small neigh-
borhoods which are homeomorphic to X.

3.9. A continuum X is called decomposable provided it can be written as the
union of two proper subcontinua and hereditarily decomposable provided all
of its subcontinua are decomposable. It is known that indecomposable con-
tinua exist (for example a solenoid). A dendroid is a hereditarily decomposable
uniquely arcwise connected continuum. A fan is a dendroid containing exactly
one branch point (called the vertex of the fan). Let a, b e X, where I isa
dendroid. We denote by [a, b] the unique arc in X joining a to b. A den-
droid X is itopologically) smooth iwith respect to p e X) provided there exists
a point p e X such that for each sequence x,• —► xo e X, Lim[x/, p] = [xo, p].
An endpoint e of a dendroid X is a point which is an endpoint of every arc in
X containing e . A comb is a smooth dendroid X containing an arc B (called
the base of the comb) such that (1) the closure of every component C, called a
hair of the comb, of X \ B is an arc, (2) the intersection of the closures of any
two hairs is empty, and (3) the set X \ B is dense in X.

In §2 we defined a hairy arc as any topological image of a sosha. It follows
from §3 and §4 that all hairy arcs are homeomorphic and that all oshas are
equivalently embedded in the plane. In this section we will provide an internal
characterization of hairy arcs. These results can also be obtained for brushes
and hairy circles. We will first recall a result from [BO].

3.10. Theorem. Let X and Y be smooth fans with a dense set of endpoints.
Then X is homeomorphic to Y.

We have the following result:

3.11. Theorem. Let X be a topological space. Then the following are equiva-
lent:

( 1 )   X is a hairy arc,
(2) X is a comb with base B and order < on B such that for each nonde-

generate hair hx attached at x, there exist hairs {hi.} and {hn} such
that lim hi. = hx = lim hr¡ and I, < x < r¡ for each i.

Proof. (I) —► (2). Since every ha is homeomorphic with a sosha, (2) is obviously
satisfied.
(2) —> (1). We must produce a homeomorphism h between X, satisfying (2),
and a sosha.  Let p : 2X -> [0, 1] be a Whitney function (i.e., a continuous
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function from the space of closed subsets with the Hausdorff metric to [0, 1]
such that p({x}) = 0 for every singleton {x} and A C ß =*>• p(A) < p(B),
see [N]). Let B be the base of the comb X and let g : B -> {(x, 0)|0 < x <
1} C 922 be a homeomorphism. Extend g over all of X as follows: for each
x e X, there exists a unique (possibly degenerate) irreducible arc Ax joining
x to B. Let Ax n B = ax . Put

h(x) = (g(ax), p([ax , x])).

Then it follows easily from (2) and the properties of a Whitney function that h
is an embedding of X into I2. Since h(X) c I2 is clearly a sosha, the proof
is complete.

3.12. Corollary. Let X and Y be any two spaces satisfying (2). Then X is
homeomorphic to Y.

The following corollary follows in part from the results in §4.

3.13. Corollary. Let cp,: X ^ 922 be two embeddings of any space satisfying
(2) such that all hairs are embedded on the same side of the arc <p¡(B) (i = 1, 2),
where B is the base of X. Then there exists a homeomorphism ip : 922 -» 922
such that ip(cpx(X)) = cp2(X) and y/\<px(X) = cp2 o r?"1 .

4.  TAMENESS OF THE ONE-SIDED HAIRY ARC

In this section we study oshas, planar one-sided hairy arcs. For convenience,
we shall work in the square I2 rather than in the plane. An osha X is the
image of a sosha under a topological embedding in 922 such that all hairs are
attached to the same side of the base. After applying a homeomorphism of
ZP2 , we can always assume that X c I2, the base B of X coincides with
{(x, 0)|0 < x < 1} and Xndl2 = B . We will refer to such an embedding as a
regular embedding of an osha into the plane. Since all soshas are homeomorphic
by Theorem 3.2, all oshas are homeomorphic as well. The main result is that
all oshas are ambiently homeomorphic, as is stated in the following theorem.

4.1. Theorem. Suppose X and Y are oshas. Let cp : X —> Y be a homeomor-
phism. Then there exists a homeomorphism <î> : S2 —> S2 which is an extension
of cp , i.e., 0|X = cp .

For the proof of the theorem we may assume that X is a sosha, as can be
shown in the following way. Suppose that the oshas X and Y axe defined by
topological embeddings y/E and ipF of the soshas E and F respectively. In
the diagram below, the map <p0 is defined by commutativity of the diagram:
tPo = VpX °cp° We

<Vi Vf

X -> Y
v

Instead of defining the extension (p of cp directly we can as well define exten-
sions of y/E,  Vf and <p0. For the latter maps the domain is a sosha.
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The authors would like to thank Cor Baayen for pointing out this simplifica-
tion of the extension problem.
4.2. Notation. Throughout this section we shall assume that each osha is reg-
ularly embedded in I2 and use hx to denote the (possibly degenerate) hair at-
tached at the point x of the base. In a sosha it is the set {(x, y)|0 <y< l(x)}.

The proof of Theorem 4.1, to be presented in 4.6, requires some preparation.
Several ideas from the theory of prime ends are used.
4.3. Prime ends. Here we collect a few facts from the theory of prime ends.
For details the reader is referred to [Ma] and the references therein. Let X
be a regularly embedded osha in I2. The complementary component of X in
Int(T2), denoted by U, is a connected and simply connected open set, because
X is homotopically trivial. Note that dU = Xlidl2. A crosscut (of U ) is an
arc C with endpoints a and b such that C CidU = {a, b}. The crosscut C
is usually denoted by [a, b]. A crosscut divides U into two disjoint domains
(connected open sets), which are referred to as the complementary domains of
C. For convenience a fixed point of U , say co, is selected and only those cross-
cuts are considered that do not pass through co. The complementary domain
which contains co is called the unbounded complementary domain, while the
other domain is said to be bounded. A chain of crosscuts (of U ) is a sequence
( C„ ) of crosscuts such that:

(i)   C„ effects a separation between Cn+xnU and co in U, neJV;
(ii)   Cn n Cm = 0 for all n / m in yV ;

(iii)   C„ —> p   (C„ converges to p) for some p e X .
Two chains of crosscuts (C„) and (D„) axe equivalent provided each crosscut

Cm effects a separation in U between the point co and all but finitely many
D„ and, similarly, each Dm effects a separation in U between co and all but
finitely many Cn , me/. By this equivalence relation, the collection of all
chains of crosscuts is partitioned in prime ends. The principal set of a prime
end E is the set

P(E) = {pe dU\C„ -> p for some chain (C„) e E}.
4.4. Lemma. Let X c I2 be a regularly embedded osha and U = lnt(I2)\X.
Then, for any prime end E, the principal set P(E) consists of a single point,
which is denoted by pF ■ Moreover, pE is either an endpoint of a hair, a point
of dl2 \X or a hairless base point. Conversely, every endpoint of a hair, every
point of dI2\X and every hairless base point is the principal set of some prime
end and hence arcwise accessible from U .
Proof. The lemma follows easily for prime ends associated with points of
dI2\X . Hence suppose that (C„) and (D„) are equivalent chains of the prime
end E such that Cn —> p and D„ —> q, where p, q e X. The endpoints a„
and b„ of the crosscut Cn are both accessible from U , n eJZ . From the prop-
erty (3) in Definition 2.1 it follows that a„ as well as bn are an endpoint of a
hair or a hairless base point. Suppose p ehx , an e h„n and b„ e hßn, n eJZ,
the hairs possibly being degenerate. As C„ is a separation between p and co,
the points a„ and ß„ axe at different sides of x for each n ("sides" refers to
the natural order on the base). Moreover, a„ —> x and ß„ —> x. Since X is
smooth, p must be the endpoint of hx . Similarly, q is the endpoint of a (pos-
sibly degenerate) hair hy . An analysis of (D„) similar to that of (C„) leads
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to the conclusion that x = y, whence p = q. Now we show that each end-
point of a hair is the limit of a chain of crosscuts. The same result for hairless
base points can be proved in a similar fashion. That these points are arcwise
accessible from U then follows from prime end theory.

Let e be an endpoint of the hair hx . Without loss of generality, we may
assume that hx (and the base B ) of X is a straight line in the square. Let <
denote a natural order on B . Choose £1, such that S(e, 2 ex ) n B = 0 . Here
S(e,2ex) denotes the circle with center e and radius 2ex. Let -< denote
an order on the arc Sx = S(e, ex)\hx such that for any a e hc n Sx, be
hd C\ Sx, where c < x < d and \c - d\ sufficiently small, we have a < b.
Let ax = max{z eSx\z e hp and p < x} and let bx = min{z e Sx\z y ax, z e
hq and x < q} . Then Qx = [ax, bx] c Sx is a crosscut such that hx is contained
in the bounded complementary domain of Qx. Assume that ax e hai and
bx e hß{ . Then ax < x < ßx. Choose e2 < ex/4 such that, for any y e B with
hy n S(e, 2e2) ^ 0, ax < y < ßx. By repeating the above argument, we find
a crosscut Q2 c 52 such that hx is contained in the bounded complementary
domain of Q2 and Q2 is contained in the bounded complementary domain of
Qx. In this way we can construct a chain of crosscuts (Qn) with Qn —* e . The
proof is complete.

Having established the arcwise accessibility of the endpoints of hairs and of
the hairless base points of the oshas, we can now prove the key lemma about
the existence of sufficiently many small crosscuts.

Lemma 4.5. Let cp: X -* Y be regular topological embedding of a sosha X onto
an osha Y in I2. Then

(1) for every sequence of crosscuts C„ = [a„, b„] ofI2\X with diam(C„)
-> 0, there exists a sequence of crosscuts Dn = [tp(an), cp(b„)] ofI2\Y with
diam(D„) -^0.

(2) for every sequence of crosscuts Cn = [a„ , b„] of I2\Y with diam(C„) —>
0, there exists a sequence of crosscuts D„ = [cp~x(an), cp~x(b„)] ofI2\X with
diam(Z)„)->0.
Proof. We shall only proof ( 1 ). The proof of (2) is similar, but somewhat easier.
The proof is by way of contradiction. Assume that ( 1 ) fails. Then there exist e,
0 < e < 1/2, and a sequence (Cn), C„ = [a„ , b„], of crosscuts of I2 \ X such
that diam(C„) —► 0 but, for every n and every crosscut D„ = [<p(a„), <p(b„)],
diam(T)„) > e . It is to be noted that crosscuts [cp(a„), cp(b„)] exist by Lemma
4.4. Without loss of generality we may assume C„ —> c, for a point c of some
possibly degenerate hair hy of I, where y e Bx, the base of X. Suppose
that a„ (b„) is an endpoint of the hair han (hßn, respectively). We may
assume that the base By of the osha Y and the hair <p(h7) axe straight line
segments in I2 \ {co} . Consider an open neighborhood W of d = cp(c) such
that co e I2 \ cl( W) and the boundary of W is a topological circle S with
center d and radius p < e/2. As p is uniformly continuous there exists a
ô such that d(tp(y), cp(z)) < p/8 for any y, z with d(y, z) < ô. As X is
a sosha, there is a rectangular neighborhood V of c with diameter ô which
has the following additional properties: ( 1 ) every hair intersected with V is an
interval, (2) each hair hz with z e \Jn[otn, ßn] that enters V does not leave
V (i.e., if (z, s) e V,  an < z < ßn , then (z, u) e V for all s < u < l(z))
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and each hair intersects d V in at most two points. Let W0 be a neighborhood
of d with radius less than p/% such that cp~x(Wo) c V. As C„ —► c, the
straight line segment Jn between cp(a„) and cp(bn) as well as its endpoints lie
in Wo for n sufficiently large. By Lemma 4.4, the points cp(an) and <p(bn) can
be joined with <y by arcs denoted by [co, (p(a„)] and [w, cpib„)], respectively.
By assumption it is not possible to make a crosscut D„ = [<pia„), cp(bn)] by
piecing together parts of the circle S and portions of the arcs [co, cp(an)] and
[co, cp(bn)] that lie in W. It follows that for some tn and some y„ e tp(htn),
we have y„ e W0 , but the hair cp(htf) leaves W after y„ (and hits S). Then
^"'(y«) £ F. By the choice of F, t„ e Bx \ (\Jm[am , ßm]). By again using
the fact that we cannot piece together the required cross cuts from S and the
arcs [co, cp(a„)] and [co, cp(b„)], we conclude that the hair cp(h,n) must enter
a bounded complementary domain of J„ U <p(han) U <p(hßn) U [cp(an), cp(ßn)] in
the complement of W . Let z„ be a point of cp(hln) after y„ in this bounded
complementary domain which is not in W. We may assume that the sequence
(z„) converges to a point q in [<piy), epic)]. Hence, cp~x(q) e [y, c]. Since
cp~x(z„) & V and tp~x(zn) is a point of hln after ^"'(^n), hmç>_1(z„) =
^"'(tf) £ [?> c] ■ This contradiction completes the proof of the lemma.

4.6. Proof of Theorem 4.1. As has been explained earlier we may assume that
X is a sosha and Y is an osha, X has the standard form and Y is regularly
embedded in T2. Put G0 = dl2, H0 = dl2, and let <D0 : G0 U X ^ /T0 U 7
be any homeomorphic extension of cp. Using Lemmas 4.4 and 4.5 one can
inductively construct graphs G„ and Hn and homeomorphisms

<D„ : X U Gn -» Y U TT„

such that, for all « ,
(1) GncGn+x and <P„+1|X u C7„ = <D„
(2) the diameter of any complementary domain of G„ or H„ is less than

1/2".
The construction of the graphs G„ and Hn follows the pattern of the classical
proofs of the existence of extensions of homeomorphisms of arcs or Cantor sets.
It is to be noted that for any arc /, which joins two points of dl2 in such a
way that J ndl2 only consists of two points, the set J \ (X U Go) is the union
of a null sequence of crosscuts of I2 \ (X U Go) • By Lemma 4.5 there exists
a similar null sequence of crosscuts for I2 \(Y U Hq) . This null sequence of
crosscuts can be used to extend the homeomorphism Oo over X0 U Go U J .

Since the complementary domains of the homeomorphic graphs G„ and Hn
are in one-to-one correspondence, in view of (2) we can define an extension O
of

«Doo : X u ({J{G„\n e/^iu (iji^l" e JT}) ,

where
4>oo(x) = <D„(x) for x G X U ((J G„) .

The arguments leading up to the proof of Theorem 4.1 can also be used to
prove a similar results for hairy circles. Hairy circles have been investigated in
[FOI and F02].
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4.7. Definition. A hairy circle is a hairy arc with the two endpoints of the base
identified. A one-sided hairy circle is an embedding of a hairy circle into the
plane such that all hairs are attached at the same side of the base circle.

4.8. Theorem. Any two hairy circles are homeomorphic. Let cp: X -» Y be
a homeomorphism between one-sided hairy circles. Then there is a homeomor-
phism <P : S2 —* S2 which is an extension of cp .

5. Julia sets of hyperbolic functions
In this section we shall show that all Julia sets in the one-parameter fami-

lies Cx(z) = Xcosh z, 0 < X < p(x 0.67), and Sx(z) = X sinhz, 0 < X <
p(& 0.85), are brushes of hairy arcs. The results can be carried over to the
one-parameter family z —> Xi cos z, 0 < X < p , via the conjugating homeo-
morphism z -> —iz, and to the one-parameter family z —> a sin z, 0 < X < p ,
via the conjugating homeomorphism z —» iz . The techniques employed in this
section are similar to those of § 1, so we shall skip the details.

5.1. The family Q(z), 0 < X < p. The number p is defined as the supremum
of the parameter values X for which Q has an attracting fixed point. That is
p is the solution of the system Cß(x) = x and Sß(x) = 1. The approximate
solution is p « 0.67 and xß « 1.19. Let A be a fixed real number with
0 < X < p. The function Q has two real fixed points, an attracting one, qx,
and a repelling one, px . With z = x + iy , where x, y e 92 , we have

Cx(z) = CA(x)cosy-r- iSx(x)siny

The vertical line {x + it\t e 92}, x ^ 0, is mapped by Q onto an ellipse. By
standard arguments it can be shown that the strip |Re z\ < Px is a subset of
the Fatou set of Ck . Also, the lines {t + (k + \)ni\t € ZP}, k e 2Z , belong to
the Fatou set. The rays {/ + kni\t e 92 and t > px}, k e 3Z, as well as the rays
{< + kni\t e 92 and t < -px}, k e 2Z are in the Julia set of Cx. By taking
preimages we get interleaved collections of rays in the Julia and the Fatou set
of Cx.

Here is the main result concerning Q .

5.2. Theorem. Suppose 0 < X < p. There exists a brush and a homeomorphism
cp ofB onto the Julia set J(Cf) ofCx-

It will be convenient to define the brush B as the union of two straight
brushes B+ and B~ , where B+ is a subset of (0, oc) xZP and B~ is a subset
of (-oo, 0) x ZP . We have the following substitute for Definition 1.5.

5.3. Definition. For each xeZP and n e ZPZ, the square T(x,n) is defined
by

(i) if x >0, T(x, n) = {i + in\x <£ <x + n, (n- \)n <n <(n + \)n},
(ij) ifx<0, T(x,n) = {Ç + in\x-n<Ç <x,  (n - \)n <n <(n + \)n).

Note that T(x, n) n J(Cf) ¿ 0 for all n e 2Z and all x with |x| > px. For
each x with |x| >Px and all n e 2Z, the set Cx(T(x, «)) is a "semi-annulus"
the boundary of which consists of two semi-ellipses and two intervals on the
imaginary axis. The radial width of the semi-annulus exceeds 22.
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5.4. Construction of B+ and B~ ; definition of cp . Let |x| > px and a eZP .
Using the product representation of ZP we write a = (no, nx, ...) with n, e
2Z. Inductively on k we define real numbers xk and sets T?(x¿., n^ . We let
xo = x and T?(xo, «o) = T(x, «o) • Suppose that x¡ and R(x¡, n¡) have been
defined for I <k. We consider five cases.

1. R(xk , nk) ,¿ 0, xk > 0, nk even and there exists £ with

(*) T(Ç,nk+x)cCx(R(xk,nk).
2. RiXk , nk) t^ 0, Xfc < 0, nk even and there exists Ç with (*). Note

that in both case 1 and case 2

CxiRixk , nk)) c {z\ Rez> 0}.

In both cases we let t¡m = min{¿¡|^ satisfies (*)}. If t\m > px , we define xk+l =
im and Rixk+X, nk+x) = Tixk+X, nk+x). If \m < Pi we let xk+x = xk and
R(xk+X, nk+x) = 0.

3. R(Xk , nk) í 0, xk > 0,  nk odd and there exists £, with (*).
4. T?(xa; , nk) ^ 0, x/t < 0, «a- odd and there exists £ with (*). In cases

3 and 4,
Q(H(xjfc,/ifc))c{z|Re *<()}.

We put t\m = max{^|<J satisfies (*)}. If £,m < ~Px, we define xk+x = t\m and
RiXk+i, nk+\) = T(xk+X, nk+x). Otherwise, xk+x = xk and R(xk+X, nk+x) =
0.

5. If none of the cases 1-4 applies, we let x^+1 = xk and R(xk+X, nk+x)
= 0. The straight brushes B+ and B~~ are defined by B+ = {(x, a)\x >
Px and R(xk, nk) ^ 0, for all k} and ß~ = {(x, a)|x < -px and R(xk, nk) /
0, for all k} . For each (x, a) e B+ U B~ , we let

cp(x, a) = f]{Cfk(R(xk , nk))\k = 0,1,2,...}.
Note that cp is well defined, because |Cj[(z)| > 1 on the set {z\ \ Re z\ > px}.
The proof that B+ and B~ are straight brushes and cp is an injective continuous
map of B+ U B~ into /(Q) is similar to the proof of Lemma 1.7.

5.5. Construction of \p = cp~x. Suppose that z e J(Cf). Note that Re(C^(z))
^ 0. The itinerary n(z) = (no, nx, ...) is defined by the conditions,

(nk - j)n < Im Ck(z) < (nk + ¿)n,        k e Z£.

Inductively on k, we shall define Rk for 0 < 1 < k. First we define T?£
for all k e yV. If Re(C^(z)) > 0, we choose u minimal with respect to the
properties u > px and Ck(z) e T(u, nk). If Re(Ck(z)) < 0, we choose u
maximal with respect to the properties u < -px and Ck(z) e T(u, nk). We
define Rk = T(u, nk) ■ For k = 1, 2,... , we define Rk , for i = k-l to i = 0,
inductively. Suppose that Rk has been defined. Observe that either

(1) Rkzl C {w\Re w > 0}
or

(2) Rk:{x c{w\Rew <0}.
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We define T?^_, = T(v, nk_x), where in case 1 v is maximal and in case 2
v is minimal with respect to Rk c Cx(Rk_x). Note that this definition ensures
that the square Rk hits the "inner" semi-ellipse of the semi-annulus Cx(Rk_x)
in exactly one point. For each k e JV t we define x(k) by the condition
Rk = T(x(k), n0). It is to be noted that z e T?g , for each k e ^V. If
Re z > 0, we have

Re z - n < Xo < Re z, and x(0) < x(k) < x(k + 1) < Re z ■+- n, for all k.

If Re z < 0, we have

Re z < x(0) <Re z + 7i, and Re z - n < x(k + 1) < x(k) < x0, for all k.

Finally we define

x°° = lim x(k) and <p(z) = (x°°, n(z)).
k—*oc

The proof of Theorem 5.2 can be completed in the same way as in Lemmas 1.9
and 1.10.

The discussion of 1.12 can be generalized in a straightforward manner. Com-
pactifying C by 92* x92*, we get a compactification of B = B+öB~ by taking
the closure of B in 92* x 92*. In this way B is compactified by the union of
two hairy arcs. In a similar way as in 1.12 the Julia set J(Cf) can be compact-
ified by the union of two hairy arcs. Identification of the set 92* x {oo} to one
point yields compactifications of B+ u B~ and J(Cf) by just one hairy arc.

We now discuss the family Sx(z), 0 < X < v . As the discussion is parallel
to that of the family Q(z), the exposition will be even more sketchy.

5.6. The family Sx(z), 0 < X < v . The number v is defined by the condition
i/sinh(l) = 1 ; v « 0.85. Let A be a fixed real number with 0 < X < v .
The function Sx has three real fixed points. The origin is an attracting fixed
point. The imaginary axis is in its basin of attraction and so are the lines
{t + ik + \)ni\t e 92}, k e Z . On the positive real axis there is a unique fixed
point Px ■ Elementary considerations show that px is a repelling fixed point.
Similarly, -px is a repelling fixed point of Sx. It can be seen that the rays
{t + kni\t e 92, t > px} and {/ + kni\t e 92, t < -px}, k e ZP, are in the
Julia set J(Sf). Writing z = x + iy , we get

Sx(z) = S,i(x)cosy + iCx(x)siny.

The vertical line {x + it\t e 92}, x ^ 0, is mapped by Sx onto an ellipse. By
Schwarz's lemma it follows that {z\\ Re z\ < px} is in the basin of attraction
ofO.
Remark. In contrast with the situation in 5.1, there is no "dynamical" argument
for imposing the upper bound v instead of using the natural upper bound 1.
However by imposing this constraint on X, we have an easy way to guarantee
that |5j(z)| > 1 for \z\ > px. There is the following result.

5.7. Theorem. Suppose 0 < X < v . There exists a brush B and a homeomor-
phism cp of B onto the Julia set J(Sx) ofSx ■

Asbefore, B = B+UB~ and we shall consider B+ as a subset of (0, oc) xZP
and B~ as a subset of (-oo, 0) x ZP . In the following definition, which is in
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the same spirit as Definitions 1.5 and 5.3, we use rectangles instead of squares
in order to make the analogues of 5.3 and 5.5 work.

5.8. Definition. Let c be a real constant such that Sx(¿) > 4c > 4n . For each
neZZZ and each x e 92 , the rectangle Tc{x,n,) is defined by

(i) if x > 0,  Tcix, n) = {£, + in\x <£<x + c, (n - \)n < n < (n + \)n} ;
(ij) if x < 0,  Tcix, n) = {Ç + in\x - c < Z, < x, (n - \)n < n < (n + j)n}.

Observe that Tc(x, n) n J(Sx) / 0 , for all n e Z and all x with |x| > px.
For each x with |x| > px and all n e 2Z, the set Sx(Tc(x, n)) is a semi-annulus
which is bounded by two semi-ellipses and two intervals on the imaginary axis.
The differences between the length of the axes exceed 16c.

5.9. Construction of B+ and B~ ; definition of cp. Let |x| > px and a =
(no, nx, ...) e ZP. Inductively on k we define real numbers xk and sets
R(Xk, nk). Let Xo = x and T?(xo, «o) = T(x, no). Suppose that x¡ and
T?(x/, «/) have been defined for I <k . There are five cases to consider.

1. R(xk , nk) t¿ 0, Xk > 0, nk even and there exists £ with

(*) Tc(Ç,nk+l)cSx(R(xk,nk)).

2. RiXk , nk) t¿ 0, Xk < 0,  nk odd and there exists Z, with (*).
3. T?(xfc, nk) ^0, Xk > 0,  nk odd and there exists £ with (*).
4. T?(Xyt, nk) / 0, Xk < 0,  nk even and there exists Z, with (*).
5. None of 1 through 4 applies. The definition of Xk+X is as in 5.4 and in

case 1 through 4 we let T\(x^+1, nk+x) = Tc(Xk+x, nk+x). The proof continues
as in 5.4.

5.10. Construction of cp~x . The construction of cp~x : J(Sx) —► B+ U Bx is
almost verbatim as in 5.5. We only have to substitute Sx for Cx and Tc for T.

In the exact same way as in 5.5 it follows that the Julia set J(Sf) can be
compactified by a hairy arc.
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