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THE GEOMETRY OF MINIMAL SURFACES OF
FINITE GENUS I: CURVATURE ESTIMATES AND

QUASIPERIODICITY

William H. Meeks III, Joaqúın Pérez & Antonio Ros

Abstract

Let M be the space of properly embedded minimal surfaces in
R

3 with genus zero and two limit ends, normalized so that ev-
ery surface M ∈ M has horizontal limit tangent plane at infinity
and the vertical component of its flux equals one. We prove that
if a sequence {M(i)}i ⊂ M has the horizontal part of the flux
bounded from above, then the Gaussian curvature of the sequence
is uniformly bounded. This curvature estimate yields compactness
results and the techniques in its proof lead to a number of conse-
quences, concerning the geometry of any properly embedded mini-
mal surface in R

3 with finite genus, and the possible limits through
a blowing-up process on the scale of curvature of a sequence of
properly embedded minimal surfaces with locally bounded genus
in a homogeneously regular Riemannian 3-manifold.

1. Introduction

The classical theory of minimal surfaces began in the middle of the
18th century with work by Lagrange [14] who described the variational
equations that a function defined on a compact domain in the plane
must satisfy for its graph to have least area with respect to its boundary
values. It follows from Lagrange’s equations that the plane, helicoid and
catenoid are properly embedded surfaces in R

3 that locally satisfy such
equations. Results of Collin [7], López-Ros [15], and Meeks-Rosenberg
[26] imply that these three classical examples are the only finite topology
properly embedded minimal surfaces in R

3 with genus zero.
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In the 19th century Riemann [31] studied the question of which
surfaces, other than the plane, catenoid and helicoid, are foliated by
circles and lines in horizontal planes. He found a 1-parameter family
{Rt}t, called the Riemann minimal examples, each of which is periodic
in R

3 with horizontal lines at integer heights planes and circles at other
heights (the same conclusion holds after removing the hypothesis of the
planes that contain the foliation circles and lines to be parallel, see En-
neper [10]). In [23] we proved that the Riemann examples are the only
properly embedded minimal surfaces of genus zero with infinite topol-
ogy and infinite symmetry group. We believe that our theorem holds
without the hypothesis of infinite symmetry group. More generally, we
make the following conjecture (see Section 2 for definitions):

Conjecture 1. Suppose M is a properly embedded minimal surface
in R

3 of finite genus which is not a plane. Then:
1) M has bounded Gaussian curvature.
2) M is recurrent for Brownian motion.
3) If M has one end, then it is asymptotic to a helicoid.
4) If M has a finite number r ≥ 2 of ends, then M has finite total

curvature.
5) If M has finite total curvature with genus g and r ends, then

g + 2 ≥ r.
6) If M has an infinite number of ends, then M has two limit ends,

each of which is asymptotic as x3 → ±∞ to translated top and
bottom ends of one of the classical Riemann minimal examples (see
[23] for a description of these beautiful singly-periodic minimal
surfaces).

7) If M has genus zero, then M is a helicoid, a catenoid, or a Rie-
mann minimal example. In particular, the genus zero examples
are foliated by lines and circles in parallel planes.

In the cases 3), 4), 5) above, M has finite topology. In this setting,
results in [7, 15, 26] imply that points 3), 4) of Conjecture 1 hold and
point 2) holds when M has finite topology. If M has an infinite number
of ends, Collin, Kusner, Meeks and Rosenberg [8] proved that M has
at most two limit ends and it is recurrent for Brownian motion if it has
exactly two limit ends. In [18] we prove that M cannot have one limit
end; this result depends on several of the theorems, curvature estimates
and other tools we develop here. Since M does not have one limit end, if
it has an infinite number of ends, then it has two limit ends and so, it is
recurrent for Brownian motion [8]. Thus, point 2) in Conjecture 1 holds.
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By Theorem 1 below, we conclude that point 1) of Conjecture 1 also
holds. In fact, as an application of the results in the present paper, we
eventually hope to be able to complete the proof of the above conjecture.

An important theoretical tool which we develop here appears in the
proof of Lemma 8. This is a blow-up argument which we refer to as
“blowing-up a sequence of properly embedded minimal surfaces on the
scale of topology”. This blow-up argument produces a new sequence of
properly embedded minimal surfaces in R

3 which is uniformly locally
simply connected. Such a sequence can be analyzed by means of the
local and global compactness and regularity theorems by Colding and
Minicozzi [2, 3, 5]. Our proofs depend heavily on their technical results.
Another important tool in the Colding-Minicozzi theory that will be
used here is the 1-sided curvature estimate [5]. In Section 2 we prove
a related curvature estimate which we will need for our proofs (see also
Section 2 for further discussion on the Colding-Minicozzi results).

Theorems 1, 7 and 6 of this paper and Theorem 1 in [18] are useful for
describing possible limits of sequences of properly embedded minimal
surfaces in R

3 with bounded genus. In [19] we will apply these theo-
rems to obtain bounds on the number of ends and index of complete
embedded minimal surfaces of finite total curvature only in terms of the
genus, which gives a partial result on part 5) of the above conjecture.

In our earlier proof of the uniqueness of the Riemann minimal ex-
amples under the infinite symmetry group assumption, it was essential
to obtain uniform curvature estimates for the moduli space of periodic
examples, appropriately normalized by rotations and scalings by ho-
motheties. We will obtain here similar curvature estimates as in the
periodic setting, but with the weaker hypothesis that the surface has
two limit ends.

The curvature estimates obtained in this paper have a number of
important consequences which we develop in Section 4. The most im-
portant application of our curvature estimates is to obtain the following
descriptive theorem of the geometry of properly embedded minimal sur-
faces with finite genus and two limit ends. This theorem will play an es-
sential role in our program to solve Conjecture 1. We have already made
substantial applications in this direction in our papers [18, 19, 20]; we
hope to give a final solution to Conjecture 1 in our proposed papers
[21, 22].
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Theorem 1. Suppose M is a properly embedded minimal surface in
R

3 with finite genus and two limit ends. Assume that M is normalized
by a rotation and homothety so that it has horizontal limit tangent plane
at infinity and the vertical component of its flux equals 1. Then:

1) The middle ends {en | n ∈ Z} of M are planar and have heights
H = {x3(en) | n ∈ Z} such that x3(en) < x3(en+1) for all n ∈ Z.

2) lim
n→∞x3(en) = ∞ and lim

n→−∞x3(en) = −∞.

3) Every horizontal plane sufficiently high or low intersects M in a
simple closed curve when its height is not in H and in a single
properly embedded arc when its height is in H.

4) M has bounded Gaussian curvature. If M has genus zero, then
the bound of its curvature depends only on an upper bound of the
horizontal component of the flux of M . If M has positive genus,
then lim

r→∞ sup |KM−B(r)| satisfies the same curvature estimates as
in the genus zero case, in terms of the associated horizontal com-
ponent of its flux (here B(r) denotes the ball of radius r centered
at the origin, and KM−B(r) is the Gauss curvature function of
M − B(r)).

5) If the Gaussian curvature of M is bounded from below in absolute
value by ε2, then M has a regular tubular neighborhood of radius
1/ε and so, the spacings S(n) = x3(en+1) − x3(en) between con-
secutive ends are bounded from below by 2/ε. Furthermore, these
spacings are also bounded by above.

6) M is quasiperiodic in the following sense. There exists a divergent
sequence V (n) ∈ R

3 such that the translated surfaces M + V (n)
converge to a properly embedded minimal surface of genus zero,
two limit ends, horizontal limit tangent plane at infinity and with
the same flux as M .

Finally, we remark that Conjecture 1, by means of normalized blow-
ups (see Section 2), gives a precise geometric description of an embedded
minimal surface in an homogeneously regular Riemannian 3-manifold,
in a neighborhood of a point of sufficiently large curvature, with bounds
on the genus of the surface in this neighborhood. In this way, our theo-
rems explain the local structure of minimal surfaces in 3-manifolds and
should lead to important compactness/regularity theorems for limits of
sequences of embedded minimal surfaces of bounded genus. In fact, one
of our original motivations for proving Conjecture 1 was to use it as a
variational tool to classify compact 3-manifolds with finite fundamental
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group, in part through the proposed Pitts-Rubenstein method [30] to
resolve the spherical space form problem.

The authors would like to thank Bill Minicozzi and Toby Colding for
explanations of several of their key results and for pointing our how
these results relate to earlier proofs of theorems in our papers.

2. Preliminaries and perspectives

In this section we recall some of the basic definitions and theorems
for properly embedded minimal surfaces M in R

3 that will be essential
in the proof of our theorems. In the sequel, B(x, r) will denote the ball
centered at x ∈ R

3 with radius r > 0, and for a surface Σ, KΣ will stand
for its Gaussian curvature.

Recall now the definition of the limit tangent plane at infinity for M .
From the Weierstrass representation for minimal surfaces one knows
that the finite collection of ends of a complete embedded noncompact
minimal surface Σ ⊂ R

3 of finite total curvature and compact boundary
is asymptotic to a finite collection of pairwise disjoint ends of planes
and catenoids, each of which has a well-defined unit normal at infinity.
It follows that the limiting normals to the ends of Σ are parallel and one
defines the limit tangent plane of Σ to be the plane passing through the
origin and orthogonal to the normals of Σ at infinity. Suppose that Σ is
contained in R

3−M . One defines a limit tangent plane for M to be the
limit tangent plane of Σ. In [1] it is shown that if M has at least two
ends, then M has a unique limit tangent plane which we call the limit
tangent plane at infinity for M . We say that the limit tangent plane at
infinity is horizontal if it is the (x1, x2)-plane.

The main result in [12] is that if M has more than one end and hori-
zontal limit tangent plane at infinity, then the ends of M can be ordered
by their “relative heights” over the (x1, x2)-plane and this ordering of
the ends of M is a topological property of M , in the sense that if M is
properly isotopic to another minimal surface M ′ with horizontal limit
tangent plane at infinity, then the associated ordering of the ends of M ′
either agrees with or is opposite to the ordering coming from M .

Unless otherwise stated, we will assume that the limit tangent plane
at infinity of M is horizontal, and so M is equipped with a particular
ordering on its set of ends E(M), which has a natural topology of a to-
tally disconnected compact Hausdorff space. The limit points of E(M)
are called limit ends of M . Since E(M) is compact and embeds topo-
logically in an ordering preserving manner in the closed unit interval
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[0, 1], there exist unique maximal and minimal elements of E(M) for
this ordering. The maximal element is called the top end of M . The
minimal element is called the bottom end of M . Otherwise the end is
called a middle end of M .

The main theorem in [8] is that a limit end of M must be a top or
bottom end, hence M has at most two limit ends. The proof of the
following theorem can be found in Section 4. We will use this result as
a first step in proving the nonexistence of the surface appearing in the
statement of the next theorem, which is the main result in [18].

Theorem 2. Suppose M is a properly embedded minimal surface in
R

3 with finite genus and horizontal limit tangent plane at infinity. If
M has just one limit end e∞, which is its top end, then each middle
end en ∈ E(M) = {e1, e2, . . . , e∞} is asymptotic to a graphical annular
end En of a vertical catenoid with logarithmic growth λn satisfying λ1 ≤
λ2 ≤ · · · ≤ λn ≤ λn+1 ≤ · · · < 0. Here E(M) is ordered by the Ordering
Theorem [12].

We have normalized each properly embedded minimal surface M in
R

3 with more than one end to have horizontal limit tangent plane at
infinity. When M has finite genus and two limit ends, there is a second
natural normalization which is to change the surface by a fixed homo-
thety so that it has vertical component of its flux equal to one; in order
to explain this second normalization, we need the partial description of
the surface given in the next lemma.

Lemma 1. Let M ⊂ R
3 be a properly embedded minimal surface

with finite genus, two limit ends and horizontal limit tangent plane at
infinity. Then, statements 1), 2), 3) in Theorem 1 hold for M .

Proof. The main theorem in [8] implies that the middle ends of M are
not limit ends and so, since M has finite genus, they can be represented
by annuli. By Collin’s theorem [7], an annular end of M is asymptotic
to the end of a plane or of a catenoid. By another theorem in [8],
the middle ends have representatives contained in slabs and so they are
asymptotic to ends of horizontal planes rather than to ends of catenoids.
In particular, there exists a plane P that intersects M transversely in a
compact set.

Let M(+) denote the portion of M above P . By the Halfspace The-
orem [13], x3|M(+) is not bounded from above and extends conformally
across the middle ends. Conformal results in [8] state that M(+) is par-
abolic. It follows that M(+) is conformally diffeomorphic to a compact
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Riemann surface Σ with boundary, punctured in a countable number of
points with one limit point p∞ corresponding to the limit end of M(+).
Let Σ be the compactification of M(+) by adding its middle ends and
p∞. It follows that there is a punctured disk coordinate neighborhood
of p∞, D(∗) = {z ∈ C | 0 < |z| < 1} ⊂ Σ so that x3|D(∗) = −λ ln |z| + c
where λ, c ∈ R, λ > 0. Thus, M intersects planes above height c in sim-
ple closed curves at heights not corresponding to ends. Since different
planar ends cannot be at the same height by the maximum principle at
infinity [27], then all planes above height c and at the heights of ends
intersect M in connected proper arcs. This proves the lemma. q.e.d.

We are now ready to define the second natural normalization for a
properly embedded minimal surface M ⊂ R

3 with finite genus, two
limit ends and horizontal tangent plane at infinity. By Lemma 1, all the
middle ends of M are planar and there are horizontal planes intersecting
M in a compact set. We may assume that {x3 = 0} intersects M
transversely in a finite set of Jordan curves. Hence the integral of the
upwards pointing conormal to M(−) = {p ∈ M | x3(p) ≤ 0} along
its boundary is a finite vector F (M) ∈ R

3 which is independent of the
vertical translation of M by the Divergence Theorem. Here, F (M) =
V (M)+H(M) where V (M) is a vertical vector and H(M) is a horizontal
vector. Since M intersects the plane {x3 = 0} transversely, V (M)
must be nonzero (in fact, we will prove in Section 4 that H(M) is also
nonzero). In the sequel, we will refer to V (M) as the vertical flux and
H(M) as the horizontal flux of M .

After a homothety, we assume that V (M) = (0, 0, 1), which is the
natural normalization we take for M . In Sections 3 and 4, we prove
that when M has vertical flux one, finite genus and two limit ends, then
outside large compact subsets of M there is an estimate for the absolute
curvature of M that only depends on any upper bound for the horizontal
flux ‖H(M)‖. This uniform estimate can be used to understand moduli
space problems related to proving Conjecture 1. For example, in [20]
we apply this estimate to prove that if M has genus zero, two limit ends
and sufficiently small horizontal flux, then M is one of the Riemann
minimal examples.

The curvature estimates we obtain in Sections 3 and 4 (or rather the
proof of these curvature estimates) also play a fundamental role in the
proof by Meeks and Rosenberg [25] that if M is a properly embedded
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minimal surface of finite genus in Σ × R, where Σ is a compact Rie-
mannian surface, then M has bounded curvature, finite topology and
linear area growth.

Let O ⊂ R
3 be an open set. A sequence {M(n) ⊂ O}n∈N of minimal

surfaces is called locally simply connected if for each point in O, there
exists a ball B ⊂ O centered at that point such that for n large, every
component of M(n)∩B is a disk with boundary in the boundary of B.
In the case O = R

3, we say that a sequence {M(n)}n is uniformly locally
simply connected (ULSC) if there exists r > 0 such that for each p ∈ R

3

and for n large, the ball centered at p with radius r intersects M(n)
in components which are disks with boundary lying in the boundary of
that ball.

In a recent series of papers, Colding and Minicozzi [2, 3, 4, 5, 6]
have attempted to describe the basic structure of compact embedded
minimal surfaces M of fixed genus which are contained in the unit ball
B = B(�0, 1) and which have their boundary on the boundary of B. The
most important case of their structure theorem is when M is a disk
which passes through the origin �0 where its Gaussian curvature is large.
In this case, Colding and Minicozzi prove that M has the appearance,
in a smaller ball B(�0, ε) and outside a cone centered at �0, of a highly
sheeted double multigraph, similar to a homothetically shrunk helicoid.
They then use this local picture as a tool for proving the next result,
which we will need for our proofs in the next two sections.

Theorem 3 (Colding, Minicozzi [5, 6]). Let Mn ⊂ B(�0, Rn) be a
ULSC sequence of embedded minimal planar domains with ∂Mn ⊂
∂B(�0, Rn), Rn → ∞. If sup |KMn∩B(�0,1)| → ∞, then there exists a sub-
sequence of the Mn (denoted in the same way) and a set S(L) consisting
of one or two Lipschitz curves such that after a rotation of R

3:
1) Each Lipschitz curve Sk in S(L) can be parametrized in R by its

height.
2) Each Mn is horizontally locally graphical away from S(L).
3) For each α ∈ (0, 1), Mn − S(L) converges in the Cα-topology to

the foliation L of R
3 by horizontal planes.

4) sup |KMn∩B(Sk(t),r)| → ∞ as n → ∞, for all t ∈ R and r > 0.
5) If additionally Mn ∩ B(�0, 2) contains a component which is not a

disk for each n, then S(L) consists of two Lipschitz curves.

Meeks and Rosenberg [26] applied this structure theorem for the
case of disks in their proof that the plane and the helicoid are the only
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properly embedded simply connected minimal surfaces in R
3. Meeks’

regularity theorem [17] implies that the singular set S(L) in Theorem 3
consists of vertical straight lines.

A sequence of possibly disconnected disjoint minimal graphs over the
unit disk with bounded gradient and with nonempty limit set has a sub-
sequence that converges to a minimal lamination of the open cylinder
over that disk, whose leaves are graphical with the same gradient esti-
mate. This fact, together with a standard diagonal argument has as a
consequence the following lemma; see Theorem 4.39 in [29] or the proof
of Theorem 1.6 in [26] for a similar analysis.

Lemma 2. Let O ⊂ R
3 be an open set and take a sequence {M(n) ⊂

O}n of embedded minimal surfaces (possibly disconnected) with locally
bounded Gaussian curvature in the sense that for any ball B ⊂ O, the
M(n)∩B have uniformly bounded Gaussian curvature, with the bound of
the curvature depending only on B. If for every n, any divergent curve
of finite length on M(n) has limit point in the boundary of O, then a
subsequence of the M(n) converges to a C1,α minimal lamination of O
with the same local bounds for its Gaussian curvature as the ones of
M(n).

The following lemma is closely related to the 1-sided curvature esti-
mate by Colding and Minicozzi in [5].

Lemma 3. Denote by S = {x = (x1, x2, x3) | 0 ≤ x3 < 1}, C(r) =
{x ∈ S | x2

1+x2
2 ≤ r2} for r > 0 and let R : [0, 1) → (0, 1) be a continuous

function with R(t) ≤ 1− t for any t ∈ [0, 1). Given a divergent sequence
{rn}n ⊂ R

+, suppose that {Σn}n is a sequence of compact embedded
minimal surfaces in C(rn) with ∂Σn ⊂ ∂C(rn) − {x3 = 0}, satisfying
the following uniform local simply connected property: for any point x =
(x1, x2, x3) ∈ S and for n sufficiently large, Σn∩B(x, R(x3)) consists of
simply connected components. Then, a subsequence of the Σn converges
smoothly on compact subsets of S to a lamination of S by horizontal
planes.

Proof. Since 0 < R(0) < 1, given a point x ∈ {x3 = 0}, we have that
for n large enough, Σn∩B(x, R(0)) consists only of disks with boundaries
on ∂B(x, R(0))∩{x3 > 0}. By the 1-sided curvature estimate of Colding
and Minicozzi [5] applied to Σn ∩B(x, R(0)), there exists an ε > 0 such
that for n large the sequence {Σn}n has bounded absolute curvature at
most ε in a fixed size small neighborhood of any point of the (x1, x2)-
plane.
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We claim that for any t with 0 < t < 1 and for any point x =
(x1, x2, x3) with x3 = t, the curvature of the sequence {Σn ∩ C

(
rn
2

)}n

is also eventually bounded in a small ball centered at x whose radius
depends only on t. If this property were to fail for some t, then it fails
for a smallest such positive t, say t0. After translating horizontally Σn

at a rate slower than rn
2 and taking a subsequence, we can obtain a new

sequence of surfaces {Σ̃n}n satisfying the conditions of this lemma (with
the radii r̃n of the corresponding cylinders C(r̃n) being r̃n ≥ rn

2 → ∞
as n → ∞), and such that for any positive t, 0 < t < t0 and any n ∈ N,
the absolute curvature of Σ̃n ∩ {x3 ≤ t} is bounded from above by a
fixed constant that only depends on t, and the point p0 = (0, 0, t0) ∈ Σ̃n

has absolute curvature at least n. It follows from Lemma 2 that a
subsequence of these surfaces converges smoothly on compact subsets of
{0 ≤ x3 < t} to a minimal lamination Lt with bounded curvature. Next
we show that Lt consists only of horizontal planes, with the plane {x3 =
t0} inside the limit set of the Lt as t → t0. Arguing by contradiction,
suppose that L is a nonplanar leaf of Lt and let P = {x3 = t1} be the
highest horizontal plane lying below L (here 0 ≤ t1 < t0). Using the
bounded curvature of L, one can find a small ε such that the projection
π(x1, x2, x3) = (x1, x2, 0) restricts to L ∩ {t1 < x3 ≤ t1 + ε} as a local
diffeomorphism. Let CL be a component of L ∩ {t1 < x3 ≤ t1 + ε}.
Then CL is proper in the slab {t1 < x3 ≤ t1 +ε} (otherwise the minimal
lamination of {t1 < x3 ≤ t1 + ε} given by the closure of CL would have
a limit leaf which can be proved to be a horizontal plane higher than
P , which contradicts that P is the highest horizontal plane below L).
Since CL is properly embedded in the slab {t1 < x3 ≤ t1 + ε} with
∂CL ⊂ {x3 = t1 + ε}, CL must separate {t1 < x3 ≤ t1 + ε} in two
components. Since CL is connected and submerses into the (x1, x2)-
plane, it has a unique orientation induced by the vector (0, 0, 1). By
the separation property of CL, it follows that π−1(π(x)) = {x} for each
x ∈ CL (otherwise π−1(π(x)) contains two consecutive points where
CL has opposite orientations with respect to (0, 0, 1), a contradiction).
Therefore CL is a graph over its projection in the (x1, x2)-plane, which
in turn implies that CL is proper in the slab {t1 ≤ x3 ≤ t1 +ε}. Now the
proof of the Halfspace Theorem [13] applies to CL giving a contradiction.
Hence, Lt consists of horizontal planes. By the uniform local simply
connected property of Σ̃n, we may assume that each Σ̃n intersects the
ball B(p0, R(t0)) in components which are disks. Let ∆(n) be the disk
component of Σ̃(n) ∩ B(p0, R(t0)) that contains p0. Choose δ0 with
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0 < δ0 < R(t0)/2. By the 1-sided curvature estimates of Colding-
Minicozzi and after passing to a subsequence, we deduce that for δ0

sufficiently small and for all positive δ < δ0, ∆(n) intersects the closure
of the horizontal disk B(p0, R(t0)) ∩ {x3 = t0 − δ} for all n large. Now
choose some t with t0 − δ

2 < t < t0. Note that the plane {x3 = t0 − δ
2}

belongs to the lamination Lt (because Σ̃n ∩ {0 ≤ x3 < t} converges
smoothly to Lt as n → ∞ and ∆(n) intersects {x3 = t0 − δ

2} for all
n large). Again the smooth convergence of Σ̃n to Lt implies that Σ̃n

contains an almost flat almost horizontal disk ∆1(n) arbitrarily close
to B(p0, 2R(t0)) ∩ {x3 = t0 − δ

2} ⊂ Lt. This is impossible, since ∆1(n)
separates p0 from the closure of the disk {x3 = t0 − δ} ∩ B(p0, R(t0)),
which also contains points of ∆(n). This contradiction proves our claim.

We have demonstrated that the sequence {Σn ∩C
(

rn
2

)}n has locally
bounded curvature in the open slab {−ε < x3 < 1}. By Lemma 2, a
subsequence of the Σn ∩C

(
rn
2

)
converges to a C1,α minimal lamination

L of this slab. Since x3 > 0 on Σn ∩ C
(

rn
2

)
for each n, we have that

L ⊂ {0 ≤ x3 < 1}. A minor modification of the arguments in the last
paragraph show that L consists only of horizontal planes. Finally, note
that the conclusions of the lemma remain invariant if we replace the
original sequence {Σn}n by {Σn ∩ C

(
rn
2

)}n, which finishes the proof.
q.e.d.

We now explain a useful technique for studying the local geometry
of a sequence of embedded minimal surfaces M(n) at points of large
normalized curvature (Colding and Minicozzi refer to such points as
points of almost maximal curvature), a concept that we now define. A
sequence of points of large normalized curvature is a sequence p(n) ∈
M(n) such that:

1) λ(n) :=
√

|KM(n)|(p(n)) tends to ∞ as n → ∞.
2) B(p(n), 1) does not contain points of the boundary of M(n) for

any n.
3) There exists a sequence of positive numbers τ(n) diverging to in-

finity, such that τ(n) ≤ λ(n) for each n.
4) There exists c > 0 such that |KM(n)| ≤ cλ(n)2 in M(n)∩B

(
p(n),

τ(n)
λ(n)

)
.

Whenever we have a sequence p(n) of points of large normalized cur-
vature, the rescaled surfaces M̃(n) = λ(n)[M(n)−p(n)] all pass through
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the origin with Gaussian curvature K
M̃(n)

equal to −1 at �0, have their
(possibly empty) boundaries outside the ball of radius τ(n) and have
uniformly bounded curvature on B(�0, τ(n)) since

K
M̃(n)∩B(�0,τ(n))

= λ(n)−2K
M(n)∩B

(
p(n),

τ(n)
λ(n)

) ≥ −c.

(We have abused slightly notation in the equality above; the rigorous
meaning of this equality relates the Gauss curvature function of M̃(n)
at points inside B(�0, τ(n)) with the Gauss curvature of M(n) at the
corresponding points under rescaling in B

(
p(n), τ(n)

λ(n)

)
.) It follows from

the results in [26] that a subsequence of the surfaces M̃(n) converges
with multiplicity 1 to a connected nonplanar properly embedded mini-
mal surface M̃(∞) of bounded Gaussian curvature, called a normalized
blow-up of the sequence {M(n)}n. By the convex hull property for com-
pact minimal surfaces, the limit M̃(∞) has genus less than or equal to
the genus of the M(n) and M̃(∞) has at most as many generators in
its fundamental group as the M(n).

It follows that if {M(n)}n is a uniformly locally simply connected
sequence of properly embedded minimal surfaces in R

3 and p(n) ∈ M(n)
is a sequence of points of large normalized curvature, then the blow-
up M̃(∞) produced in the last paragraph must be simply connected.
By [26], M̃(∞) is a helicoid. Thus, in a small neighborhood of a point
of M(n) of very large normalized curvature, M(n) has the appearance
of a homothetically shrunk helicoid with a large number of sheets.

The curvature estimates we obtain in the next section have proven
useful in describing the local geometry of a sequence {M(n)}n of prop-
erly embedded minimal surfaces of fixed finite genus, but not neces-
sarily with a bound on the number of generators of their fundamental
groups, near a sequence of points of large normalized curvature. The
desired description can be obtained from the special case where the
genus of M(n) is zero but M(n) is not simply connected. If a sequence
{M(n)}n is locally simply connected in an open set O ⊂ R

3 (this can
be easily extended to a locally simply connected sequence of properly
embedded minimal surfaces in any homogeneously regular Riemann-
ian 3-manifold), then the previous analysis implies that near points
p(n) ∈ M(n) of large normalized curvature, M(n) has the appearance
of a homothetically shrunk helicoid with many sheets. If {M(n)}n is
not locally simply connected in O but it has locally bounded genus (i.e.,
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for every point p ∈ O there exists a geodesic ball B(p, r) ⊂ O such
that the genus of every component of M(n) ∩ B(p, r) is not greater
than some uniform constant), then there exists a point x ∈ O, a subse-
quence of {M(n)}n (denoted in the same way) and a sequence of points
p(n) ∈ M(n) of large normalized curvature that converges to x. In par-
ticular, such a sequence of minimal surfaces has a normalized blow-up of
bounded genus. Conjecture 1 in the Introduction describes what should
be the possible normalized blow-ups of such a sequence. The next the-
orem is a partial result on the local description of these surfaces and
its proof appears in Section 4. In [18] we will prove that item 3) below
never holds.

Theorem 4. Suppose M̃ ⊂ R
3 is the normalized blow-up of a se-

quence of properly embedded minimal surfaces in a homogeneously reg-
ular Riemannian 3-manifold where the surfaces have locally bounded
genus. Then, there is another normalized blow-up M ⊂ R

3 of the same
sequence such that one of the following holds:

1) M is a helicoid.
2) M has a finite number of ends greater than one and it has finite

total curvature.
3) M has finite genus, bounded Gaussian curvature and one limit

end.
4) M has genus zero and two limit ends.

Furthermore, if M̃ has finite topology and genus zero, then M̃ is a he-
licoid or a catenoid.

We finish this preliminaries section with some notation, to be used
later on. If Σ ⊂ R

3 is a minimal surface and δ ⊂ Σ is an embedded
closed curve, Flux(Σ, δ) will denote the flux of Σ along δ, i.e., the integral
along δ of the unit tangent vector to Σ and orthogonal to δ, which is
defined up to orientation on δ. Given a, b ∈ [−∞,∞], a < b, we let
S(a, b) = {x ∈ R

3 | a < x3 < b} mean the open horizontal slab between
heights a and b. Given p, q ∈ R

3, we let p, q = {tp + (1− t)q | t ∈ [0, 1]}
denote the closed segment joining p and q. Given θ ∈ [0, 2π), we denote
by Rotθ the rotation by angle θ around the x3-axis.

3. Curvature estimates for the genus zero case

Let M be the space of properly embedded minimal surfaces in R
3

with genus zero, two limit ends and horizontal tangent plane at infinity.
By Lemma 1, all middle ends of any surface M ∈ M are planar, and
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we can assume that such surfaces are normalized so that the flux F (M)
along the boundary of M ∩{x3 ≤ 0} is F (M) = (0, 0, 1)+H(M), where
H(M) is a horizontal vector. Note also that the arguments in the proof
of Lemma 1 can be adapted to this setting and give that any horizontal
section of M is a simple closed curve or a proper embedded arc (this last
possibility occuring exactly at the heights of the planar ends), and the
third coordinate function x3 has no critical points on M , or equivalently
the Gauss map of M omits the vertical directions.

Recall that the 1-parameter family {Rt}t of Riemann minimal ex-
amples can be considered to be a curve in M parametrized by t ∈ R

+

where ‖H(Rt)‖ = t. It can be shown that limt→∞ max |KRt | = +∞
and that for any t0 > 0, the family {Rt | t ≤ t0} has uniformly bounded
Gaussian curvature (see for instance Meeks, Pérez and Ros [23]). The
main goal of this section is to prove a related basic curvature estimate.

Theorem 5. If {M(i) }i ⊂ M is a sequence of surfaces with
{H(M(i))}i bounded, then the Gaussian curvature of the M(i) is uni-
formly bounded.

In the proof of Theorem 5, we will need several lemmas. The next one
follows directly from the curvature estimates for stable minimal surfaces
by Schoen [32].

Lemma 4. Let S ⊂ R
3 be a horizontal slab of width not greater

than 1. Then, there exists τ0 > 1 such that for any properly embedded
noncompact orientable stable minimal surface ∆ ⊂ S with boundary
inside a vertical cylinder of radius 1, the portion of ∆ at distance greater
than τ0 from the axis of the cylinder consists of a finite number of graphs
over the outside of a disk of radius τ0 in the (x1, x2)-plane.

In the next lemma we show that a normalized blow-up of a sequence
{M(i)}i as in Theorem 5 is necessarily simply connected; in fact, such
a blow-up must be a vertical helicoid.

Lemma 5. Let {M(i)}i ⊂ M be a sequence in the hypotheses of The-
orem 5. Assume that {|KM(i)|}i is not uniformly bounded. Then, after
possibly passing to a subsequence, there exist points p(i) ∈ M(i) and pos-
itive numbers λ(i) → +∞ so that the surfaces M ′(i) = λ(i)(M(i)−p(i))
converge uniformly on compact subsets of R

3 with multiplicity 1 to a
vertical helicoid H passing through the origin �0, with |KH | ≤ 1 and
|KH(�0)| = 1.
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Proof. As {|KM(i)|}i is not uniformly bounded, after extracting a
subsequence we find points p̂(i) ∈ M(i) where |KM(i)(p̂(i))| → ∞
as i goes to ∞. On a ball of radius 1 centered at p̂(i), the function
|KM(i)|(1−d(p̂(i), ·))2 attains a maximum value at a point p(i) ∈ M(i).

Define λ(i) =
√
|KM(i)(p(i))| > 0 and consider the surfaces M ′(i) =

λ(i)(M(i) − p(i)), i ∈ N. Up to a subsequence, {M ′(i)}i converges
smoothly on compact subsets of R

3 with multiplicity 1 to a connected
properly embedded minimal surface H ⊂ R

3 with �0 ∈ H, |KH(�0)| = 1
and |KH | ≤ 1 in H, see Meeks and Rosenberg [26] for a similar com-
pactness result. It remains to show that H is a vertical helicoid.

Suppose that H is not simply connected. We claim that in this case
there exists an embedded nontrivial cycle γ ⊂ H such that Flux(H, γ) 
=
0. To see this, we will discuss the possible cases for H. By standard
arguments, H can be shown to have genus zero. If the number of ends
of H is finite and greater than one, then it is a catenoid (Collin [7]
and López, Ros [15]), and we choose γ as the waist circle of H. If
H has infinitely many ends, then it must have one or two limit ends
(Collin, Kusner, Meeks and Rosenberg [8]). In the one limit end case,
the results in [8] imply, possibly after a rotation, that the limit end of
H is the top end in the natural linear ordering given by the Ordering
Theorem (Frohman and Meeks [12]). In this case, the bottom end E
of H is an annulus and so, by Collin’s Theorem [7] E is asymptotic
to a plane or to a catenoid. If E is asymptotic to a plane, then H is
contained is a halfspace, contradicting the Halfspace Theorem (Hoffman
and Meeks [13]). Thus, E is of catenoidal type and a cycle generating
the homology of E is a good choice for γ in this case. Finally in the two
limit end case, we choose γ to be the generator of the homology of the
cylinder obtained after attaching the planar ends to H. Thus the claim
holds.

As the curve γ ⊂ H is compact, it must be a smooth limit of embed-
ded cycles γ′(i) ⊂ M ′(i), thus Flux(H, γ) = limi Flux(M ′(i), γ′(i)) =
limi λ(i)Flux(M(i), γ(i)), where γ(i) ⊂ M(i) is the embedded closed
curve such that γ′(i) = λ(i)(γ(i) − p(i)). But the third component of
Flux(H, γ) is bounded and the third component of Flux(M(i), γ(i)) is
equal to 1 for all i. This contradicts that λ(i) → ∞, and proves that H
is simply connected.

Since H is simply connected and nonflat, a theorem of Meeks and
Rosenberg [26] implies that H is a helicoid. Finally, the helicoid H
must be vertical because it is a smooth limit of the M ′(i), whose Gauss
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maps omit the vertical directions, and the Gauss map of H is an open
map. q.e.d.

The proof of Theorem 5 is rather long and delicate. For the sake of
clarity, we will now give a sketch of this proof, skipping the details that
will be developed later on. We assume that the theorem fails. Using
Lemma 5 and passing to a subsequence, we have points p(i) ∈ M(i)
and positive numbers λ(i) → +∞ so that λ(i)(M(i) − p(i)) converges
uniformly on compact subsets of R

3 to a vertical helicoid H with �0 ∈ H,
|KH | ≤ 1 and |KH(�0)| = 1. We will show that there exist angles
θ(i) ∈ [0, 2π) such that for any τ > τ0 (this is the positive number given
in Lemma 4), we can find positive numbers µ(τ, i) > 0 and embedded
closed curves δ(τ, i) ⊂ µ(τ, i)Rotθ(i)(M(i) − p(i)) such that

Flux
(
µ(τ, i)Rotθ(i)(M(i) − p(i)), δ(τ, i)

)
= V (τ, i) + W (τ, i)(1)

where V (τ, i), W (τ, i) ∈ R
3 are vectors such that limi→∞ V (τ, i) =

(12τ, 0, 0) and {‖W (r, i)‖}i is bounded by a constant independent of τ .
Assuming these facts, the proof of Theorem 5 finishes as follows. First
note that for any surface M ∈ M, the angle between the flux vector
F (M) and its horizontal projection H(M) is invariant under transla-
tions, homotheties and rotations around the x3-axis. By (1), the corre-
sponding angles for the flux vectors of the surfaces µ(τ, i)Rotθ(i)(M(i)−
p(i)) tend to zero as i → ∞ and τ → ∞. But those angles are nothing
but the angles for M(i), which are bounded away from zero because of
the hypothesis of {H(M(i))}i being bounded. This contradiction proves
the theorem.

Now we will go into the details of what is assumed in the last para-
graph. Consider the surfaces M ′(i) defined in Lemma 5. We may as-
sume without loss of generality, after a possible small translation of the
M ′(i), that the following three properties hold for all i ∈ N:

1) �0 ∈ M ′(i).
2) The horizontal section Γ′(i) = M ′(i)∩ {x3 = 0} is a simple closed

curve.
3) {M ′(i)}i converges on compact subsets of R

3 to a vertical helicoid
whose axis passes through �0.

For i large enough, consider the open arc α′(i) ⊂ Γ′(i) centered at �0
and with intrinsic length 1. Note the Gauss map N ′

i of M ′(i) at the end
points of α′(i) takes values in different hemispheres determined by the
horizontal equator. Since N ′

i restricted to Γ′(i) − α′(i) is continuous,
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there exists a point q′(i) ∈ Γ′(i)−α′(i) such that N ′
i(q

′(i)) is horizontal,
q′(i) being a point of Γ′(i)−α′(i) closest extrinsically to the origin with
this property.

Fix τ > τ0, where τ0 is the positive number given by Lemma 4. We
rescale and rotate M ′(i) around the x3-axis, defining a new surface

M̃(i) =
6τ

‖q′(i)‖Rotθ(i)M
′(i),

where the rotation angle θ(i) is chosen so that the point

q̃ =
6τ

‖q′(i)‖Rotθ(i)q
′(i)

is exactly (0, 6τ, 0).

Remark 1. With the notation used in (1), µ(τ, i) is nothing but
6τλ(i)
‖q′(i)‖ . Also note that the dependence of M̃(i) in terms of τ is by a
homothety, which makes the angle θ(i) be independent of τ .

It remains to find embedded cycles δ (r, i) ⊂ M̃ (i) such that
Flux(M̃(i), δ(τ, i)) decomposes as in (1).

Let B1 be the open ball of radius one centered at the origin and Ω1(i)
the component of M̃(i) ∩ B1 passing through �0. Ω1(i) has compact
closure, so there exist points P1(i), Q1(i) ∈ ∂Ω1(i) such that S1(i) =
S(x3(P1(i)), x3(Q1(i))) is the smallest open slab containing Ω1(i). Ex-
changing the origin by q̃ = (0, 6τ, 0), we similarly define B2 as the ball
of radius one centered at q̃, Ω2(i) to be the component of M̃(i) ∩ B2

containing q̃, P2(i), Q2(i) points in ∂Ω2(i) at lowest and highest heights,
and S2(i) = S(x3(P2(i)), x3(Q2(i))). The intersection of S1(i) and S2(i)
is another open slab S(a(i), b(i)) with a(i) < 0 < b(i).

Lemma 6. For any ball B of radius one, any component of M̃(i) ∩
S(a(i), b(i)) ∩ B is simply connected.

Proof. Suppose to the contrary, that there exists a ball B of radius one
and a component of M̃(i)∩S(a(i), b(i))∩B containing a homotopically
nontrivial simple closed curve γ(i). Let C(B1), C(B2) be the vertical
cylinders over the balls B1, B2.

First note that as the radius of B is 1 < τ0 and the distance between
�0 and q̃ is 6τ > 6τ0, the distance from B to at least one of the cylinders
C(B1), C(B2) must be greater than τ0. Suppose that dist(B, C(B1)) >
τ0 (the case dist(B, C(B2)) > τ0 can be solved similarly). Let β(i) ⊂
Ω1(i) be an embedded arc joining P1(i) and Q1(i), see Figure 1.
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Figure 1. A nontrivial curve γ(i) ⊂ B will produce a
noncompact stable minimal surface crossing the curve
β(i).

Clearly (M̃(i)∩S1(i))−β(i) is a connected planar domain whose fun-
damental group is generated by loops around its finite number of ends,
and γ(i) ⊂ (M̃(i)∩S1(i))−β(i) is a nontrivial embedded cycle. There-
fore, γ(i) bounds inside (M̃(i)∩S1(i))−β(i) a compact disk D(i) minus a
finite number of points e(i, 1), . . . , e(i, ki) corresponding to ends of M̃(i)
(note that ki > 0 because of the fact that γ(i) is homotopically nontriv-
ial and by the convex hull property). Consider a compact exhaustion
{D(i, j) | j ∈ N} of D(i) − {e(i, 1), . . . , e(i, ki)} obtained by removing
neighborhoods of the punctures, so γ(i) ⊂ ∂D(i, j), D(i, j) ⊂ D(i, j+1)
for each j and ∪jD(i, j) = D(i)−{e(i, 1), . . . , e(i, ki)}. Let W (i) denote
a component of R

3 − M̃(i) in which γ(i) is homologically nontrivial,
which exists by elementary separation properties. Note that ∂W (i) =
M̃(i) is a good barrier for solving Plateau problems. Consider the sur-
face of least area ∆(i, j) in W (i) with boundary ∂∆(i, j) = ∂D(i, j). By
standard compactness and regularity theorems (see Simon [33]), a sub-
sequence of {∆(i, j)}j converges uniformly on compact subsets of W (i)
to a properly embedded noncompact orientable stable minimal surface
∆(i) ⊂ W (i) with ∂∆(i) = γ(i). By the convex hull property, all of the
∆(i, j) are contained in the open slab S1(i) and thus, their limit ∆(i)
lies inside the closure S1(i). By the maximum principle at infinity, ∆(i)
is contained in the open slab S(a(i), b(i)) since ∂∆(i) is. Moreover, as
∂∆(i) is contained in B, it follows that dist(∂∆(i), C(B1)) > τ0. By
Lemma 4, ∆(i) ∩ B1 is a union of horizontal graphs, all contained in
S(a(i), b(i))∩B1. In particular, these graphs must cross the curve β(i),
a contradiction. This finishes the proof of the lemma. q.e.d.
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Lemma 7. There exists ε > 0 such that min(|a(i)|, b(i)) ≥ ε for all
i sufficiently large.

Proof. Arguing by contradiction, suppose (possibly after extracting
a subsequence) that min(|a(i)|, b(i)) → 0 as i → ∞. The proof of this
lemma follows from the consideration of the following three cases:

Case 1: There exists a subsequence, also indexed by i, such that
S1(i) ⊆ S2(i) for all i (the case S2(i) ⊆ S1(i) is analogous to this one).

Note that in this case, S1(i) = S(a(i), b(i)). Without loss of gener-
ality, we can assume that |a(i)| ≤ b(i) for all i. Let B(i) be the ball
of radius 1/2 centered at the point (0, 0, a(i)), which is contained in B1

for all i large enough. Using Lemma 6 we deduce that the component
D(i) of Ω1(i) ∩ S(a(i), b(i)) ∩ B(i) that contains the origin is a disk for
such i. Since the boundary of D(i) is contained in the upper halfsphere
∂B(i) ∩ {x3 > a(i)} and the center of B(i) tends to �0 as i → ∞, the
1-sided curvature estimates of Colding and Minicozzi [5] insure that the
tangent space to D(i) at �0 converges to the horizontal as i → ∞, which
contradicts that the origin is a point in D(i) where the tangent space
converges to vertical (this holds because suitable rescalings of the D(i)
converge smoothly around �0 to a vertical helicoid whose axis passes
through �0), see Figure 2.

Figure 2. The tangent space of D(i) at the origin is
vertical, a contradiction.

It is clear that if b(i) ≤ |a(i)| after passing to a subsequence, we can
argue in a similar way exchanging (0, 0, a(i)) by (0, 0, b(i)).
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Case 2: Suppose that neither of the slabs S1(i), S2(i) is contained in
the other one, and that {b(i)/|a(i)|}i → ∞ as i goes to ∞ (the case
{b(i)/|a(i)|}i → 0 can be solved similarly exchanging a(i) by b(i)).

Clearly, now |a(i)| ≤ b(i) for all i large and |a(i)| → 0. This second
case divides into two possibilities:
2.I. {x3 = a(i)} ⊂ ∂S1(i) and {x3 = b(i)} ⊂ ∂S2(i).

We rescale to have b(i)=1, defining M̃ ′(i)=b(i)−1M̃(i). Consider
the ball B(i) of radius 1/2 centered at the point (0, 0, a(i)/b(i)),
which tends to �0 as i → ∞. Now the argument in Case 1 applies
to B(i) without changes, giving the desired contradiction.

2.II. {x3 = a(i)} ⊂ ∂S2(i) and {x3 = b(i)} ⊂ ∂S1(i).
Now define M̃ ′(i) = b(i)−1

(
M̃(i) − q̃

)
. Let B(i) the ball of radius

1/2 centered at the point (0, 0, a(i)/b(i)). The argument of Case 1
applies to M̃ ′(i) ∩ B(i) and finishes Case 2 (nevertheless, note
that the situation at the origin may not be symmetric to the one
at q̃: nearby �0 ∈ M̃(i) we know that a vertical helicoid is forming
at a certain scale, while at (0, 6τ, 0) we only have a horizontal
normal vector to M̃(i), but this is enough to follow the argument
in Case 1).

Case 3: Assume that neither of S1(i), S2(i) is contained in the other
one, and that {b(i)/|a(i)|}i is bounded.

First note that we can assume that {b(i)/|a(i)|}i is bounded away
from zero (see Case 2), thus ε1 := 1

2 inf{b(i)/|a(i)| | i ∈ N} > 0. With-
out loss of generality, we can suppose that the plane {x3 = a(i)} is a
boundary plane of S2(i) and {x3 = b(i)} ⊂ ∂S1(i) (note that |a(i)| may
not be less than b(i), and that both numbers tend to zero at the same
rate as i → ∞). The appropriate scale to deal with now will be hav-
ing a(i) = −1, so let D(i) be the component of

(
|a(i)|−1[M̃(i) − q̃]

)
∩

S(−1, ε1) ∩
{

x2
1 + x2

2 ≤ |a(i)|−1

2

}
that passes through �0. Note that the

surfaces D(i) essentially satisfy the hypotheses in Lemma 3 after trans-
lating them by e3 = (0, 0, 1), see Figure 3.

The fact that the tangent space of D(i) at the origin is vertical con-
tradicts the conclusion of Lemma 3. Now the lemma is proved. q.e.d.
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Figure 3. The component D(i) represented in the scale
of M̃(i).

Proposition 1. There exists ε > 0 such that the sequence {M̃(i) ∩
S(−ε, ε)}i is locally simply connected in S(−ε, ε). In fact, given any
ball B of radius one in R

3, every component of M̃(i) ∩ B ∩ S(−ε, ε) is
a disk for i sufficiently large.

Proof. The second statement in the proposition is a direct conse-
quence of Lemmas 6 and 7. Finally, the first statement in the proposi-
tion follows from the second one together with the convex hull property.

q.e.d.

Lemma 8. The sequence of surfaces {M̃(i)}i is ULSC in R
3 and,

after extracting a subsequence, it converges to the foliation L of R
3 by

horizontal planes, with singular set of convergence S(L) = Γ∪ Γ′ where
Γ is the x3-axis and Γ′ is the vertical line passing through q̃.

We will postpone the proof of Lemma 8 and show how Theorem 5
follows from it. Recall that given τ > τ0, we had translated and rescaled
the original surfaces M(i) to get a new sequence {M̃(i)}i, such that each
surface M̃(i) passes through �0 and through the point q̃ = (0, 6τ, 0). The
tangent space of M̃(i) at q̃ is always vertical. After blowing-up, these
surfaces converge (up to a subsequence) to a vertical helicoid with axis
passing through �0. In the present scale, {M̃(i)}i converges (again up
a to subsequence) to the foliation {x3 = t}t∈R outside of two vertical
straight lines, namely the x3-axis and the line passing through q̃.
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Remark 2. To get the above description of M̃(i), we have fixed
τ > τ0. Nevertheless, the end of the proof of Theorem 5 is based on the
behavior of certain fluxes as i, τ → ∞.

The next step in the proof of Theorem 5 consists of finding embedded
closed curves δ(τ, i) ⊂ M̃(i) where (1) holds. Roughly speaking, we will
use the structure of parking garage for the surface M̃(i) in order to de-
fine δ(τ, i) by joining an approximation L(τ, i) of a horizontal segment
from �0 to q̃ with a “short” arc α2(τ, i) close to q̃ that goes up exactly one
level in the parking garage structure, then traveling from q̃ to �0 by an
approximation L̃(τ, i) of a horizontal segment directly above L(τ, i) and
finally coming down exactly one level nearby the origin along another
“short” arc α1(τ, i) to close the curve δ(τ, i) at �0. Here “short” means
that the corresponding flux contribution is bounded independently of τ
(“short” also means that the lengths of the arcs α1(τ, i) can be made
arbitrarily small for i large; for an alternative approach to proving the
existence of the short arc α1(τ, i), see the statement of the Limit Lami-
nation Metric Theorem in [16]). In order to construct δ(τ, i) one could
appeal to the local structure of double multigraph by Colding-Minicozzi
(Theorem 3) around points in the singular set of convergence S(L) that
appears in Lemma 8, although this approach has the difficulty of get-
ting the “short” arc α2(τ, i) nearby q̃ (because Colding-Minicozzi theory
describes the surfaces M̃(i) outside a vertical double cone centered at q̃
and the arc α2(τ, i) should lie inside that cone; note that the arc α1(τ, i)
is easier to construct since we know that suitable blow-ups of the M̃(i)
at the origin converge to a vertical helicoid). Instead, we will analyze
directly our situation and produce explicitly the needed arcs.

We now choose a small positive number ρ ∈ (0, 1) and consider the
solid cylinder C(Γ, ρ) of radius ρ with axis Γ. As τ0 > 1, q̃ cannot lie in
C(Γ, ρ).

Remark 3. It is important to notice that since M̃(i) depends on τ
by an homothety and τ is always greater that one, the radius ρ of the
cylinder C(Γ, ρ) can be chosen independent of τ .

We claim that the Gaussian curvature of M̃(i) at q̃ blows up as i →
∞: this follows because otherwise, Lemmas 2 and 8 would imply that
for certain ε > 0, a subsequence of {M̃(i) ∩ B(q̃, ε)}i would converge
smoothly to the foliation of B(q̃, ε) by horizontal disks. As the tangent
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space to M̃(i) at q̃ is vertical for every i, this smooth convergence to
horizontal disks is impossible.

Let C(Γ′, ρ) be the solid cylinder of radius ρ and axis given by the
vertical straight line passing through q̃. Of course, C(Γ, ρ) ∩C(Γ′, ρ) =
∅.

Remark 4. As in Remark 3, ρ can be chosen independently of τ >
τ0.

Let A1 = �0, q̃ ∩ ∂C(Γ, ρ/2) and A2 = �0, q̃ ∩ ∂C(Γ′, ρ/2), both points
in the leaf L0 = {x3 = 0} of L. Take ε > 0 such that Proposition 1
holds. Given δ ∈ (0, min{ρ/2, ε}), denote by

R(δ) =
{

(x1, x2, x3) | dist
(
(x1, x2),�0, q̃

)
≤ δ, |x3| ≤ δ

}
.

Hence, R(δ) is a closed tubular neighborhood of �0, q̃ in R
3. Let F be

the topological closed disk

F =
{

p = (x1, x2, 0) ∈ R(δ) | dist(p,�0) ≥ ρ

2
, dist(p, q̃) ≥ ρ

2

}
,(2)

where both distances are measured in the plane L0, see Figure 4 below.
Thus, A1, A2 ∈ ∂F . Let π be the projection π(x1, x2, x3) = (x1, x2),
(x1, x2, x3) ∈ R

3.
Note that the compact set R = R(δ)∩π−1(F ) is disjoint from S(L).

In particular, a subsequence of {M̃(i) ∩R}i (denoted in the same way)
converges smoothly to F as i → ∞. Without loss of generality, we can
assume that for i large, any component D(i) of M̃(i) ∩ R sufficiently
close to F is a closed disk and π restricts to D(i) as a diffeomorphism
onto F . Restricting to the union of such components, we may view
π as being a disconnected covering whose number of sheets increases
to ∞ as i → ∞. As M̃(i) is embedded, the D(i)-type components
of M̃(i) ∩ R are naturally ordered by heights and the Gauss map of
M̃(i) takes almost vertical opposite values on consecutive sheets. Let
D(i) ⊂ M̃(i)∩R be one of the sheets of this covering, chosen so that the
unique point A1(i) ∈ ∂D(i) that projects on A1 through π is the lowest
point of M̃(i)∩R ∩ π−1(A1)∩ {x3 ≥ 0}. Let L(τ, i) denote a lift of the
segment A1, A2 ⊂ F to the sheet D(i) through π (we write explicitly
the dependence on τ for this lift since it will be part of the embedded
closed curve δ(τ, i) we are looking for, see formula (1)). The ends of
L(τ, i) are A1(i) together with another point A2(i) ∈ ∂D(i) ∩ π−1(A2).
Since the lifts of A1, A2 to M̃(i)∩R are also ordered by heights, we can
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Figure 4. Above, a horizontal view (the shaded region
is R). Below, a vertical view of the plane L0 (the shaded
region is F ).

choose another lift L̃(τ, i) of A1, A2, lying inside the component D̃(i) of
M̃(i)∩R directly above D(i). Denote by Ã1(i), Ã2(i) the end points of
L̃(τ, i) so that π(Ãj(i)) = Aj for j = 1, 2, see Figure 4.

We now join A1(i) to Ã1(i) by an embedded curve α1(τ, i) contained
in M̃(i) ∩ C(Γ, ρ) (recall that M̃(i) depends on τ > τ0, which explains
the notation α1(τ, i)). Since suitable expansions of the M̃(i) ∩ C(Γ, ρ)
converge smoothly to a vertical helicoid as i → ∞, we can choose α1(τ, i)
so that its intrinsic length in M̃(i) is bounded above by 2ρ for all i. By
Remark 3, this length property of α1(τ, i) can be obtained independently
of τ > τ0.

Lemma 9. For all i large, the points A2(i) and Ã2(i) can be joined
by an embedded arc α2(τ, i) ⊂ M̃(i) ∩ C(Γ′, ρ) ∩ S(−ε, ε) with intrinsic
length bounded above by a constant that does not depend neither on i
nor on τ .

Proof. Given 0 ≤ r ≤ r′, we let A(q̃, r, r′) = {p ∈ L0 | r ≤ dist(p, q̃) ≤
r′}. Thus, A(q̃, 0, r′) is nothing but the horizontal closed disk of radius
r′ centered at q̃, while for r = r′ > 0, A(q̃, r, r) is the horizontal circle
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of radius r and center q̃. By our choice of ε and Proposition 1, the
component Θ(i) of M̃(i) ∩ π−1(A(q̃, 0, ρ)) ∩ S(−ε, ε) that contains q̃ is
a disk, for all i sufficiently large. Note that the singular straight line
Γ′ coincides with the axis of the solid cylinder π−1(A(q̃, 0, ρ)). For i
large, ∂Θ(i) consists of two disjoint helicoidal-type curves c(i, ρ), c̃(i, ρ)
spinning along the vertical cylinder π−1(A(q̃, ρ, ρ)) from height −ε to ε,
together with two embedded planar curves hε(i) ⊂ {x3 = ε}, h−ε(i) ⊂
{x3 = −ε}. Moreover, the spinning numbers of c(i, ρ), c̃(i, ρ) increase
without bound as i goes to infinity. Θ(i) ∩ π−1(A(q̃, ρ/2, ρ)) consists
of two multivalued almost horizontal sublinear graphs G(i), G̃(i) over
A(q̃, ρ/2, ρ). G(i) is topologically a disk whose boundary consists of
c(i, ρ) together with arcs in hε(i), h−ε(i), and another helicoidal curve
c(i, ρ/2) spinning along the vertical cylinder π−1(A(q̃, ρ/2, ρ/2)) from
height −ε to ε. A similar description holds for G̃(i) and its boundary,
giving rise to a new helicoidal curve c̃(i, ρ/2) spinning along the vertical
cylinder π−1(A(q̃, ρ/2, ρ/2)). Without loss of generality, we can assume
that A2(i) ∈ c(i, ρ/2) and Ã2(i) ∈ c̃(i, ρ/2). Finally, let Θ′(i) = Θ(i) −
[G(i) ∪ G̃(i)], see Figure 5.

In [26] Meeks and Rosenberg proved that for i large there exist min-
imal disks D(i, t) with |t| ≤ ε, which are graphs over A(q̃, 0, ρ) of ap-
proximate height t, and such that D(i, t) ∩ M̃(i) ⊂ Θ(i) consists of a
single compact arc. In this case, D(i, t) converges to the flat horizontal
disk at height t as i → ∞. Since for i large Θ̃(i) = ∪|t|≤ε[D(i, t)∩ M̃(i)]
is essentially all of Θ(i), we do not lose generality in our later arguments
by assuming that Θ(i) = Θ̃(i). Under this assumption, D(i,−ε) ∩ Θ(i)
and D(i, ε) ∩ Θ(i) are both compact arcs.

It will be useful for our purposes to work with the following differ-
entiable representation of Θ(i): We will identify Θ(i) with a planar
rectangle [−1, 1] × [−ε, ε] in the (u, v)-plane, so that:

• The boundary curves c(i, ρ), c(i, ρ/2), c̃(i, ρ/2), c̃(i, ρ) correspond
respectively to the vertical segments {−1} × [−ε, ε], {−1/2} ×
[−ε, ε], {1/2} × [−ε, ε], {1} × [−ε, ε].

• D(i, ε)∩M̃(i), D(i,−ε)∩M̃(i) correspond respectively to the hor-
izontal segments [−1, 1] × {ε}, [−1, 1] × {−ε}.

• The vertical coordinate v ∈ [−ε, ε] is defined by v(p) = t if p ∈
D(i, t) ∩ M̃(i).

Thus, Θ′(i) is represented in this model by the rectangle (−1/2, 1/2)×
[−ε, ε], see Figure 6 Left.
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Figure 5. The multivalued sublinear graphs G(i), G̃(i)
⊂ Θ(i).

Let ds2(i) be the Riemannian metric on Θ(i) = [−1, 1] × [−ε, ε] in-
duced by the natural inner product on M̃(i). Clearly, Lemma 9 will be
proved if we check the validity of the following:

Assertion 1. For all i large, A2(i) and Ã2(i) can be joined by a curve
in Θ′(i) of ds2(i)-length less than a constant that does not depend either
on i or on τ .

To prove Assertion 1, let D(A2(i), 1) denote the intersection of the
closure of Θ′(i) with the ds2(i)-metric ball of radius 1 in M̃(i) centered
at A2(i). If for all i large Ã2(i) lies in D(A2(i), 1), then Assertion 1
follows. Therefore, we can assume that, after passing to a subsequence,
Ã2(i) /∈ D(A2(i), 1) for all i.
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Figure 6. Left: the disk Θ(i). Right: the domain H(i)
is the shaded area.

Next we check that there exist points x(i) ∈ D(A2(i), 1) such that the
Gaussian curvature of M̃(i) at x(i) blows up as i goes to ∞: this occurs
because otherwise, there would exist a radius c ∈ (0, 1) independent of i
such that a subdisk inside D(A2(i), 1) centered at A2(i) can be written
as a graph ∆(i) over a disk inside the tangent space at A2(i) of radius c.
As such a tangent space is arbitrarily close to horizontal when i is large
enough, we conclude that ∆(i) would divide the cylinder C(Γ′, ρ/2) in
two components, provided that ρ is chosen small enough. In particular,
∆(i) would cross the singular line Γ′, which contradicts the curvature
estimates in [5] for the surfaces M̃(i)∩C(Γ′, ρ/2). Hence, we find points
x(i) ∈ D(A2(i), 1) such that |K

M̃(i)
(x(i))| → ∞ as i → ∞.

Using similar arguments as in the proof of Lemma 5, we can de-
duce that there exist points y(i) in the intersection D(x(i), 1/2) of
Θ′(i) with the ds2(i)-disk of radius 1/2 centered at x(i), such that
|K

M̃(i)
(y(i))| → ∞ as i → ∞ and M̃ ′(i) =

√
K

M̃(i)
(y(i))

(
M̃(i) − y(i)

)
converges on compact subsets of R

3 to a vertical helicoid H that passes
through �0. As M̃(i) is a multivalued sublinear graph along a neighbor-
hood of c(i, ρ/2) ∪ c̃(i, ρ/2), the property that the Gauss curvature of
M̃(i) blows up at y(i) implies that y(i) can be supposed to lie in the
interior of Θ′(i) for all i. On the other hand, the smooth convergence of
M̃ ′(i) to H implies that for i large, the intersection of M̃ ′(i) with the
annular region {(x1, x2, x3) | k ≤ x2

1 + x2
2 ≤ k + 1, |x3| ≤ 1} (k > 0

large) consists of two multivalued sublinear graphs over their common
vertical projection, with almost vertical opposite Gauss maps. Coming
back to Θ′(i), this implies that there exists d(i) > 0 small such that
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if we write y(i) = (u(i), v(i)) (here |u(i)| < 1/2, |v(i)| < ε), then the
image set in R

3 of the square T (i) = [u(i) − d(i), u(i) + d(i)] × [v(i) −
d(i), v(i) + d(i)] ⊂ Θ′(i) is a minimal disk inside the closed horizon-
tal slab S(v(i) − 2d(i), v(i) + 2d(i)) and both strips [u(i) − d(i), u(i) −
d(i)
2 ]× [v(i)−d(i), v(i)+d(i)], [u(i)+ d(i)

2 , u(i)+d(i)]× [v(i)−d(i), v(i)+
d(i)] consist of almost horizontal multivalued sublinear graphs. Cold-
ing and Minicozzi’s paper [2] insures that for i sufficiently large, these
multivalued graphs can be extended until hitting the boundary curves
c(i, ρ/2), c̃(i, ρ/2) of Θ′(i), preserving the property of being almost hor-
izontal multivalued graphs. In summary, we have proven that all points
in the domain (see Figure 6 Right)

H(i) = D(A2(i), 1) ∪ D(x(i), 1/2) ∪
([−1/2, 1/2] × [v(i) − d(i), v(i) + d(i)]) ⊂ Θ′(i)

are at ds2(i)-distance from A2(i) less than some fixed positive number
that only depends on ρ (recall that ρ is independent of i and of τ , see
Remarks 3 and 4).
Note that ∂H(i) has points on both boundary curves c(i, ρ/2), c̃(i, ρ/2)

⊂ ∂Θ′(i). If Ã2(i) lies in ∂H(i) for all i large, then Assertion 1 holds.
Thus, we can suppose from now on that, after extracting a subsequence,
Ã2(i) /∈ ∂H1(i) for all i. Exchanging A2(i) by Ã2(i) and reasoning as
before, we produce a second domain H̃(i) ⊂ Θ′(i) all whose points
are at ds2(i)-distance from Ã2(i) less than some fixed positive number
that only depends on ρ, and such that ∂H̃(i) contains points on both
c(i, ρ/2), c̃(i, ρ/2). By the triangle inequality, if H(i) ∩ H̃(i) 
= ∅ for all
i large, then Assertion 1 holds. Therefore, we can assume, again passing
to a subsequence, that H(i) ∩ H̃(i) = ∅ for all i large.

Let z(i) ∈ c(i, ρ/2) be a point ds2(i)-equidistant from both H(i) and
H̃(i). Reasoning as above, we find a third domain H ′(i) ⊂ Θ′(i) at
ds2(i)-distance from z(i) less than some constant that only depends on
ρ, such that ∂H ′(i) contains points of c(i, ρ/2) and of c̃(i, ρ/2). If H ′(i)
has nonvoid intersection with H(i) for all i large, then z(i) is at uni-
form ds2(i)-distance from H(i) (i.e., this distance is less that some fixed
number independent of i, τ). By its ds2(i)-equidistance property, z(i)
must also be at uniform ds2(i)-distance from H̃(i), thus by the triangle
inequality H(i) and H̃(i) are also at uniform ds2(i)-distance, and As-
sertion 1 is also true. The same argument works if H ′(i)∩ H̃(i) 
= ∅ for
all i large. Thus we can assume, again after extracting a subsequence,
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that H ′(i) ∩ H(i) = ∅ and H ′(i) ∩ H̃(i) = ∅ for all i large. We will
finish the proof of Assertion 1 by showing that this last case leads to a
contradiction.

As both H ′(i) and Θ′(i) are connected domains and ∂H ′(i)∩c(i, ρ/2)

= ∅, ∂H ′(i) ∩ c̃(i, ρ/2) 
= ∅, we deduce that H ′(i) divides Θ′(i) into
several components, one of which contains H(i) and another one which
contains H̃(i). Since H(i), H̃(i), H ′(i) contain horizontal strips joining
c(i, ρ/2) with c̃(i, ρ/2) (for instance, [−1/2, 1/2] × [v(i) − d(i), v(i) +
d(i))] ⊂ H(i)), it follows that [−1/2, 1/2] × {ε} ⊂ hε(i) is contained in
the boundary of exactly one of the components of Θ′(i) − H ′(i) (which
we will refer as the upper component) and [−1/2, 1/2] × {−ε} ⊂ h−ε(i)
is contained in the remaining component of Θ′(i) − H ′(i) (this one will
be the lower component). Since the point A2(i) ∈ H(i) is strictly below
Ã2(i) ∈ H̃(i) in R

3, we have that H̃(i) must be contained in the upper
component of Θ′(i) − H ′(i) while H(i) lies inside the lower component
of Θ′(i) − H ′(i).

Consider the vertical segment A2, Ã2(i) ⊂ R
3. The intersections

Ξ(i) := A2, Ã2(i) ∩ c(i, ρ/2) and Ξ̃(i) := A2, Ã2(i) ∩ c̃(i, ρ/2)

consist of two finite subsets whose points are naturally ordered by
heights. With this order, the natural increasing parametrization in R

3 of
A2, Ã2(i) passes alternatively through points in Ξ(i) and in Ξ̃(i). In the
planar rectangle model of Θ′(i) as [−1/2, 1/2] × [−ε, ε], both Ξ(i) and
Ξ̃(i) are finite subsets each one inside one of the vertical boundary seg-
ments {−1/2}×[−ε, ε], {1/2}×[−ε, ε], respectively. As H ′(i) contains a
horizontal strip joining c(i, ρ/2) with c̃(i, ρ/2), it follows that Ξ(i)∩H ′(i)
is nonvoid for i large (in fact, the number of points of Ξ(i) ∩ H ′(i) in-
creases without bound as i → ∞ thanks to the multivalued graph inside
H ′(i)). Clearly, all points in Ξ(i) ∩ H ′(i) are strictly above A2(i) and
all points in Ξ̃(i)∩H ′(i) are strictly below Ã2(i). Thanks to the almost
horizontal multivalued graph inside H ′(i), we can insure that for any
two points a, b ∈ Ξ(i) ∩ H ′(i) with x3(a) < x3(b) there exists at least
one c ∈ Ξ̃(i)∩H ′(i) with x3(a) < x3(c) < x3(b). In particular, such c is
strictly below Ã2(i). Since the number of points in Ξ(i)∩H ′(i) goes to
∞ as i → ∞, we contradict that Ã2(i) was chosen as the point in Θ′(i)
directly above A2(i) in the fiber of A2 by the vertical projection π. This
contradiction finishes both the proof of Assertion 1 and of Lemma 9.

q.e.d.
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Finally, we define the desired embedded closed curve δ(τ, i) ⊂ M̃(i) by
joining the arcs α1(τ, i), L(τ, i), α2(τ, i), L̃(τ, i) by their common ends.
We also consider a coherent choice of orientations on each of these arcs,
so δ(τ, i) is globally oriented. To compute the flux of M̃(i) along δ(τ, i),
we just note that

Flux(M̃(i), δ(τ, i)) =
∫

L(τ,i)
η(i) ds +

∫
L̃(τ,i)

η(i) ds

+
∫

α1(τ,i)
η(i) ds +

∫
α2(τ,i)

η(i) ds,

where η(i) is the unit conormal to M̃(i) along the corresponding arc,
and ds stands for the length element. Each of the first two integrals
converges to (6τ − ρ, 0, 0) as i → ∞ (use that the disks D(i), D̃(i)
converge smoothly as i → ∞ to the flat disk F defined in Equation (2)),
while the third and fourth integrals can be bounded in length by the
lengths of α1(τ, i) and α2(τ, i), which are bounded independently of i
and τ . Now the decomposition (1) holds and the proof of Theorem 5 is
complete provided that Lemma 8 is true. q.e.d.

It remains to prove Lemma 8 to complete this section.

Proof of Lemma 8. Recall that the surface M̃(i) is obtained from
M(i) by a translation of vector p(i) ∈ M(i) followed by a rotation
around the x3-axis by angle θ(i) ∈ [0, 2π) and a homothety by a scalar
factor µ(τ, i) ∈ R

+, M̃(i) = µ(τ, i)Rotθ(i)(M(i) − p(i)). Furthermore,
the surfaces M ′(i) = λ(i)(M(i) − p(i)) converge smoothly as i → ∞ to
a vertical helicoid, where λ(i) =

√
|KM(i)(p(i))| = µ(τ,i)

6τ ‖q′(i)‖ → ∞
and q′(i) ∈ M ′(i) ∩ {x3 = 0} is a point different from the origin �0
such that the tangent plane to M ′(i) at q′(i) is vertical, see the ar-
guments just before Remark 1. This property and the convergence
of the M ′(i) to a vertical helicoid imply that ‖q′(i)‖ → ∞ and since
M̃(i) = 6τ

‖q′(i)‖Rotθ(i)M
′(i), we deduce that in any small neighborhood

of �0, the surface M̃(i) has the appearance of a highly sheeted homothet-
ically shrunk vertical helicoid. Also recall from Proposition 1 that there
exists ε > 0 such that every component of the intersection of M̃(i) with
the ball B(�0, ε) of radius ε centered at the origin is a disk for i large. In
this situation Colding and Minicozzi prove that, in a ball B = B(�0, ε′)
of smaller radius ε′ ∈ (0, ε), a subsequence of the disks in M̃(i) ∩ B
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converges to a minimal lamination L̃B with singular set of convergence
S(L̃B) that contains �0, such that L̃B contains a disk leaf D with �0 ∈ D

and with horizontal tangent plane at �0. Furthermore, ε′ can be chosen
small enough so that D∩S(L̃B) = {�0}. The 1-sided curvature estimate
by Colding-Minicozzi implies that in a small neighborhood of D − {�0},
these disks converge to a sublamination of L̃′

B ⊂ L̃B with empty singular
set of convergence, such that D − {�0} is a limit leaf of L̃′

B.
We now check that there exists δ = δ(τ) > 0 such that µ(τ, i) > δ for

all i ∈ N. Reasoning by contradiction, suppose that limi→∞ µ(τ, i) = 0.
Since the vertical fluxes of the surfaces M(i) are normalized to (0, 0, 1),
we conclude that the vertical fluxes of the M̃(i) converge to zero as
i → ∞. This fact and the convergence of portions of M̃(i) ∩ B to
D − {�0} ∈ L̃′

B imply that D − {�0} cannot contain points with nonhor-
izontal tangent plane. Hence, D is the horizontal disk B ∩ {x3 = 0}
and similarly all the leaves in L̃′

B are pieces of horizontal planes as well.
With this result in mind and using that {M̃(i) ∩ S(−ε, ε)}i is simply
connected in balls of radius 1 by Proposition 1, the proof of the Colding-
Minicozzi limit foliation theorem for planar domains (Theorem 3) can
be adapted to show that {M̃(i)∩S(−ε, ε)}i converges to the foliation Lε

of S(−ε, ε) by horizontal planes, with singular set of convergence S(Lε)
consisting of Lipschitz curves transverse to the planes, which by Meeks’
regularity theorem [17] consist of vertical line segments from height −ε

to ε. Note that one of these line segments passes through �0 and another
one passes through the point q̃ = (0, 6τ, 0) where M̃(i) has a vertical
tangent plane. In fact, the singular set of convergence of Lε reduces
to these two line segments, because otherwise one could construct two
simple closed curves on M̃(i) which intersect transversely at a single
point, which would contradict that M̃(i) is a planar domain (see the
proof of Lemma 1 in [19] or the proof of Theorem 3 by Colding and
Minicozzi). Now one can argue as in the proof of Theorem 5 to produce
an embedded closed curve δ(τ, i) ⊂ M̃(i) where the flux diverges hori-
zontally to infinity, which is impossible. This contradiction proves that
there exists δ > 0 such that µ(τ, i) > δ for all i ∈ N.

Assertion 2. The sequence {M̃(i)}i is ULSC.

We will prove Assertion 2 by contradiction. Suppose that {M̃(i)}i is
not ULSC, and we will carry out a modification of this sequence which
will produce a ULSC sequence of minimal surfaces M(i) ⊂ R

3. For
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each i define the function ri : R
3 → R

+ that assigns to each p ∈ R
3 the

radius of the largest open ball B(p, ri(p)) such that every component of
M̃(i)∩B(p, ri(p)) is simply connected but M̃(i)∩B(p, ri(p)) contains a
nonsimply connected component; here B(p, ri(p)) is the corresponding
closed ball. It follows from the convex hull property for compact minimal
surfaces that there exists a homotopically nontrivial simple closed curve
γi(p) in M̃(i) whose image lies in B(p, ri(p)).

Since the sequence M̃(i) is not ULSC, after choosing a subsequence,
there exist points q(i) ∈ R

3 such that ri(q(i)) → 0 as i → ∞. Let p̃(i) be
a point in B(q(i), 1) where the function p → 1−‖p−q(i)‖

ri(p) = d(p)
ri(p) , d being

the extrinsic distance to ∂B(q(i), 1), has a maximum value µ(i) > 0
(in particular, limi→∞ µ(i) = ∞ since d(q(i))

ri(q(i))
= 1

ri(q(i))
→ ∞ as i →

∞). Thus, we obtain a new normalized sequence of properly embedded
minimal surfaces in R

3,

M(i) =
1

ri(p̃(i))
(M̃(i) − p̃(i)).

Next we show that this new sequence {M(i)}i is ULSC. Given x ∈ R
3

and R > 0, the intersection of M(i) with the ball B(x, R) centered at x

with radius R is the rescaled image of the intersection of M̃(i) with the
ball B(xi, R · ri(p̃(i))), where xi = p̃(i)+ ri(p̃(i))x. Hence, to prove that
{M(i)}i is ULSC it suffices to show that there exists R > 0 depending
only on x such that all the components of M̃(i) ∩ B(xi, R · ri(p̃(i)))
are simply connected for all i large. To see this last property, one first
checks that xi ∈ B(q(i), 1) for all i large enough since

‖xi − q(i)‖ ≤ ri(p̃(i))‖x‖ + ‖p̃(i) − q(i)‖
< 1 + ri(p̃(i)) (‖x‖ − µ(i)) < 1,

where the last inequality uses that µ(i) → ∞ as i → ∞. Secondly, the
definition of xi and the triangle inequality imply that

1 − ‖xi − q(i)‖
1 − ‖p̃(i) − q(i)‖ ≥ 1 − ‖p̃(i) − q(i)‖ − ri(p̃(i))‖x‖

1 − ‖p̃(i) − q(i)‖ = 1 − ‖x‖
µ(i)

,(3)

which is greater than or equal to 1
2 for all i large enough, and finally

comparing the value of d
ri

at xi ∈ B(q(i), 1) with its maximum attained
at p̃(i) it follows that

ri(p̃(i)) ≤ 1 − ‖p̃(i) − q(i)‖
1 − ‖xi − q(i)‖ ri(xi) ≤ 2ri(xi),
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where we have used (3) in the last inequality. Therefore for any 0 <
R < 1

2 , the strict inclusion B(xi, R · ri(p̃(i))) ⊂ B(xi, ri(xi)) holds. By
definition of ri and by the convex hull property for compact minimal
surfaces, it follows that all the components of M̃(i) ∩ B(xi, R · ri(p̃(i)))
are simply connected for all i large. This proves {M(i)}i is ULSC.

On the other hand, by construction M(i) contains a homotopically
nontrivial simple closed curve γi = 1

ri(p̃(i))(γi(p̃(i)) − p̃(i)) with γi ⊂
B(�0, 1). The existence of γi implies that there is some ε > 0 and a
point p(i) ∈ M(i) ∩ B(�0, 2) with |KM(i)|(p(i)) ≥ ε.

Next suppose that {M(i)}i has locally bounded Gaussian curvature
in R

3 and we will find a contradiction. Lemma 2 implies that, after
choosing a subsequence, we have that {M(i)}i converges to a C1,α min-
imal lamination L of R

3 (here 0 < α < 1). By the proved inequality
|KM(i)|(p(i)) ≥ ε > 0, L must contain at least one leaf L which is not
flat. Now Theorem 1.6 in [26] gives the following description of this
limit leaf L:

• L is properly embedded in R
3, in a halfspace of R

3 or in a slab in
R

3.
• if L has finite topology, then L is properly embedded in R

3.
• If L is the only leaf in L, then L is properly embedded in R

3.
Since L is orientable (because L separates the simply connected region
W ⊂ R

3 in which L is properly embedded) and it is not a plane, it fol-
lows that L is not stable (do Carmo and Peng [9], Fischer-Colbrie and
Schoen [11]), which implies that the convergence of the M(i) to L in
W is of multiplicity 1. A standard curve lifting argument then implies
that L is a planar domain. Suppose that L is properly embedded in R

3.
Since {M(i)}i converges smoothly to L with multiplicity 1 in R

3 and
M(i)∩B(�0, 2) is not simply connected, we deduce that L is not simply
connected. Since L is a planar domain, L must have more than one
end, which implies that L contains a closed curve with nonzero finite
flux. This is impossible, since L is obtained as a limit of a sequence
of rescalings of the original surfaces M(i) by unbounded scaling factors
µ(τ,i)

ri(p̃(i)) > δ
ri(p̃(i)) (see our earlier proof of Lemma 5 for a similar argu-

ment). Hence we deduce that L is not properly embedded in R
3. By the

above description, L is not the only leaf in L, it is properly embedded
in a region W which is a halfspace or a slab, and L has infinite topology
(thus it has an infinite number of ends). The proof of the Ordering
Theorem in [12] (or see the proof of Theorem 7 in Section 4) implies
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the existence of an end Σ of a plane or catenoid in the complement of L
respect to W , such that Σ “separates” two ends of L. By the maximum
principle at infinity, Σ stays at positive distance from L. It follows that
there exists a plane Π ⊂ W which intersects L transversely and Π ∩ L
contains a simple closed curve γL along which L has nonzero flux, which
we have already seen that is impossible. This contradiction proves that
the sequence {M(i)}i does not have locally bounded Gaussian curvature
in R

3.
Using that {M(i)}i is ULSC without locally bounded curvature in

R
3 and that M(i) ∩ B(�0, 2) contains a homotopically nontrivial sim-

ple closed curve, Theorem 3 gives that up to a subsequence, {M(i)}i

converges to a foliation L of R
3 by parallel planes, with singular set of

convergence S(L) consisting of two Lipschitz curves. By Meeks’ regu-
larity theorem [17], these singular curves are straight lines orthogonal
to the planes in L. By Lemma 5, at points near the straight lines in
S(L) the approximating surfaces M(i) contain small disks which closely
approximate highly sheeted homothetically shrunk vertical helicoids,
which implies by the unique extension of multigraphs result of [5] that
the planes in L are horizontal. As we have already seen in our earlier
arguments following the statement of Lemma 8, this situation allows to
define a simple closed curve in M(i) where the horizontal part of the
flux divided by the vertical component of the flux tends to infinity as
i → ∞, which contradicts that the original surfaces M(i) have vertical
flux 1 and bounded horizontal flux. This contradiction finishes the proof
of Assertion 2.

We now complete the proof of the lemma. Note that the Gaussian
curvature of the surfaces M̃(i) blows up at the origin (otherwise a sub-
sequence of the M̃(i) would converge to a vertical plane or to a vertical
helicoid, contradicting the horizontality of the Gauss map of M̃(i) at q̃).
By Theorem 3, a subsequence of the M̃(i) converges to a minimal folia-
tion L of R

3 by planes with singular set of convergence S(L) consisting
of one or two Lipschitz curves. Since the helicoid which is forming at
the origin at a smaller scale is vertical, it follows that L is the foliation
of R

3 by horizontal planes. Since the tangent space to M̃(i) at q̃ is ver-
tical for all i, we deduce that q̃ ∈ S(L). Meeks’ regularity theorem [17]
implies that S(L) = Γ ∪ Γ′ with Γ being the x3-axis and Γ′ the vertical
line passing through q̃. This completes the proof of the lemma. q.e.d.
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4. Applications

In this section we will make a number of applications of the curvature
estimates, Theorem 5, that we obtained for the two limit end minimal
surfaces of genus zero in M. We first prove Theorem 1 stated in the
Introduction.

Proof. Statements 1), 2), 3) of Theorem 1 hold by Lemma 1. It fol-
lows from statements 1), 2), 3) that for some a, b ∈ R the horizontal
slab S(a, b) intersects M in a connected domain bounded by two sim-
ple closed curves and all horizontal planes outside S(a, b) intersect M
transversely in connected level sets. By the proof of curvature estimates
in Section 3, each of the components of M − S(a, b) have bounded cur-
vature and the asymptotic value of the maximum of this curvature is
given by the same curvature estimates that one obtains in Theorem 5.
Since the curvature of M ∩ S(a, b) is asymptotic to zero, the curvature
of this portion of M is also bounded. This proves statement 4) holds.

The direct argument of the existence of a regular neighborhood given
in [23] proves that the spacing between consecutive ends of M is
bounded from below by a constant that only depends on the curvature
estimates. More generally, the results in [24] imply that the spacing
S(n) is at least equal to 2

√
C where C is the supremum of the Gaussian

curvature on M .
We now prove that M is quasiperiodic. We first check that for n

large and for any two consecutive ends en, en+1, asymptotic to planes
Pn and Pn+1, there is a point on M between Pn and Pn+1 where the
tangent plane is vertical. By statement 3), the intersection of the slab
S(x3(Pn), x3(Pn+1)) with M is an annulus A(n) with two proper arcs on
its boundary. Since M separates R

3, the asymptotic values of the Gauss
map on the boundary component of A(n) are the north and south poles
of S

2. By continuity, there is a point p(n) ∈ A(n) where the tangent
plane is vertical.

Next note that for ε fixed and sufficiently small, for all n large there
must exist a point q(n) in the extrinsic ball B(p(n), 2) with |KM (q(n))|>
ε. If not, then we could find a subsequence of the p(n) such that would
have sup |KM∩B(p(n),2)| < 1

n and so under translation of M ∩B(p(n), 2)
by −p(n) we obtain a limit component which is a flat vertical disk of
radius 2. This implies that the length of the vertical flux of M is at
least 2 but by assumption it is 1.
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Now consider the translated surfaces M(n) = M − q(n). By [23] the
M(n) have local area estimates (coming from the existence of a reg-
ular neighborhood of M with fixed radius, see the proof of the lower
bound for the spacing between the ends) and bounded absolute curva-
ture which is at least ε at �0. It follows from the arguments in [26] that
a subsequence of the M(n) converges with multiplicity 1 to a connected
nonflat properly embedded minimal surface M(∞) of genus zero, with
length of its vertical flux at most 1. Moreover, the Gauss map of M(∞)
omits the vertical directions — by statement 3) and by the open map-
ping property for the Gauss map of minimal surfaces. Since the flux of
M(∞) is finite, M(∞) is not a helicoid and so by [26] it is not simply
connected. Since M(∞) is not simply connected and has genus zero, it
has at least two ends. In particular, it must have a planar or a catenoid
type end and since the Gauss map of M(∞) misses the vertical direc-
tions, this planar or catenoid type end must be horizontal. Thus, M(∞)
has a horizontal limit tangent plane at infinity.

If M(∞) has a finite number of ends or one limit end, then it has
a top or bottom end which is asymptotic to a catenoid. Hence, there
is a horizontal plane that intersects M(∞) transversely with a com-
ponent which is a strictly convex Jordan curve. But since the M(n)
converge smoothly to M(∞), some horizontal plane Q(n) intersects M
in a component which is also a compact convex curve. As each closed
curve in M(∞) is homologous to a finite sum of cycles around finite
total curvature ends, we deduce that the flux of M(∞) along any closed
curve is vertical, and therefore the same holds to the portion of M be-
tween planes Q(n), Q(m) with n, m large. Since for n large Q(n)∩M is
connected, one can apply a variant of the original López-Ros argument
[15, 28] (see also the proof of Theorem 6 below) to obtain a contra-
diction. Hence, M(∞) has two limit ends, genus zero and horizontal
limit tangent plane at infinity. If the spacing between the ends of M
is unbounded, then a variation of the quasiperiodic proof of M would
yield a catenoid limit rather than a limit surface with two limit ends,
where a similar flux argument leads to a contradiction. This completes
the proof of Theorem 1. q.e.d.

Next we generalize a result in [28] for periodic minimal surfaces of
genus zero and two limit ends to the quasiperiodic setting given by
Theorem 1.
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Theorem 6. If M is a properly embedded minimal surface in R
3 with

finite genus, two limit ends and horizontal limit tangent plane, then M
has nonzero horizontal flux on any compact horizontal section.

Proof. By the proof of Theorem 1, after taking limits by a sequence
of translations of M we obtain a limit which has genus zero, two limit
ends, horizontal limit tangent plane at infinity and the same flux as the
original surface. So, assume that M has genus zero.

Suppose to the contrary that M has vertical flux and we will derive
a contradiction. The main tool used here is a variant of the López-Ros
deformation for minimal surfaces with vertical flux. Basically, one takes
the Weierstrass data g, η where g is the meromorphic Gauss map of M
and η is the holomorphic form 1

g (dx3 + idx∗
3). Define new Weierstrass

data gt = t · g and ηt = 1
t · η where t > 0. The vertical flux assumption

shows that the immersion ft : M → R
3 associated to these Weierstrass

data exists on M . Clearly f1(M) = M (up to a translation). It is not
difficult to prove, using that the middle ends of M are planar, that for
t large ft is not an embedding, see [28]. Let t0 ∈ [1,∞) be the largest
t, 1 ≤ t ≤ t0 such that ft is injective. Since limits of embedded minimal
surfaces are embedded, it is straightforward to prove t0 exists. Thus,
the goal is to prove that if ft is injective, then for nearby parameter
values t′, ft′ is also injective which contradicts the existence of t0.

Since during the López-Ros deformation, the heights of the planar
ends are constant, the openness property of the injective parameter
values holds easily when M satisfies our hypotheses and is periodic. It
is clear that in the quasiperiodic setting of Theorem 1, it suffices to show
that we can preserve the embeddedness property of ft(M) for t close to
1 (we could take M in this case to be ft0(M), which also satisfies the
description in Theorem 1).

As M is quasiperiodic, there exists a sequence of points pn ∈ M with
x3(pn) → ∞ and a number ε > 0 such that if we denote an = x3(pn),
then M(an) = S(an − ε, an + ε)∩M is a compact annulus (here S(a, b)
is the closure of the open slab S(a, b)), and the translated surfaces
M̃(an) = M(an)− pn converge smoothly to a compact embedded annu-
lus A passing through the origin. Similarly, we obtain points qn ∈ M
with bn = x3(qn) → −∞, compact annuli M(bn) = S(bn−ε, bn +ε)∩M

and a limit of M̃(bn) = M(bn) − qn to a compact embedded minimal
annulus B. Since A and B are compact and embedded, ft|A and ft|B
are also embedded for t close to 1. Since the M̃(an) converge smoothly
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to A and the M̃(bn) converge smoothly to B as n → ∞, it follows that
ft|M̃(an)

and ft|M̃(bn)
are embeddings for t very close to 1 and n ≥ N0

large. Hence there exists δ > 0 such that ft|M(an)∪M(bn) is injective, for
all t ∈ [1, 1 + δ] and n ≥ N0.

Now suppose that ft′ is not injective for some t′ ∈ [1, 1 + δ] and we
will derive the desired contradiction. Let x, y ∈ M be distinct points
with p = ft′(x) = ft′(y). Then p ∈ S(bn, an) ∩ M = M(∗) for some
fixed large n, and so ft′ |M(∗) is not injective. Note that for arbitrary
t ∈ [1, 1 + δ], ft is injective on ∂M(∗) and injective outside some large
compact set. Since ft|M(∗) is continuous in the t parameter, then there
is a first t′′ ∈ [1, t′] such that ft′′ |M(∗) is not an embedding. But since
ft′′ |∂M(∗) is injective, the usual maximum principle for minimal surfaces
gives a contradiction. This proves the theorem. q.e.d.

It follows from the results in [26] that a complete connected embedded
minimal surface M in R

3 which has bounded curvature in balls, called
a surface of locally bounded Gaussian curvature, is either proper in R

3,
proper in an open halfspace H (with limit set the boundary plane of
H) or proper in an open slab S (with limit set the boundary planes
of S). Moreover if M ⊂ H, P is a plane in H and S(P, H) is the
slab of R

3 bounded by P ∪ ∂H, then S(P, H) ∩ M is connected. If
M ⊂ S, then either halfspace determined by a plane P ⊂ S intersects
M in a connected set. Also Meeks and Rosenberg [26], using the 1-
sided curvature estimate of Colding-Minicozzi, proved that any complete
connected embedded minimal surface M ⊂ R

3 with finite topology and
locally bounded Gaussian curvature must be proper. We now generalize
this result.

Theorem 7. If M is a complete connected embedded minimal surface
in R

3 with finite genus and locally bounded Gaussian curvature, then M
is properly embedded in R

3.

Proof. Since the theorem is true for M with finite topology (Lemma
1.5 in [26]), we will assume that M has an infinite number of ends.
Since M is properly embedded in a region W , where we may assume
that W = {x3 > 0} or W = {0 < x3 < 1}, the standard minimization
procedure of using M as barrier against itself implies that there exist
stable complete minimal surfaces in W with compact boundary which
“separate” any two ends of M . Following the work in [12], one can show
that there is a linear ordering on the ends of M by their relative heights
over the (x1, x2)-plane. The results in [8] imply that the middle ends
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of M are simple ends contained between minimal graphs over annular
domains in R

2 and so, such middle ends are planar or catenoidal type.
If there is a catenoidal middle end of M , then the maximum principle

at infinity implies W −M contains an end C of a real catenoid. In this
case W must be a halfspace. Next we check that there can only be a
finite number of annular ends of M above C. Note that each middle
end of M above C has logarithmic growth at least as great as C. Since
the planar disk D bounding the circle boundary of C intersects M in a
compact set, it follows that the number of middle ends above C times
the flux of C cannot be greater than the finite length of D ∩ M ; here
we are using the fact that M is proper in the domain above C ∪D and
that the harmonic function x3 on this part of M is proper. It follows in
this case that M has exactly one limit end. Using the locally bounded
curvature property and Lemma 1.1 in [26], this limit end has limit set
the (x1, x2)-plane.

Assume that some middle end of M is planar (say at height t0 > 0),
and we will derive a contradiction. Note that in this case, all of the
middle ends of M below height t0 are also planar. If there are only a
finite number of middle ends below height t0, then the proof of the finite
topology case considered in [26] applies to give a contradiction. So, in
this case the bottom end of M is a limit end. However, the property that
the portion of M below any horizontal plane is connected (Lemma 1.3
in [26]) implies in the case of finite genus that for t0 sufficiently small,
every plane x−1

3 (t), 0 < t < t0, intersects M transversely in a connected
component. The proof of the curvature estimates given in Theorem 5
now applies to prove that M ∩ {0 < x3 < t0} has bounded curvature
from which we obtain, as in [26], a contradiction.

So far we have shown that if M is not properly embedded in R
3,

then it is properly embedded in W = {x3 > 0}, it has one limit end
which is its bottom end and all of the other ends are of catenoid type.
Since M has finite genus, there exists an ε > 0 such that every simple
closed curve in M2ε = M ∩ (R2 × (0, 2ε]) separates M . As discussed
before the statement of the theorem, M2ε is connected and, for a generic
choice of ε, it has smooth boundary. If M2ε has bounded curvature,
then each tangent plane to M2ε is arbitrarily close to horizontal, and so
each component Ω of M2ε submerses to R

2 × {0} under the orthogonal
projection. But Ω is properly embedded in R

2 × (0, 2ε] so it separates
this region. Hence, the orthogonal projection from Ω to R

2 × {0} is
one-to-one, thus Ω is a graph. This implies Ω is properly embedded in
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R
2×[0, 2ε] and the proof of the Halfspace Theorem gives a contradiction.

This shows that M2ε does not have bounded curvature for any ε > 0.
Hence, there exists points p(n) ∈ M1/n = M ∩ (R2 × (0, 1

n ]) such that
the absolute Gaussian curvature |K| of M satisfies |K(p(n))| ≥ n.

Consider the sequence of horizontally translated surfaces M(n) =
M−p(n), where p(n) is the orthogonal projection of p(n) to the (x1, x2)-
plane. We claim that the sequence {M(n)}n is not locally simply con-
nected in any neighborhood of the origin. Reasoning by contradiction,
suppose that for some ball B centered at the origin, a subsequence
M(ni) ∩ B consists only of simply connected components. Then, the
locally bounded curvature assumption for M implies that every com-
ponent of M(ni) ∩ B is compact. In this case, let C(ni) be the disk
component containing the point q(ni) = p(ni) − p(ni). Since the q(ni)
converge to �0 and the ∂C(ni) lie in the upper half sphere of ∂B, we
obtain a contradiction to the 1-sided curvature estimate in [5]. Thus,
the sequence M(n) is not locally simply connected in any neighborhood
of the origin.

Now apply the blow-up of M(n) ∩ B(ε) described in the proof of
Lemma 8. Here, B(ε) is the ball of radius ε centered at the ori-
gin. In other words, consider the new normalized sequence M(n) =

1
rn(q(n))(M(n)− q(n)), where q(n) is a point of B(ε) where the function

p → ε−‖p‖
rn(p) has its maximum value, rn(p) being the radius of the largest

open ball centered at p which intersects M(n) in simply connected com-
ponents. It follows that M(n) is a ULSC sequence of minimal surfaces in
R

3. Now we have two possibilities, depending on whether the sequence
{M(n)}n has locally bounded Gaussian curvature in R

3 or not.
First assume that the Gaussian curvature of {M(n)}n is not locally

bounded in R
3. Note that for n large, any simple closed curve in M(n)

comes from rescaling of a simple closed curve in M(n) ∩ B(ε), hence
it must separate this surface. By Theorem 3, a subsequence of the
M(n) (denoted in the same way) converges to a foliation L of R

3 by
parallel planes with singular set of convergence S(L) being exactly two
Lipschitz curves. By Meeks’ regularity theorem, such Lipschitz curves
are in fact straight lines orthogonal to the planes in L. From the proof of
Theorem 5, we can construct a simple closed curve δ(n) ⊂ M(n) which
separates M(n) into two noncompact components, such that δ(n) is
arbitrarily close to a doubly covered straight line segment l contained
in one of the planes of L, l joining orthogonally the two straight lines in
S(L). Furthermore, the flux of M(n) along δ(n) converges to a vector of
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length 2l contained in one of the planes in L. On the other hand, since
M(n) has just one limit end and its limit tangent plane is horizontal,
δ(n) is the boundary of a subdomain Σ(n) ⊂ M(n) with a finite number
of vertical catenoidal ends with positive logarithmic growth. Hence, δ(n)
has vertical flux. By the maximum principle, x3|Σ(n) has its minimum
value at some point of δ(n). Since Σ(n) has points at any fixed positive
distance from the convex hull of δ(n) and at such points it has uniformly
bounded curvature, the limit set of Σ(n) as n → ∞ must contain the
end of one of the planes in L. If this plane were not horizontal, then we
would contradict that x3|Σ(n) is bounded from below by min

(
x3|δ(n)

)
.

This shows that the planes in L are horizontal, which in turn implies
that the flux of M(n) along δ(n) converges to a nonzero finite horizontal
vector, which contradicts that such a flux is vertical.

Secondly assume that the Gaussian curvature of {M(n)}n is locally
bounded in R

3. Then Lemma 2 implies that after passing to a subse-
quence, the M(n) converge to a C1,α minimal lamination L of R

3. As
in the proof of Lemma 8, there is some leaf L of L which is not flat and
not simply connected. Further, L is a planar domain and the portions
of M(n) which converge to L, converge with multiplicity 1. Since L is
a smooth limit of surfaces with vertical flux, then L has vertical flux.
We will finish the proof of the theorem by discarding all possible limit
surfaces L as above.

Suppose that L is properly embedded in R
3. Since L is a nonsimply

connected planar domain, it must have more than one end. Hence, L
has a well-defined limit tangent plane at infinity which we denote by
Π. If L has two limit ends, then Lemma 1 insures that there exists a
plane parallel to Π which intersects L in a simple closed curve δ. As
above, there exist simple closed curves δ(n) ⊂ M(n) arbitrarily close
to δ, and each δ(n) bounds a subdomain Ω(n) ⊂ M(n) with a finite
number of vertical catenoidal ends. Arguing as before, one concludes
that Π is horizontal, which is a contradiction with Theorem 6 since
L has vertical flux. Therefore, L cannot have two limit ends and so,
it must have some vertical top or bottom catenoid type end. Thus,
there exists a horizontal plane P whose intersection with L contains a
convex curve γ and the open planar disk in P bounded by γ is disjoint
from L. It follows that there exists a sequence of horizontal planes
P (n) ⊂ R

2 × (0, ε) whose heights converge to zero as n → ∞, such that
P (n) ∩ M contains a component γ(n) which is a simple closed convex
curve and the open planar disk D(n) that γ(n) bounds is disjoint from
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M . Further, the lengths of γ(n) tend to zero as n → ∞. Let Ω(n) ⊂ M
be the component of M − γ(n) with a finite number of ends. If Ω(n)
is an annulus, then Ω(n) must be a representative of the top end of M
(this is true because M − Ω(n) clearly lies below the topological plane
Ω(n)∪D(n)). Since the lengths of γ(n) converge to zero as n → ∞ and
the flux of the top end of M is fixed, we may assume that Ω(n) is never
an annulus. Notice also that, after choosing a subsequence, the flux of
γ(n) is strictly monotonically decreasing to zero, as well as its height.
Thus, for all n large enough the domains Ω(n) are pairwise disjoint.
Since the genus of M is finite, there exists a Ω(n) which is a planar
domain and has more than one end. Then, the López-Ros deformation
argument applied to this Ω(n) gives a contradiction (see Theorem 2
in [28]). This contradiction shows that L cannot be properly embedded
in R

3.
Since L is not properly embedded in R

3 and it is a leaf of a minimal
lamination of R

3, L must be properly embedded in a halfspace of in a
slab. In fact, our arguments at the beginning of the proof imply that
L is a connected minimal surface of genus zero and one limit end that
embeds properly in a halfspace, which is horizontal since L has vertical
flux. It follows that L has a top or bottom catenoid type end and so,
there exists a horizontal plane that intersects L in a convex curve which
bounds an open convex planar disk which is disjoint from L. Arguing
now as in the previous paragraph where L was assumed to be proper in
R

3, we obtain a contradiction. The theorem now follows. q.e.d.

Since a leaf of a minimal lamination of R
3 has locally bounded cur-

vature, we obtain the following Corollary.

Corollary 1. If L is a minimal lamination of R
3 with more than one

leaf, then every nonplanar leaf of L has infinite genus.

We now prove Theorem 2 in Section 2.

Proof of Theorem 2. Suppose M is a properly embedded minimal
surface in R

3 with finite genus and horizontal limit tangent plane at
infinity. Assume also that M has exactly one limit end e∞, which is
its top end. Then the bottom end is annular and so, by Collin [7] it is
asymptotic to an end of a horizontal plane or to an end of a catenoid.
If the bottom end were planar or catenoidal type with positive loga-
rithmic growth, then M would lie in a halfspace, which is impossible
by the Halfspace Theorem [13]. So the bottom end of M is a catenoid
end of negative logarithmic growth λ1. It is clear from the Ordering
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Theorem [12] that λn ≤ λn+1 for all n. From flux considerations (see
for example the proof of Theorem 7), every λn is nonpositive. There-
fore, if some λn = 0 then en would be planar as would all ends above
it. A slight variant of the proof of statement 3) in Theorem 1 shows
that there is a halfspace of the form {x3 ≥ c}, c ∈ R, such that every
plane in this halfspace intersects M in a connected component which
is a proper arc at the heights of ends and otherwise is a simple closed
curve. Using the fact that M has finite vertical flux, then the proof of
Theorem 1 implies that under some divergent sequence of translations
by −q(n), the surfaces M(n) = M − q(n) converge with multiplicity 1
to a properly embedded minimal surface M(∞) with genus zero, two
limit ends and horizontal limit tangent plane at infinity. Furthermore,
the flux vector of M(∞) is vertical since this is the case for the M(n).
But by Theorem 6, M(∞) cannot have vertical flux, which proves the
theorem. q.e.d.

Finally, we prove Theorem 4 stated in Section 2.

Proof of Theorem 4. It is clear from the proof of curvature estimates
in Section 3 and other theorems in this section that the normalized
blow-up M̃ is a properly embedded minimal surface in R

3 of bounded
curvature and finite genus. If M̃ has one end, then, by the results in
[26], M̃ has a helicoidal end. In this case one can clearly take a new
normalized blow-up sequence which has the helicoid as a limit, and
statement 1) holds.

If M̃ has a finite number of ends greater than one, then M̃ has finite
total curvature by Collin’s Theorem [7]. If the number of ends of M̃ is
infinite, then it has one or two limit ends [8]. The one limit end case
is stated as statement 3) in our Theorem 4. Finally if M̃ has two limit
ends, then the proof of the quasiperiodic property in Theorem 1 makes
it clear that there is a new normalized blow-up with genus zero and two
limit ends. This completes the proof of Theorem 4. q.e.d.
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[20] W.H. Meeks III, J. Pérez & A. Ros, The geometry of minimal surfaces of finite
genus IV; Jacobi fields and uniqueness for small flux, work in progress.
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