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THE GEOMETRY OF MULTIVARIATE POLYNOMIAL DIVISION

AND ELIMINATION ∗

KIM BATSELIER†, PHILIPPE DREESEN†, AND BART DE MOOR †

Abstract. Multivariate polynomials are usually discussed in the framework of algebraic geome-
try. Solving problems in algebraic geometry usually involves the use of a Gröbner basis. This article
shows that linear algebra without any Gröbner basis computation suffices to solve basic problems
from algebraic geometry by describing three operations: multiplication, division and elimination.
This linear algebra framework will also allow us to give a geometric interpretation. Multivariate
division will involve oblique projections and a link between elimination and principal angles between
subspaces (CS decomposition) is revealed. The main computational tool in this approach is the QR
decomposition.

Key words. multivariate polynomial division, oblique projection, multivariate polynomial elim-
ination, QR decomposition, CS decomposition, sparse matrices, principal angles

AMS subject classifications. 15A03,15B05,15A18,15A23

1. Introduction. Traditionally, multivariate polynomials are discussed in terms
of algebraic geometry. A major computational advance was made with the discov-
ery of the Gröbner basis and an algorithm to compute them by Buchberger in the
1960’s [8]. This has sparked a whole new line of research and algorithms in computer
algebra. Applications of multivariate polynomials are found in robotics [13], compu-
tational biology [31], statistics [15], signal processing and systems theory [7, 9, 10, 16].
In these applications, Gröbner bases are the main computational tool and most meth-
ods to compute these are symbolic. The aim of this article is to explore the natural
link between multivariate polynomials and numerical linear algebra. The goal is in
fact to show that basic knowledge of linear algebra enables one to understand the
basics of algebraic geometry and already solve problems without the computation
of any Gröbner basis. The main motivation to use numerical linear algebra is the
existence a well-established body of numerically stable methods. It is also a natu-
ral framework in which computations on polynomials with inexact coefficients can
be described. In this article we discuss multivariate polynomial multiplication, divi-
sion and elimination from this numerical linear algebra point of view. An interesting
result of this approach is that it becomes possible to interpret algebraic operations
such as multivariate polynomial division and elimination geometrically. Furthermore,
these geometrical interpretations do not change when the degree of the polynomials
changes or a different monomial ordering is chosen. Applications are not limited to
divisions and elimination. Several other problems which are traditionally discussed
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in algebraic geometry such as the ideal membership problem and finding the roots of
a multivariate polynomial system [12, 13] can also be viewed from this point of view.
For example, Stetter [33, 34] demonstrated the link between solving multivariate poly-
nomial systems and eigenvalue problems but still relies however on the computation of
a Gröbner basis. Another problem which has already received a lot of attention from
a numerical linear algebra point of view is the computation of the greatest common
divisor of two polynomials with inexact coefficients [6, 11, 17, 44]. We now briefly
discuss the main two algebraic operations that will be the focus of this article.

Multivariate polynomial division is the essential operation for computing the
Gröbner bases of a multivariate polynomial system. A significant step in showing
the link between multivariate polynomial division and linear algebra was the develop-
ment of the F4 algorithm due to Faugère [18]. This method computes a Gröbner basis
by means of Gaussian elimination. The method itself however ‘emulates’ polynomial
division in the sense that it does not compute any quotients but only a remainder.
The matrix that is reduced in this algorithm contains a lot of zeros and therefore
sparse matrix techniques are used. Like F4, all implementations of polynomial di-
vision are found in computer algebra systems [20, 29]. In this article, multivariate
polynomial division will be interpreted as a vector decomposition whereby the divisors
and the remainder are described by elements of the row spaces of certain matrices.
It will be shown that either can be found from an oblique projection and no row
reductions are necessary. The main computational tool in our implementation is the
QR decomposition.

Multivariate polynomial elimination was originally studied by Bézout, Sylvester,
Cayley and Macaulay in the 1800’s using determinants, also called resultants [26,
41]. This work formed the inspiration for some resultant-based methods to solve
polynomial systems [2, 21, 28]. The advent of the Gröbner basis also made it possible
to eliminate variables when using a lexicographic monomial ordering. A method
which is also based entirely on linear algebra for multivariate polynomial elimination
relies on the computation of the kernel of a matrix [43]. In this article the link
between multivariate polynomial elimination and principal angles between subspaces
is revealed. The main computational tool will be the QR decomposition together with
an implicitly restarted Arnoldi iteration. All numerical examples were computed on
a 2.66 GHz quad-core desktop computer with 8 GB RAM in MATLAB [32].

This article is structured as follows. Section 2 introduces some notation and ba-
sic concepts on the vector space of multivariate polynomials. Section 3 describes the
operation of multivariate polynomial multiplication. This will turn out to be a gener-
alization of the discrete convolution operation to the multivariate case. In Section 4
multivariate polynomial division is worked out as a vector decomposition and an algo-
rithm together with a numerical implementation is given. Finally, Section 5 describes
the multivariate polynomial elimination problem as finding the intersection of two
subspaces and the link is made with the cosine-sine decomposition. An elimination
algorithm and implementation is also provided.

2. Vector Space of Multivariate Polynomials. It is easy to see that the
set of all multivariate polynomials over n variables up to degree d over the field of
complex numbers C together with the addition and multiplication with a scalar form
a vector space. This vector space will be denoted by Cn

d . A canonical basis for this
vector space consists of all monomials from degree 0 up to d. Since the total number
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of monomials in n variables from degree 0 up to degree d is given by

q =

(

d + n

n

)

it follows that dim(Cn
d ) = q. The degree of a monomial xa = xa1

1 . . . xan

n is defined
as |a| = ∑n

i=1 ai. The degree of a polynomial p, deg(p), then corresponds with the
degree of the monomial of p with highest degree. It is possible to order the terms
of multivariate polynomials in different ways and results typically depend on which
ordering is chosen. It is therefore important to specify which ordering is used. For
a formal definition of monomial orderings together with a detailed description of
some relevant orderings in computational algebraic geometry see [12, 13]. In the next
paragraph the monomial ordering which will be used throughout the whole of this
article is defined.

2.1. Monomial Orderings. Note that we can reconstruct the monomial xa =
xa1

1 . . . xan

n from the n-tuple of exponents a = (a1, . . . , an) ∈ Nn
0 . Furthermore, any

ordering > we establish on the space Nn
0 will give us an ordering on monomials: if

a > b according to this ordering, we will also say that xa > xb.
Definition 2.1. Graded Xel Order. Let a and b ∈ Nn

0 . We say a > b if

|a| =
n

∑

i=1

ai > |b| =
n

∑

i=1

bi, or |a| = |b| and a >xel b

where a >xel b if, in the vector difference a − b ∈ Zn, the leftmost nonzero entry is
negative.

Example 2.1. (2, 0, 0) > (0, 0, 1) because |(2, 0, 0)| > |(0, 0, 1)| which implies
x2

1 > x3. Likewise, (0, 1, 1) > (2, 0, 0) because (0, 1, 1) >xel (2, 0, 0) and this implies
that x2x3 > x2

1.
The ordering is graded because it first compares the degrees of the two monomials

and applies the xel ordering when there is a tie. Once a monomial ordering > is chosen
we can uniquely identify the monomial with largest degree of a polynomial f according
to >. This monomial is called the leading monomial of f and is denoted by LM(f).
A monomial ordering also allows for a multivariate polynomial f to be represented
by its coefficient vector. One simply orders the coefficients in a row vector, graded
xel ordered, in ascending degree. The following example illustrates.

Example 2.2. The polynomial f = 2 + 3x1 − 4x2 + x1x2 − 8x1x3 − 7x2
2 + 3x2

3 in
C2

3 is represented by the vector

(

1 x1 x2 x3 x2
1 x1x2 x1x3 x2

2 x2x3 x2
3

2 3 −4 0 0 1 −8 −7 0 3
)

where the graded xel ordering is indicated above each coefficient.
By convention a coefficient vector will always be a row vector. Depending on

the context we will use the label f for both a polynomial and its coefficient vector.
(.)T will denote the transpose of the matrix or vector (.). Having established the
representation of multivariate polynomials by row vectors we now proceed to discuss
three basic operations: multiplication, division and elimination.

3. Multivariate Polynomial Multiplication. Given two polynomials h and
f ∈ Cn

d , then their product hf does not lie in Cn
d anymore. It is easy to derive
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that polynomial multiplication can be written in this framework as a vector matrix
product. Supposing deg(h) = m we can write

h f = (h0 + h1 x1 + h2 x2 + . . . + hk xm
n ) f

= h0 f + h1 x1 f + h2 x2 f + . . . + hk xm
n f.

This can be written as the following vector matrix product

(3.1) h f =
(

h0 h1 . . . hm

)















f
x1 f
x2 f

...
xm

n f















where each row of the matrix in the right hand side of (3.1) is the coefficient vector
of f, x1f, x2f, . . . , xm

n f respectively and xm
n is LM(h). The multiplication of f with a

monomial results in all coefficients of f being shifted to the right in its corresponding
coefficient vector. Therefore the matrix which is built up from the coefficients of f in
expression (3.1) is a quasi-Toeplitz matrix. In the univariate case this multiplication
matrix corresponds with the discrete convolution operator which is predominantly
used in linear systems theory. The polynomial f is then interpreted as the impulse
response of a linear time-invariant system and h as the input signal. In this case,
assuming deg(f) = n, writing out (3.1) results in

h f =
(

h0 h1 . . . hm

)















f0 f1 f2 . . . fn 0 0 . . . 0
0 f0 f1 f2 . . . fn 0 . . . 0
0 0 f0 f1 f2 . . . fn . . . 0
...

...
...

. . .
. . .

. . .
. . .

. . .
...

0 0 0 . . . f0 f1 f2 . . . fn















where the multiplication operator is now a Toeplitz matrix. The following example
illustrates the multiplication of two polynomials in C22 .

Example 3.1. k = x2
1 + 2x2 − 9 and l = x1x2 − x2. The leading monomial of k

is x2
1. The multiplication is then given by

(

−9 0 2 1
)















l

x1l

x2l

x2
1l















.

The multiplication operator is then

0

B

B

@

1 x1 x2 x
2

1 x1x2 x
2

2 x
3

1 x
2

1x2 x1x
2

2 x
3

2 x
4

1 x
3

1x2 x
2

1x
2

2 x1x
3

1 x
4

2

l 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0

x1l 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0

x2l 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0

x
2

1l 0 0 0 0 0 0 0 −1 0 0 0 1 0 0 0

1

C

C

A
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where the columns were labelled according to the graded xel monomial ordering and
the labels on the left indicate with which monomial l was multiplied. Multiplying this
matrix with the coefficient vector of k on the left results in the vector

`

1 x1 x2 x
2

1 x1x2 x
2

2 x
3

1 x
2

1x2 x1x
2

2 x
3

2 x
4

1 x
3

1x2 x
2

1x
2

2 x1x
3

1 x
4

2

0 0 9 0 −9 −2 0 −1 2 0 0 1 0 0 0
´

which is indeed the coefficient vector of k l.
The description of multiplication of multivariate polynomials in this linear algebra

framework therefore leads in a natural way to the generalization of the convolution op-
eration to the multidimensional case [6, 30]. In the same way, multivariate polynomial
division will generalize the deconvolution operation.

4. Multivariate Polynomial Division. For multivariate polynomial division
it will be necessary to describe, for a given polynomial p ∈ Cn

d , a sum of the form h1f1+
. . .+hsfs where h1, . . . , hs, f1, . . . , fs ∈ Cn

d and where for which each hifi (i = 1 . . . s)
the condition LM(p) ≥ LM(hifi) applies. These sums will be described by the row
space of the following matrix.

Definition 4.1. Given a set of polynomials f1, . . . , fs ∈ Cn
d , each of degree

di (i = 1 . . . s) and a polynomial p ∈ Cn
d of degree d then the divisor matrix D is given

by

(4.1) D =



















































f1

x1f1

x2f1

...

xk1

n f1

f2

x1f2

...

xk2

n f2

...

xks

n fs



















































where each polynomial fi is multiplied with all monomials xαi from degree 0 up to
degree ki = deg(p)− deg(fi) such that LM(xαifi) ≤ LM(p).

Indeed, the row space of this D are all polynomials
∑s

i=1 hifi of degree d = deg(p)
such that LM(p) ≥ LM(hifi). The vector space spanned by the rows of D will be
denoted D. It is clear that D ⊂ Cn

d and that dim(D) = rank(D). Each column of D
contains the coefficient of a certain monomial and hence the number of columns of D,
#col(D), corresponds with dim(Cn

d ). This divisor matrix will be the key to generalize
multivariate polynomial division in terms of linear algebra.

Everybody is familiar with the polynomial division for the univariate case. It is
therefore quite surprising that this was generalized to the multivariate case only 40
years ago [13]. Let us start with the formal definition.

Definition 4.2. Fix any monomial order > on Cn
d and let F = (f1, . . . , fs) be a

s-tuple of polynomials in Cn
d . Then every p ∈ Cn

d can be written as

(4.2) p = h1f1 + . . . + hsfs + r
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where h1, . . . , hs, r ∈ Cn
d . For each i, hifi = 0 or LM(p) ≥ LM(hifi), and either

r = 0 or r is a linear combination of monomials, none of which is divisible by any of
LM(f1), . . . ,LM(fs).

The generalization lies obviously in extending the polynomials p and f in the
univariate case to elements of Cn

d and sets of divisors F . The constraint on the
remainder term for the univariate case, deg(r) < deg(f), is also generalized. The
biggest consequence of this new constraint is that the remainder can have a degree
which is strictly higher than any of the divisors fi. It now becomes clear why the
divisor matrix was defined. The hifi terms of (4.2) are in this framework described by
the row space D of the divisor matrix. This allows us to rewrite (4.2) as the following
vector equation

p = h D + r

which leads to the insight: multivariate polynomial division corresponds with a vector
decomposition. The vector p is decomposed into h D, which lies in D, and into r. Since
p can be any element of Cn

d and D is a subspace of Cn
d it therefore follows that there

exists a vector space R such that D ⊕ R = Cn
d . In general there are many other

subspaces R which are the complement of D. The most useful R for multivariate
polynomial division will be the vector space which is isomorphic with the quotient
space C/D.

4.1. Quotient Space. Having defined the vector space D one can now consider
the following relationship, denoted by ∼, in Cn

d :

∀ p, r ∈ Cn
d : p ∼ r ⇔ p− r ∈ D.

It is easily shown that ∼ is a equivalence relationship and therefore Cn
d is partitioned.

Each of these partitions is an equivalence class

[p]D = {r ∈ Cn
d : p− r ∈ D}.

Since p− r ∈ D, equation (3.1) tells us that this can be written as h D and therefore

p = h D + r.

Hence the addition of the constraint that either r = 0, or r is a linear combination of
monomials, none of which is divisible by any of LM(f1), . . . ,LM(fs) allows then for
the interpretation of the elements of the equivalence class as the remainders. The set
of all the equivalence classes [p]D is denoted by C/D and is also a vector space. In fact,
one can find a vector space R ⊂ Cn

d , isomorphic with C/D, such that D ⊕ R = Cn
d .

This implies that

dim(R) = dim(C/D)

= dim(Cn
d )− dim(D)

= #col(D)− rank(D)

= nullity(D)

which allows to determine the dimension of R in a straightforward manner. R being
a finite-dimensional vector space implies that a basis can be formally defined.

Definition 4.3. Any set of monomials which forms a basis of a vector space R
such that R ∼= C/D and R ⊂ Cn

d is called a normal set. The corresponding canonical
basis of R in Cn

d is denoted R such that R = row (R).
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Since R ⊂ Cn
d , the canonical basis R needs to be a monomial basis. These basis

monomials (or standard monomials) are in fact representatives of the equivalence
classes of a basis for C/D. Although a polynomial basis could be chosen for R this
would make it significantly harder to require that every monomial of this basis should
not be divisible by any of the leading monomials of f1, . . . , fs. This will turn out to
be easy for a monomial basis of R. Finding these standard monomials will translate
itself into looking for a set of columns which are linearly dependent with respect to
all other columns of the divisor matrix. Since dim(C/D) = nullity(D), it must be
possible to find #col(D) − r linearly dependent columns with r = rank(D). In the
univariate case, D is by construction of full row rank and hence r = d− d0 + 1. The
number of linearly dependent columns is then (d + 1)− (d− d0 + 1) = d0. This is in
fact linked with the fundamental theorem of algebra which states that an univariate
polynomial of degree d0 over the complex field has d0 solutions. In the multivariate
case things are a bit more complicated. D is then in general neither of full row rank
nor of full column rank. This implies a non-uniqueness of both the quotients and
remainder.

4.2. Non-uniqueness of quotients. Suppose the rank of the matrix D is r. In
general, the matrix will not be of full row rank and therefore there will be maximally
(

p
r

)

possibilities of choosing r linearly independent rows. In practice, a basis for the
row space of D is required for calculating the decomposition of p into

∑

i hifi terms.
Therefore depending on which rows are chosen as a basis for D several decompositions
are possible. Checking whether the quotients are unique hence involves a rank test
of D. Note that Definition 4.2 does not specify any constraints on how to choose a
basis for D. In Subsection 4.5 it is explained how such a basis is chosen using a sparse
rank-revealing QR decomposition. This non-uniqueness is expressed in computational
algebraic geometry by the multivariate long division algorithm being dependent on the
ordering of the divisors f1, . . . , fs. Note however that the implementation described in
Subsection 4.5 does not make the quotients unique as they will always depend on the
ordering of f1, . . . , fs when constructing the divisor matrix D. In contrast, choosing
a basis for R is constrained by its definition but not in a such way that only one
possible basis is left.

4.3. Non-uniqueness of remainders. The constraint deg(r) < deg(f) for the
univariate case is replaced by r = 0, or r is a linear combination of monomials, none
of which is divisible by any of LM(f1), . . . ,LM(fs). This in general, is not sufficient
to reduce the number of possible bases of R to only one. The following example
illustrates this point.

Example 4.1. Suppose p = 9x2
2 − x1x2 − 5x2 + 6 is divided by f1 = x2 − 3

and f2 = x1x2 − 2x2. Since LM(p) = x2
2 one needs to construct the following divisor

matrix

D =









1 x1 x2 x2
1 x1x2 x2

2

f1 −3 0 1 0 0 0
x1 f1 0 −3 0 0 1 0
x2 f1 0 0 −3 0 0 1
f2 0 0 −2 0 1 0









.

The null column corresponding with the monomial x2
1 will surely be linearly dependent

with respect to all other columns. The rank of D is 4 and any other column of D
could be chosen as the second linearly dependent column. This gives the following set
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of possible bases for R: {{1, x2
1}, {x1, x

2
1}, {x2, x

2
1}, {x2

1, x1x2}, {x2
1, x

2
2}}. The leading

monomials of f1 and f2 are, according to the graded xel ordering, x1x2 and x2 respec-
tively. Therefore the set of possible bases for R is reduced to {{1, x2

1}, {x1, x
2
1}} since

neither 1 nor x1 are divisible by x1x2 or x2. Note that since D is of full row rank this
implies that the quotients h1 and h2 are unique. The matrix R corresponding with the
normal set {1, x2

1} is

R =

(

1 x1 x2 x2
1 x1x2 x2

2

1 0 0 0 0 0
0 0 0 1 0 0

)

.

The row space of R is indeed such that R⊕D = C22 .

From the example it is clear that not every set of linearly dependent columns
corresponds with a normal set which is suitable to describe multivariate polynomial
division. The encoding of the graded monomial ordering in the columns of the divisor
matrix allows us to find a suitable basis for R which satisfies the constraint that none
of its monomials is divisible by any LM(fi) (i = 1 . . . s). The key idea is to check
each column for linear dependence with respect to all columns to its right, starting
from the rightmost column. Before stating the main theorem we first introduce some
notation and prove a needed lemma. In what follows a monomial will be called lin-
ear (in)dependent when its corresponding column of the divisor matrix D is linear
(in)dependent with respect to another set of columns. Suppose the divisor matrix
D has q columns. Then each column of D corresponds with a monomial m1, . . . ,mq

with m1 < m2 < . . . < mq according to the monomial ordering. Suppose now that

rank(D) = r and therefore cr , q − r linearly dependent monomials can be found.
We now introduce the following high-level algorithm which results in a special set
of linearly dependent monomials. Note that in this algorithm each monomial label
stands for a column vector of the divisor matrix D.

Algorithm 4.1. Find a maximal set of linearly dependent monomials
Input: divisor matrix D
Output: a maximal set of linearly dependent monomials l

l← []
if mq = 0 then

l← [l , mq]
end if

for i = q − 1 : −1 : 1 do

if mi linearly dependent with respect to {mi+1, . . . ,mq} then

l← [l , mi]
end if

end for

Algorithm 4.1 finds a maximal set of monomials l which are linearly dependent
with respect to all monomials to their right. We will label these cr monomials of l
as l1, . . . , lcr

such that lcr
< . . . < l2 < l1 according to the monomial ordering. The
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matrix D can then be visually represented as

D =





m1 . . . lcr
. . . lk . . . l1 . . . mq

× × ×
. . . . . . × . . . × . . . × . . . . . .

× × ×



.

Example 4.2. We revisit the divisor matrix of Example 4.1 and apply Algorithm
4.1. For this simple example checking the linear dependence was done using the svd-
based ‘rank’ command in MATLAB. A monomial mi was considered to be linearly
dependent as soon as the rank did not increase when adding its column to the matrix
containing {mi+1, . . . ,mq}. It is easy to verify that this results in the following linearly
dependent monomials: l1 = x2

1, l2 = 1.

The previous example indicates that Algorithm 4.1 produces the standard mono-
mials of lowest degree. We now prove the following lemma.

Lemma 4.4. Given a divisor matrix D of rank r and the linearly dependent
monomials l1, . . . , lcr

found from Algorithm 4.1. Then any other set of cr linearly
dependent monomials l′1, . . . , l

′
cr

with l′1 > l′2 > . . . > l′cr
satisfies the following condi-

tions: l′1 ≥ l1, l
′
2 ≥ l2, . . . , l

′
cr
≥ lcr

.

Proof. Let {lk, . . . ,mq} denote the set of all monomials from lk up to mq for
a certain k ∈ {1, . . . , cr} and let q1 denote the cardinality of {lk, . . . ,mq}. From
Algorithm 4.1 we know that {lk, . . . ,mq} contains k linearly dependent monomials
and q1 − k linearly independent monomials. We now choose the largest k such that
l′k < lk. {lk, . . . ,mq} will then contain at most k− 1 l′ monomials which implies that
there are at least q1 − k + 1 linearly independent monomials in {lk, . . . ,mq}. This
contradicts the fact that there are exactly q1 − k linearly independent monomials in
{lk, . . . ,mq}.

This lemma states that the normal set which is found from Algorithm 4.1 is of
minimal degree according to the monomial ordering. We can now prove the main
theorem.

Theorem 4.5. Consider a divisor matrix D. Then a suitable monomial basis for
R is found by Algorithm 4.1. None of the monomials corresponding with the linearly
dependent columns found in this way are divisible by any of the leading monomials of
f1, . . . , fs and therefore serve as a basis for the vector space of remainder terms R.

Proof. Since D⊕R = Cn
d , any multivariate polynomial p ∈ Cn

d can be decomposed
into

∑s

i=1 hifi ∈ D, spanned by a maximal set of linearly independent rows of D, and
r ∈ R, spanned by the monomials l1, . . . , lcr

found from Algorithm 4.1. We can
therefore write

(4.3) p =

s
∑

i=1

hi fi + r with r =

cr
∑

i=1

ai li (ai ∈ C).

Suppose now that at least one of the monomials l1, . . . , lcr
is divisible by a leading

monomial of one of the polynomials f1, . . . , fs, say fj . Let lk be the monomial of high-

est degree which is divisible by LM(fj). This implies that the division of r −∑k−1
i=1 ai li

by fj can be written as

(4.4) r −
k−1
∑

i=1

ai li = gfj + r′
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where r′ 6= 0 and due to the definition (4.2) none of the monomials of r′ are divisible
by LM(fj). In addition, all monomials r′1, . . . , r

′
t of r′ satisfy r′i < lk [13, p. 64-66].

By substituting (4.4) into (4.3) we have

p =
∑s

i=1 hi fi + r

=
∑s

i=1 hi fi +
∑k−1

i=1 ai li + gfj + r′

=
∑s

i=1 h′
i fi +

∑k−1
i=1 ai li + r′.

From this last equation one can see that r′ needs to contain cr − k + 1 monomials
none of which are divisible by any of the leading monomials of f1, . . . , fs. If LM(r′)
is not divisible by any of the leading monomials of f1, . . . , fs then LM(r′) is the new
linearly dependent monomial l′k. However, l′k < lk which is a contradiction according
to Lemma 4.4. If LM(r′) is divisible by any of the leading monomials of f1, . . . , fs then
the division procedure as in (4.4) can be repeated, leading to the same contradiction.

The duality between the linearly dependent columns of D and the linearly inde-
pendent rows of its kernel K implies the following corollary of Theorem 4.5.

Corollary 4.6. A monomial basis for R can also be found from checking the
rows of the kernel of D for linear independence from top to bottom. None of the
monomials corresponding with the linearly independent rows are divisible by any of
the leading monomials of f1, . . . , fs.

Corollary 4.6 will be useful when discussing a practical implementation. In com-
putational algebraic geometry, the non-uniqueness of the remainder corresponds with
the remainder being dependent on the order of the divisors f1, . . . , fs. This is normally
solved by computing the remainder of p being divided by a Gröbner basis instead.
The difference between the Gröbner basis method and the algorithm described in this
manuscript is discussed in Section 4.7. Note that the normal set which is found from
Theorem 4.5 is also unique since changing the order of the divisors (rows) will not
affect the linear dependence of the columns in Algorithm 4.1.

4.4. The Geometry of Polynomial Division. Having discussed the divisor
matrix D and a canonical basis R for the quotient space it is now possible to interpret
(4.2) geometrically. Since p =

∑s

i=1 hifi + r with
∑s

i=1 hifi ∈ D and r ∈ R, finding
the

∑

hifi terms is then equivalent to projecting p along R onto D. The remainder
r can then simply be found as p −∑s

i=1 hifi. Note that the remainder r can also
be found from the projection of p along D onto R. Figure 4.1 represents this in 3
dimensional Euclidean space. The whole 3 dimensional Euclidean space represents
Cn

d , the plane represents D and the long oblique line pointing to the left represents
R. Since R does not lie in D it is clear that D ⊕R = Cn

d . The oblique projection of
p along R onto D is given by the following expression

(4.5)

s
∑

i=1

hifi = p/R⊥ [D/R⊥]† D

where p/R⊥ and D/R⊥ are the orthogonal complements of p orthogonal on R and the
rows of D orthogonal onR respectively [42]. A thorough overview of oblique projectors
can be found in [37]. The dagger † stands for the Moore-Penrose pseudoinverse of a
matrix. Note that expression (4.5) assumes that the basis for the vector spaces D and
R are given by the rows of D and R.
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D

h D

rpr

Fig. 4.1. The
P

i=1
hifi terms of the polynomial division of p by F = {f1, . . . , fs} are

found by projecting p along R onto D.

4.5. Algorithm & Numerical Implementation. In this section a high-level
algorithm and numerical implementation are presented for doing multivariate poly-
nomial division. The outline of the algorithm is given in Algorithm 4.2. This is a
high-level description since implementation details are ignored. The most important
object in the algorithm is the divisor matrix D. From this matrix a basis for D and
R are determined. The

∑s

i hifi terms are then found from projecting p along R onto
D. The remainder is then found as r = p −∑s

i hifi. The quotients hi can easily be
retrieved from solving the linear system hD =

∑s

i hifi.

Algorithm 4.2. Multivariate Polynomial Division
Input: polynomials f1, . . . , fs, p ∈ Cn

d

Output: h1, . . . , hs, r such that p =
∑s

i hifi+r

D ← Divisor matrix of f1, . . . , fs

A← basis of vector space D determined from D
B ← monomial basis of vector space of remainders R determined from D
∑s

i hifi ← project p along R onto D
r ← p−

∑s

i hifi

h =
(

h1, . . . , hs

)

← solve hD =
∑s

i hifi

We have implemented this algorithm in MATLAB and the code is available on
request. The numerical implementation we propose uses 4 QR decompositions. The
use of orthogonal matrix factorizations guarantees the numerical backward stability
of the implementation. The third QR decomposition will dominate the cost of the
method, which is O((q + 1)q2) where q is the number of columns of D. Also note
that q grows as O(dn) where d = deg(p) and n is the number of indeterminates. In
addition, M(d) also typically has a large amount of zero elements. An implementation
using sparse matrix representations is therefore a logical choice. The implementation
consists of three main steps: first, the rank of D, a basis for its row space and a basis
for its kernel are computed. Second, the normal set is determined from the kernel and
finally, the oblique projection is computed. Doing a full singular value decomposition
in terms of a sparse matrix representation is too costly in terms of storage since the
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singular vectors will typically be dense. We therefore opt to use a sparse multifrontal
multithreaded rank-revealing QR decomposition [14]. This sparse QR decomposition
uses by default a numerical tolerance of τ = 20 (q + s) ǫ maxj ||D∗j ||2 where ǫ is the
machine roundoff (about 10−16 since only a double-precision implementation of the
sparse QR factorization is available), maxj ||D∗j ||2 is the largest 2-norm of any row
of D and D is s-by-q. The rank of D, a basis for its row space D and a basis for its
kernel can all be derived from the following QR factorization

DT Pd = Qd Rd

where Pd corresponds with a column permutation which reduces fill-in and allows to
determine the rank. The estimate for the rank r is given by the number of nonzero
diagonal elements of Rd. The r leftmost columns of DT Pd span D. An orthogonal
basis for the kernel K is given by the remaining columns of Qd. This first QR de-
composition is a critical step in the implementation. Indeed, an ill-defined numerical
rank indicates an inherent difficulty to determine the dimensions of D and R. In
practice however we have not yet seen this problem occur. Further work on how the
approxi-rank gap [25] is influenced by perturbations on the coefficients of the divisors
is required. Now, Corollary (4.6) is used to find the normal set. K is per definition
of full column-rank, say dim(K) = cr, and from a second sparse QR decomposition

KT Pk = Qk Rk

the linearly independent rows of K are found as the leftmost cr columns of KT Pk. In
fact, the factors Qk and Rk do not need to be computed. The column permutation will
work from the leftmost column of KT to the right, which corresponds with checking
the rows of K for linear independence from top to bottom. Corollary 4.6 then ensures a
correct normal set for multivariate polynomial division is found. From this a canonical
basis R for R can be constructed. With the first two steps completed one can now
use (4.5) to find the projection of p onto D along R. It is possible to simplify (4.5) in
the following way. The orthogonal complement of p orthogonal on R is given by

(4.6) p/R⊥ = p (I −RT (R RT )† R)

and likewise the orthogonal complement of D orthogonal on R by

(4.7) D/R⊥ = D (I −RT (R RT )† R).

Implementing (4.5) involves calculating three matrix pseudo-inverses. We can reduce
this to a normal matrix inverse by using another QR decomposition. In order to
avoid confusion between the R of the QR decomposition and the basis of R an LQ
decomposition is used with L lower triangular. In addition, as mentioned earlier, (4.5)
requires bases for the vector spaces as rows of matrices. Using the LQ factorization
therefore avoids the need to transpose all matrices. One can easily describe things
in terms of a QR decomposition by taking the transpose of each of the matrices.
Calculating the LQ factorization of

(4.8)





R
D
p



 = L Q =





LR

LD

Lp



 Q
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allows us to write

R = LR Q

D = LD Q

p = Lp Q.

Since R is a canonical basis all rows of R are orthonormal and will be contained in
Q without any change. Hence, LR will always be a unit matrix embedded into a
rectangular structure

LR =
(

Icr
O

)

where cr = dim(R). This implies that LR LT
R = Icr

. The next step is to replace p
and R in (4.6) by their respective LQ decompositions

p/R⊥ = p (Iq −RT (R RT )† R)

= Lp Q (Iq −QT LT
R (LR Q QT LT

R)† LR Q)

= Lp Q (Iq −QT LT
R (LR LT

R)† LR Q)

= Lp Q (Iq −QT LT
R LR Q)

= Lp Q QT (Iq − LT
R LR) Q

= Lp (Iq − LT
R LR) Q.(4.9)

The simplifications in the different steps are possible since LR LT
R = Icr

and Q QT =
Iq. The resulting expression is quite simplified and more importantly, no matrix
pseudo-inverse is required anymore. Applying the same strategy of replacing D and
R by their respective LQ decompositions in (4.7) results in

(4.10) D/R⊥ = LD (Iq − LT
R LR)Q.

From here on, W denotes the common factor (Iq −LT
R LR). Using (4.9) and (4.10) in

(4.5) we obtain

s
∑

i=1

hifi = p/R⊥ [D/R⊥]† D

= Lp W Q (LDWQ)† D

= Lp W Q Q† (LDW )† D

= Lp W (LDW )† D(4.11)

which requires the calculation of only 1 matrix pseudo-inverse. Exploiting the struc-
ture of W allows to further simplify this expression. Since W = (Iq−LT

R LR) and LR

is a unit matrix embedded in a rectangular structure it follows that

W =

(

0 0
0 Ir

)

where r = q − cr is the rank of D. Partitioning Lp into

Lp =
(

Lp1
Lp2

)

where Lp2
are the r rightmost columns and likewise LD into

LD =
(

LD1
LD2

)
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simplifies (4.11) to Lp2
L†

D2
. We can therefore write the oblique projection of p along

R on D as

(4.12)
s

∑

i=1

hifi = Lp2
L†

D2
D.

Note that in this final expression the orthogonal matrix Q of (4.8) does not appear
and it is therefore not necessary to calculate it explicitly. When LD2

is of full column

rank L†
D2

can be obtained from a sparse Q-less QR decomposition. Writing

LD2
= Q Rchol

reduces

L†
D2

= (LT
D2

LD2
)−1 LT

D2

to solving the following matrix equation

RT
chol Rchol L†

D2
= LT

D2

which can be solved by a forward substitution followed by a backward substitution.
The factor Lp2

L†
D2

in (4.12) specifies the linear combination of rows of D and therefore
the decomposition of p into the

∑s

i=1 hifi terms. The remainder is then easily found
as r = p−

∑s

i=1 hifi.

4.6. Example. In this example we will replace x1, x2, x3 with x, y, z respectively
and divide the polynomial p = −5 + 2x + y2 + z2 + 8xy2 by F = {f1 = −4 + x2 +
y2 + z2, f2 = −5 + x2 + 2y2, f3 = −1 + xz}. The leading monomial of p according to
the graded xel ordering is xy2. The divisor matrix D is the following 5 by 20 matrix

D =













f1

f2

xf2

f3

xf3













The numerical tolerance for this example is τ = 5.468× 10−13. The rank is estimated
to be 5 and therefore dim(R) = 15. The monomial basis for R is

{1, x, y, z, x2, xy, yz, x3, x2y, xyz, xz2, y3, y2zyz2, z3}.

The factor Lp2 L†
D2 equals

(

1.0 0 4.0 0 0
)

and
∑

i hifi is therefore

∑

i

hifi = 1.0 f1+4.0 x f2 = −4.0−20.0 x+1.0 x2+1.0 y2+1.0 z2+4.0 x3+8.0 xy2.

The remainder term r is easily found from the vector difference

r = p−
∑

i

hifi = −1.0 + 22.0 x− 1.0 x2 + 0.0 y2 + 0.0 z2 − 4.0 x3.

The total running time for computing both the quotients and the remainder was 0.011
seconds. The absolute errors for both the

∑

i hifi terms and r are bounded by above
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by 10−15. Observe that, unlike in the univariate case, the leading monomial of the
remainder is x3 and has a larger degree than any of the divisors. We now perturb the
coefficients of the divisors with noise of order 10−6 and divide p by {f1 = −4.000001+
0.000001 y + x2 + y2 + z2, f2 = −5.000001 + x2 + 2y2, f3 = −1 + 0.000001 x2 + xz}.
Note that the noise introduced two extra terms: 10−6 y in f1 and 10−6 x2 in f3. The
numerical rank of D remains 5 and the factor Lp2 L†

D2 also does not change. The
remainder term however now becomes

r = −1.0 + 22.000004 x− 10−6 y − 1.0 x2 + 0.0 y2 + 0.0 z2 − 4.0x3.

The noisy 10−6 y term ends up in the remainder and the coefficient of x is now also
perturbed. Again, the absolute errors are bounded by above by 10−15. The total
running time was 0.013 seconds.

4.7. Gröbner Basis. In this section we discuss the difference between the re-
sults of the division algorithm described in this manuscript and the division of a
multivariate polynomial by a Gröbner basis. We first start off with the definition of
the Gröbner basis as in [13].

Definition 4.7. Fix a monomial order. A finite subset G = {g1, . . . , gt} of a
polynomial ideal I = 〈f1, . . . , fs〉 is said to be a Gröbner basis if

〈LM (g1), . . . ,LM (gt)〉 = 〈LM (I)〉

where 〈LM (I)〉 denotes the ideal generated by all leading monomials of I.

Or in other words, every leading monomial of an element of the ideal I =
〈f1, . . . , fs〉 is divisible by at least one of the leading monomials of G. The Gröbner
basis G of a given set of multivariate polynomials f1, . . . , fs hence generates the same
polynomial ideal as f1, . . . , fs. One attractive feature of a Gröbner basis is that the
remainder will be independent on the ordering of the divisors. The normal set R which
is found in Theorem 4.5 is however not necessarily the normal set RG obtained when
dividing by the corresponding Gröbner basis. This difference is due to the defining
property of the Gröbner basis. Not all leading terms of I are necessarily divisible by
at least one of the polynomials f1, . . . , fs and this implies that RG ⊆ R.

Example 4.3. We revisit the unperturbed example of Section 4.6 and first com-
pute the Gröbner basis of I = 〈f1, f2, f3〉 using Maple. This is

G = {g1 = −1 + xz, g2 = −5 + x2 + 2y2, g3 = −3 + x2 + 2z2, g4 = 2 z − 3 x + x3}.

Note that G contains four polynomials whereas F only three. Applying Algorithm
4.1 for G results in the following normal set RG = {1, x, y, z, x2, xy, yz, x2y}, which
is indeed a subset of R. Since the difference between R and RG lies in the higher
degrees, the remainder rG from dividing p by G contains fewer terms of higher degree,

rG = −1.0 + 10.0 x + 8.0 z − 1.0 x2 + 0.0 x3 + 0.0 xy2.

For this example the x3 term of r does not appear in rG. Computation of this remain-
der rG took 0.012 seconds in MATLAB.

The orthogonal basis for D from the QR decomposition in Algorithm 4.2 does
not correspond with a Gröbner basis since it will not satisfy Definition 4.7.
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5. Multivariate Polynomial Elimination. Gaussian elimination is probably
the most known form of elimination. It involves the manipulation of linear equations
such that the solution set does not change and one of the resulting equations is
univariate. The same idea is generalized by a Gröbner basis using a lexicographic
monomial ordering. The problem of multivariate elimination can be stated as follows:
Given a system of multivariate polynomials f1, . . . , fs and a proper subset of variables
xe ( {xi : i = 1, . . . , n}, find a polynomial g =

∑s

i hifi (h1, . . . , hs being multivariate
polynomials) in which all variables xe are eliminated. The key in solving this problem
will be a matrix which is very similar to the divisor matrix in that its row space
describes ‘linear combinations’ of the form

∑s

i=1 hifi with hi, fi ∈ Cn
d for a certain

degree d. The difference lies in the fact that the requirement LM(p) ≥ LM(hifi) is
dropped since there is no dividend p in this context. The resulting matrix is called
the Macaulay matrix and is defined as follows.

Definition 5.1. Given a set of polynomials f1, . . . , fs ∈ Cn
d , each of degree

di (i = 1, . . . , s) then the Macaulay matrix of degree d is the matrix containing the
coefficients of

(5.1) M(d) =

































f1

x1f1

...

xd−d1

n f1

f2

x1f2

...

xd−ds

n fs

































where each polynomial fi is multiplied with all monomials from degree 0 up to d− di

for all i = 1, . . . , s.

The reason (5.1) is called the Macaulay matrix is because it was Macaulay who
introduced this matrix, drawing from earlier work by Sylvester [40], in his work on
elimination theory, resultants and solving multivariate polynomial systems [26, 27].
This matrix depends explicitly on the degree d for which it is defined, hence the
notation M(d). The row space of M(d) will be denoted by Md and is the vector
space of all linear combinations of the form

∑s

i=1 hifi with deg(hifi) ≤ d. The
polynomial g lies therefore obviously in Md for some degree d. In addition, g also
lies in the vector space spanned by all monomials which do not contain any element
of xe up to the same degree d.

Definition 5.2. Given a proper subset of variables xe ( {xi : i = 1, . . . , n} then
the elimination vector space Ed is the vector space of polynomials with maximal degree
d spanned by all monomials that do not contain any of the variables of xe.

A canonical basis E(d) for the vector space Ed is easily obtained. The following
example illustrates.

Example 5.1. Suppose xe = {x2, x4} ∈ C42 . A canonical basis for E2 is then
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given by

0

B

B

B

B

B

B

@

1 x1 x2 x3 x4 x
2

1 x1x2 x1x3 x1x4 x
2

2 x2x3 x2x4 x
2

3 x3x4 x
2

4

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

1

C

C

C

C

C

C

A

.

The fact that this canonical basis is orthogonal will prove useful in the implementa-
tion of the elimination algorithm later. Note that the k × q matrix E(d) can always
be written as

(5.2) E(d) =
(

Ik 0
)

P

where P is a column permutation and Ik is the unit matrix of dimension k. The inter-
section ofMd and Ed brings us naturally to the geometry of multivariate elimination.

5.1. The Geometry of Polynomial Elimination. The polynomial g which
is to be found lies both inMd and Ed. Polynomial elimination therefore corresponds
with finding an intersection of these two vector spaces. This is depicted in Figure 5.1.
Here, both the row space of M(d) and E(d) are represented as 2-dimensional planes.
The polynomial g corresponds with the vector lying in the 1-dimensional intersection.
The condition that g lies in this intersection can be written as

(5.3) g = x M(d) = y E(d)

where both x and y are unknown row vectors. The degree d for which (5.3) applies
is not known a priori and will need to be found. So the problem of multivariate
elimination can be summarized as finding the degree d and either x or y. Using (5.2),
(5.3) can be written as

x M(d) = y E(d)

x M(d) = y
(

Ik O
)

P

x M(d)PT = y
(

Ik O
)

.

Partitioning M(d) PT column-wise into
(

Mk(d) Mq−k(d)
)

such that Mk(d) corresponds with the k leftmost columns of M(d) PT allows us to
further write

x
(

Mk(d)k Mq−k(d)
)

=
(

yIk O
)

or
{

x Mk(d) = yIk

x Mq−k(d) = O.

One can therefore find x as an element of the left null space of Mq−k(d) which
contains all q−k columns of M(d) corresponding with monomials that are eliminated.
Instead of solving (5.3), we will go deeper into the geometry of elimination and explore
the link with principal angles of vector spaces.
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Md

Ed

g

o

Fig. 5.1. The polynomial g =
P

s

i
hifi with all variables xe eliminated lies in the inter-

section of Md and Ed.

5.2. Principal Angles & CS Decomposition. In what follows we will always
assume, without loss of generality, that the polynomials have real coefficients. The
framework of principal angles, first proposed by Jordan in 1875 [19, 22], lends itself
well to describe the intersection of vector spaces. They are defined as follows.

Definition 5.3. The principal angles 0 ≤ θ1 ≤ θ2 ≤ . . . θmin(d1,d2) ≤ π/2
between the vector spaces S1 and S2 of dimension d1 and d2 respectively, and the
corresponding principal directions ui ∈ S1 and vi ∈ S2 are defined recursively as

cos(θk) = max
uk∈S1,vk∈S2

uT
k vk for k = 1, . . . ,min(d1, d2)

subject to

||uk|| = ||vk|| = 1,

and for k > 1

uT
k ui = 0, i = 1, . . . , k − 1,

vT
k vi = 0, i = 1, . . . , k − 1.

Inspecting the principal angles betweenMd and Ed will therefore reveal whether an
intersection exists. Since the principal angles form an ordered set one simply needs to
check whether cos(θ1) = 1. The corresponding principal vectors u1 or v1 are then the
sought-after polynomial g. Several numerical algorithms have been proposed for the
computation of the principal angles and the corresponding principal directions [5]. In
this article the SVD-based approach will be used.

Theorem 5.4. Assume that the columns of Qa and Qb form orthogonal bases for
two subspaces of Cn

d . Let

A = QT
a Qb,

and let the SVD of this p× q matrix be

A = Y C ZT , C = diag(σ1, . . . , σq),
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where Y T Y = ZT Z = Iq. If we assume that σ1 ≥ σ2 ≥ . . . ≥ σq, then the principal
angles and principal vectors associated with this pair of subspaces are given by

cos(θk) = σk(A), U = QaY, V = QbZ.

Proof. See [5, p. 582].
Theorem 5.4 provides a nice insight into the link between multivariate polynomial

elimination and the CS decomposition (CSD). A thorough overview of the CSD and
its relation to the generalized singular value decomposition (GSVD) is given in [3].
More information on the computational aspects of the CSD can be found in [38, 39].
It was Stewart [35] who first put forward an explicit CSD form. In this article we will
present a particular thin version of the CSD presented in [3, 36].

Theorem 5.5. Let Q ∈ Rq×r have orthonormal columns. Partition Q in the
form

Q =

(

r

k Q1

q − k Q2

)

.

Then there are orthogonal matrices U1 ∈ Rk×k, U2 ∈ R(q−k)×(q−k), and V ∈ Rr×r

such that
(

UT
1 0
0 UT

2

) (

Q1

Q2

)

V =

(

UT
1 Q1V

UT
1 Q2V

)

=

(

Σ1

Σ2

)

assumes the following form if k < r and q − k ≥ r:

(

r

k Σ1

q − k Σ2

)

=









r − k k

k C 0
k S 0
r − k 0 I
q − r − k 0 0









.

Here C and S are nonnegative diagonal matrices satisfying

C2 + S2 = I.

Proof. See [3, 36].
The reason this particular form of the CSD is chosen is because for the case of

elimination k < r and q − k > r. Suppose now that the columns of Q(d) form an
orthogonal basis for Md. Then, from (5.2) it is clear that the SVD of E(d) Q(d) as
in Theorem 5.4 corresponds with

(

Ik 0
)

P Q(d) = Y CZT .

P will permute the rows of Q(d) such that the top k rows correspond with the mono-
mials which are not eliminated. We can therefore further write the SVD of E(d) Q(d)
as

(

Ik 0
)

(

Qk(d)
Qq−k(d)

)

= Y CZT

Qk(d) = Y CZT
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which is the upper part of the CSD decomposition, UT
1 Q1V , in Theorem 5.5. In this

way the natural connection between the CS-decomposition and multivariate polyno-
mial elimination is revealed. In the next section we will discuss an algorithm and an
implementation to perform multivariate elimination.

5.3. Algorithm & Numerical Implementation. In this section a high-level
algorithm for multivariate polynomial elimination is presented along with a numer-
ical implementation. As mentioned before, Algorithm 5.1 is based on checking the
intersection of the vector spacesMd and Ed rather than solving (5.3). Since deg(g) is
unknown, the algorithm iterates over the degree d with an initial value given by the
maximal degree of the given polynomials f1, . . . , fs. In each iteration the matrices
E(d) and M(d) are constructed. As soon as there is an intersection betweenMd and
Ed, an element of this intersection is returned as g.

Algorithm 5.1. Multivariate Elimination
Input: polynomials f1, . . . , fs∈ Cn

d , monomial set xe

Output: g ∈Md ∩ Ed
d← max(deg(f1), deg(f2), . . . , deg(fs))
g ← [ ]
while g = [ ] do

E(d)← canonical basis for Ed
M(d)← Macaulay matrix of degree d
if Md ∩ Ed 6= ø then

g ← element from intersection
else

d← d + 1
end if

end while

We have implemented this algorithm also in MATLAB and its code is freely
available on request. The same argument on the growth of the dimensions of the
matrix applies for M(d) and a sparse matrix representation is used for E(d) and
M(d). In fact, E(d) can be completely stored as a vector containing the indices of
the monomials that span Ed. In order to find the cosines of the principle angles an
orthogonal basis for both vector spaces is required. An orthogonal basis for Md can
be found from the sparse rank-revealing QR decomposition of M(d)T ,

M(d)T P = Q(d) R.

The rank r of M(d) is estimated from the diagonal of R and the orthogonal basis
for Md are the r leftmost columns of Q(d). The same tolerance τ is used for the
rank determination as for polynomial division. Again, the rank-estimation here is
an important step. Like for the polynomial division algorithm, computing this QR
decomposition dominates the computational complexity, which is O(qs2). Backward
numerical stability is guaranteed from the orthogonal matrix factorization. Then using
Theorem 5.4 we need to inspect the singular values of E(d) Q(d) = Qk(d). In fact,
since the principal angles form an ordered set it is sufficient to inspect the first singular
value which can be determined, together with the first left and right singular vectors y
and z, from an implicitly restarted Arnoldi iteration [24]. Since we only compute the
largest singular value and corresponding singular vectors no problems of numerical
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instability occur (associated with the loss of orthogonality of subsequent singular
vectors). As soon as this singular value lies, with a certain tolerance, close enough to
one there is an intersection. Numerical experiments seem to indicate that the cosines
of the principle angles are quite robust with respect to noise on the coefficients of
f1, . . . , fs. We therefore opt to choose the same numerical tolerance τ as for the rank-
estimation. It is however possible that some loss of numerical accuracy occurs when
determining the principal angle from its cosine. This can be avoided, as described in
[5, p. 582-583] and [23, p. 6], by computing the sine of the principal angle. As soon as
there is an non-empty intersection, the first principal vector is then the sought-after
polynomial g which is retrieved as

g = E(d)T y.

At each iteration additional rows are added to M(d). A possible optimization of the
implementation with respect to the computational complexity would therefore involve
updating the QR factorization instead of recomputing it completely.

5.4. Example. From the following polynomial system in C64






























x2
1 + x2

3 − 1 = 0
x2

2 + x2
4 − 1 = 0

x5x
3
3 + x6x

3
4 − 1.2 = 0

x5x
3
1 + x6x

3
2 − 1.2 = 0

x5x
2
3x1 + x6x

2
4x2 − 0.7 = 0

x5x3x
2
1 + x6x4x

2
2 − 0.7 = 0

we eliminate xe = {x1, x2, x3, x4, x5} using Algorithm 5.1. For all d < 10 we have that
|C(1, 1)− 1| > τ . For d = 10, τ = 1.46× 10−10 and |C(1, 1)− 1| = 4.44× 10−16 < τ .
The Macaulay matrix M(10) is a 9702 × 8008 matrix with 29106 nonzero elements
which corresponds with a density of 3.7%. This justifies the use of a sparse matrix
representation. The first principal vector is

g = 0.9011− 0.0 x6 − 0.4335 x2
6 + 0.0 x3

6 + 0.0 x4
6 − 0.0 x5

6 − 0.0 x6
6 + 0.0 x7

6 − 0.0 x8
6.

The total running time took 31.87 seconds. All 0.0 coefficients are bounded from
above by τ and can therefore be considered to be numerically zero. This implies that
the roots of this particular polynomial system have only 2 distinct x6 components,
1.4417 and −1.4417. From the Gröbner basis method the exact solutions for x6 can be
found: ± 19

330

√
627. These allows us to determine the absolute error of our numerical

solutions: 7.40×10−11. When eliminating xe = {x1, x2, x3, x4} the first singular value
is exact 1 and τ = 4.69× 10−11 for d = 8. The principal vector is then

h = −0.0305 + 0.7141 x2
5 − 0.6994 x2

6 − 0.0004 x4
5 + 0.0009 x2

5x
2
6 − 0.0004 x4

6

which took 8.46 seconds to find. Note that h also contains 22 other nonzero co-
efficients, each of which is bounded from above by 10−19. We have omitted these
‘zeros’ for the sake of presentation. We now add perturbations of 10−6 to the original
polynomial system to obtain































1.000001 x2
1 + x2

3 − 1 = 0
x2

2 + x2
4 − 1 = 0

x5x
3
3 + x6x

3
4 − 1.200001 = 0

x5x
3
1 + x6x

3
2 − 1.2 = 0

x5x
2
3x1 + 1.000001 x6x

2
4x2 − 0.7 = 0

1.000001 x5x3x
2
1 + x6x4x

2
2 − 0.700001 = 0.
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When eliminating xe = {x1, x2, x3, x4, x5} we have again for d = 10 that |C(1, 1)−1| =
6.34 × 10−14 < τ = 1.46 × 10−10. Since d = 10 the Macaulay matrix will have the
same size and structure as the original polynomial system. The univariate polynomial
in x6 is now given by

ĝ = 0.9011− 0.0 x6 − 0.4335 x2
6 + 0.0 x3

6 + 0.0 x4
6 − 0.0 x5

6 − 0.0 x6
6 + 0.0 x7

6 + 0.0 x8
6

for which ||g − ĝ||2 < 10−7. This reflects the loss of precision due to the added noise.
The running time was 30.08 seconds.

The example shows one strategy to solve multivariate polynomial systems. One
could triangularize the polynomial system by using elimination and perform ‘back
substitution’ through the repetitive use of univariate polynomial root-finders. A major
concern about this strategy is that since the solutions of the univariate polynomial will
only be approximate, the remaining polynomials to be solved will also be approximate
and hence a polynomial system which is different from the original is being solved.
There is little guarantee that the solutions of this new system are close to the original
ones. Accumulated errors can build up rapidly when the number of variables are high
and when polynomials of high degree are present. As one of the reviewers pointed out,
there exist univariate rootfinders that approximate roots up to an arbitrary accuracy
[4]. These could be possibly used to alleviate the problem of accumulated errors for
the case of exact coefficients. An alternative strategy for multivariate polynomial
root-finding would be to solve a generalized eigenvalue problem [33, 34]. How this can
be done without the use of a Gröbner basis will be explained in further work.

5.5. Gröbner basis. In computational algebraic geometry, the tool for elimi-
nation is a Gröbner basis with respect to the lexicographic monomial ordering. This
Gröbner basis has the triangular structure which was mentioned in the previous sec-
tion. In addition to the problem of accumulating errors when doing the back sub-
stitution, the downside of this Gröbner basis method is that a Gröbner basis for
lexicographic orderings suffers from a large size and is typically expensive to com-
pute.

Example 5.2. We revisit the unperturbed example of 5.4 and compute the
Gröbner basis of the polynomial system with respect to the lexicographic ordering
(x1 > x2 > x3 > x4 > x5 > x6) using Maple(TM) [1]:































g1 : −6859 + 3300 x2
6 = 0

g2 : −6859 + 3300 x2
5 = 0

g3 : 133− 330 x4 x6 + 361 x2
4 = 0

g4 : −6270 x5 + 3300 x4x5x6 + 6859 x3 = 0
g5 : 361x4 − 330 x6 + 361 x2 = 0
g6 : −3300 x4x5x6 + 6859 x1 = 0

This took 0.3 seconds. After scaling the univariate polynomial g of our algorithm
such that its constant term equals -6859 we can compare it with the exact result of the
Gröbner basis. We then have that ||g − g1||2 = 5.48× 10−11. Also note that g2 of the
Gröbner basis, which eliminates x1, x2, x3, x4 from the original polynomial system, is
univariate in x5 and of degree two. Our computed result is bivariate in x5, x6 and of
degree four. This shows that the result of elimination is not unique. Indeed, the set
of all polynomials g =

∑

i hifi from which the monomials xe are eliminated forms a
polynomial ideal. These ideals are called elimination ideals. It is a classic result that
a Gröbner basis with respect to the lexicographic ordering generates these elimination
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ideals. The computed bivariate polynomial in x5, x6 hence lies in the elimination ideal
spanned by g1, g2.

For the perturbed polynomial system it is impossible to print the Gröbner basis
{ĝ1, ĝ2, ĝ3, ĝ4, ĝ5, ĝ6} due to its large size. The reason for this large size is the ap-
pearance of higher order terms and of coefficients which consist of a large number of
digits. The constant term of ĝ1 for example has 169 digits. After proper scaling we
can compute ||g1 − ĝ1||2 = 0.68 which indicates a much higher loss of precision.

6. Conclusion. This article introduced a linear algebra framework in which
three fundamental operations of multivariate polynomials were discussed: multiplica-
tion, division and elimination. It was shown how multiplication corresponds with a
vector matrix product and division with a vector decomposition. Both the quotients
and the remainder can be found from an oblique projection onto certain subspaces.
Elimination was revealed to be linked with principal angles between subspaces and
the CS decomposition.

The description of multivariate polynomials in a linear algebra setting suffers on
the one hand from an inherent combinatorial explosion of dimensions. On the other
hand, the matrices are extremely sparse and therefore a sparse matrix representation
can be employed. In addition, the matrices described in this article are also very struc-
tured. Further exploitation of this sparseness and structure in the implementation of
the algorithms are the topics of future research. One already mentioned optimization
would be to update the QR factorization of the Macaulay matrix instead of recomput-
ing it completely during the elimination algorithm. Another interesting and necessary
avenue of future work is to achieve a better understanding of the numerical properties
of the Divisor and Macaulay matrix. Especially the influence of perturbations on the
rank revealing problem is of major importance since it might affect the choice of a
suitable numerical tolerance.
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