
 Open access Journal Article DOI:10.2178/JSL/1129642117

The geometry of non-distributive logics — Source link

Greg Restall, Francesco Paoli

Published on: 01 Dec 2005 - Journal of Symbolic Logic (Association for Symbolic Logic)

Topics: Minimal logic, Many-valued logic, Substructural logic, Paraconsistent logic and Intermediate logic

Related papers:

 Natural Deduction for Non-Classical Logics

 Core Logic: A Conspectus

 Foundations of Logic and Linguistics: Problems and Their Solutions

 Advanced Topics in Logic

 Normalisation for Some Quite Interesting Many-Valued Logics

Share this paper:

View more about this paper here: https://typeset.io/papers/the-geometry-of-non-distributive-logics-
57wqkoqnjg

https://typeset.io/
https://www.doi.org/10.2178/JSL/1129642117
https://typeset.io/papers/the-geometry-of-non-distributive-logics-57wqkoqnjg
https://typeset.io/authors/greg-restall-bzlhzc0uh9
https://typeset.io/authors/francesco-paoli-1ns0esv4rp
https://typeset.io/journals/journal-of-symbolic-logic-11f1sidy
https://typeset.io/topics/minimal-logic-287wgzdi
https://typeset.io/topics/many-valued-logic-3dwa66pd
https://typeset.io/topics/substructural-logic-1w39v6ah
https://typeset.io/topics/paraconsistent-logic-2m3pc850
https://typeset.io/topics/intermediate-logic-18fznmuw
https://typeset.io/papers/natural-deduction-for-non-classical-logics-44kvv6jziw
https://typeset.io/papers/core-logic-a-conspectus-1u0fx1tnis
https://typeset.io/papers/foundations-of-logic-and-linguistics-problems-and-their-g8c28uxnjt
https://typeset.io/papers/advanced-topics-in-logic-1iwiklnxmi
https://typeset.io/papers/normalisation-for-some-quite-interesting-many-valued-logics-29l8n7wwlf
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/the-geometry-of-non-distributive-logics-57wqkoqnjg
https://twitter.com/intent/tweet?text=The%20geometry%20of%20non-distributive%20logics&url=https://typeset.io/papers/the-geometry-of-non-distributive-logics-57wqkoqnjg
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/the-geometry-of-non-distributive-logics-57wqkoqnjg
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/the-geometry-of-non-distributive-logics-57wqkoqnjg
https://typeset.io/papers/the-geometry-of-non-distributive-logics-57wqkoqnjg

The Geometry of Non-Distributive Logics
G R

Philosophy Department
The University of Melbourne

restall@unimelb.edu.au

F P

Dipartimento di Scienze Pedagogiche e Filosofiche,
Università di Cagliari

paoli@unica.it

Version of April 28, 2005

Abstract: In this paper we introduce a new natural deduction system for the

logic of lattices, and a number of extensions of lattice logic with different nega-

tion connectives. We provide the class of natural deduction proofs with both

a standard inductive definition and a global graph-theoretical criterion for cor-

rectness, and we show how normalisation in this system corresponds to cut

elimination in the sequent calculus for lattice logic. This natural deduction

system is inspired both by Shoesmith and Smiley’s multiple conclusion systems

for classical logic and Girard’s proofnets for linear logic.

In this paper we present a new kind of natural deduction system for lattice

logic and extensions of lattice logic with negation. This natural deduction sys-

tem has a natural symmetry. The rules for lattice disjunction are exactly the

reverse of the rules for lattice conjunction. In this way, the natural deduction

system shares some features with Girard’s proofnets for multiplicative linear

logic [12]. Our proofs differ from proofnets, however, in that they are oriented

graphs in which the flow of information from premise to conclusion in infer-

ence is directly represented in the graph structure. Nonetheless, our proof

graphs can be given a global graph-theoretical criterion for correcteness, just

as can be done for Girard’s proofnets. Readers will also note that our proof

structures bear more than a passing resemblence to Shoesmith and Smiley’s

multiple conclusion proofs for classical logic, which are oriented graphs allow-

ing both divergent and convergent branching, just like ours. Our lattice logic

proofs differ from Shoesmith and Smiley’s multiple conclusion proofs in a num-

ber of important respects, not the least of which is that lattice logic proofs have

1

a single premise and a single output. Given all of these ancestors, our account

is distinctive in a number of different ways:

1 Lattice logic (also called finite sum-product logic [5]) is an extremely simple,

beautiful, and symmetric constructive logic, characterized by a straightfor-

ward duality property. Such a duality, involving disjunction and conjunction,

is completely obscured in the usual natural deduction rules for these con-

nectives, whereas our calculus allows to emphasize it properly. In particular,

the disturbing asymmetry between the straightforward∧I rule and its com-

plex ∨E counterpart is completely removed.

2 Finding a manageable and intuitively appealing calculus of proofnets for the

additive connectives of linear logic is still an open problem, despite earlier

suggestions, for example those of Girard [13] and Tortora De Falco [20, 21],

and a promising new perspective recently suggested by Hughes and van

Glabbeek [15]. Our approach is distinctive in that we build up a calculus

for the additives alone, rather than trying to integrate them into an already

existing calculus for the multiplicatives. In this way we isolate the distinc-

tive logical features of non-distributive lattice connectives and treat them

on their own merits.

3 Our calculus and its suggested expansions by a negation connective pro-

vide additional motivation for nondistributive logics; in particular, involu-

tive lattice logic and orthologic receive hereby an intuitively perspicuous

formulation.

1 L 

Lattices are familiar algebraic structures [3, 9, 14] featuring the operations meet

and join (conjunction and disjunction). A partial order 6 is induced on any

lattice by setting x 6 y to hold if and only of x ∧ y = x (iff x ∨ y = y).

From a logical perspective, this partial order looks like logical consequence. It is

well known that familiar logical techniques may be used to generate the class of

valid lattice inequalities. One straightforward technique is the sequent calculus.

Here, we present a familiar sequent calculus for the class of lattice inequations

(c.f. [5]): a sequent A ⇒ B represents an inequality holding in all lattices.

D 1 £0 is a propositional language containing denumerably many

variables p0, p1, . . . and the connectives∧,∨. Formulae are constructed in the

2

usual manner. The letters A,B, . . . are used as metavariables for formulae of

£0. The Gentzen system for lattice logic, , has the following postulates

given in Figure 1.

A ⇒ A (Id)
A ⇒ B B ⇒ C

(Cut)
A ⇒ C

A ⇒ C
(∧L1)

A ∧ B ⇒ C

B ⇒ C
(∧L2)

A ∧ B ⇒ C

A ⇒ B A ⇒ C
(∧R)

A ⇒ B ∧ C

A ⇒ C B ⇒ C
(∨L)

A ∨ B ⇒ C

C ⇒ A
(∨R1)

C ⇒ A ∨ B

C ⇒ B
(∨R2)

C ⇒ A ∨ B

Figure 1: The rules for the Gentzen system .

In , the rule (Cut) is redundant. Any sequent provable using (Cut) is also

provable without it.

T 2  is cut-free.

P The proof proceeds via the standard double induction on grade and

rank. Figure 2 contains examples of the relevant transformations, in which cuts

are pushed upward in a proof over each of the different kinds of inference. �

Notice that in some of the transformations, such as when a cut is pushed

over an identity axiom (1), or when a cut is pushed over a conjunction formula

(4), the resulting proof is smaller. In other cases, such as when a cut is pushed

over a disjunction introduction on the left (3), the result is a larger proof, in

which a subproof of the original proof is used twice in the new proof.

It is well known that a duality principle holds for lattices: if x 6 y is a valid

lattice inequality, then so is y ′ 6 x ′, where x ′ and y ′ are respectively obtained

from x and y by interchanging meets with joins and vice versa. This property

can be conveniently expressed in .

D 3 If A is a formula of £0, its dual Ad is inductively defined as

follows:

pd = p; (A ∧ B)d = Ad
∨ Bd; (A ∨ B)d = Ad

∧ Bd.

3

L
ef
t
(I
d
)

A
⇒

A

· · ·
A

⇒
C

A
⇒

C


1

· · ·
A

⇒
C

L
ef
t
(∧
L

1
)

· · ·
A

⇒
C

A
∧

B
⇒

C

· · ·
C
⇒

D

A
∧

B
⇒

D


2

· · ·
A

⇒
C

· · ·
C
⇒

D

A
⇒

D

A
∧

B
⇒

D

L
ef
t
(∨
L
)

· · ·
A

⇒
C

· · ·
B
⇒

C

A
∨

B
⇒

C

· · ·
C
⇒

D

A
∨

B
⇒

D


3

· · ·
A

⇒
C

· · ·
C
⇒

D

A
⇒

D

· · ·
B
⇒

C

· · ·
C
⇒

D

B
⇒

D

A
∨

B
⇒

D

(∧
R
,∧
L

1
)

· · ·
C
⇒

A

· · ·
C
⇒

B

C
⇒

A
∧

B

· · ·
A

⇒
D

A
∧

B
⇒

D

C
⇒

D


4

· · ·
C
⇒

A

· · ·
A

⇒
D

C
⇒

D

F
ig
ur
e
2:
T
ra
n
sf
or
m
at
io
n
s:
p
us
h
in
g
cu
ts
o
ve
r
in
fe
re
n
ce
s
in



.

4

T 4 If ⊢ A ⇒ B, then ⊢ Bd ⇒ Ad.

2 P 

In this section we shall consider a family of labelled graphs, and single out

from within this class those that correspond to correct proofs in . Some

of the definitions appearing in the present section are borrowed from either

Carbone [4], or Oliveira and Queiroz [17]; for an illustration of basic graph-

theoretical notions the reader is referred to standard texts [10].

A proof graph (to be defined below) is a connected and oriented graph in

which the vertices are labelled by formulas, and in which the edges (arrows)

indicate the flow of information from premise to conclusion. Of course, not

every arrangement of formulas and arrows between them will count as a proof

graph. The transitions in proofs must take some very particular forms: we will

call these basic transitions links, as they are chained together to produce the

transition from premise to conclusion.

A vertex in a proof graph cannot be the conclusion of more than one link,

and nor can it be the premise of more than one link. (If we wish to reuse infor-

mation we may use the contraction and expansion links to duplicate the formula

in question.)

D 5 A link in a proof graph is an oriented subgraph taking one of

the following eight configurations:

Simple

Links

(∧E1) (∧E2) (∨I1) (∨I2)

A ∧ B A A ∧ B B A A ∨ B B A ∨ B

Branching

Links

(∧I) (∨E) (Contraction) (Expansion)

A

B

A ∧ B A ∨ B

A

B

A

A

A A

A

A

For each link, the inputs of that link are the labelled vertices with no arrows

oriented toward them, and the outputs of a link are those with no arrows ori-

ented away from them. (In the table above the inputs of a link are on the left

and its outputs are on the right.) Simple links have one input and one output.

Branching links either have two inputs and one output or one input and two

outputs.

5

Now we can introduce proof graphs.

D 6 A proof graph is a connected, oriented graph π whose edges are

represented by arrows and whose vertices are labelled by formulae of £0. A

proof graph must satisfy the following three conditions:

1 Each edge in a proof graph belongs to one and only one link.

2 Each vertex in a graph is the input of at most one link.

3 Each vertex in a proof graph is the output of at most one link.

A vertex in a proof graph that is not the output of any link is said to be an input

of the proof graph. A vertex in a proof graph that is not the input of any link

is said to be an output of the proof graph. If a proof graph has no edges at all,

then it is said to be an axiom. (Since proof graphs are connected, an edgeless

graph consists of a single vertex.)

In what follows, we shall often identify the vertices of our graphs with the

formulas that label them. The letters u, v, a, b, . . . will be sometimes used to

refer to elements of V(π), the set of vertices of π, while such expressions as

u : A (vertex labelling statements) will mean that the vertex u is labelled by the

formula A. E(π) is the set of edges of π.

The different kinds of links appearing in proof graphs may be classified

in different ways. We have already seen one distinction, on the basis of their

geometry. Links with one input and one output are simple, and the other links

are branching. Branching links, in turn, can be divided into focussing links (∧I

and contraction links) and defocussing links (∨E and expansion links), where

focussing links have two inputs and one output, and defocussing links have

one input and two outputs. In virtue of their role governing the connectives,

the ∧I, ∧E, ∨I, and ∨E links are said to be logical, while the expansion and

contraction links are structural. Finally, for reasons that will become clearer

later, the ∧E, ∧I, and expansion links are called conjunctive, and the remaining

links are disjunctive. The following table summarizes this taxonomy.

6

Simple Branch. Foc. Defoc. Log. Struct. Conj. Disj.

∧E × × ×

∧I × × × ×

∨E × × × ×

∨I × × ×

E × × × ×

C × × × ×

D 7 A link in a proof graph is said to be initial if and only if each

input vertex of that link is an input vertex for the proof graph. Similarly, a

link is said to be final if and only if each output vertex of that link is an output

vertex for the proof graph.

A ∨ B

A

B

A ∧ B

Figure 3: The . (This is a proof graph, but not an -graph)

Some proof graphs correspond to correct proofs of , but others do not.

Proof graphs are too liberal to count as a faithful picture of inference in lattice

logic. For example, the proof graph in Figure 3 corresponds to an unsound

deduction of A ∧ B from the hypothesis A ∨ B. The (∨E) link in this graph

(leading from the inputA∨B) is initial, and the (∧I) link (leading to the ouptut

A∧B) is final. So, we must select from within the class of all proof graphs those

graphs which represent derivations in . We shall do so by means of the next

definition.

D 8 -graphs are connected and oriented graphs whose edges are

represented by arrows and whose vertices are labelled by formulae of £0, ac-

cording to the following inductive clauses:

A C: A graph made up by a single vertex, labelled by A, is an -

graph with input A and output A.

∧E C: If π is an -graph with input B (we will write this ‘B π ’),

then A ∧ B B π and B ∧ A B π are -graphs with inputs

A ∧ B and B ∧ A, respectively, and with the same outputs as π.

7

∨I C: If π is an -graph with output A (notation: ‘ π A’), then

π A A ∨ B and π A B ∨ A are -graphs with outputsA∨B

and B ∨ A, respectively, and with the same inputs as π.

∧I C: If π is an -graph with an input A and an output B (in our

notation: ‘A π B’) and σ is an -graph with the same input A and an

output C (‘A σ C’), then

A
A B

A C
B ∧ C

π

σ

is an -graph with input A and output B ∧ C.

∨E C: If π is an -graph with an input A and an output C and σ is an

-graph with the input B and the same output C, then

A ∨ B
A C

B C
C

π

σ

is an -graph with input A ∨ B and output C.

(C C): If π is an -graph with output A and σ is an -graph with

input A, then π A σ is an -graph with the same input as π and the

same output as σ.

Each -graph is a proof graph, since they are built using links drawn from the

set of Definition 5, and the only links added in the construction of an -graph

are added to the inputs or outputs of smaller graphs (so each vertex is the input

and output of at most one link, and each edge appears in exactly one link). The

converse, however, does not necessarily hold: the , for example, is a

proof graph but not a -graph. (Notice that every -graph containing a ∧I

link also has an expansion link. The  has a ∧I link but no expansion

link, so it is not an -graph. Notice too that -graphs constructed with the

∧I and ∨E clauses are somewhat reminiscent of Girard’s additive boxes [12].)

E 9 Here are two examples of -graphs. The first is a simple infer-

ence from A to A ∧ (A ∨ B). Notice the initial defocussing link duplicating

the input A. The top copy is used to infer A ∨ B, and this, with the bottom

8

copy, is used to infer the output conjunction.

A

A

A

A ∨ B

A ∧ (A ∨ B)

In the next -graph, only conjunction rules are used. The input A ∧ (B ∧ C)

is duplicated twice to produce three copies, each of which are decomposed

into a constituent conjunct, which are then reconstituted into a conjunction,

identical to the input except for a reassociation.

A ∧ (B ∧ C)

A ∧ (B ∧ C)

A ∧ (B ∧ C)

A ∧ (B ∧ C)

A ∧ (B ∧ C)

B ∧ C

A

B ∧ C B

A ∧ B

C

(A ∧ B) ∧ C

The -graphs we have seen all have a single input and a single output. This is

not a coincidence.

T 10 Every -graph has exactly one input vertex and exactly one output

vertex.

P A straightforward induction on the construction of -graphs. Each

axiom graph has one input and one output (the same labelled vertex.) Each rule

transforms single-input, single-output graphs into larger, single-input, single-

output graphs. �

And so, -graphs mirror in structure the sequents of . They take a single

input and a single output. We will see in the next section that this mirroring is

much closer than that.

3 C,  , 

Having introduced the notion of -graph, we aim for three results:

1 First and foremost, we need to show that -graphs really correspond to

sequent derivations in . We need to prove a completeness theorem.

9

2 Moreover, it would seem desirable to prove that the Cut clause in the con-

struction of proofs is redundant, viz. that by resorting to it we do not ac-

tually increase our stock of inferences underwritten by -graphs. In par-

ticular, we will examine the analogue of cut elimination in -graphs, to

produce normal -graphs.

3 Finally, we will reproduce in our new context the duality result of Theo-

rem 4, exposing the inherent duality of -graphs.

The completeness result is hardly more than a triviality, since the construction

clauses for -graphs explicitly simulate the inference rules of .

T 11 A ⇒ B is provable in  iff there exists an -graph πwith inputA

and output B.

Cut elimination is somewhat more interesting from the geometrical viewpoint.

Does the cutformula of an application of cut in a derivation in  play any spe-

cial role in the corresponding -graph π? It is readily observed that, in many

cases, the cutformula labels a cutvertex of π. In such cases, cut elimination cor-

responds to a decrease in the number of blocks in π. Unfortunately, this does

not hold in general; we shall see that sometimes a derivation with cuts and

its normalized counterpart are graph-theoretically indiscriminable from each

other.

T 12 Ifπ is an -graphwith inputA and outputB, there exists an -graph

σwith inputA and output Bwhich is built without using the cut clause.

P The proof is analogous to that of Theorem 2. We transform proofs

constructed using the Cut rule into those constructed without it. We confine

ourselves to some examples for each relevant reduction pattern. The cases

corresponding to transformations 1 and 2 in Theorem 2 require no transfor-

mation here, for the -graphs

A π C A ∧ B A C Dπ σ

represent both the  proof before transformation and the resulting 

proof after transformation. The cases corresponding to transformations 3

and 4 in the same proof are matched by the following transformations (com-

pare what happens with the  cut links in Tortora De Falco’s additive

10

proofnets [21]):

A ∨ B

A C

B C

C D

π

σ

τ 3 ′

A ∨ B

A C D

B C D

D

π τ

σ τ

C
C A

C B
A ∧ B A D

π

σ
τ 4 ′

C A Dπ τ

The transformed -graphs still contain cuts (in the graph after 3 ′ we have

two cuts on C, and in the proof after 4 ′ we have a cut on A), but as in the

cut elimination proof for , the resulting proofs are simpler, and the cuts

disappear in the inductive proof. �

E 13 We owe the reader an example of a single -graph that corre-

sponds to different sequent derivations in , only one of which is cut-free.

Here is one:

A ∧ B A

A

A

A ∨ B

A ∧ (A ∨ B)

This -graph corresponds to these two derivations, the first of which includes

a cut, and the second of which is cut-free:

A ⇒ A
(∧L1)

A ∧ B ⇒ A

A ⇒ A

A ⇒ A
(∨R1)

A ⇒ A ∨ B
(∧R)

A ⇒ A ∧ (A ∨ B)
(Cut)

A ∧ B ⇒ A ∧ (A ∨ B)

A ⇒ A

A ⇒ A
(∨R1)

A ⇒ A ∨ B
(∧R)

A ⇒ A ∧ (A ∨ B)
(∧L1)

A ∧ B ⇒ A ∧ (A ∨ B)

Lastly, we show an especially appealing version of the duality theorem. For a

start, we need to define what we mean by the dual of a -graph.

D 14 If π is an -graph, its dual πd is a graph obtained from π by

reversing all arrows and by replacing each formula A occurring therein by its

dual Ad.

T 15 If π is an -graph with input A and output B, its dual πd is an -

graph with input Bd and outputAd.

The proof is an induction on the construction of π as an -graph. We leave it

to the reader.

11

4 A C C

Proofnets for the multiplicative fragment of linear logic can be characterized

through an inductive definition which resembles our Definition 8 in that its

atomic steps closely match the rules of the corresponding sequent calculus.

One of the outstanding virtues of the calculus of proofnets, however, is the

availability of a purely graph-theoretical criterion according to which logically

correct proof graphs turn out to be exactly those graphs which obey a simple

and elegant condition [8]. This condition, unlike the traditional definition of

a natural deduction proof (and our definition of an -graph) is not an induc-

tively defined property, but rather, a global property of the structure of the

graph. In this section, we shall show that something similar can be done also

for -graphs. In order to do so, we need more definitions.

D 16 Let π be a proof graph. A switching of π is a spanning sub-

graph π ′ of π obtained from it by omitting one edge for each structural link in

π.

Let π be a proof graph. A branching part of π is a subgraph π ′ of π with a single

initial defocussing link and a single final focussing link.

A proof graph π has the switching property iff each one of its switchings is a tree.

A proof graph π has the branching property iff, for any branching parts σ and τ

of π, either E(σ) ⊆ E(τ) or E(τ) ⊆ E(σ) or E(σ) ∩ E(τ) = ∅.

A proof graph π with a single input and a single output is an -proofnet iff it

has both the switching and the branching property.

Notice that this definition implies that an -proofnet with at least one edge

has a unique inital link. It also seems apposite that the branching property in this

definition is reminiscent of Tortora de Falco’s nesting condition [21].

Our aim in this section, of course, is to show that a proof graph is an -graph

iff it is a -proofnet. We start with the easy direction of the biconditional.

T 17 Every -graph π is an -proofnet.

P Induction on the construction of π. First of all, recall (Theorem 10)

that every -graph has a single input and a single output. If π was obtained by

the axiom clause, then it has no branching part (whence it has the branching

property vacuously) and a single switching, which is a tree. If π = A ∧ B

12

B γ was obtained by the ∧E clause from γ, then by the induction hypoth-

esis every switching of γ is a tree. Therefore, grafting A ∧ B onto B does not

spoil acyclicity and connectivity. Moreover, such a move neither affects the

branching parts in γ nor increases their number, so π has the branching prop-

erty simply by the induction hypothesis. For the ∨I clause we argue similarly.

If π

A
A B

A C
B ∧ C

γ ′

γ ′′

was obtained by the ∧I clause from γ ′ and γ ′′, then by the induction hypothe-

sis every switching σ ′ of γ ′, as well as every switching σ ′′ of γ ′′, is a tree. Now,

consider the graph κ:

A B

A C
B ∧ C

σ ′

σ ′′

where σ ′ and σ ′′ are switchings of γ ′ and γ ′′, respectively. Since σ ′ and σ ′′ are

acyclic and disjoint, κ contains no cycle. Since σ ′ and σ ′′ are connected, κ is

such. Then κ ′ and κ ′′

A
A B

A C
B ∧ C

σ ′

σ ′′

A
A B

A C
B ∧ C

σ ′

σ ′′

are trees, since the added occurrences of A label minimal nodes. Moreover, π

has a single branching part which is not a branching part of either γ ′ or γ ′′, i.e.

π itself. Obviously, if δ is a branching part of either γ ′ or γ ′′, then E(δ) ⊆ E(π).

Furthermore, if δ ′ is a branching part of γ ′ and δ ′′ is a branching part of γ
′′

,

then E(δ ′)∩E(δ ′′) = ∅. Then, by the induction hypothesis, π has the branching

property. For the ∨E clause we argue similarly, and we may declare the result

proved. �

For the converse result, in the case of proofnets a splitting lemma is required.

We need a similar result.

T 18 Let τ be a -proofnet whose initial and final links are both branching:

x

y1 u1

y2 u2

v
α

β

13

then either α and β are disjoint or τ contains a cutvertex.

P Suppose that α and β are not disjoint. Then there are a ∈ V(α)/x

and b ∈ V(β)/v such that (a, b) ∈ E(τ). But (a, b) cannot form a simple link,

because every vertex in V(τ)/x is labelled with the output of a unique link and

is the input of at most one link. Then (a, b) is part of a branching link, which

we assume to be a focussing link
{

(a, b), (c, b)
}

(if the link is defocussing, the

reasoning is dual). Hence there are two possibilities:

1 Every path from x to v passes through b, and thus b is a cutvertex.

2 There is a path π from x to v which is not through b.

If we have 1, then we have our cutvertex and we are done. So consider 2:

the elements of E(π)/(x, yi) cannot be parts solely of simple links, or else

there could be no x − b path, which is impossible. Then there has to be at

least one branching link L, different from
{

(x, y1), (x, y2)
}

, such that: (i) π

passes through one of the edges of L; (ii) the other edge of L belongs to some

path from x to b; (iii) L is defocussing (in fact, if any link satisfying (i) and

(ii) were focussing, τ would have more than one input). Thus, L has the form
{

(d1, d2), (d1, d3)
}

. Without loss of generality, let π pass through (d1, d2).

Consider the following branching parts of τ:

• σ ′ is the branching part of τ whose initial link is
{

(x, y1), (x, y2)
}

and

whose final link is
{

(a, b), (c, b)
}

;

• σ ′′ is the branching part of τ whose initial link is
{

(d1, d2), (d1, d3)
}

and whose final link is
{

(u1, v), (u2, v)
}

.

It can be neither E(σ ′) ⊆ E(σ ′′) (since either (x, y1) or (x, y2) belongs to

E(σ
′

)/E(σ
′′

)) nor E(σ
′′

) ⊆ E(σ ′) (since either (u1, v) or (u2, v) belongs to

E(σ
′′

)/E(σ ′)) nor E(σ ′) ∩ E(σ ′′) = ∅ (since σ ′ and σ ′′ share at least the edge

(d1, d3)). Hence τ could not be a -proofnet, which is absurd. �

Now we can finally prove:

T 19 Every -proofnet τ is an -graph.

P Induction on the number n of links in τ. The case n = 0 is trivial.

Let n > 0. Since τ has a single input and a single output, only five cases are

possible:

1 Either the initial or the final link of τ is simple;

14

2 The initial link of τ is an expansion, the final link is an ∧I;

3 The initial link of τ is an ∨E, the final link is a contraction;

4 The initial link of τ is an expansion, the final link is a contraction;

5 The initial link of τ is an ∨E, the final link is an ∧I.

Consider these cases one-by-one.

1 τ has e.g. the following shape:

A ∧ B A Cπ

π must have a single input and a single output, or else τ would lack this prop-

erty as well. For the same reason, it must have the switching property and

the branching property. By the induction hypothesis, then, it is an -graph,

whence τ is an -graph as well by the ∧E clause. Other similar cases are

treated analogously.

2 τ has the following shape:

x = A

y1 = A u1 = B

y2 = A u2 = B
v = B ∧ C

π

σ

By Theorem 18, either π and σ are disjoint or τ contains a cutvertex. If π and

σ are disjoint, then so are any switching s(π) of π and any switching s(σ) of

σ. Each one of such switchings is acyclic (or else some switching of τ would

contain cycles) and connected (or else some switching of τ, obtained from it

by omitting either (x, y1) or (x, y2), would not be connected either). Hence

both π and σ have the switching property. Moreover, both π and σ have a

single input and a single output. Finally, since any branching part in π (or σ)

is a branching part of τ, the latter must have the branching property. Then by

the hypothesis both π and σ are -graphs, and so is τ by the ∧I clause.

On the other side, if τ contains a cutvertex b, let α be the maximal 2-

connected subgraph of τ containing x and let β be τ/α. Both α and β have

a single input (respectively x and b) and a single output (respectively b and v),

and their switchings are obviously acyclic and connected, since α and β share

no edge. Moreover, both α and β must have the branching property, or else

τ would lack it too. Then by the induction hypothesis α and β are -graphs,

15

and thus so is τ by applying the Cut clause.

3 This case is dual to 2.

4 τ would have the following shape:

x = A

y1 = A u1 = B

y2 = A u2 = B
v = B

π

σ

By Theorem 18, either τ contains a cutvertex or π and σ are disjoint. In the

former case, we argue as in 2. We now show that the latter case can never arise.

In fact, consider a switching s(τ) of τ where the edges (x, y1) and (u2, v) are

removed. In s(τ) there would be no path e.g. from y2 to u1, and thus τ would

not have the switching property, which is impossible.

5 τ would have the following shape:

x = A ∨ B

y1 = A u1 = B

y2 = C u2 = D
v = C ∧ D

π

σ

By Theorem 18, either τ contains a cutvertex or π and σ are disjoint. In the

former case, we argue as in 2. We now show that the latter case can never

arise. In fact, it is possible to choose switchings s(π) of π and s(σ) of σ in

such a way that there is a path π ′in s(π) from y1 to u1 and a path σ ′ in s(σ)

from y2 to u2: since every vertex in V(τ)/x can be labelled by the output

of a unique link and can be the premiss of at most one link, you never need

both edges of a structural link to get from yi to ui. Then some switching of τ

would contain a cycle, because there would be two paths from x to v, namely

x y1 π ′ u1 v and x y2 σ ′ u2 v which is

impossible. All cases are dealt with, and our proof is complete. �

In the last section of this paper we will sketch an example of how you can

extend this framework to incorporate other connectives. We will consider just

a simple addition: negation.

5 A 

It is of course possible to add a negation to lattice logic; it is likewise well-

known, however, that there are several ways to achieve this end. Dunn and

16

Hardegree [11, pp. 88–92] consider four ways in which this could be done ac-

cording to the type of complement which one may want to add to a general

lattice: a minimal complement satisfying just double negation introduction and

minimal contraposition can be strengthened either to a deMorgan complement

(by adding double negation elimination) or to a Heyting complement (by adding

the condition x⊓−x 6 y). One may decide, of course, to strenghten a minimal

complement simultaneously in both ways, thus obtaining an orthocomplement.

How do these algebraic conditions translate on the level of sequent calculi?

Consider a language £2 which expands £0 by a negation connective (¬). A

sequent is now an expression of the form Γ ⇒ ∆, where Γ and ∆ are multisets

of formulae of £2. Furthermore, consider the following restrictions which can

be placed on sequents (where ∪ denotes multiset union):

() Γ ∪ ∆ contains exactly two formulae and ∆ contains at most one formula.

That is, we allow sequents (A ⇒ B) with one antecedent and one conse-

quent, or sequents (A,B ⇒) with two antecedents and no consequent.

() Γ∪∆ contains exactly two formulae. That is, we allow the sequents allowed

in , but also sequents (⇒ A,B) with no antecedent and two consequents.

() Γ ∪ ∆ contains at most two formulae and ∆ contains at most one formula.

That is, we allow the sequents allowed in , but also sequents (A ⇒) with

one antecedent and no consequent, and (⇒ A) with one consequent and

no antecedent.

() Γ ∪ ∆ contains at most two formulae. So, we allow all of the sequents

mentioned above.

D 20 The sequent systems , ,  and  are based on

the language £2. Their sequents must abide, respectively, by the restrictions

(), (), () and (). Their respective postulates are exactly the postulates of

the sequent calculus for classical logic (with the rules for ∧ and ∨ formulated

additively), including all the structural rules that are compatible with these

restrictions. In particular, the negation rules are the familiar ones:

Γ ⇒ A,∆
(¬L)

Γ,¬A ⇒ ∆

Γ,A ⇒ ∆
(¬R)

Γ ⇒ ¬A,∆

in which we allow Γ and ∆ to take any values consistent with the appropriate

restrictions in the list given above.

17

The systems just defined correspond, respectively, to the implication-free frag-

ment of distributionless minimal logic, to the logic of involutive lattices (following

Dalla Chiara and Giuntini [6], we might also call it unbounded paraconsistent quan-

tum logic), to distributionless intuitionistic logic (without implication), and to ortho-

logic. Several sequent calculi for orthologic are known in the literature; the one

presented here is basically the same as in Schülte Mönting [19], and differs in

some respects from the calculi of Nishimura [16], Battilotti and Sambin [1] and

Battilotti and Faggian [7].

On the level of proof graphs, the “liberalization” of the form of sequents

that we had to tolerate in order to make the negation rules applicable imply

that there might, for example, be correct graphs with two inputs and no output.

We can take up either one of two equally legitimate attitudes to this difficulty.

We could simply ignore the problem, and let our proofs’ inputs and outputs

range from zero to two. If we chose this option, however, we would have to

redefine the rules for conjunction and disjunction to allow for such new shapes.

This might be appropriate in a general setting, but it requires a good deal of

duplication of labour. A more satisfactory way out, for our present purposes,

is available to us. This option, which allows us to confine ourselves to graphs

with a single input and a single output, consists in mimicking the display-logical

rules for negation [2, 18]. The next definitions explain in detail how to do this.

D 21 The collection of structures (£2, ) has as its

underlying language £2, and a unary punctuation mark ∂, and a nullary punc-

tuation mark ⋆ (truth/falsity). The elements of (£2, ) are the

elements of £2, or the punctuation mark ⋆, or either an element of £2 or ⋆

prefixed by ∂. X, Y, . . . will be used as metavariables for structures.

The ‘official’ definition of a set of structures [18, Chapter 2.2] allows punctua-

tion marks to be nested to any depth. This would count ∂∂A as a structure,

given a formula A. We do not need such structures in what follows (though it

would do no harm to add them), so we make do with a simple set of structures.

18

Now, consider the following list of clauses:

(¬1) π ∂X π ∂X ¬X

(¬2) X π Y ∂Y X π Y ¬X

(¬1) X π Y ¬Y X π Y ∂X

(¬2) ∂X π ¬X ∂X π

(1) X π ∂Y Y X π ∂Y ∂X

(2) ∂X π Y ∂Y ∂X π Y X

(⋆1) X π ⋆ X π ⋆ ∂⋆

(⋆2) ⋆ π X ∂⋆ ⋆ π X

(1) X π ⋆ X π ⋆ Y

(2) ⋆ π X Y ⋆ π X

(1) X π ∂X X π ∂X ⋆

(2) ∂X π X ⋆ ∂X π X

D 22 Let  ambiguously stand for any of the following: , ,

 or . Then -graphs are connected and oriented labelled graphs whose

edges are represented by arrows and whose nodes are labelled by members of

(£2, ), according to the clauses of Definition 8 and, in addition:

• For -graphs, the clauses (¬1), (¬1), (1);

• For -graphs, the clauses (¬1), (¬1), (1), (¬2), (¬2), (2);

• For -graphs, the clauses (¬1), (¬1), (1), (1), (1), (⋆1);

• For -graphs, all the clauses in the above list.

E 23 Here are some example proof graphs. First, there are proofs

for two intuitionistically acceptable de Morgan laws. This is an -graph for

¬(A ∨ B) ⇒ ¬A ∧ ¬B,

¬(A ∨ B)

¬(A ∨ B) A A ∨ B ∂A ¬A

¬(A ∨ B) B A ∨ B ∂B ¬B

¬A ∧ ¬B

19

and this is an -graph for ¬A ∨ ¬B ⇒ ¬(A ∧ B).

¬A ∨ ¬B

¬A A ∧ B A ∂(A ∧ B)

¬B A ∧ B B ∂(A ∧ B)

∂(A ∧ B) ¬(A ∧ B)

These proofs use only the minimal clauses for . In Figure 4 we have a proof

graph for an intuitionistically unacceptable inference ¬(A ∧ B) ⇒ ¬A ∨ ¬B,

and a corresponding sequent proof of the inference.

Finally, we present a proof using the nullary punctuation mark ⋆. Its use under-

girds the inference from A ∧ ¬A to B in .

A ∧ ¬A A A ∧ ¬A ¬A A ∂A ∂(A ∧ ¬A) ⋆ B

As you can see, we first have a proof from A ∧ ¬A to ⋆ (representing the

sequent A ∧ ¬A ⇒ with an empty consequent), and then the 1 step allows

the inference to B.

We shall confine ourselves to proving completeness of our notions of -graph

with respect to the corresponding sequent calculi. In order to state our com-

pleteness theorem, however, we need an extra ingredient: the notion of trans-

lation of a sequent.

D 24 Let Γ ⇒ ∆ be a sequent containing at most two formula

occurrences of £2. We select two elements of (£2, ) to count

as the input and output of the sequent.

Sequent Input Output

A ⇒ B A B

A,B ⇒ A ∂B

⇒ A,B ∂A B

A ⇒ A ⋆

⇒ A ⋆ A

⇒ ⋆ ⋆

We can now prove:

20

¬
(A

∧
B
)

∂
(A

∧
B
)

∂
(¬

A
∨

¬
B
)

∂
(¬

A
∨

¬
B
)

∂
A

A
¬

A
¬

A
∨

¬
B

A

∂
(¬

A
∨

¬
B
)

∂
B

B
¬

B
¬

A
∨

¬
B

B

A
∧

B
¬

A
∨

¬
B

A
⇒

A

⇒
A

,¬
A

∨
¬

B

⇒
¬

A
∨

¬
B
,A

B
⇒

B

⇒
B
,¬

A
∨

¬
B

⇒
¬

A
∨

¬
B
,B

⇒
¬

A
∨

¬
B
,A

∧
B

⇒
A

∧
B
,¬

A
∨

¬
B

¬
(A

∧
B
)
⇒

¬
A

∨
¬

B

F
ig
ur
e
4:
A



-g
ra
p
h
fo
r
¬

(A
∧

B
)
⇒

¬
A

∨
¬

B
,a
n
d
a
co
rr
es
p
on
d
in
g




p
ro
of

21

T 25 Let  ambiguously stand for any of the following: , ,  or .

Then ⊢ Γ ⇒ ∆ iff there exists an -graph that has the same input as Γ ⇒ ∆ and the

same output as Γ ⇒ ∆.

P Left to right: By induction on the length of the proof of Γ ⇒ ∆ in

. We check some cases. If A,¬B ⇒ was obtained from A ⇒ B by the left

negation rule, by the hypothesis there exists an -graph π with input A and

output B. Then by (¬1) and (1)

A ¬B A π B ∂A ∂¬B

is an -graph with the appropriate input and output. If A ⇒ ¬B was obtained

from A,B ⇒ by the right negation rule, by the hypothesis there exists a -

graph π with input A and output ∂B. Then by (¬1),

A π ∂B ¬B

is an -graph with the appropriate input and output.

If A ⇒ was obtained from A,A ⇒ by left contraction, by the induction

hypothesis there exists a -graph π with input A and output ∂A. Then, by

(1),

A π ∂A ⋆

is an -graph with the appropriate input and output.

If A ⇒ B was obtained from ⇒ B by left weakening, by the hypothesis

there exists a -graph π with input ⋆ and output B. Then, by (2),

A ⋆ π B

is an -graph with the appropriate input and output. If⇒ A,B was obtained

from ⇒ A by right weakening, by the induction hypothesis there exists an

-graph π with input ⋆ and output A. Then, by (2), (⋆2) and (1),

∂A ∂⋆ ⋆ π A ⋆ B

is an -graph with the appropriate input and output.

Right to left: We proceed by induction on the construction of π, and we reverse

the previous reasoning. �

Although it is a good thing that -graphs can be extended to a system on a

22

richer language, the geometric and structural features of the proof system are

somehow blurred by this treatment of negation. It would be interesting, and

perhaps not too difficult, to adjust the graph-theoretical characterisation of

Section 4 to the extended calculus. We leave this as a future task.1

R

[1] .   . . “Basic Logic and the Cube of its Extensions”.

In .   ., editor, Logic and Foundations of Mathematics, pages 165–185.

Kluwer, Dordrecht, 1999.

[2]  . . “Display Logic”. Journal of Philosophical Logic, 11:375–417, 1982.

[3]  . Lattice Theory. American Mathematical Society

Colloquium Publications, Rhode Island, 1973.

[4] . . “Duplication of directed graphs and exponential blow up of

proofs”. Annals of Pure and Applied Logic, 100:1–67, 1999.

[5] . . .   . . . . “Finite Sum-Product Logic”. Theory and

Applications of Categories, 8(5):63–99, 2001.

[6] . .    . . “Paraconsistent Quantum Logics”.

Foundations of Physics, 19:891–904, 1989.

[7] . .    . . “Quantum Logics”. In .  

. , editors, Handbook of Philosophical Logic, volume 6. Kluwer,

Dordrecht, Second edition, 2002.

[8]     . “The Structure of Multiplicatives”.

Archive of Mathematical Logic, 28:181–203, 1989.

[9] . .   . . . Introduction to Lattices and Order. Cambridge

University Press, Cambridge, 1990.

[10]  . Graph Theory, volume 173 of Graduate Texts in Mathematics.

Springer Verlag, New York, second edition, 2000. Text available at

http://www.math.uni-hamburg.de/home/diestel/books/graph.theory/.

[11] .     . . Algebraic Methods in Philosophical

Logic. Clarendon Press, Oxford, 2001.

[12] - . “Linear Logic”. Theoretical Computer Science, 50:1–101, 1987.

1We thank the anonymous referee for the addition of useful references, and for helping us
improve and compress an earlier version of this paper. We are also grateful to John Slaney, and
to audiences of talks (Melbourne, Australia October 2003; Alghero, Italy, September 2004) for
their helpful comments.

23

[13] - . “Proof-Nets: the parallel syntax for proof theory”. In Logic

and Algebra, pages 97–124. Dekker, New York, 1996.

[14]  ̈. General Lattice Theory. Academic Press, 1978.

[15] . . .   . .  . “Proof Nets for Unit-Free

Multiplicative-Additive Linear Logic”. In Proc. 18th Annual IEEE Symposium on

Logic and Computer Science, pages 1–10, Ottawa, June 2003. extended abstract.

[16] . . “Sequential Method in Quantum Logic”. Journal of Symbolic

Logic, 45:339–352, 1980.

[17] . .   . . . .  . “Geometry of Deduction via

Graphs of Proof”. In . . . .  , editor, Logic for Concurrency and

Synchronization, pages 3–88. Kluwer, Dordrecht, 2003.

[18]  . An Introduction to Substructural Logics. Routledge, 2000.

[19] . ̈ . “Cut Elimination and Word Problem for Varieties of

Lattices”. Algebra Universalis, 12:290–321, 1981.

[20] .   . “The Additive Multiboxes”. Annals of Pure and Applied

Logic, 120:65–102, 2003.

[21] .   . “Additives of Linear Logic and Normalization. Part I: A

(restricted) Church-Rosser property”. Theoretical Computer Science, 294:489–524,

2003.

24

