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Abstract

We develop a geometric framework that characterizes the synchronization problem — the problem of registering

or aligning a collection of objects in a consistent manner. The theory we formulate characterizes the cohomological

nature of synchronization based on the classical theory of fibre bundles. We first establish the correspondence between

synchronization problems in a topological group G over a connected graph Γ and the moduli space of flat principal G-

bundles over Γ, and develop a discrete analogy of the renowned theorem of classifying flat principal bundles with fix

base and structural group using the representation variety. In particular, we show that prescribing an edge potential on

a graph is equivalent to specifying an equivalence class of flat principal bundles, of which the triviality of holonomy

dictates the synchronizability of the edge potential. We then develop a twisted cohomology theory for associated

vector bundles of the flat principal bundle arising from an edge potential, which is a discrete version of the twisted

cohomology in differential geometry. This theory realizes the obstruction to synchronizability as a cohomology

group of the twisted de Rham cochain complex. We then extend the twisted cohomology theory to a twisted Hodge

theory — a fibre bundle analog of the discrete Hodge theory on graphs. The lowest-degree Hodge Laplacian of this

twisted Hodge theory recovers a geometric realization of the graph connection Laplacian (GCL), a group-valued

graph operator studied extensively in synchronization problems. Motivated by our geometric framework, we study

the problem of learning group actions — partitioning a collection of objects based on the local synchronizability

of pairwise correspondence relations. A dual interpretation is to learn finitely generated subgroups of an ambient

transformation group from noisy observed group elements. A synchronization-based algorithm is also provided, and

we demonstrate its efficacy using simulations and real data.
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1 Introduction

Over the past century, concepts from differential geometry have had a strong impact on probability theory, statisti-

cal inference, and machine learning [Che66, Cra46, Fis22, Mal36, Rao45]. Two central geometric concepts used in

these fields have been differential operators (e.g. the Laplace-Beltrami operator [BN04]) and Riemannian metrics

(e.g. Fisher information [Fis22]). In particular, the research program of manifold learning studies dimension re-

duction through the lens of differential-geometric quantities and invariants, and designs data compression algorithms

that preserve intrinsic geometric information such as geodesic distances [TdSL00], affine connections [RS00], second

fundamental forms [DG03], and heat kernels [BN03, CLL+05a, CLL+05b]. The underlying hypothesis of these tech-

niques is that the data lie approximately on a smooth manifold (often embedded in an ambient Euclidean space), a

scenario facilitating inference due to smoothly controllable transitions between observed and unseen data. For practi-

cal purposes, discrete analogues of the inherently smooth theory of differential geometry have also been explored in

fields ranging from geometry processing [BSSZ08, CdGDS13], finite element methods [AFW06], to spectral graph

theory [Chu97] and diffusion geometry [CL06, SW12].

Beyond the manifold assumption, geometric objects can be handled with “softer” tools such as topology: topo-

logical data analysis techniques [CZCG05, EH10] have been developed to study datasets based on their persistent
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homology. For smooth manifolds, it is well known that the singular cohomology and de Rham cohomology are iso-

morphic, indicating that some topological information can be read off from the differential structure of geometric

objects. Carrying the de Rham theory beyond the manifold setting has attracted the interest of geometers and physi-

cists: synthetic differential geometry [Koc82, Koc06] defines group-valued differential forms on “formal manifolds”

(generalized notion of smooth spaces for which infinitesimal neighborhoods are specified axiomatically), based on

which an analog of the classical de Rham theory can be established [FL90]; noncommutative differential geometry

[Con85, Con00, Mad99] builds upon the observation that much of differential geometry can be formulated in terms of

the algebra of smooth functions defined on smooth manifolds, and replaces this algebra with noncommutative ones —

differential forms can then be extended to “noncommutative spaces” along with homology and cohomology of much

more general objects. Discrete analogs of the Hodge Laplacian, a second order differential operator closely related to

de Rham theory, have been proposed for simplicial complexes and graphs [JLYY11, Lim15, PR16, PRT15, SKM14];

its non-commutative counterpart for 1-forms on graphs have recently been explored in [Maj13].

Bridging recent developments applying differential geometry and topology in probability and statistical sciences,

the problem of synchronization [BSS13, WS13] arise in a variety of fields in computer science (e.g. computer vi-

sion [BCSZ14] and geometry processing [KKBL15]), signal processing (e.g. sensor network localization [CLS12]),

combinatorial optimization (e.g. non-commutative Grothendieck inequality [BKS16]), and natural sciences (e.g. cryo-

electron microscopy [BCS15, SS12, SZSH11] and geometric morphometrics [Gao15]). The data given in a synchro-

nization problem include a connected graph that encodes similarity relations within a collection of objects, and pair-

wise correspondences — often realized as elements of a transformation group G — characterizing the nature of the

similarity between a pair of objects linked directly by an edge in the relation graph. The general goal of the problem is

to adjust the pairwise correspondences, which often suffer from noisy or incomplete measurements, to obtain a globally

consistent characterization of the pairwise relations for the entire dataset, in the sense that unveiling the transformation

between a pair of objects far-apart in the relation graph can be done by composing transformations along consecutive

edges on a path connecting the two objects, and the resulting composed transformation is independent of the choice

of the path. (A precise definition of a synchronization problem will be provided below; see Section 1.1.) This paper

stems from our attempt to gain a deeper understanding of the geometry underlying synchronization problems, and its

relation to the problem of learning group actions. Whereas previous works [SW12, SW13] in this direction build upon

manifold assumptions, the point of view we adopt here is synthetic and noncommutative: we will see that inference is

possible due to rigidity rather than smoothness.

The remainder of this section gives a formal definition of synchronization problems, as well as a geometric inter-

pretation in the language of fibre bundles. The fibre bundle interpretation is elementary but has not been presented in

the literature of synchronization problems, to our knowledge. We then state the main results, discuss related works,

and describe the organization of the paper.

1.1 A Fibre Bundle Interpretation of Synchronization Problems

We begin with a standard formulation of the synchronization problem originated in a series of works by A. Singer

and collaborators [Sin11, SS12, BSS13, WS13, BSAB14, BCS15]. Let Γ = (V, E,w) be an undirected weighted graph

with vertex set V , edge set E, and weights wi j for each (i, j) ∈ E. Assume G is a topological group acting on a normed

vector space F. Given a map ρ : E → G from the edges of Γ to the group G satisfying ρi j = ρ
−1
ji

, the objective of a

F-synchronization problem over Γ with respect to ρ is to find a map f : V → F satisfying the constraints

fi = ρi j f j ∀ (i, j) ∈ E. (1)

If no such map f exists, the synchronization problem consists of finding a map f from V to F that satisfies the

constraints as much as possible, in the sense of minimizing the frustration

η ( f ) =
1

2

∑

i, j∈V

wi j

∥∥∥ fi − ρi j f j

∥∥∥2

F

∑

i∈V

di ‖ fi‖
2
F

, (2)

where ‖·‖F is a norm defined on F, and di =
∑

j:(i, j)∈E wi j is the weighted degree at vertex i. In the terminology of

[BSS13], ρ is an edge potential and f is a vertex potential; a vertex potential is said to satisfy a given edge potential if all
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Table 1: Notations used throughout this paper

Γ graph

V vertex set of Γ

E edge set of Γ

n or |V | number of vertices of the graph Γ

m or |E| number of edges of the graph Γ

wi j weight on edge (i, j) ∈ E

di weighted degree on vertex i ∈ V , defined as di =
∑

j:(i, j)∈E wi j

G topological group

e identity element of G

Gδ group G equipped with discrete topology

K scalar field R or C

F vector space on K that is a representation space of G

d or dim F dimension of the vector space F

〈·, ·〉F inner product on F

U = {Ui | 1 ≤ i ≤ |V |} open cover of Γ in which Ui is the star of vertex i ∈ V

C0 (Γ; G) G-valued 0-cochain on Γ, or the set of all vertex potentials on Γ

C1 (Γ; G) G-valued 1-cochain on Γ, or the set of all edge potentials on Γ

C0 (Γ; F) F-valued 0-cochain on Γ

Bρ synchronization principal bundle (a flat principal G-bundle on Γ) associated with ρ ∈

C1 (Γ; G)

Bρ [F] flat associated F-bundle of Bρ

holρ holonomy homomorphism on Bρ, from π1 (Γ) to G

Holρ (Γ) holonomy of the synchronization principal bundle Bρ

Ω0
i

(
Γ; Bρ [F]

)
constant twisted local 0-forms of Bρ [F] on Ui, i.e. constant local sections of Bρ [F]

on Ui

Ω0
(
Γ; Bρ [F]

)
locally constant twisted global 0-forms of Bρ [F], i.e. locally constant global sections

of Bρ [F]

Ω1
i

(
Γ; Bρ [F]

)
constant twisted local 1-forms of Bρ [F] on Ui

Ω1
(
Γ; Bρ [F]

)
locally constant twisted global 1-forms of Bρ [F][

f
]

vector in Knd representing f ∈ C0 (Γ; F)

dρ ρ-twisted differential where ρ ∈ C1 (Γ; G), from C0 (Γ; F) to Ω1
(
Γ; Bρ [F]

)

δρ ρ-twisted codifferential where ρ ∈ C1 (Γ; G), from Ω1
(
Γ; Bρ [F]

)
to C0 (Γ; F)

∆
(0)
ρ ρ-twisted Hodge Laplacian of degree 0

∆
(1)
ρ ρ-twisted Hodge Laplacian of degree 1

H0
ρ

(
Γ; Bρ [F]

)
The 0th twisted cohomology group for Bρ [F], where ρ ∈ C1 (Γ; G)

ν (S ) frustration of the subgraph of Γ spanned by the vertex subset S ⊂ V
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equalities in (1) hold. Varying the choice of group G and field F results in different realizations of the synchronization

problem [SW11, SZSH11, TSR11, SS12, WS13, BSS13, BSAB14], as will be elaborated in Section 1.3.

Since we will frequently refer to the set of all edge and vertex potentials on a graph, let us introduce the following

notations to ease our exposition: let C0 (Γ; G), C1 (Γ; G) denote respectively the set of all G-valued vertex and edge

potentials on Γ, i.e.

C0 (Γ; G) := { f : V → G} , C1 (Γ; G) :=
{
ρ : E → G | ρi j = ρ

−1
ji ,∀ (i, j) ∈ E

}
. (3)

For cohomological reasons that will become clear in Section 2, we will also call C0 (Γ; G) and C1 (Γ; G) the G-valued

0- and 1-cochains on Γ, respectively. Similarly, let

C0 (Γ; F) := { f : V → F} (4)

denote the set of all F-valued vertex potentials on Γ. Throughout this paper, a G-valued edge potential ρ ∈ Ω0 (Γ; G)

is said to be synchronizable if there exists a G-valued vertex potential f ∈ Ω0 (Γ; G) satisfying fi = ρi j f j, ∀ (i, j) ∈ E,

i.e. (1) is satisfied with F = G. Generally, an F-valued vertex potential satisfying (1) will be referred to as a solution

to the F-synchronizable problem over Γ with respect to ρ, or simply F-valued synchronization solution. Clearly, ρ is

synchronizable if and only if a G-valued synchronization solution exists.

When F = G, i.e. when we consider the action of G on itself, a synchronizable edge potential can be realized

geometrically as a flat1 principal bundle that is isomorphic to a product space in its entirety, i.e. a trivial2 flat principal

bundle, as will be explained in Proposition 1.1 and Proposition 1.2 below; this observation forms the backbone of the

entire geometric framework we develop in this paper. When the fibre bundle is differentiable, this notion of flatness is

equivalent to the existence of a flat connection on the bundle, which is essentially a special case of the Riemann-Hilbert

correspondence [Esn88]. The main results of this paper build upon extending further and deeper the analogy between

the geometry of synchronization problems and fibre bundles.

Propositions 1.1 and 1.2 characterize the basic building block for the geometric formulation of synchronization

problems. We will develop the principal bundle in the generality of topological spaces that includes smooth structures

as particular cases. Following Steenrod [Ste51], a fibre bundle is a quintuple E = (E,M, F, π,G) where E, M, F

are topological spaces, referred to as the total space, base space, and fibre space, respectively; π : E → M is a

continuous surjective map, called the bundle projection, and M adopts an open cover {Ui} with homeomorphisms

φi : Ui × F → π−1 (Ui) between each π−1 (Ui) ⊂ E and the product space Ui × F, such that π
∣∣∣
π−1(Ui)

is the composition

of φi with proj1 : Ui × F → Ui, the canonical projection onto the first factor of the product space. In other words, the

following diagram is commutative:

π−1 (Ui) Ui × F

Ui

φi

π Proj1

The open cover {Ui} and the homeomorphisms {φi} together provides a system of local trivializations for the fibre bun-

dle E . Moreover, G is a topological transformation group on F encoding the compatibility of “change-of-coordinates”

on M, with respect to the provided local trivializations, in the following sense: at every x ∈ Ui∩U j , ∅, the restriction

of the composed map φ−1
i
◦ φ j : U j × F → Ui × F on {x} × F, which necessarily gives rise to a homeomorphism from

{x}×F to itself by definition, is canonically identified with a group element gi j (x) ∈ G, and the map gi j : Ui∩U j → G

is continuous. The topological group G is called the structure group of the fibre bundle E . The notation Fx is often

used to denote π−1 (x) for x ∈ M, and referred to as the fibre over x ∈ M. It is straightforward to check from these

definitions that

gii (x) = e ∀x ∈ Ui (5)

gi j (x) = g−1
ji (x) ∀x ∈ Ui ∩ U j (6)

gi j (x) g jk (x) = gik (x) ∀x ∈ Ui ∩ U j ∩ Uk (7)

1Recall (see, e.g. [Tu83, §2]) that a fibre bundle π : B → X, with total space B and base space X, is said to be flat if it admits a system of local

trivializations with locally constant bundle coordinate transformations.
2Note that a flat bundle is not necessarily trivial (i.e. isomorphic to a product space) — the fundamental group of the base space plays a central

role in this development (see e.g. [Mor01, Chapter 2]).
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where e is the identity element of the structural group G. The family of continuous maps
{
gi j : Ui ∩ U j → G

}
is called

a system of coordinate transformations for the fibre bundle E . Interestingly, essentially all information for determining

the fibre bundle E is encoded in the coordinate transformations, as the following theorem indicates:

Theorem 1.1 (Steenrod [Ste51] §3.2). If G is a topological transformation group of F, U j is an open cover of M,
{
gi j

}

is a family of continuous maps from each non-empty intersection Ui ∩U j to G satisfying (5), (6), (7), then there exists

a fibre bundle E with base space M, fibre F, structural group G, and coordinate transformations
{
gi j

}
. Any two such

fibre bundles are equivalent to each other.

The precise definition for two fibre bundles with the same base space, fibre space, and structural group to be

equivalent can be found in [Ste51, §2.4], but we will also cover it in Section 2.1. Notice that the conditions (5), (6),

(7) are reminiscent of the characterization for the synchronizability (1) of a G-valued edge potential on a connected

graph: if ρ satisfies (1) for a map f : V → G, then ρi j = fi f −1
j

on each edge (i, j) ∈ E, which certainly satisfies

ρii = e ∀i ∈ V, ρi j = ρ
−1
ji ∀ (i, j) ∈ E, ρi jρ jk = ρik ∀ (i, j) , ( j, k) , (i, k) ∈ E. (8)

As the following Proposition 1.1 establishes, viewing the graph Γ as a topological space, an appropriate open cover

of Γ can be found such that any synchronizable edge potential can be realized as coordinate transformations of a fibre

bundle with base space Γ and the topological group G serving both as the fibre space and the structure group. A fibre

bundle with its structural group as fibre type is called a principal bundle. Moreover, any such principal bundle must

also be flat, as the bundle coordinate transformations take constant values on every non-empty intersection of sets

in the open cover. The following simple concepts from combinatorial graph theory and algebraic topology (see, e.g.

[BC08, BT82]) will be needed for the statement and proof of Proposition 1.1:

1) A clique complex of a graph Γ = (V, E) is the simplicial complex with all complete subgraphs of Γ as its faces;

2) The star of a vertex v in a simplicial complex K is the union of all closed simplices in K containing v as a vertex;

3) The support of a simplicial complex K is the underlying topological space of K .

Proposition 1.1. Let G be a topological group, Γ = (V, E) a connected undirected graph, and ρ : E → G a map

satisfying ρi j = ρ
−1
ji

for all (i, j) ∈ E. Denote X for the 2-skeleton of the clique complex of the graph Γ, X the support

of X, and U = {Ui | 1 ≤ i ≤ |V |} for an open cover of X in which Ui is the interior of the star of vertex i. Then ρ is

synchronizable over G if and only if there exists a flat trivial principal fibre bundle π : Pρ → X with structure group

G and a system of local trivializations defined on the open sets in U with constant bundle transition functions ρi j on

non-empty Ui ∩ U j.

A proof of Proposition 1.1 can be found in Appendix A. The key idea is to view Γ as the 1-skeleton of its associated

clique complex, and use the open cover consisting of star neighborhoods of each vertex. A similar construction of

“Cryo-EM complex” has been used in [YL16] to classify data input to Cryo-EM problems, an important application

of synchronization techniques.

However, it is important to notice that the converse to Proposition (1.1) is not true in general; more precisely, an

edge potential satisfying (8), which necessarily specifies a flat principal bundle over Γ, need not be synchronizable.

For a simple example, consider a square graph Γ consisting of a four vertices 1, 2, 3, 4 and four edges (1, 2), (2, 3),

(3, 4), (4, 1), forming a closed simple loop but without any triangles enclosed by three edges. An edge potential

satisfying ρi j = ρ
−1
ji

on all edges clearly satisfies all equalities in (8) since no consistency needs to be checked on edge

triplets, but it is easy to find ρ violating the equality ρ12ρ23ρ34ρ41 = e which must be obeyed by any synchronizable

edge potential, provided that the group G is not trivial. The lesson is that the compatibility conditions (8) are of a

local nature, in the sense that the cycle-consistency (borrowing a term from geometry processing of shape collections

[NBCW+11a, HG13] that describes a compatibility constraint analogous to the last equality in (8)) is imposed only

on triangles composed of edge triplets; in contrast, synchronizability requires a stronger notion of “global” cycle-

consistency for the operation of composing group elements along loops of arbitrary length and topology on he graph.

In a certain sense, fibre bundles are the geometric models realizing edge potentials that are “locally synchronizable.”

Proposition 1.1 is our first attempt at understanding the geometric mechanism of synchronization problems. The

assumption of the synchronizability of ρ significantly restricts the range of applicability of this geometric analogy:

in most scenarios of interest, the synchronizability of an edge potential is the goal rather than the starting point for a

synchronization problem. Fortunately, it is possible to extend the fibre bundle analogy beyond the synchronizability
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assumption in Proposition 1.1, by restricting the model base space from the 2-skeleton of the clique complex of the

graph to the 1-skeleton, and adjust the open cover U accordingly: if we define an open cover U on the graph Γ (which

as a topological space is canonically identified with the 1-skeleton of its clique complex) in which each open set Ui

covers only vertex i and the interior of all edges adjacent to it, then Ui ∩U j , ∅ if and only if (i, j) ∈ E, and any triple

intersection of open sets in U is empty. In consequence, any system of bundle coordinate transformations defined on

U by a G-valued edge potential ρ automatically satisfies (5), (6), (7), and specifies a flat principal G-bundle over Γ,

denoted as Bρ, regardless of synchronizability. This is also consistent with the definition of vector bundles on graphs

in [Ken11]. Clearly, when ρ is synchronizable, Bρ is the restriction of the principal G-bundle Pρ in Proposition 1.1 to

the 1-skeleton of the base space Γ, therefore trivial as well. Conversely, if Bρ is trivial, by [Ste51, §2.10 or §4.3], there

exists a map f : Γ → G assigning a constant value fi for all points x ∈ Ui such that ρi j = fi f −1
j

for all Ui ∩ U j , ∅,

which gives rise to a map f : V → G by restriction to the vertex set V of Γ; this verifies all constraints in (1) and

establishes the synchronizability of the edge potential ρ. Consequently, the triviality of Bρ and Pρ implies each other,

both are equivalent to the synchronizability of ρ. We summarize these observations in Proposition 1.2 and formally

define the synchronization principal bundle Bρ, which will be of central importance for the geometric framework we

develop in the rest of this paper.

Proposition 1.2. Let G be a topological group, Γ = (V, E) a connected undirected graph, and ρ : E → G a map

satisfying ρi j = ρ
−1
ji

for all (i, j) ∈ E. Write U = {Ui | 1 ≤ i ≤ |V |} for an open cover of Γ in which Ui is the union of

the singe vertex set {i} with the interior of all edges adjacent to the vertex i. Then ρ defines a flat principal G-bundle

Bρ over Γ with a system of local trivializations defined on the open sets in U with constant bundle transition functions

ρi j on non-empty Ui ∩ U j. Furthermore, ρ is synchronizable if and only if Bρ is trivial.

Definition 1.1 (Synchronization Principal Bundle). The fibre bundle Bρ associated with the connected graph Γ and

edge potential ρ as characterized in Proposition 1.2 is called a synchronization principal bundle of edge potential ρ

over Γ, or a synchronization principal bundle for short.

In practice, it is often more convenient to work with Bρ rather than Pρ, not only since non-synchronizable edge

potentials are much more prevalent, but also because noisy or incomplete measurements almost always cause the

observed group elements ρi j ∈ G to be non-synchronizable. Solving for a G-valued synchronization solution can thus

be viewed as an approach to “denoising” or “filtering” those observed transformations ρi j, as was already implicit in

many applications [BSS13, BKS16]. In the sense of Proposition 1.2, these problems can be interpreted as inference

on the structure of flat principal bundles.

Most synchronization problems in practice [SW11, SZSH11, SS12, TSR11] considers vertex potentials valued in

G, the same topological group in which the prescribed edge potential takes value, pertaining to the principal bundle

picture (i.e. F = G) discussed in Proposition 1.1 and Proposition 1.2. Our fibre bundle interpretation naturally includes

more general synchronization problems in which the vertex potentials takes values in F , G as well, by relating the

synchronizability of an edge potential to the existence of global sections on an associated F-bundle Pρ ×η F or

Bρ ×η F, where η : G × F → F denotes the action of G on F. Essentially, an associated F-bundle Pρ ×η F (or

Bρ ×η F) is constructed using the same procedure as the principal bundle Pρ (or Bρ), but with fibre F instead of G.

The associated bundles Pρ ×η F, Bρ ×η F are thus also flat (but not necessarily trivial), since their bundle coordinate

transformations are equivalent to those of their principal bundle, up to the representation induced by the action η.

A major difference between working with an associated bundle and the principal bundle is that the cocycle condi-

tion ρk jρ ji = ρki may still not be satisfied in the presence of a vertex potential f : V → F satisfying (1), as elements in

F can not be “inverted” in general; another important difference is the relation between triviality and global sections:

whereas a principal bundle Pρ or Bρ is trivial if and only if one global section exists, which amounts to finding one

solution to the synchronization problem over Γ with respect to ρ, an associated bundle may admit one or more global

sections yet still be non-trivial. For instance, a vector bundle always admits the zero global section, regardless of its

triviality. It turns out that establishing the synchronizability of an edge potential through the triviality of an associated

bundle requires finding “sufficiently many” global sections of an associated bundle, or in terms of synchronization

problems, “sufficiently many” solutions satisfying (1). This is also reflected in the twisted Hodge theory we develop in

Section 2.2. Even though finding enough global sections seems to be more work, in practice it could be much easier to

find a set of global sections on the associated bundle than to find even only one global section on the principal bundle,

as the action of G on the space F introduces additional information from both geometric and practical points of view.

Since the flat F-bundle associated with Bρ will be essential for Section 2.2, we introduce the following definition:

Definition 1.2 (Synchronization Associated Bundle). The flat F-bundle on Γ associated with the flat principal bundle
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Bρ by the action of G on F is called a synchronization associated F-bundle of edge potential ρ over Γ, or synchro-

nization associated bundle for short, denoted as Bρ [F].

We close this preliminary section drawing analogy between synchronization problems and fibre bundles by clar-

ifying the relation among, and the geometric implications of, some variants of the optimization formulation of syn-

chronization problems. Given a graph Γ = (V, E) and a G-valued edge potential ρ, a direct translation of the goal of

finding an F-valued vertex potential f satisfying (1) as much as possible is to solve

min
f :V→F

∑

(i, j)∈E

CostF

(
ρi j f j, fi

)
, (9)

where CostF : F × F → [0,∞) is a cost function on F (e.g., derived from a distance or a norm). When we seek

multiple solutions to an F-synchronization problem over Γ with prescribed edge potential ρ, it is natural to impose the

additional constraints that the solutions should be sufficiently different from each other; in the presence of a Hilbert

space structure on F, it is convenient to impose orthogonality constraints between pairs of solutions to obtain linearly

independence. With additional normalization constraints to fix the issue of identifiability, this exactly translates into

the spectral relaxation algorithm in [BSS13]. If the prescribed edge potential is synchronizable, its synchronizability

will be confirmed once a sufficient number of synchronization solutions can be collected, where the actual number

depends on the property of the group G as well as its action on F; if not, a synchronizable edge potential can be

constructed from sufficiently many F-valued “approximate solutions” that minimize the objective function in (9) as

much as possible. The case G = F corresponds to the optimization problem

min
f :V→G

∑

(i, j)∈E

CostG
(
ρi j f j, fi

)
. (10)

which, in the case the CostG is G-invariant, is equivalent to

min
f :V→G

∑

(i, j)∈E

CostG
(
ρi j, fi f −1

j

)
. (11)

If ρ is synchronizable, a minimizer of (10) (or (9)) attaining zero objective value can be geometrically realized as

a global section of the synchronization principal bundle Bρ (or Pρ); such a minimizer implies the triviality of the

principal bundle Bρ (or Pρ), but not necessarily so in general for the associated bundle Bρ ×η F (or Pρ ×η F). If ρ is

not synchronizable, the minimum values of (10), (11), and (9) are all greater than zero, and minimizer of (10) or (11)

can be viewed as a “denoised” or “filtered” version of a trivial flat principal bundle underlying the dataset.

1.2 Main Contributions

In this section we give a brief overview of our main contribution. We will motivate the two ingredients of the geometric

framework developed in Section 2, namely, holonomy representation and Hodge theory, by demonstrating preliminary

versions of our formulation that lead to weaker conclusions or incomplete geometric pictures, then sketch the full

approaches adopted in Section 2. Finally, we draw the link between the geometric framework and the proposal of the

learning group actions (LGA) problem.

1.2.1 Holonomy of Synchronization Principal Bundles

Consider Bρ, the synchronization principal bundle arising from a G-synchronization problem over a connected graph

Γ = (V, E) with respect to ρ ∈ C1 (Γ; G). Fix an arbitrary vertex v ∈ V , and denote the set of all v-based loops in Γ

(loops with v as both the starting and ending vertex) as Ωv; Ωv carries a natural group structure by the composition

of v-based loops. Now the procedure of taking the product of the values of ρ along the consecutive edges in the loop

specifies a group homomorphism from Ωv into G. Denote the image of this group homomorphism by Hv, which is

necessarily a finitely generated subgroup of G since Γ is a finite graph. The simple but important observation here is

that Hv is the trivial subgroup of G if and only if ρ is synchronizable. The group Hv is the analogy of the holonomy

group based at v in differential geometry, if we view ρi j on edge (i, j) as the parallel-transport between fibres of Bρ

at i, j ∈ V .
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Section 2.1 is devoted to a deeper and more systematic treatment of the group homomorphism from loops in Γ

to the structure group G. We will define Holρ (Γ), the holonomy of the synchronization principal bundle Bρ (inde-

pendent of the choice of the base vertex v), as well as an equivalence relation on C1 (Γ; G) induced by a right action

of C0 (Γ; G) (which is treated implicitly when solving synchronization problems in practice), and establish a corre-

spondence between Holρ (Γ) and the equivalence class in C1 (Γ; G) /C0 (Γ; G) to which ρ ∈ C1 (Γ; G) belongs. In

particular, trivial holonomy Holρ (Γ) corresponds to the orbit in C1 (Γ; G) /C0 (Γ; G) consisting precisely of all syn-

chronizable edge potentials. This correspondence will be formulated in Theorem 2.1 as between C1 (Γ; G) /C0 (Γ; G)

and Hom (π1 (Γ) ,G) /G, the representation variety of the fundamental group of Γ into G.

1.2.2 Twisted De Rham Cohomology of Associated Vector Bundles

The graph connection Laplacian (GCL) for an F-synchronization problem over graph Γ with respect to ρ ∈ Ω1 (Γ; G)

is a linear operator on Ω0 (Γ; F) defined as

(L1 f )i :=
1

di

∑

j:(i, j)∈E

wi j

(
fi − ρi j f j

)
, ∀i ∈ V, ∀ f ∈ C0 (Γ; F) .

If F is a vector space and G has a matrix representation on F, GCL can be written as a block matrix in which the (i, j)-

th block is the matrix representation of ρi j, if (i, j) ∈ E. GCL essentially carries all information of a synchronization

problem and is of central importance to the spectral and SDP relaxation algorithms for synchronization. Our motivation

for Section 2.2 was to provide a cohomological interpretation for GCL, in the hope of realizing it geometrically as

a Hodge Laplacian in a cochain complex, inspired by a similar geometric realization of the graph Laplacian (in the

context of algebraic and spectral graph theory) as a Hodge Laplacian on degree-zero forms in discrete Hodge theory

(see Appendix B). Note that GCL reduces to the graph Laplacian if the group G is a scalar field.

In the literature of differential geometry, twisted differential forms on a flat vector bundle E can be intuitively

thought as bundle-valued differential forms on the base manifold. The twisted Hodge theory we develop in Section 2.2

defines two discrete differential operators that are formal adjoints of each other between constant twisted local 0-

forms and constant twisted local 1-forms on the synchronization associated F-bundle Bρ [F] , namely the ρ-twisted

differential dρ and the ρ-twisted codifferential δρ, such that GCL can be written as the composition δρdρ. Provisionally,

by identifying each f ∈ C0 (Γ; F) naturally with a collection of constant twisted local 0-forms — one for each open

set Ui ∈ U— a coarse approximation of our construction can be written as

(
dρ f

)
i j
∼ fi − ρi j f j, ∀ f ∈ C0 (Γ; F) ,

(
δρω

)
i
∼

1

di

∑

j:(i, j)∈E

wi jωi j, ∀ω ∈ C1 (Γ; F) :=
{
ω : E → F | ωi j = −ω ji ∀ (i, j) ∈ E

}
,

from which it can be easily checked that L1 = δρdρ on C0 (Γ; F). The main conceptual difficulty with this natural

formulation is that “dρ f ” defined as such does not possess the skew-symmetry desired for 1-forms, since in general

f j − ρ ji f j = −ρ ji

(
fi − ρi j f j

)
, −

(
fi − ρi j f j

)
. (12)

The framework we develop in Section 2.2 circumvent this skew-symmetry issue with 1-forms by defining fi−ρi j f j

as the representation of dρ f , a twisted global 1-form defined over the entire graph Γ, in the system of local trivializations

of Bρ [F] over the open cover U. We then define the ρ-twisted codifferential δρ that is the formal adjoint of dρ
with respect to inner products naturally specified on the space of twisted local 0- and 1-forms, and realize the graph

connection Laplacian L1 as the degree-zero Hodge Laplacian δρdρ : C0 (Γ; G) → C0 (Γ; G) in the twisted de Rham

cochain complex (41). These constructions lead to two different characterizations of the synchronizability of ρ, one

in Proposition 2.3 with a twisted de Rham cohomology group, and the other through a Hodge-type decomposition

of C0 (Γ; F) following Theorem 2.3. This twisted Hodge theory also provides geometric insights for the GCL-based

spectral relaxation algorithm and Cheeger-type inequalities in [BSS13], as we will elaborate in Section 2.2.4.

1.2.3 Learning Group Actions via Synchronizability

Fibre bundles are topological spaces that are product spaces locally but not necessarily globally. However, we can still

look for maximal open subsets of the base space on which the fibre bundle is trivializable, and seek a decomposition
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of the base space into the union of such “maximal trivializable subsets.” This intuition motivated us to consider

applying synchronization techniques to partition a graph into connected components, based on the synchronizability

of a prescribed edge potential in addition to the connectivity of the graph. In Section 3.1, we define the general problem

of learning group actions (LGA) for a set X, equipped with an action by group G, as searching for a partition of X

into a specified number of subsets and learning a new group action on X that is cycle-consistent within each partition;

the cycle-consistency need not be maintained for a cycle of actions across multiple partitions. The LGA problem is

then specialized to the setting of synchronization problems (learning group actions by synchronization, or LGAS), for

which we define a quantity that measures the performance of graph partitions based on the synchronizability of a fixed

edge potential on the entire graph Γ, motivated by the classical normalized graph cut algorithm. Finally, we propose

in Section 3.2 a heuristic algorithm for LGAS, building upon iteratively applying existing synchronization techniques

hierarchically and performing spectral clustering on the edge-wise frustration.

1.3 Broader Context and Related Work

The synchronization problem has been studied for a variety of choices of topological groups G and spaces F. Typically

these formulations fall into our principal bundle setting and require an underlying manifold structure. We give a brief

summary for the correspondences between choices of G and F in our framework and the practical instances in the

synchronization literature: In [BSS13] G = F = O (d) and G = O (d), F = Sd−1 are studied; the case G = F = SO (d)

is examined in [BSAB14, WS13]; orientation detection or G = F = O (1) is considered in [SW11]; cryo-electron

microscopy concerns G = F = SO (2) [SS12, SZSH11]; globally aligning three-dimensional scans is the case where

G = F = SO (3), and so is [TSR11].

Our formulation of the synchronization problem considers a broader class of geometric structure than what has

been proposed in the literature. Specifically, we do not require a manifold assumption (as the problem is modeled on

topological spaces), or a principal bundle structure (as we can work with any associated bundle), or compact and/or

commutative structure groups. For comparison, the vector and principal bundle framework developed in [SW12,

SW13] relies on manifold assumptions for the base, fibre, and total space, as well as an (extrinsic) isometric embedding

into an ambient Euclidean space for locally estimating tangent spaces and parallel-transports; similarly for recent work

[Gao16] extending this geometric framework to smooth bundles with general fibre types. Both Vector Diffusion Maps

(VDM) [SW12] and Horizontal Diffusion Maps (HDM) [Gao16] can be viewed as attempts at combining the idea of

synchronization with diffusion geometry [CL06, CLL+05a, CLL+05b]. The geometry underlying the synchronization

problem related to cryo-electron microscopy [SS12, SZSH11] can be described using the language of SO (2)-principal

bundles, as recently demonstrated in [YL16], with a Čech cohomology approach through Leray’s Theorem which

depends essentially on the commutativity of the structure group SO (2), whereas most synchronization problems of

practical interest involve noncommutative structure groups. The Non-Unique Games (NUG) and SDP relaxation

framework established in [BCS15, BCSZ14] assumes the compactness of the structure group G, and resorts to a

compactification procedure that maps a subset of G to another compact group for synchronization problems over non-

compact groups such as the Euclidean group in the motion estimation problem in computer vision [MP07, HTDL13].

The graph twisted Hodge theory we develop in Section 2.2 also has ties to recent developments in discrete Hodge

theory [JLYY11, Lim15, MS16, PR16, PRT15, SKM14]. In [Ken11] Laplacians on one- and two-dimensional vector

bundles on graphs were used to understand the relation between graphs embedded on surfaces and cycle rooted span-

ning forests, generalizing the relation between spanning trees and graph Laplacians. Variants of the graph Laplacian

have been used to relate ranking problems to synchronization problems in [Cuc16, FS15]; a combinatorial Laplacians

based on a discrete Hodge theory on directed graphs has been successfully applied to decompose ranking problems

and games into “gradient-like” versus “cyclic” components in [JLYY11, CMOP11], and to visualize directed networks

in [FAS16]. Discrete Laplacians on simplicial complexes have been proposed, and spectral properties such as Cheeger

inequalities and stationary distributions of random walks have been examined in a series of papers [JLYY11, Lim15,

MS16, PR16, PRT15, SKM14]. The cocycle conditions (8) are also characterized in geometry processing and com-

puter vision recently for analysis of shape or image collections [NBCW+11b, HG13, WHG13, HWG14], where they

are also known as cycle-consistency conditions.

The geometric and topological tools we utilize in this paper, namely those involving the topology and geometry

of fibre bundles, are covered in most standard textbooks, e.g. [Ste51, Tau11, BT82]. After Milnor’s seminal work

on flat connections on a Riemannian manifold [Mil58], the relation between flat bundles and their holonomy homo-

morphisms became widely known [KT67, Lue76, Gol82, Vas83, Cor88] and is still attracting interests of modern

mathematical physicists (e.g. Higgs bundles and representation of the fundamental group [Hit87, Sim92]). In a com-
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pletely topological setup, flat bundles can be characterized as fibrations with a homotopy-invariant lifting property

(a topological analogue of parallel-transport in differential geometry); essentially the same correspondence between

flat bundles and holonomy homomorphisms is already known to Steenrod [Ste51] and referred to as characteristic

classes of flat bundles [Dup76, Lue76, Gol82, Esn88]. In a broader context, the correspondence between flat bundles

(integrable connections) and local systems (locally constant sheaves) is a special case of the Riemann-Hilbert corre-

spondence, a higher-dimensional generalization of Hilbert’s twenty-first problem [Bol90, AB]. This correspondence

fostered important developments in algebraic geometry, including D-modules [Kas79, Kas84, Meb80, Meb84] and

Deligne’s work on integrable algebraic connections [Del70]. Understanding the representation varieties of the funda-

mental groups of Riemann surfaces into Lie groups has been of interest to algebraic geometers, geometric topologists,

and representation theorists in the past decades [Lab13, Gol06].

The rest of this paper is organized as follows. Section 2 establishes the geometric framework for synchronization

problems, relating the synchronizability of an edge potential ρ to (a) the triviality of the holonomy of the flat principal

bundle Bρ, in Section 2.1; (b) the dimension of the zero-th degree twisted cohomology group of a ρ-twisted de

Rham cochain complex, as well as the dimension of the kernel of the zero-th degree twisted Hodge Laplacian, in

Section 2.2. Section 3 defines the problem of learning group actions, and proposes SynCut, a heuristic algorithm based

on synchronization and graph spectral techniques. Numerical simulations indicating the effectiveness of SynCut is

performed on synthetic datasets in Section 3.3 and on a real dataset of a collection of anatomical surfaces in Section 4.

A few problems of potential interest are listed in Section 5 for future exploration.

2 Synchronization as a Cohomology Problem

This section concerns two geometric aspects of the synchronization problem. Section 2.1 links the synchronizability

of an edge potential to the triviality of the holonomy group of a flat principal bundle. Section 2.2 establishes a discrete

twisted Hodge theory that naturally realizes the graph connection Laplacian as the lowest-order Hodge Laplacian

of a twisted de Rham cochain complex. The obstruction to synchronizability of an edge potential turns out to be

a cohomology group in the twisted de Rham complex; the degeneracy of this cohomology group is reflected in the

spectral information of the twisted Hodge Laplacian, which also provides a geometric interpretation for the relaxation

techniques used in solving synchronization problems.

2.1 Holonomy and Synchronizability

The two main results in this section, Corollary 2.2 and Theorem 2.1, relate the synchronizability of an edge potential ρ

to the triviality of the holonomy group of the synchronization principal bundle Bρ. Our motivation is as follows. Recall

from Proposition 1.2 that G-synchronization problems on a fixed graph Γ with different edge potentials are in one-to-

one correspondence with flat principal G-bundles over Γ, and the synchronizability of an edge potential translates

into the triviality of the bundle; whereas the one-to-one correspondence is stated at the level of local coordinates in

Proposition 1.2, the triviality of the principal bundle is a property of the equivalence classes of flat principal G-bundles,

which suggests the same level of abstraction for synchronizability. As will be precisely stated later in this subsection,

(appropriately defined) equivalence classes of edge potentials form the moduli space of flat G-bundles on Γ, and a given

edge potential is synchronizable if and only if it belongs to the same equivalence class as the trivial edge potential that

assigns each edge of Γ the identity element e ∈ G. The holonomy group, or the equivalence classes of holonomy

homomorphisms from the fundamental group of Γ to the structure group G, is a faithful representation of the moduli

space of flat principal G-bundles on Γ; we thus will be able to detect the synchronizability of an edge potential through

the triviality of the associated holonomy group. This argument is reminiscent of classical classification theorems of

(1) principal bundles with disconnected structure groups in topology (see e.g. [Ste51, §13.9]); (2) flat connections in

differential geometry (see e.g. [Tau11, §13.6]); and (3) holomorphic vector bundles of fixed rank and degree (see e.g.

[Wel07, Appendix §2.1]) in complex geometry.

For f ∈ C0 (Γ; G), ρ ∈ C1 (Γ; G), we say that f and ρ are compatible on edge (i, j) ∈ E if fi = ρi j f j, and that f and

ρ are compatible on graph Γ if they are compatible on every edge in Γ. Recall from Definition 1.1 that we write Bρ

for the synchronization principal bundle associated with ρ ∈ C1 (Γ; G), as described in Proposition 1.2. Equivalently,

it is often convenient to view Bρ as a Gδ-bundle on Γ, where Gδ is the same group as G but equipped with the discrete

topology. For ρ, ρ̃ ∈ Γ, the Gδ-bundles Bρ, Bρ̃ are equivalent, denoted as Bρ ∼ Bρ̃, if a bundle map (see [Ste51,

§2.5]) exists between Bρ and Bρ̃ that induces the identity map on the base space Γ. Since Bρ,Bρ̃ have the same base
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space, fibre, and structure group, recall from [Ste51, Lemma 2.10] that they are equivalent if and only if there exist

continuous functions λi : Ui → Gδ defined on each Ui ∈ U such that

ρ̃i j = λi (x)−1 ρi j λ j (x) , ∀x ∈ Ui ∩ U j , ∅.

Since the topology on Gδ is discrete and Ui is connected, λi is constant on Ui, and defines a vertex potential by setting

fi := λi (vi), where vi ∈ Ui is the ith vertex of Γ. This proves the following lemma:

Lemma 2.1. Two edge potentials ρ, ρ̃ ∈ C1 (Γ; G) define equivalent flat principal G-bundles on Γ if and only if there

exists f ∈ C0 (Γ; G) such that

ρ̃i j = f −1
i ρi j f j, ∀ (i, j) ∈ E. (13)

In other words, equivalence classes of flat principal G-bundles on Γ determined by edge potentials (through Proposi-

tion 1.2) are in one-to-one correspondence with equivalence classes in the orbit space C1 (Γ; G) /C0 (Γ; G), where the

right action of C0 (Γ; G) on C1 (Γ; G) is defined as

[
f (ρ)

]
i j := f −1

i ρi j f j, ∀ (i, j) ∈ E. (14)

Remark 2.1. The orbit space C1 (Γ; G) /C0 (Γ; G) is exactly the first cohomology set Ȟ1
(
(Γ,U) ,G

)
for the sheaf of

germs of locally constant G-valued functions over Γ with respect to the open cover U, where G is possibly nonabelian.

It is thus not surprising that the orbit space should identify naturally with isomorphism classes of flat principal G-

bundles over Γ (see e.g. [Bry07, Proposition 4.1.2] or [Mic08, §8.1]).

A path in Γ is a collection of consecutive edges in Γ. If all edges in path γ are oriented consistently, we say

γ is an oriented path. For any oriented path γ, define γ−1 the reverse of γ as the path in Γ consisting of the same

consecutive edges in γ listed in the opposite order and with all orientations reversed. For an oriented path γ consisting

of consecutive edges {(i0, i1) , (i1, i2) , · · · , (iN−1, iN)} set

holρ (γ) =
(
ρiN ,iN−1

ρiN−1,iN−2
· · · ρi2,i1ρi1,i0

)−1
= ρi0,1ρi1,i2 · · · ρiN−2,iN−1

ρiN−1,iN
∈ G, (15)

then holρ maps paths in Γ to elements of group G. For two oriented paths γ, γ′ such that the ending vertex of γ

coincides with the starting vertex of γ′, define γ ◦ γ′ as the oriented path constructed by concatenating γ′ with γ. It is

then straightforward to verify by definition that

holρ
(
γ−1

)
= holρ (γ)−1 , holρ

(
γ ◦ γ′

)
= holρ (γ) holρ

(
γ′

)
. (16)

If an oriented path starts and ends at the same vertex v, we call it an oriented loop based at vertex v. Denote Ωv for all

loops based at v ∈ V in Γ, including the single vertex set {v} viewed as the identity loop based at v. Clearly, Ωv carries

a group structure with the loop concatenation and reversion operations. The equalities in (16) ensures holρ ({v}) = e

and that holρ : Ωv → G is a group homomorphism. Moreover, since graph Γ does not contain any 2-simplices, two

oriented loops based at v are homotopic if and only if they differ by a collection of disconnected trees in Γ, in which

every tree gets mapped to e ∈ G under the map holρ; the map holρ : Ωv → G thus descends naturally to a map to

G from π1 (Γ, v), the fundamental group of Γ based at v. Unless confusions arise, we shall also denote the descended

map as holρ for simplicity of notation. Lemma 2.2 below summarizes these discussions.

Lemma 2.2. The map holρ : π1 (Γ, v) → G defined in (15) is a group homomorphism. In particular, the image of this

homomorphism is a subgroup of G.

We will refer to the group homomorphism holρ : π1 (Γ, v) → G as the holonomy homomorphism at v ∈ Γ for a

G-synchronization problem with prescribed edge potential ρ ∈ C1 (Γ; G). Define the holonomy group at v ∈ Γ of edge

potential ρ as the image

Holρ (v) := holρ (π1 (Γ, v)) .

From a different point of view, Lemma 2.2 assigns an element of Hom (π1 (Γ, v) ,G) to each element of C1 (Γ; G),

where Hom (π1 (Γ, v) ,G) is the set of group homomorphisms from π1 (Γ, v) to G.

Lemma 2.3. If Γ is connected, the holonomy groups Holρ (v), Holρ (w) at v,w ∈ V are conjugate to each other as

subgroups of G.
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Proof. Let γ be a path in Γ connecting vertex v to vertex w. The fundamental groups of Γ based at v,w are related by

conjugation π1 (Γ, v) = γ−1π1 (Γ,w) γ, thus

Holρ (v) = Holρ
(
γ−1π1 (Γ,w) γ

)
= Holρ

(
γ−1

)
Holρ (π1 (Γ,w)) Holρ (γ) = Holρ (γ)−1 Holρ (w) Holρ (γ) .

�

Define the holonomy of ρ ∈ C1 (Γ; G) on a connected graph Γ as the following conjugacy class (orbit of the action

by conjugation) of subgroups of G:

Holρ (Γ) :=
{
g−1Holρ (v) g

∣∣∣ for all g ∈ G, and an arbitrarily chosen but fixed vertex v ∈ V
}
. (17)

By Lemma 2.3, the definition of Holρ (Γ) is independent of the choice of a fixed base v ∈ V . We say that the holonomy

of ρ ∈ C1 (Γ; G) is trivial on a connected graph Γ if Holρ (Γ) contains only the trivial subgroup {e} for all g ∈ G. Under

the connectivity assumption of Γ, the triviality of the global invariant Holρ (Γ) can be completely determined by its

seemingly “local” counterparts; see Lemma 2.4 below. Of course, holonomy is not local in nature, as Holρ (v) encodes

the information of all oriented loops based at vertex v and in principle “touches” the entire space Γ.

Lemma 2.4. If Γ is connected, the following statements are equivalent:

(i) Holρ (Γ) is trivial;

(ii) Holρ (v) = {e} for some vertex v ∈ V;

(iii) Holρ (v) = {e} for all vertices v ∈ V.

Similar to the definition of Holρ (Γ) in (17), the fundamental group π1 (Γ) of a connected graph Γ is also deter-

mined by the fundamental group π1 (Γ, v0) at any vertex v0 ∈ V up to conjugacy classes. Therefore, Lemma 2.2 and

Lemma 2.3 together assign to each ρ ∈ C1 (Γ; G) an equivalence class in Hom (π1 (Γ) ,G) /G, in which G acts on

Hom (π1 (Γ) ,G) by the inner automorphisms of G

φ 7→ g−1φg, ∀φ ∈ Hom (π1 (Γ) ,G) , g ∈ G.

In other words, Lemma 2.2 and Lemma 2.3 guarantee a well-defined map Hol : Ω1 (Γ; G) → Hom (π1 (Γ) ,G) /G.

Furthermore, note in equation (15) that Hol is invariant under the right action (14) of C0 (Γ; G) on C1 (Γ; G), thus Hol

naturally descends to a map from C1 (Γ; G) /C0 (Γ; G) to Hom (π1 (Γ) ,G) /G. The space Hom (π1 (Γ) ,G) /G is known

as the representation variety of the fundamental group of Γ (the free product of a finite number of copies of Z) into

G. To simplify the exposition, we shall use the same notation Hol to denote its quotient map induced by the canonical

projection C1 (Γ; G)→ C1 (Γ; G) /C0 (Γ; G). Theorem 2.1 below establishes the bijectivity of the quotient map.

Theorem 2.1. If Γ is connected, the map Hol : C1 (Γ; G) /C0 (Γ; G) → Hom (π1 (Γ) ,G) /G defined as Hol
([
ρ
])
=[

holρ
]

is bijective. Moreover, Hom (π1 (Γ) ,G) /G is in one-to-one correspondence with equivalence classes of flat

principal G-bundles Bρ defined by ρ ∈ C1 (Γ; G).

Proof. We construct an inverse of Hol from Hom (π1 (Γ) ,G) /G back to C1 (Γ; G) /C0 (Γ; G). Fix an arbitrary vertex

v0 ∈ Γ, and let χ : π1 (Γ, v0) → G be a group homomorphism. By the connectivity of Γ, each vertex vi ∈ V of Γ is

connected to v0 through an oriented path γ0i; we orient these paths so they all start at vertex v0, and enforce γ00 = {v0}.

Assign to each edge (i, j) ∈ E an element ρi j of the group G defined by

ρi j := χ
(
γ0i ◦ (i, j) ◦ γ−1

0 j

)
. (18)

Clearly, ρi j = ρ
−1
ji

follows from the fact that χ is a group homomorphism; so does ρii = e for all vertices vi ∈ V .

Of course, an edge potential ρ defined as in (18) depends on the choice of the oriented paths {γ0i}; this dependence

is removed after passing to the orbit space
[
ρ
]
∈ C1 (Γ; G) /C0 (Γ; G). In fact, let {γ̃0i} be an arbitrary choice of |V |

oriented paths connecting v0 to each vertex of Γ satisfying γ̃00 = {v0}, then

ρ̃i j = χ
(
γ̃0i ◦ (i, j) ◦ γ̃−1

0 j

)
= χ

(
γ̃0i ◦ γ

−1
0i

)
χ
(
γ0i ◦ (i, j) ◦ γ−1

0 j

)
χ
(
γ0 j ◦ γ̃

−1
0 j

)
= χ

(
γ0i ◦ γ̃

−1
0i

)
ρi j χ

(
γ0 j ◦ γ̃

−1
0 j

)
,
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i.e., as elements in C1 (Γ; G), ρ̃ differs from ρ by an action of the vertex potential f ∈ C0 (Γ; G) defined as

fi := χ
(
γ0i ◦ γ̃

−1
0i

)
, ∀vi ∈ V.

Therefore, (18) uniquely specifies an element
[
ρ
]

in C1 (Γ; G) /C0 (Γ; G) for any χ ∈ Hom (π1 (Γ) ,G).

It remains to show that Hol
([
ρ
])

differs from χ by an inner automorphism of G. To see this, let ω be an arbi-

trary oriented loop on Γ based at v0 consisting of consecutive edges
(
v0, vi1

)
,
(
vi1 , vi2

)
, · · · ,

(
viN
, v0

)
, where N is some

nonnegative integer. Using γ00 = {0} and γ−1
0i
◦ γ0i = {v0} for any vi ∈ V , we have

holρ (ω) =
(
ρ0,iN
ρiN ,iN−1

· · · ρi2,i1ρi1,0

)−1
= ρ0,i1ρi1,i2 · · · ρiN−1,iN

ρiN ,0

= χ
(
γ00 ◦

(
v0, vi1

)
◦ γ−1

0,i1

)
χ
(
γ0,i1 ◦

(
vi1 , vi2

)
◦ γ−1

0,i2

)
· · · χ

(
γ0,iN−1

◦
(
viN−1
, viN

)
◦ γ−1

0,iN

)
χ
(
γ0,iN

◦
(
viN
, v0

)
◦ γ−1

00

)

= χ ({v0}) χ
((

v0, vi1

)
◦
(
vi1 , vi2

)
◦ · · · ◦

(
viN
, v0

))
χ ({v0})

−1 = χ (ω) .

This calculation is clearly independent of the choices of oriented paths {γ̃0i}. Thus Hol maps
[
ρ
]

exactly to χ, an

element of Hom (π1 (Γ, v0) ,G); the independence of Hol
([
ρ
])

as an element of Hom (π1 (Γ) ,G) /G with respect to the

choice of the base point v0 follows from an essentially identical argument as given in the proof of Lemma 2.3. The

last statement follows from Lemma 2.1. �

Theorem 2.1 is closely related to classification theorems of flat connections and principal bundles with discon-

nected structure group (see, e.g. [Tau11, §13.6]) and [Ste51, §13.9]). The synchronizability of an edge potential ρ

on connected graph Γ, which is equivalent to the triviality of Bρ (c.f. Proposition 1.2), can now be interpreted as the

corresponding conjugacy class of Hom (π1 (Γ) ,G). In fact, the conjugacy class corresponding to trivial bundles Bρ is

also trivial and reflects the triviality of the holonomy of Γ. The proof of Corollary 2.2 further develops this observation.

Corollary 2.2. For a connected graph Γ and topological group G, an edge potential ρ ∈ C1 (Γ; G) is synchronizable

if and only if Holρ (Γ) is trivial.

Proof. Note that ρ ∈ C1 (Γ; G) is synchronizable (see (1)) if and only if there exists f ∈ C0 (Γ; G) such that

f −1
i ρi j f j = e ∈ G ∀ (i, j) ∈ E,

where e is the identify element of the structure group G. This is equivalent to saying that

[
ρ
]
= [e] ∈ C1 (Γ; G) /C0 (Γ; G) , where e ∈ C1 (Γ; G) is defined as ei j = e ∈ G for all (i, j) ∈ E, (19)

which by Theorem 2.1 implies

Hol
([
ρ
])
= Hol ([e]) = Ide ∈ Hom (π1 (Γ) ,G) /G,

where Ide : π1 (Γ) → G is the constant map sending all oriented loops in Γ to the identity element e ∈ G. The

conclusion follows immediately by noting that

Hol
([
ρ
])
= Ide ⇔ for any v ∈ V , holρ (ω) = e for all oriented loops ω based at v

⇔ Holρ (v) = {e} for all vertices v ∈ V

⇔ Holρ (Γ) is trivial

where for the last equivalence we invoked Lemma 2.4. �

Corollary 2.2 on its own can be derived from an elementary argument. In fact, without descending holρ from Ωv

to π1 (Γ, v), we can still define Holρ (v) as the image holρ (Ωv), though holρ is not injective as a group homomorphism

from Ωv to G. The triviality of Holρ (v) still implies the existence of a vertex potential f ∈ C0 (Γ; G) compatible with

ρ ∈ C1 (Γ; G) (simply by setting fi = e on an arbitrarily chosen vi ∈ V and progressively propagating values of f to

neighboring vertices), and vice versa. The exposition in this section, centered around Theorem 2.1, extends beyond

this elementary argument and strives to unveil a complete geometric picture underlying the “correspondence between

trivialities” discussed in Corollary 2.2. In future work we intend to pursue novel synchronization algorithms based on

metric and symplectic structures on the moduli space of flat bundles (see, e.g. [AB83, Wei95, Hit90]).
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2.2 A Twisted Hodge Theory for Synchronization Problems

In this section we relate synchronization to the first cohomology of a de Rham cochain complex on Γ with coefficients

twisted by a representation space F of the structure group G. This can be interpreted as an instance of the standard

de Rham cohomology of flat bundles (see e.g. [Xia12, GRR15, Sim94a, Sim94b]). The fibre bundles considered

in this section are vector bundles (with fibre type F) associated with the principal bundle studied in Section 2.1.

When the vector space F is equipped with a metric, the vector bundle inherits a compatible metric, with which a

twisted Hodge Laplacian can be constructed; special cases of this twisted Laplacian in the lowest degree include the

connection Laplacian [SW12, BSS13]. In this setting, synchronizability is realized as a condition on the dimension

of the null space of the lowest degree twisted Hodge Laplacian, this is reminiscent of the classical Riemann-Hilbert

correspondence between flat connections and locally constant sheaves. The spectral information of the twisted Hodge

Laplacian serves as a quantification of the the level of obstruction to synchronizability.

2.2.1 Flat Associated Bundles and Twisted Zero-Forms

Let Bρ be the synchronization principal bundle on Γ associated with ρ ∈ C1 (Γ; G), as in Proposition 1.2, and F be a

topological space on which G acts on the left as a topological transformation group. Denote the action of G on F as

τ : G → Aut (F). Consider the right action of G on Bρ × F as

(p, v) 7−→
(
pg, τ

(
g−1

)
v
)
.

The orbit space of this action, conventionally denoted as Bρ ×G F or Bρ [F], is referred to as the F-bundle associated

with principal bundle Bρ, or associated F-bundle for short. We will denote the bundle projection as π : Bρ [F] → Γ,

and denote Bρ [F]x := π−1 (x) for the fibre over x ∈ Γ. Strictly speaking, the graph Γ should be distinguished from its

underlying topological space, but we use the same notation Γ for both as long as the meaning is clear from the context.

The same open cover U of Γ that trivializes Bρ also trivializes Bρ [F]. In fact, the bundle transition function of

Bρ [F] on any nonempty Ui∩U j is the constant map Ui∩U j → τ
(
ρi j

)
∈ Aut (F), where Ui∩U j → ρi j is the constant

bundle transition function from Ui to U j for Bρ. Consequently, the associated bundle Bρ [F] is also flat. Unless

confusions arise, we shall refer to Bρ [F] as the flat associated F-bundle of Bρ, and denote the local trivialization of

the associated bundle over Ui ∈ U using the same notation φi : Ui × F → Bρ [F] as for the principal bundle Bρ.

In the context of synchronization problems, the most relevant associated bundles are those with fibre F being a

vector space and structure group G being the general linear group GL (F). These types of fibre bundles are commonly

referred to as vector bundles. We will focus on flat associated vector bundles for the rest of the section, though the

definition of fibre projections and sections extend literally to general fibre bundles. For simplicity of presentation, we

will omit the notation τ and write the bundle transition functions again as ρi j (instead of τ
(
ρi j

)
), since its action on a

vector space F is simply matrix-vector multiplication.

We now focus on sections, the analog of “functions” on smooth manifolds but with values in fibre bundles. For a

general fibre bundle E → B, a local section s : U → E|U of E on an open set U of the base space B is a continuous

map from U to E|U such that π ◦ s is identified on U. A global section of E is a local section defined on the entire base

spaceB. We shall encode the data of synchronization problems into the language of sections of flat associated bundles.

The discrete nature of the problem naturally motivates us to consider special classes of local and global sections that

are “constant” within each open set in U, in a sense to be made clear soon in local coordinates. The following notion

of fibre projection is introduced to simplify notations involving local coordinates.

Definition 2.1. For any i ∈ V , define the fibre projection over Ui ∈ U, denoted as

pi : Bρ [F]
∣∣∣
Ui
= π−1 (Ui) −→ F, (20)

as the composition of φ−1
i

: Bρ [F]
∣∣∣
Ui
→ Ui × F with the canonical projection Ui × F → F. For any x ∈ Ui, the re-

striction of pi to the fibre Bρ [F]x, denoted as pi,x : Bρ [F]x → F, is (by definition) simultaneously a homeomorphism

between topological spaces and an isomorphism between vector spaces.

Definition 2.2 (Constant Local Sections). A constant local section s : Ui → Bρ [F]
∣∣∣
Ui

of the bundle Bρ [F] on open

set Ui ∈ U is a local section of Bρ [F] such that pi,x (s (x)) is a constant element of F for all x ∈ Ui. We refer to the

linear space of all constant local sections on Ui ∈ U as constant twisted local 0-forms on Ui, denoted asΩ0
i

(
Γ; Bρ [F]

)
.
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Clearly, a constant local section s ∈ Ω0
i

(
Γ; Bρ [F]

)
is unambiguously determined by evaluating s at vertex i, or

equivalently by reading off the fibre projection image si := pi (s (i)). We denote this characterization of s as

pi (s (x)) ≡ si, ∀x ∈ Ui, s ∈ Ω0
i

(
Γ; Bρ [F]

)
. (21)

When we consider x ∈ Ui ∩ U j where Ui ∩ U j , ∅ (i.e. when (i, j) ∈ E), it will be convenient to note that the

fibre projection p j evaluates s (x) to p j (s (x)) = p j ◦ p−1
i

(pi (s (x))) ≡ ρ jisi. This can be understood as a “change-of-

coordinates” formula for constant local sections.

Let C0 (Γ; F) := { f : V → F} denote the linear space of F-valued 0-cochains on graph Γ. Every element f of

C0 (Γ; F) defines a collection of constant local sections
{
f (i) : Ui → π

−1 (Ui) | Ui ∈ U
}
, one for each Ui ∈ U with

f (i) (x) := p−1
i,x ( fi) , ∀x ∈ Ui. (22)

We thus have the canonical identification

C0 (Γ; F) =
∏

i∈V

Ω0
i

(
Γ; Bρ [F]

)
. (23)

Of course, the constant local sections
{
f (i)

}
specified by f ∈ C0 (Γ; F) generally do not give rise to a global section

of the bundle Bρ [F], unless they “patch together” seamlessly on every nonempty intersection Ui ∩ U j, satisfying the

condition

p−1
i,x ( fi) = f (i) (x) = f ( j) (x) = p−1

j,x

(
f j

)
, ∀x ∈ Ui ∩ U j ⇔ fi = pi,x ◦ p−1

j,x

(
f j

)
= ρi j f j, ∀x ∈ Ui ∩ U j. (24)

The right hand side of (24) is recognized as a solution to the synchronization problem with prescribed edge potential

ρ. We have thus proved the following Lemma.

Lemma 2.5. The constant local sections specified by f ∈ C0 (Γ; F) define a global section on Bρ [F] if and only if

fi = ρi j f j, ∀ (i, j) ∈ E, (25)

i.e., if and only if the vertex potential f : V → F is a solution to the F-synchronization problem over Γ with respect to

the edge potential ρ ∈ C1 (Γ; G).

When condition (25) is satisfied, the resulting global section constructed from constant local sections is special

among all global sections of Bρ [F] in that its restriction to each Ui has constant image under fibre projection over Ui.

This type of global section will be of major interest in the remainder of this section.

Definition 2.3 (Locally Constant Global Section). A global section s : Γ→ Bρ [F] is said to be locally constant if

pi (s (x)) ≡ const. ∀x ∈ Ui. (26)

The linear space of all locally constant global sections on Bρ [F] will be called locally constant twisted global 0-forms

on Γ, denoted as Ω0
(
Γ; Bρ [F]

)
.

Naturally, Ω0
(
Γ; Bρ [F]

)
embeds into C0 (Γ; F) by

Ω0
(
Γ; Bρ [F]

)
֒→

∏

i∈V

Ω0
i

(
Γ; Bρ [F]

)
= C0 (Γ; F)

s 7−→
(
s|U1
, · · · , s|Un

) (27)

where n = |V | stands for the total number of vertices in Γ. The objective of a F-synchronization problem over Γ with

respect to ρ ∈ C1 (Γ; G) can be interpreted in this geometric framework as searching for an element of Ω0
(
Γ; Bρ [F]

)

in the feasible domain C0 (Γ; F).

The existence of global sections is crucial information for the structure of a fibre bundle. For principal bundles

Bρ considered in Section 2.1, a single global section dictates the triviality of the bundle. Though the triviality of a

principal bundle is equivalent to its associated vector bundle (see Proposition 2.1), Bρ [F] is trivial if and only if it

admits d = dim F global sections s1, · · · , sd that are linearly independent in the sense that s1
x, · · · , s

d
x on each fibre
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Fx are linearly independent as vectors in F (c.f. [MS74, Theorem 2.2]). A collection of linearly independent global

sections are said to form a global frame (see e.g. [Lee03, Chapter 5]) for the vector bundle, since they define a basis

(frame) for each fibre. As will be established in Proposition 2.1, the fact that the bundle Bρ [F] is flat further reduces

its triviality to finding d linearly independent locally constant global sections, for which linear independence only

needs to be checked at the vertices of Γ. More precisely, adopting notation si := pi (s (i)) ,∀i ∈ V for an arbitrary

section s of Bρ [F], we define the linear independence of locally constant global sections of Bρ [F] as follows.

Definition 2.4. A collection of k (1 ≤ k ≤ d = dim F) locally constant global sections s1, · · · , sk ∈ Ω0
(
Γ; Bρ [F]

)
are

said to be linearly independent if s1
i
, · · · , sk

i
are linearly independent as vectors in F at every vertex i ∈ V .

By the embedding (27), any s ∈ Ω0
(
Γ; Bρ [F]

)
can be equivalently encoded into a vector of dimension nd, where

d = dim F and n = |V | stands for the number of vertices of Γ. In fact, just as for any vertex potential in C0 (Γ; F),

one simply needs to vertically stack the column vectors {si = pis (i) | i ∈ V}, the fibre projection images of s at each

vertex. We shall write [s] for such a vector of length nd that encodes s ∈ Ω0
(
Γ; Bρ [F]

)
, and refer to the vector as the

representative vector of the section. The linear independence of locally constant global sections is easily seen to be

equivalent to the linear independence of the representative vectors of length nd, as the following Lemma clarifies.

Lemma 2.6. A collection of k (1 ≤ k ≤ d = dim F) locally constant global sections s1, · · · , sk are linearly independent

if and only if
[
s1

]
, · · · ,

[
sk
]

are linear independent as vectors of length nd.

Proof. Since Bρ [F] is a flat bundle and the graph Γ is assumed connected, the linear independence of locally constant

global sections s1, · · · , sk is equivalent to the linear independence of vectors s1
i
, · · · , sk

i
at any vertex i: since ρ ji ∈ G

are all invertible, vectors s1
i
, · · · , sk

i
are linearly independent if and only if s1

j
= ρ jis

1
i
, · · · , sk

j
= ρ jis

k
i

are linearly

independent. For definiteness, let us fix i = 1. Write S for the nd-by-k matrix with
[
s j
]

as its jth column, S 1 for the

d × k matrix with s
j

1
as its jth column, e = [1, · · · , 1]⊤ for the column vector of length d with all entries equal to one,

and P for the nd-by-nd block diagonal matrix with ρ j1 at its jth diagonal block (adopting the convention ρ11 = In×n).

The conclusion follows from the matrix identity

S = P (e ⊗ S 1)

and

rank (S ) = rank
(
[1, · · · , 1]⊤

)
· rank (S 1) = rank (S 1) .

�

Remark 2.2. Note that the equivalence of two notions of linear independence only holds if we already know that

s1, · · · , sk are global sections. For general f 1, · · · , f k ∈ C0 (Γ; F) that are linearly independent as nd-vectors, their

corresponding representatives in
∏

i∈V Ω
0
i

(
Γ; Bρ [F]

)
do not necessarily define global sections, nor are they in general

linearly independent as constant local sections on each Ui. A simple example is to consider a graph Γ consisting of

two vertices V = {v1, v2} and only one edge connecting them, F = R2, and G is the trivial group consisting of only the

2 × 2 identity matrix: vectors
[
f 1

]
= (1, 0, 1, 0)⊤ and

[
f 2

]
= (1, 0, 0, 1)⊤ are linearly independent as vectors in R4 but

do not define linearly independent constant local sections on U1.

With all essential concepts presented, we are ready to establish our main observation in this subsection.

Proposition 2.1. Let G be a topological transformation group acting on a (real or complex) d-dimensional vector

space F on the left, Γ = (V, E) be a connected undirected graph, and ρ ∈ C1 (Γ; G) a G-valued edge potential. The

following statements are equivalent:

(i) Bρ is trivial;

(ii) Bρ admits a global section;

(iii) Bρ [F] is trivial;

(iv) Bρ [F] admits d = dim F linearly independent locally constant global sections.
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Proof. The equivalence of (i) and (iii) follows from [Ste51, Theorem 4.3]. The equivalence (i)⇔(ii) follows from

standard differential geometry, see e.g. [Ste51, MS74]; similarly standard is the equivalence between (iii) and the

existence of n linearly independent global sections on Bρ [F]. To show the equivalence (iv)⇔(iii), it suffices to prove

that a trivial flat vector bundle Bρ [F] admits d linearly independent global sections that are also locally constant. To

see this, recall from Proposition 1.2 and Corollary 2.2 that

Bρ [F] is trivial ⇔ Bρ is trivial ⇔ Hol
([
ρ
])

is trivial

⇔ ∃ g ∈ Ω0
ρ (Γ; G) s.t. g−1

i ρi jg j = e ∀ (i, j) ∈ E

⇔ ∃ g ∈ Ω0
ρ (Γ; G) s.t. ρi j = gig

−1
j ∀ (i, j) ∈ E.

Let {e1, · · · , ed} be a basis for F, and for each k = 1, · · · , d define sk : Γ→ Bρ [F] as

sk (x) = p−1
i,x (giek) ∀x ∈ Ui.

It is straightforward to verify by definition that sk is a well-defined global section and is locally constant. That

s1, · · · , sd are linearly independent as global sections follows from the fact that pi,x : F → Bρ [F]x are isomorphisms

between vector spaces. �

Remark 2.3. The global section in (ii) is also “locally constant” in a sense analogous to Definition 2.3 but for

principal bundles; we do not introduce this definition here since global sections on principal bundles will not be

pursued directly in this work.

Proposition 2.1 points out an alternative approach for determining the synchronizability of an edge potential

ρ ∈ C1 (Γ; G), at least when G is a matrix group GL (F): it suffices to check the existence of d = dim F linearly

independent locally constant global sections on the flat associated vector bundle Bρ [F]. Such existence can be stated

as a cohomological obstruction. We will pursue such a formulation in the next section. In Section 2.2.3 we will utilize

the inner product structure on F to reduce the structure group of a GL (F)-bundle to O (d) or U (d), as commonly seen

in synchronization problems [BKS16, BSS13, CKS15]. If the underlying fibre bundle is orientable, the same proce-

dures further reduce the structure group to SO (d) or SU (d), corresponding to synchronization problems considered in

[SZSH11, WS13].

2.2.2 Twisted One-Forms and De Rham Cohomology

In a smooth category, sections on a fibre bundle can be differentiated by a covariant derivative. The resulting object is

a skew-symmetric “direction-dependent” section on the same bundle, or equivalently a section of a new fibre bundle

which is the tensor product of the original fibre bundle with the bundle of 1-forms on the base manifold. We shall

generalized this picture to the discrete/combinatorial setting for flat associated bundles Bρ [F] that naturally arise in

synchronization problems.

Recall from discrete Hodge theory [CdGDS13, Lim15, DHLM05, JLYY11, JG13] that discrete 0-forms and 1-

forms on a graph Γ are defined as

Ω0 (Γ) := { f : V → K} , Ω1 (Γ) :=
{
ω : E → K | ωi j = −ω ji ∀ (i, j) ∈ E

}
,

where K = C or R, which we will assume to be the number field for the vector space F. Let us define a local version

of Ω1 (Γ) by

Ω1
i (Γ) :=

{
ω : Ni → K | ω jk = −ωk j ∀ ( j, k) ∈ Ni

}
, where Ni := {( j, k) ∈ E | j = i or k = i} . (28)

In other words, elements of Ω1
i

(Γ) are restrictions of elements of Ω1 (Γ) to Ui. By a partition of unity argument, it is

straightforward to identify Ω1 (Γ) with


(
ω(1), · · · , ω(n)

)
∈

∏

i∈V

Ω1
i (Γ)

∣∣∣∣ω(i)

i j
= ω

( j)

i j
(= −ω

( j)

ji
= −ω

(i)

ji
)

 . (29)

Definition 2.5 (Constant Local 1-forms). A constant twisted local 1-form on open set Ui ∈ U is a local section of

Ω0
i

(
Γ; Bρ [F]

)
⊗Ω1

i
(Γ). Equivalently, a constant twisted local 1-form on Ui is a map ω : Ui × Ni → Bρ [F] such that:
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(i) For any ( j, k) ∈ Ni, ω jk : Ui → Bρ [F] is a constant local section on Ui, i.e.

pi,x

(
ωi j (x)

)
≡ const.;

(ii) For any x ∈ Ui and any U j ∈ U such that Ui ∩ U j , ∅, ωi j (x) = −ω ji (x).

We denote the linear space of all constant twisted local 1-forms on Ui as Ω1
i

(
Γ; Bρ [F]

)
.

A similar notion of globally defined twisted 1-forms will also be of interest. In the discrete setting of synchroniza-

tion problems, it suffices to consider twisted global 1-forms that are locally constant under fibre projections.

Definition 2.6 (Locally Constant Global 1-forms). A locally constant twisted global 1-form is a section of the tensor

product bundle Ω0
(
Γ; Bρ [F]

)
⊗Ω1 (Γ). In other words, a locally constant twisted global 1-form is a map

ω : {(i, ( j, k)) | i ∈ V, ( j, k) ∈ Ni} → Bρ [F]

such that:

(i) For any Ui ∈ U, ω|Ui
is a constant twisted local 1-form on Ui;

(ii) For any x ∈ Ui ∩ U j , ∅, pi,x

(
ω|Ui

(x)
)
= ρi j p j,x

(
ω|U j

(x)
)
.

We denote the linear space of all locally constant twisted global 1-forms on Γ as Ω1
(
Γ; Bρ [F]

)
.

The definition of Ω1
(
Γ; Bρ [F]

)
already characterized the condition under which a given collection of constant

twisted local 1-forms
{
ω(i) ∈ Ω1

i

(
Γ; Bρ [F]

)}
, one for each Ui ∈ U, can be patched to form a locally constant twisted

global 1-form. Similar to (24), it suffices to check the compatibility under “change of coordinates”.

Lemma 2.7. A collection of constant twisted local 1-forms
{
ω(i) ∈ Ω1

i

(
Γ; Bρ [F]

)}
defines a locally constant twisted

global 1-form if and only if

pi,x

(
ω

(i)

i j
(x)

)
= ρi j p j,x

(
ω

( j)

i j
(x)

)
, ∀ (i, j) ∈ E. (30)

Since both sides of equality (30) are constants, we shall simplify (30) as

pi

(
ω

(i)

i j

)
= ρi j p j

(
ω

( j)

i j

)
, ∀ (i, j) ∈ E. (31)

A significant difference between Ω1
(
Γ; Bρ [F]

)
and Ω0

(
Γ; Bρ [F]

)
is that a locally constant twisted global 1-form

does not naturally arise from an F-valued 1-cochain in C1 (Γ; F) :=
{
ω : E → F | ωi j = −ω ji

}
, and these cochains play

an essential role in the discrete Hodge theory. For instance, if we set ω
(i)

i j
(x) := p−1

i,x

(
ωi j

)
=: −ω

(i)

ji
(x) for all x ∈ Ui,

then
{
ω(i) | i ∈ V

}
gives rise to a twisted global 1-form if and only if

ωi j = pi,x

(
ω

(i)

i j
(x)

)
= ρi j p j,x

(
ω

( j)

i j
(x)

)
= −ρi j p j,x

(
ω

( j)

ji
(x)

)
= −ρi jω ji, ∀ (i, j) ∈ E,

a condition that is generally not satisfied unless ρi j ≡ e ∈ G for all (i, j) ∈ E. This observation indicates that C1 (Γ; F)

is not a geometric object naturally associated with the structure of the vector bundle Bρ [F], but rather a special case

of Ω1
(
Γ; Bρ [F]

)
when the vector bundle Bρ [F] is trivial. In this case ρi j = gig

−1
j
, ∀ (i, j) ∈ E for a G-valued vertex

potential g : V → G and the “gauge-transformed” constant twisted local 1-forms
{
p−1

i,x

(
giωi j

)
| i ∈ V, (i, j) ∈ E

}
satisfy

the compatibility condition (30). Exploring the action of the gauge group on twisted forms will be considered in the

future.

With an appropriate notion of twisted 1-forms, we are ready to define the twisted differential operator on twisted 0-

forms. This operation is a discrete analog of the covariant derivatives for smooth fibre bundles, and in the meanwhile,

a fibre bundle analog of the discrete exterior derivative in discrete Hodge theory.
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Definition 2.7 (Twisted Differential on Twisted 0-Cochains). For ρ ∈ C1 (Γ; G) and Ui ∈ U, the ρ-twisted differential

is a linear operator taking any f ∈ C0 (Γ; F) =
∏

i∈V Ω
0
i

(
Γ; Bρ [F]

)
to a collection of n constant twisted local 1-forms,

one for each Ui ∈ U

dρ :
∏

i∈V

Ω0
i

(
Γ; Bρ [F]

)
−→

∏

i∈V

Ω1
i

(
Γ; Bρ [F]

)

f 7−→

((
dρ f

)(1)
, · · · ,

(
dρ f

)n
)

where each
(
dρ f

)(i)
∈ Ω1

i

(
Γ; Bρ [F]

)
is defined as

(
dρ f

)(i)

i j
(x) := p−1

i,x

(
fi − ρi j f j

)
=: −

(
dρ f

)(i)

ji
(x) , ∀Ui ∈ U, ∀x ∈ Ui ∩ U j , ∅, f ∈ Ω0

ρ (Γ; F) . (32)

Though dρ is defined as a linear operator mapping into a collection of constant twisted local 1-forms, a somewhat

surprising fact is that these constant twisted local 1-forms do patch together to form an element of Ω1
(
Γ; Bρ [F]

)
.

Proposition 2.2. The twisted differential dρ maps C0 (Γ; F) into Ω1
(
Γ; Bρ [F]

)
.

Proof. It suffices to check (31) for the collection of constant twisted local 1-forms

{(
dρ f

)(i) ∣∣∣ i = 1, · · · , n

}
. In fact,

pi

((
dρ f

)(i)

i j

)
= fi − ρi j f j = −ρi j

(
f j − ρ ji fi

)
= −ρi j p j

((
dρ f

)( j)

ji

)
= ρi j p j

((
dρ f

)( j)

i j

)
∀ (i, j) ∈ E.

�

Since the graph Γ (viewed as a simplicial complex) does not contain any 2-simplices, dρ is the only differential

needed for specifying the ρ-twisted chain complex

0 −→ C0 (Γ; F)
dρ
−→ Ω1

(
Γ; Bρ [F]

)
−→ 0. (33)

The only non-trivial cohomology group in this de Rham-type chain complex is at the 0-th order

H0
ρ

(
Γ; Bρ [F]

)
:= ker dρ.

Proposition 2.3. ker dρ = Ω
0
(
Γ; Bρ [F]

)
.

Proof. Note in the definition (32) that

f ∈ ker dρ ⇔ fi = ρi j f j, ∀ (i, j) ∈ E.

The conclusion then follows from Lemma 2.5. �

By Proposition 2.1, detecting the synchronizability of ρ ∈ C1 (Γ; G) now reduces to checking if dim ker dρ = dim F

holds. Furthermore, in scenarios where this dimension equality does not hold, dim ker dρ still provides a quantitative

measure for the extent to which synchronizability fails. In this sense, the cohomology group H0
ρ (Γ; F) serves as the

opposite of a “topological obstruction” to the synchronizability of ρ ∈ C1 (Γ; G).

2.2.3 Twisted Hodge Theory and Synchronizability

In the remainder of this section, we will focus on flat associated bundles Bρ [F] with the vector space F equipped with

an inner product 〈·, ·〉F : F × F → K, where K = C or R depending on the vector space F. This inner product on F

will be further assumed with G-invariance, in the sense that

〈gx, gy〉F = 〈x, y〉F ∀x, y ∈ F, g ∈ G.

In the terminology of representation theory, we assume that the representation of G on F is unitary (c.f. [BtD03,

§II.1]). This inner product introduces other related concepts into the geometric framework:
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• F is equipped with a G-invariant norm ‖x‖F = 〈x, x〉F for all x ∈ F, which further induces an operator norm on

G via duality

‖g‖ := sup
m∈F
‖m‖,0

‖gm‖

‖m‖
, ∀g ∈ G.

For simplicity, we will use the same notation for the norm on F and the dual norm on G.

• For any g ∈ G, its formal adjoint with respect to the inner product 〈·, ·〉F , denoted as g∗, is defined as

〈gx, y〉 = 〈x, g∗y〉 ∀x, y ∈ F.

Note that ‖g∗‖ = ‖g‖ for any g ∈ G.

• The twisted 0-cochains C0 (Γ; F) and locally constant twisted global 1-forms Ω1
(
Γ; Bρ [F]

)
are equipped with

inner products and norms induced from the G-invariant inner product 〈·, ·〉F , as follows:

〈 f , g〉 :=
∑

i∈V

di 〈 fi, gi〉F , ∀ f , g ∈ C0 (Γ; F) (34)

〈ω, η〉 :=
1

2

∑

i∈V

∑

j:(i, j)∈E

wi j

〈
pi

(
ω

(i)

i j

)
, pi

(
η

(i)

i j

)〉
F
, ∀ω, η ∈ Ω1

(
Γ; Bρ [F]

)
(35)

‖ f ‖ := 〈 f , f 〉
1
2 , ‖ω‖ := 〈ω,ω〉

1
2 , ∀ f ∈ C0 (Γ; F) , ω ∈ Ω1

(
Γ; Bρ [F]

)
(36)

where wi j is the weight on edge (i, j) ∈ E and di =
∑

j:(i, j)∈E wi j is the weighted degree of vertex vi. Note that by

the G-invariance of 〈·, ·〉F the sum in (35) can be equivalently written as (see Appendix A for a quick calculation)

〈ω, η〉 =
∑

(i, j)∈E

wi j

〈
pi

(
ω

(i)

i j

)
, pi

(
η

(i)

i j

)〉
F
. (37)

Through local trivializations, an inner product on the vector space F also induces a bundle metric on Bρ [F], i.e.,

a section of the second symmetric power of the dual bundle of Bρ [F] which restricts to each fibre as a symmetric

positive definite quadratic form. As is well known (see e.g. [Tau11, Chapter 7]), a bundle metric can be used to reduce

the structure group of a vector bundle from GL (F) to O (d) or U (d), where d = dim (F). It suffices to consider global

sections of Bρ [F] for ρ ∈ C1 (Γ; O (d)) or ρ ∈ C1 (Γ; U (d)) for many synchronization problems of practical interest

[BSS13, BKS16, CKS15], instead of requiring ρ ∈ C1 (Γ; GL (d;R)) or ρ ∈ C1 (Γ; GL (d;C)). Other important types

of synchronization problem involving SO (d) and SU (d) can be treated in this geometric framework as determining

global sections of orientable vector bundles (see e.g. [Tau11, Chapter 7] or [BT82, Proposition 6.4]). Also note that

ρ−1
i j
= ρ∗

i j
for edge potentials in all these special matrix groups. Since the bundle reduction allows us to focus only on

synchronization problems with orthogonal or unitary matrices, without loss of generality, we will always assume the

edge potentials satisfy ρ ji = ρ
−1
i j
= ρ∗

i j
for all (i, j) ∈ E. The same is assumed in [BSS13, BKS16].

The inner product structures on C0 (Γ; F) and Ω1
(
Γ; Bρ [F]

)
enable us to define the ρ-twisted codifferential δρ :

Ω1
(
Γ; Bρ [F]

)
→ C0 (Γ; F), the formal adjoint operator of the twisted differential dρ : C0 (Γ; F) → Ω1

(
Γ; Bρ [F]

)
in

the chain complex (33), eventually leading to a twisted Hodge theory for synchronization problems. The definition of

δρ is consistent with the discrete divergence operator in discrete Hodge theory [JLYY11, JG13]:

δρ : Ω1
(
Γ; Bρ [F]

)
−→ C0 (Γ; F)

θ 7−→
((
δρθ

) ∣∣∣
U1
, · · · ,

(
δρθ

) ∣∣∣
Un

) (38)

where each
(
δρθ

) ∣∣∣
Ui
∈ is defined by

(
δρθ

) ∣∣∣
Ui

(x) = p−1
i,x


1

di

∑

j:(i, j)∈E

wi j pi

(
θ

(i)

i j

)
 ∀x ∈ Ui, θ ∈ Ω

1
(
Γ; Bρ [F]

)
(39)

or equivalently
(
δρθ

)
i
= pi

((
δρθ

) ∣∣∣
Ui

(i)
)
=

1

di

∑

j:(i, j)∈E

wi j pi

(
θ

(i)

i j

)
∀i ∈ V, θ ∈ Ω1

(
Γ; Bρ [F]

)
. (40)
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Proposition 2.4. With respect to the inner products (34) and (35), the twisted codifferential δρ : Ω1
(
Γ; Bρ [F]

)
→

C0 (Γ; F) defined by (39) is the formal adjoint of the twisted differential dρ : C0 (Γ; F) → Ω1
(
Γ; Bρ [F]

)
defined by

(32).

Proof. Note that for any f ∈ C0 (Γ; F), θ ∈ Ω1
(
Γ; Bρ [F]

)
,

〈
f , δρθ

〉
=

∑

i∈V

di

〈
fi,

1

di

∑

j:(i, j)∈E

wi j pi

(
θ

(i)

i j

)〉

F

=
∑

i∈V

∑

j:(i, j)∈E

〈
fi,wi j pi

(
θ

(i)

i j

)〉
F

=
∑

(i, j)∈E

[〈
fi,wi j pi

(
θ

(i)

i j

)〉
F
+

〈
f j,w ji p j

(
θ

( j)

ji

)〉
F

]

=
∑

(i, j)∈E

〈
fi,wi j pi

(
θ

(i)

i j

)〉
F
+

∑

(i, j)∈E

〈
f j,w ji p j

(
θ

( j)

ji

)〉
F
=: (I) + (II) .

We keep the term (I) intact and manipulate term (II) using wi j = w ji and the G-invariance of 〈·, ·〉F :

(II) =
∑

(i, j)∈E

〈
ρi j f j,w jiρi j p j

(
θ

( j)

ji

)〉
F

(∗)
==

∑

(i, j)∈E

〈
ρi j f j,wi j pi

(
θ

(i)

ji

)〉
F

(∗∗)
== −

∑

(i, j)∈E

〈
ρi j f j,wi j pi

(
θ

(i)

i j

)〉
F
,

where we used ρi j p j

(
θ

( j)

ji

)
= pi

(
θ

(i)

ji

)
(the compatibility condition (31)) at (∗), and the skew-symmetry θ

(i)

ji
= −θ

(i)

i j
at

(∗∗). Re-combining (I) and (II), we conclude that

〈
f , δρθ

〉
= (I) + (II) =

∑

(i, j)∈E

〈
fi,wi j pi

(
θ

(i)

i j

)〉
F
−

∑

(i, j)∈E

〈
ρi j f j,wi j pi

(
θ

(i)

i j

)〉
F

=
∑

(i, j)∈E

〈
fi − ρi j f j,wi j pi

(
θ

(i)

i j

)〉
F
=

∑

(i, j)∈E

wi j

〈
pi

((
dρ f

)(i)

i j

)
, pi

(
θ

(i)

i j

)〉

F
=

〈
dρ f , θ

〉
.

�

The chain complex (33) is now also equipped with formal adjoints:

0 −−→←−− C0 (Γ; F)
dρ
−−→←−−
δρ
Ω1

(
Γ; Bρ [F]

)
−−→←−− 0. (41)

Two twisted Hodge Laplacians can be constructed from this chain complex:

∆(0)
ρ := δρdρ : C0 (Γ; F) −→ C0 (Γ; F) , (42)

∆(1)
ρ := dρδρ :Ω1

(
Γ; Bρ [F]

)
−→ Ω1

(
Γ; Bρ [F]

)
. (43)

It is straightforward to see from these definitions that both twisted Laplacians are positive definite. In view of Hodge

theory, it would be of interest to investigate the harmonic forms in the complex (41), the kernels of ∆
(0)
ρ and ∆

(1)
ρ .

Lemma 2.8. ker dρ = ker∆
(0)
ρ and ker δρ = ker∆

(1)
ρ .

Proof. Clearly ker dρ ⊂ ker∆
(0)
ρ . For the reverse inclusion, note that by adjointness

0 =
〈

f ,∆(0)
ρ f

〉
=

∥∥∥dρ f
∥∥∥2

∀ f ∈ ker∆(0)
ρ ,

which implies dρ f = 0. The equality involving ker∆
(1)
ρ follows from a similar argument. �

The following decomposition results follow from standard Hodge-theoretic arguments.

Theorem 2.3. C0 (Γ; F) = ker∆
(0)
ρ ⊕ im δρ = ker dρ ⊕ im δρ, Ω1

(
Γ; Bρ [F]

)
= im dρ ⊕ ker∆

(1)
ρ = im dρ ⊕ ker δρ.
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Proof. We only present the proof for the decomposition of C0 (Γ; F); the decomposition for Ω1 (Γ; F) is similar. First

note that both C0 (Γ; F) and Ω1
(
Γ; Bρ [F]

)
are finite dimensional. The subspace ker dρ and im δρ are orthogonal with

respect to the inner product (34), since if f ∈ ker dρ and δρθ ∈ im δρ,

〈
f , δρθ

〉
=

〈
dρ f , θ

〉
= 0.

It remains to prove that each f ∈ C0 (Γ; F) can be decomposed into a linear combination of elements in ker∆
(0)
ρ and

im δδ. If dρ f = 0, the decomposition is trivial. Otherwise, consider the following Poisson equation:

∆(1)
ρ θ = dρ f . (44)

We claim that equation (44) has a solution θ ∈ Ω1
(
Γ; Bρ [F]

)
as long as dρ f , 0. In fact, by Fredholm alternative (see

e.g. an exposition for the finite dimensional case in [Lim15] which suffices for our purpose), if dρ f < im∆
(1)
ρ , then

dρ f ∈ ker∆
(1)
ρ = ker δρ; however, dρ f ⊥ ker δρ since

〈
dρ f , ω

〉
=

〈
f , δρω

〉
= 0 ∀ω ∈ ker δρ.

This proves that (44) has a solution θ ∈ Ω1
(
Γ; Bρ [F]

)
for dρ f , 0. We can thus split f ∈ C0 (Γ; F) into

f =
(

f − δρθ
)
+ δρθ,

in which δρθ ∈ im δρ, and f − δρθ ∈ ker dρ since

dρ
(

f − δρθ
)
= dρ f − dρδρθ = dρ f − ∆(1)

ρ θ = 0.

�

Remark 2.4. Proposition 2.3 and Theorem 2.3 completely characterized the embedding (27): the orthogonality com-

plement (with respect to the inner product (34)) of the linear space of solutions to the F-synchronization problem

on Γ with respect to ρ ∈ Ω1 (Γ; G) is exactly the image of the twisted codifferential (39). In fact, one recognizes

from C0 (Γ; F) = ker∆
(0)
ρ ⊕ im δρ, ker∆

(0)
ρ = ker dρ, and H0

ρ

(
Γ; Bρ [F]

)
= ker dρ the well-known Hodge theorem

H0
ρ

(
Γ; Bρ [F]

)
= ker∆

(0)
ρ .

2.2.4 Graph Connection Laplacian and Cheeger-Type Inequalities for Graph Frustration

In this section, we connect our geometric framework to the computational aspects of synchronization algorithms. As

pointed out in Section 2.2.2, for cases where G = O (d) or G = U (d), the synchronizability of an edge potential ρ ∈

C1 (Γ; G) is equivalent to whether or not the equality dim ker dρ = d holds. Lemma 2.8 reduces the synchronizability

further to the dimension of ker∆
(0)
ρ . With identification (23), it can be noticed that ∆

(0)
ρ is exactly the graph connection

Laplacian (GCL) in the literature of synchronization problems, random matrix theory, and manifold learning (see e.g.

[SW12, BSS13, KLP+16, EW16]). Recall from [BSS13] that the graph connection Laplacian for graph Γ and edge

potential ρ ∈ C1 (Γ; G) is defined as

L1 = D1 −W1 (45)

where W1 ∈ K
nd×nd is a n × n block matrix with wi jρi j ∈ K

d×d at its (i, j)th block, and D1 ∈ K
nd×nd is block diagonal

with diId×d ∈ K
d×d at its (i, i)th block. To see that ∆

(0)
ρ coincides with L1, notice that

〈
f ,∆(0)

ρ f
〉
=

∥∥∥dρ f
∥∥∥2
=

∑

(i, j)∈E

wi j

∥∥∥ fi − ρi j f j

∥∥∥2
=

1

2

∑

i, j∈V

wi j

∥∥∥ fi − ρi j f j

∥∥∥2
=

1

2

[
f
]⊤

L1

[
f
]
, ∀ f ∈ C0 (Γ; F) .

Theorem 2.3 translates into this combinatorial setting as a decomposition result for the matrix L1, as presented below

in Proposition 2.5. We denote n = |V | and m = |E| for the graph Γ = (V, E).
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Proposition 2.5. The graph connection Laplacian L1 ∈ K
nd×nd admits a decomposition

L1 =
[
δρ

] [
dρ

]
,

[
δρ

]
∈ Knd×md,

[
dρ

]
∈ Kmd×nd, (46)

where
[
dρ

]
is an m-by-n block matrix in which the (i, j)th block is given by

[
dρ

]
i j
=



Id×d if edge i starts at vertex j,

−wk jρk j if edge i starts at vertex k and ends at vertex j,

0 otherwise,

(47)

and
[
δρ

]
is an n-by-m block matrix in which the (i, j)th block is given by

[
δρ

]
i j
=



wik

di

Id×d if edge j starts at vertex i and ends at vertex k,

0 otherwise.
(48)

Note that here each edge (i, j) appears twice in E with opposite orientations.

The Hodge decomposition (46) immediately leads to the following observation, which reflects the geometric fact

that there do not exist more than n = dim F linearly independent global sections on the vector bundle Bρ [F].

Proposition 2.6. The dimension of the null eigenspace of L1 can not exceed n, the dimension of both the column space

of
[
dρ

]
and the row space of

[
δρ

]
.

By Lemma 2.6, if there are d linearly independent vectors in the kernel space of L1, then they give rise to d locally

constant global sections on Bρ [F] that are also linearly independent as global sections, which indicates the triviality of

the vector bundle Bρ [F] and the synchronizability of ρ ∈ C1 (Γ; G). Note that an analogy of this result for graphs with

multiple connected components also holds, though we assumed Γ is connected throughout this paper: a graph with k ≥

1 connected components and a prescribed O (d)-valued edge potential is synchronizable if and only if the dimension

of the null eigenspace of L1 is kd. This geometric picture is consistent with the main spectral relaxation algorithm

[BSS13, Algorithm 2.5] when the edge potential is synchronizable. Basically, the spectral relaxation procedure works

as follows: first, extract d eigenvectors x1, · · · , xd corresponding to the smallest d eigenvalues of L1; second, form the

nd×d matrix X =
[
x1, · · · , xd

]
and split it vertically into n blocks X1, · · · , Xn of equal size d×d; finally, find the closest

orthogonal matrix Oi to each Xi by polar decomposition, and construct the desired synchronizing vertex potential

f ∈ C0 (Γ; O (d)) by setting fi = Oi. Since ker∆
(0)
ρ = d for any synchronizable edge potentialρ, the d eigenvectors

x1, · · · , xd of L1 all lie in the null eigenspace of L1, which provide exactly the d linearly independent global sections

needed to trivialize the vector bundle; all that remains for obtaining a desired synchronizing vertex potential is to

rescale the columns of each block Xi ∈ K
d×d to achieve orthonormality, which is exactly what is done in the polar

decomposition step when ρ is synchronizable. The twisted cohomology framework developed in this section suggests

the following improvements when applying the spectral relaxation algorithm for determining synchronizability of a

given edge potential:

(1) Instead of checking dim ker∆
(0)
ρ , one can simply check dim ker dρ or dim ker δρ (which gives dim im δρ). Both[

dρ
]

and
[
δρ

]
matrices are much smaller in size compared with L1, and the dimension can be determined by QR

decomposition rather than the more expensive eigen-decomposition;

(2) Instead of performing polar decomposition for each d × d block Xi, which involves the relatively more expensive

SVD, it suffices to invoke a Gram-Schmidt orthonormalization. If synchronizability of ρ is confirmed by the

dimension test in a previous step, the Gram-Schmidt procedure can be performed for the entire matrix X ∈ Knd×d

in one pass (with a minor modification of keeping the columns to have norm n instead of 1), as opposed to being

carried out for each individual block Xi.

Remark 2.5. The Hodge decomposition (46) also suggests an alternative approach to obtaining n linearly independent

locally constant global sections on Bρ [F]: instead of directly solving for the null eigenspace of L1, we can look for

the orthogonal complement of im
[
δρ

]
. Note, however, that the domain of

[
δρ

]
should not be taken as the entire Kmd,

since δρ is defined on Ω1
(
Γ; Bρ [F]

)
, in which elements satisfy the compatibility condition (31). Constructing such a

basis matrix B ∈ Kmd×md and computing the orthogonal complement of the column space of
[
δρ

]
B turns out not to be

much simpler than finding the orthogonal complement of L1 (i.e. finding the null eigenspace of L1 directly).
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In the more general setting where the edge potential ρ is not assumed synchronizable, the geometric picture be-

comes much more involved. Of central importance to the relaxation algorithms and Cheeger inequalities in [BSS13]

is to minimize the frustration of a graph Γ with respect to a prescribed group potential:

ν (Γ) = inf
g∈C0(Γ;O(d))

ν (g)

= inf
g∈C0(Γ;O(d))

1

2d

1

vol (Γ)

∑

i, j∈V

wi j

∥∥∥gi − ρi jg j

∥∥∥2

F
, where vol (Γ) =

∑

i∈V

di.
(49)

As shown in (the proof of) Proposition 2.1, an O (d)-valued edge potential ξ ∈ C1 (Γ; O (d)) is synchronizable if and

only if there exists g ∈ C0 (Γ; O (d)) such that ξi j = gig
−1
j

for all (i, j) ∈ E. The frustration ν (Γ) defined in (49) can

thus be rewritten as

ν (Γ) =
1

2d

1

vol (Γ)
inf

g∈C0(Γ;O(d))

∑

i, j∈V

wi j

∥∥∥gig
−1
j − ρi j

∥∥∥2

F
=

1

2d

1

vol (Γ)
inf

ξ∈C1
sync(Γ;O(d))

∑

i, j∈V

wi j

∥∥∥ξi j − ρi j

∥∥∥2

F
,

where we define

C1
sync (Γ; O (d)) :=

{
ξ ∈ C1 (Γ; O (d))

∣∣∣ ξ synchronizable
}
=

{
ξ ∈ C1 (Γ; O (d))

∣∣∣ Holξ (Γ) is trivial
}
.

Therefore, in the fibre bundle framework, a synchronization problem asks for a synchronizable edge potential that

is “as close as possible” to a prescribed edge potential, or geometrically speaking, for a trivial flat bundle “as close

as possible” to a given flat bundle. One approach, from the point of view of Proposition 2.1, is to find d linearly

independent cochains in C0
(
Γ;Rd

)
that are “as close as possible” to being a global frame of Bρ

[
R

d
]

in the sense of

minimizing the frustration of a Sd−1-valued cochain

η ( f ) =

〈
f ,∆

(0)
ρ f

〉

‖ f ‖2
=

1

2

∑

i, j∈V

wi j

∥∥∥ fi − ρi j f j

∥∥∥2

∑

i∈V

di ‖ fi‖
2

=
1

2vol (Γ)

[
f
]⊤

L1

[
f
]
, ∀ f ∈ C0

(
Γ;Sd−1

)
, ‖ f ‖ , 0,

which equals zero if and only if f defines a global section on Bρ

[
R

d
]

(the constraint ‖ f ‖ , 0 is also indispensable

from a geometric point of view, as any vector bundle trivially admits the constant zero global section). This provides a

geometric interpretation of the spectral relaxation algorithm in [BSS13]. From a perturbation point of view, the mag-

nitudes of the smallest n eigenvalues of ∆
(0)
ρ measure the deviation from degeneracy of the d-dimensional eigenspace

of lowest frequencies, and can thus be interpreted as the extent to which Bρ

[
R

d
]

deviates from admitting d linearly

independent global sections and being a trivial bundle. The Cheeger-type inequality established in [BSS13] quantita-

tively confirms this geometric intuition relating ν (Γ) to the magnitude of d smallest eigenvalues of D−1
1

L1 (the random

walk version of the graph connection Laplacian):

1

d

d∑

k=1

λk

(
D−1

1 L1

)
≤ ν (Γ) ≤

Cd3

λ2 (L0)

d∑

k=1

λk

(
D−1

1 L1

)
, (50)

where C > 0 is a constant, λ2 (L0) is the spectral gap of Γ associated with the graph Laplacian L0, and λk

(
D−1

1
L1

)
is

the kth smallest eigenvalue of D−1
1

L1. (The actual version stated in [BSS13] is for the smallest d eigenvalues of the

normalized graph connection Laplacian D
−1/2

1
L1D

−1/2

1
, but note that D

−1/2

1
L1D

−1/2

1
has the same eigenvalues as D−1

1
L1.)

Classical Cheeger inequalities [Che70, AKPW95, Chu07] relate isoperimetric constants or cuts on graphs and

manifolds to the spectral gap of a graph Laplacian or Laplace-Beltrami operator. There have been Cheeger-type in-

equalities for simplicial complexes with the objective of understanding high-dimensional generalization of expander

graphs [MS16, PR16, PRT15, SKM14]. These results are all concerned with partitioning graphs, manifolds, or sim-

plicial complexes. The Cheeger-type inequality in equation (50) differs from standard Cheeger inequalities in that the

cochains are group- or vector-valued. In addition, the frustration ν (Γ) is not related with any optimalily for graph

partitioning — in the sense of Proposition 2.1, ν (Γ) measures the triviality of a fibre bundle as a whole. The algorithm

we will propose in Section 3 is an attempt to address the graph cut problem based on the synchronizability of the

partitions resulted.

24



3 Learning Group Actions by Synchronization

In this section we specify an algorithm for learning group actions from observations based on synchronization. We

also use simulations to provide some insight towards the performance of the algorithm.

3.1 Motivation and General Formulation

We first state some basic terminology from the general theory of group actions that will be used extensively. If G is a

group and X is a set, a left group action of G on X is a map φ : G × X → X : (g, x) 7→ φ (g, x) such that

φ (e, x) = x, ∀x ∈ X if e is the identity element of G

and

φ (g, φ (h, x)) = φ (gh, x) , ∀x ∈ X, ∀g, h ∈ G.

To simplify notation, we will abbreviate φ (g, x) as g.x. The orbit of any element x ∈ X under the action of G is defined

as the set G.x := {g.x | g ∈ G}. If we introduce an equivalence relation on X by setting

x ∼ y ⇔ x = g.y for some g ∈ G,

then clearly x ∼ y if and only if G.x = G.y. The set X is naturally partitioned into the disjoint unions of orbits, and each

orbit Y is an invariant subset of X under the action of G in the sense that G.Y ⊂ Y . If for any pair of distinct elements

x, y of X there exists g ∈ G such that g.x = y, we say that the action of G on X is transitive. Note that the total space

X is an invariant subset in its own right, and the action of G on each orbit is obviously transitive. If the set X is finite

and there exists a constant time procedure to verify whether any two elements are equivalent under transformations,

the problem of partitioning X into disjoint subsets of orbits can be solved in polynomial time complexity with respect

to the size of X.

In practice we are often interested in classification or clustering tasks which can be framed as follows: given

a dataset X = {x1, · · · , xn} of n objects, find a correspondence or transformation between each pair of distinct ob-

jects. We will see these pairwise correspondences often play the role of nuisance variables and one needs to “quotient

out” the influence of these variables in downstream analysis (e.g. for most practical applications of synchroniza-

tion problems [SZSH11, TSR11, BCSZ14] and alignment problems in statistical shape analysis [BPG+15]). The

intuition as to why some of these pairwise correspondences are nuisance variables one can often with greater fi-

delity transform one object into another via intermediary transformations to other objects rather than a direct trans-

formation between objects. Sometimes, for instance in the analysis of a collection of shapes in computer graphics

[HZG+12, NBCW+11b, HG13, CGH14, KKBL15, MDK+16] and group-wise registration in automated geometric

morphometrics [BLS+11, AADL13, LD11, LPD13, KH15], the pairwise transformations contains crucial information

and are important on their own right. A common challenge in both of the above problems is that the fidelity of pairwise

comparisons can be extremely variable over the data. We illustrate this challenge using the example of computing con-

tinuous Procrustes distances between disk-type shapes [AADL13] in automated geometric morphometrics. The core

of the algorithm is an efficient strategy for searching the Möbius transformation group of the unit disk to obtain a

diffeomorphism between the shapes that minimizes an energy functional. It has been observed that for similar shapes

(in the sense of having a small pairwise distance), the resulting diffeomorphism is often of high quality and can reflect

the correspondence of biological traits. If the shape pair is highly dissimilar, the diffeomorphism tends to suffer from

various structural errors (see e.g. [GYDB] and [Gao15, Chapter 5]). Similar issues have also been observed in the field

of non-rigid shape registration in geometric processing — successful feature extraction and matching techniques for

near-isometric shapes abound [SOG09, ASC11, BK10, RBBK10, KBLB12, LZ14], whereas registering shape pairs

with large deformation is still considered a difficult open problem [BBK08, KABL14, APL15]. Recently, a series

of works [NBCW+11b, HZG+12, HG13, CGH14, KKBL15, MDK+16] proposed to jointly compute all pairwise cor-

respondences within a collection subject to “consistency constraints” that require the composition of resulted maps

along any cycle within the collection be approximately the identity map. The idea in this approach is that pairwise

correspondences between dissimilar shapes are implicitly approximated by concatenating many correspondences be-

tween similar shapes with the individual correpondences have high fidelity, thus avoiding directly solving non-convex

optimization problems with large numbers of local minimizers. Similar ideas can also be found in recent progress

in automated geometric morphometrics where a Minimum Spanning Tree (MST) provides the concatenating of cor-

respondences [BPG+15, GYDB]. It has been observed by morphologists that cycle-consistent constraints are more
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often satisfied for a collection of samples within a species versus samples across a variety of species, suggesting that

inconsistency may be used for species clustering.

Motivated by the above algorithms and approaches, we propose to study the following general problem of Learning

Group Actions (LGA):

Problem 1 (Learning Group Actions). Given a group G acting on a set X, simultaneously learn a new action of

G on X and a partition of X into disjoint subsets X1, · · · , XK , such that the new action is as close as possible to the

given action and cycle-consistent on each Xi (1 ≤ i ≤ K).

The LGA problem can also be understood as a variant of the classical clustering problem, in which the coarse-

graining is based on the cycle-consistency of group actions rather than pairwise similarity or spatial configuration

of elements in the dataset. A solution of the LGA problem provides not only a partition of the input dataset but

also cycle-consistent group actions within each cluster. It is useful to notice that all group elements implemented as

pairwise actions within the same partition Xi form a subgroup of G; the LGA problem can thus also be considered as

“learning” subgroups of a prescribed “ambient group” that optimally fit a given dataset X. In other words, by solving

an LGA problem we identify the “correct” transformation group for a dataset, which in most practical situations are

much more tightly adapted to the given data than the potentially massive group of all possible transformations G.

Example 3.1. If the set X is a vector space and we seek a direct sum decomposition X =
⊕K

i=1
Xi instead of a partition

X =
⋃K

i=1 Xi, the LGA problem reduces to the search for all irreducible G-subrepresentations of X.

Example 3.2. Consider a point set X = {x1, · · · , xn} equipped with a labeling map S : X → {±1} that assigns to each

xi either value +1 or −1. We say xi has positive spin if S (xi) = 1 and has negative spin if S (xi) = −1. Let G = {±1}

act on X transitively as
(
g ji, xi

)
7→ x j, g ji = S (x j)S (xi). Suppose the spin of each point in X (i.e. the label map S ) is

unknown, but we have full access to the group actions {gi j}, we can reconstruct S — up to flipping labels ±1 — by

spectral clustering the dataset X, viewed as vertices of a complete graph Γwith weight wi j = gi j on the edge connecting

xi and x j. Under circumstances where some group actions g ji are subject to a sign-flip error (noisy measurements),

or/and the graph Γ is not complete (incomplete measurements), spectral or semi-definite programming relaxation

techniques can still be used to recover S up to permuting labels ±1 (see e.g. [CKS15]). With X and (potentially noisy

and incomplete) {g ji} as input, this spectral clustering example can be considered as an instance of LGA: the output

consists of a partition of X into positive/negative spin subsets, as well as the trivial subgroup {+1} of G = {±1} acting

in a cycle-consistent manner on both partitions.

Example 3.2 provides further motivation to consider a version of LGA in the context of synchronization problems.

We are given a graph Γ = (V, E) and the data X, where the vertex set V is identified with observations in X and the

edges in E representing pairwise relations between elements of X. It is natural to consider a partition of the graph Γ

in this setup decomposition of Γ into connected subgraphs such that the vertices of the subgraphs form a partition of

the set of vertices of Γ.

Problem 2 (Learning Group Actions by Synchronization). Let Γ = (V, E) be an undirected weighted graph, G

a topological group, and ρ ∈ C1 (Γ; G) a given edge potential on Γ. Furthermore, assume the vertex set V is

equipped with a cost function CostG : G × G → [0,∞). Denote XK for all partitions of Γ into K nonempty

connected subgroups (K ≤ n) and

ν (S i) = inf
f∈C0(Γ;G)

∑

j,k∈S i

w jkCostG
(

f j, ρ jk fk
)
, vol (S i) =

∑

j∈S i

d j, 1 ≤ i ≤ K.

Solve the optimization problem

min
{S 1,··· ,S K }∈XK

max
1≤i≤K

ν (S i)

min
1≤i≤K

vol (S i)
(51)

and output an optimal partition {S 1, · · · , S K} together with the minimizing f ∈ C0 (Γ; G).
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In the following, we shall refer to Problem 2 as Learning Group Actions by Synchronization (LGAS). When

G = O (d) or U (d) and CostG is the squared Frobenius norm on d × d matrices, ν (S i) is clearly the frustration (49)

of the subgraph of Γ with vertices in S i, up to a multiplicative constant depending only on Γ and dimension d. The

minimizing vertex potential defines a synchronizable edge potential on the entire graph Γ, thus also gives rise to a

cycle-consistent action on each partition. Note that the objective function (51) does not account for the discrepancy

between the realized synchronizable edge potential and the original ρ on edges across partitions — intuitively, solving

Problem 2 amounts to forming partitions by economically “dropping out” appropriate edges in Γ to minimize the total

frustration.

3.2 SynCut: A Heuristic Algorithm for Learning Group Actions by Synchronization

In this subsection, we will investigate Problem 2 (LGAS) in the context of O (d)-synchronization problems, focusing

on the simpler setting where K = 2. In this case, (51) simplifies to

min
S⊂V

max {ν (S ) , ν (S c)}

min {vol (S ) , vol (S c)}
.

Note that

max {ν (S ) , ν (S c)} ≤ ν (S ) + ν (S c) ≤ 2 max {ν (S ) , ν (S c)} ,

we can thus consider — drawing an analogy with the standard approach of studying Cheeger numbers through nor-

malized cuts — the following optimization problem closely related with (51):

ξΓ := min
S⊂V
ξ (S )

:= min
S⊂V

[
ν (S ) + ν (S c)

]
(

1

vol (S )
+

1

vol (S c)

)
.

(52)

Recall from (49) that ξΓ further simplifies into

ξΓ = min
S⊂V

inf
g∈C0(Γ;O(d))

1

2d

1

vol (Γ)

∑

i, j∈V
(i, j)<∂S

wi j

∥∥∥gi − ρi jg j

∥∥∥2

F
·

vol (Γ)

vol (S ) vol (S c)

= min
S⊂V

inf
g∈C0(Γ;O(d))

1

2d

1

vol (S ) vol (S c)

∑

i, j∈V
(i, j)<∂S

wi j

∥∥∥gi − ρi jg j

∥∥∥2

F
,

(53)

where

∂S := {(u, v) ∈ E | u ∈ S , v ∈ S c or u ∈ S c, v ∈ S } .

In other words, the goal of solving the optimization problem (53) is to lower the total frustration of the graph Γ by

dropping out a minimum set of edges under the constraint that the residual graph consists of two connected com-

ponents; this is equivalent to say that we seek a most economic graph cut in terms of reducing total frustration. To

simplify statements, we shall refer to
∥∥∥gi − ρi jg j

∥∥∥2

F
as the frustration on edge (i, j) ∈ E of vertex potential g with respect

to the edge potential ρ, and call the collection of frustrations on all edges the edge-wise frustrations. The sum of all

edge-wise frustrations will be referred to as the total frustration.

Formulation (53) motivates a greedy algorithm that alternates between minimizing graph cuts and vertex potentials.

We shall refer to this algorithm as Synchronization Cut, or SynCut for short; see Algorithm 1. We describe the main

steps in SynCut below:

Step 1. Initialization: Input data include the weighted graph Γ = (V, E,w), edge potential ρ ∈ C1 (Γ; G), and pa-

rameters required for the spectral clustering subroutine plus termination conditions for the main loop. Initialize

iteration counter t = 0, and dynamic graph weights ǫ to be the input graph weights w;

Step 2. Global Synchronization: Synchronize the edge potential ρ on the entire graph Γ with respect to edge

weights. Any synchronization algorithm can be used in this step, e.g. spectral relaxation [BSS13, CKS15]

or SDP relaxation [BCSZ14, Sin11, CKS15, BKS16, NRV13]. Note that in this step the synchronization is

performed on Γ with dynamic weights ǫ instead of the original weights w. Denote f (t) as the edge potential on

Γ at the edge potential at the t-th iteration;
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Step 3. Spectral Clustering (First Pass): Update dynamic weights ǫ based on the frustration of f (t) on each edge

by

ǫi j = wi j exp

(
−

1

σ

∥∥∥∥ f
(t)

i
− ρi j f

(t)

j

∥∥∥∥
2

F

)
, where σ > 0 is the average of all non-zero edge-wise frustrations

then partition the vertex set V of graph Γ into K clusters S 1, · · · , S K using spectral clustering based on the

updated dynamic weights ǫ. The goal is to cut the graph Γ into more synchronizable clusters; edges causing

large frustration are assigned relatively smaller weights ǫi j to increase the chance of being cut. To simplify

notation, we will also use S ℓ (1 ≤ ℓ ≤ K) to denote the subgraph of Γ spanned by the vertices in S ℓ;

Step 4. Local Synchronization: Synchronize the edge potential ρ within each partition S ℓ, 1 ≤ ℓ ≤ K. If we

denote ρ|S ℓ , ǫ|S ℓ for the restrictions of ρ, ǫ to S ℓ, respectively, then this step solves the synchronization problem

on weighted graph
(
S ℓ, ǫ|S ℓ

)
for prescribed edge potential ρ|S ℓ . Again, any synchronization algorithm can be

used in this step. Denote g(ℓ) for the resulting vertex potential on S ℓ;

Step 5. Collage: After obtaining g(ℓ) for each local synchronization on S ℓ, we make a “collage” from these local

solutions to form a global vertex potential defined on the entire graph Γ. Since each g(ℓ) is obtained from

synchronizing within S ℓ, the collected local solutions
{
g(ℓ)

}K

ℓ=1
generally incur large incompatibility (frustration)

on edges across partitions. Our strategy is to find K elements h1, · · · , hK ∈ G, where each hℓ acts on g(ℓ) by

g
(ℓ)
u 7→ g

(ℓ)
u hℓ, ∀u ∈ S ℓ, such that the total cross-partition frustration

C
(
h1, · · · , hK

∣∣∣ {S ℓ}1≤ℓ≤K ,
{
g(ℓ)

}
1≤ℓ≤K

)
:=

∑

1≤p,q≤K

∑

(u,v)∈E
u∈S p,v∈S q

wuv

∥∥∥∥g
(p)
u hp − ρuvg

(q)
v hq

∥∥∥∥
2

F
(54)

is minimized. Note that this is essentially synchronizing an edge potential

ρ̃pq =



∑

(u,v)∈E
u∈S p,v∈S q

wuv

(
g

(p)
u

)−1
ρuvg

(q)
v if partitions S p, S q are connected

0 otherwise

(55)

on a reduced complete graph Γ̃K consisting of K vertices where each vertex represent one of the K partitions

S 1, · · · , S K . It thus simply requires calling the synchronization routine again to obtain h1, · · · , hK , but this time

the scale of the synchronization problem is often much smaller than the previous global and local synchroniza-

tion steps. Also note that for the binary cut case K = 2 and G = O (d) this collage step is even simpler: it suffices

to perform an single SVD on the d × d matrix
∑

(u,v)∈E
u∈S 1,v∈S 2

wuv

(
g

(p)
u

)−1
ρuvg

(q)
v = UΣV⊤

and set h1 = UV⊤, h2 = Id×d.

Step 6. Spectral Clustering (Second Pass): Update dynamic weights ǫ based on the frustration of f ∗ on each edge

by

ǫi j = wi j exp

(
−

1

σ

∥∥∥ f ∗i − ρi j f ∗j

∥∥∥2

F

)
, where σ > 0 is the average of all non-zero edge-wise frustrations

then partition Γ into K clusters S 1, · · · , S K using spectral clustering for a second time, based on the updated

dynamic weights ǫ.

Step 7. Repeat Step 2 to Step 6 Until Convergence. The termination condition can be specified either by a maxi-

mum number of iterations or monitoring the change of the quantity

ξ ({S 1, · · · , S K}) :=


K∑

ℓ=1

ν (S ℓ)




K∑

k=1

1

vol (S k)

 . (56)

At the end of the procedure, return the partitions {S 1, · · · , S K} and the final edge potential f ∗ from the most

recent updates. The cycle-consistent edge potential on partition S ℓ is encoded in the restriction of f ∗ to S ℓ.
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Algorithm 1 Synchronization Cut: Learning Group Actions by Synchronization

1: procedure SynCut(Γ, ρ, K) ⊲ weighted graph Γ = (V, E,w), ρ ∈ C1 (Γ; G), number of partitions K

2: t = 0

3: ǫ = w

4: while not converge do

5: f (t) ∈ C0 (Γ; G)← Synchronize(Γ, ρ, ǫ)

6: σ← average non-zero edge-wise frustrations of f (t)

7: for (i, j) ∈ E do ⊲ calculate weights ǫ on graph Γ for spectral clustering

8: ǫi j ← wi j exp

(
−

1

σ

∥∥∥∥ f
(t)

i
− ρi j f

(t)

j

∥∥∥∥
2

F

)

9: end for

10: {S 1, · · · , S K} ← SpectralClustering(Γ, ǫ)

11: for ℓ = 1, · · · ,K do

12: g(ℓ) ∈ Ω0 (S ℓ; G)← Synchronize
(
S ℓ, ρ|S ℓ , ǫ|S ℓ

)

13: end for

14: f ∗ ∈ Ω0 (Γ; G)← Collage

(
{S ℓ}

K
ℓ=1 ,

{
g(ℓ)

}K

ℓ=1

)

15: σ← average non-zero edge-wise frustrations of f ∗

16: for (i, j) ∈ E do ⊲ update weights ǫ on graph Γ for next iteration

17: ǫi j ← wi j exp

(
−

1

σ

∥∥∥ f ∗i − ρi j f ∗j

∥∥∥2

F

)

18: end for

19: {S 1, · · · , S K} ← SpectralClustering(Γ, ǫ)

20: t ← t + 1

21: end while

22: return {S 1, · · · , S K}, f ∗ ⊲ f ∗ defines a cycle-consistent edge potential on each partition

23: end procedure

3.3 Results on Simulated Random Synchronization Networks

In this subsection, we use simulations to provide some intuition for the behavior of SynCut under the setting K = 2

(two partitions). We first specify a random procedure to simulate input data — a connected random graph with a

prescribed edge potential — for synchronization problems. In addition, the random graph generation procedure will

be controlled by a parameter that allows us to adjust the level of obstruction to the synchronizability of the prescribed

edge potential over the generated graph. We then specify the metrics used for performance measure. We conclude by

demonstrating that the partition generated from SynCut recovers the two synchronizable connected components with

high accuracy and within relatively few numbers of iterations. For the simplicity of statements, we refer to each pair

of generated graph and edge potential an instance of a random synchronization network.

3.3.1 Random Synchronization Network Simulation

We first specify the procedure to generate the random graphs. Our intention is to sample random graphs with suffi-

ciently variable spectral gaps, based on the intuition that a large spectral gap of the underlying graph results in greater

obstruction to the synchronizability of the edge potential constructed by the procedures that will soon be described in

this subsection. We first generate two partitions S 1, S 2 with an equal number of vertices. Each partition is a connected

component built from a vertex degree sequence of random integers uniformly distributed in an interval (say 5 to 8),

adapting an algorithm first proposed in [BD10]; when the interval is a single integer, the connected component is a

regular graph. Random edges are than added to link the two partitions S 1, S 2. The number of inter-component random

edges positively correlates with the spectral gap, as shown in Figure 1, suggesting that this number can be used as a

parameter to adjust the level of obstruction to cutting the graph into two connected components S 1 and S 2.

A subtlety in this random network generation procedure is that a uniform distribution on the number of inter-

component links does not induce a uniform distribution on the spectral gaps of the generated random graphs, due to

concentration effects. A precise characterization of the distribution of spectral gaps in our random graph model is

interesting on its own right but beyond the scope of this paper. We refer interested readers to the existing literature on
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the spectral gaps of random graphs such as [CLV03, COL06, HKP12]. In practice, we simply use a large number of

random trials to generate sufficiently many sample graphs with spectral gaps within desirable ranges; see Figure 2a.

After drawing an instance of the random graph, we randomly construct an edge potential that is synchronizable

within S 1 and S 2, but not necessarily synchronizable on the inter-component links. The procedure to generate the

random edge potentials proceeds as follows:

(1) Randomly generate a vertex potential g ∈ C0 (Γ; G) for the entire graph Γ;

(2) Set the value of ρ on edge (i, j) according to

ρi j =


gig
−1
j

if both i, j ∈ S 1 or i, j ∈ S 2,

a random matrix in O (d) otherwise.

The vertex potential g ∈ C0 (Γ; G) will no longer attain the minimum frustration for the entire graph with respect to the

prescribed edge potential ρ, due to the edges added between the partitions that are much less likely synchronizable.

Figure 1: A scatter plot displaying the correlation between the number of inter-component links and the spectral gap in our random

graph model, with N = 100 vertices and the (integer) number of inter-component links uniformly distributed between 100 and 250.

We consider each run of SynCut as successful if both output partitions are synchronizable connected components,

i.e. if SynCut recovers the original partitions S 1, S 2. The performance of SynCut is measured using the error ratio

computed by dividing the number of erroneously clustered vertices by the total number of vertices. If SynCut success-

fully recovers S 1, S 2, this error ratio is 0; if the output partition is close to a random guess, or if the algorithm fails to

separate the vertices into distinct clusters, the error ratio is 0.5. The error ratios of the partitions output from SynCut

are then compared with a baseline graph cutting algorithm using normalized graph cut (NCut) that does not utilize any

information in the prescribed edge potential; see e.g. [SM00, Von07].

3.3.2 Simulation Results

In this simulation study, we set the number of vertices in each of the two synchronizable components to N = 100, and

the entries of the vertex degree sequence of random integers are independently uniformly distributed between 4 and 8.

The number of inter-component links between the two synchronizable components is drawn uniformly between 100

and 250. The edge potentials are valued in the orthogonal group O (d) with d = 5. We terminate SynCut either after 10

iterations or if the change in the value of the objective function ξ [see (56)] between consecutive iterations falls below

a preset tolerance of 10−8. We plot in Figure 2(a) the spectral gaps of 10, 000 realizations of our random network

model. In Figure 2(b) and Figure 2(c) we observed that the error ratios in these 10, 000 runs of SynCut tend to be

much smaller than NCut, suggesting that SynCut outputs more accurate partitions with respect to synchronizability. In

Figure 2(e), we again see that SynCut outperforms NCut and the amount of improvement increases with the magnitude

of the spectral gap. Figure 2(d) shows that SynCut converges quickly.
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Figure 2: (a) Histogram of the spectral gap of the 10, 000 random graphs drawn from our model. (b) Histogram of the error ratios

of the SynCut clustering results. (c) Histogram of the error ratios of the baseline NCut clustering results. (d) Histogram of the

number of iterations for SynCut. (e) Scatter plots of the error ratios of SynCut and NCut versus spectral gap.
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We now focus on a particular instance of a random synchronization network to better understand SynCut in com-

parison with the spectral relaxation algorithm proposed in [BSS13]. Each synchronizable component in the random

synchronization network shown in Figure 3(a) is a regular graph containing N = 100 vertices and 250 edges, generated

with a constant vertex degree sequence of 5. We color the edges within and between synchronizable components in

blue and red, respectively. In Figure 3(b) we plot the edge-wise frustration for the vertex potential g used to generate

the edge potential ρ prescribed to the network. As expected, the frustration is zero within each synchronizable com-

ponent but large on the edges across components. Figure 3(c) and Figure 3(d) show the edge-wise frustrations for two

vertex potentials obtained from the spectral relaxation algorithm [BSS13] and SynCut, respectively. Though the total

frustration is larger for SynCut than spectral relaxation, the SynCut solution concentrates most of the frustration on

the non-synchronizable inter-component edges, with a distribution of edge-wise frustrations closer to the distribution

for the initial vertex potential g. This suggests that applying a spectral graph cut algorithm using the edge-wise frus-

tration of the SynCut solution as a dissimilarity measure is advantageous, as the distribution in Figure 3(d) identifies

the obstructions to synchronizability in the synchronization network more accurately.

Figure 3: (a) A random graph consisting of two synchronizable connected components, each with 100 vertices and 250 edges (in

blue), and 100 non-synchronizable inter-component edges (in red). The edge potential takes value in the orthogonal group O (5). All

vertex degrees in each synchronizable component are set to 5. (b) Edge-wise frustration for the vertex potential g used to generate

the prescribed edge potential ρ. As expected, frustration is small within each connected component but large between components.

(c) Edge-wise frustration for the vertex potential obtained from spectral relaxation [BSS13]. The total frustration is lower than

that in the top right figure, but the inter-component edges carries relatively lower frustration since the relaxation procedure tends

to “spread” the non-synchronizability across the entire graph. (d) Edge-wise frustration for the vertex potential obtained from

SyncCut. The total frustration is higher than that for the spectral relaxation solution, but the distribution of frustrations on the edges

is closer to that of vertex g and can thus be used to recover the synchronizable connected components.

4 Application to Automated Geometric Morphometrics

In this section we formulate a problem in automated geometric morphometrics in terms of LGAS, then apply the

SynCut algorithm to provide a solution. In Section 4.1 we provide some background in geometric morphometrics

and its relation to synchronization problems. In Section 4.2 we apply SynCut to a collection of second mandibular

molars of prosimian primates and non-primate close relatives. The morphological hypothesis is that the geometric
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traits of second mandibular molars cluster into 3 dietary regimens: folivorous (herbivores that eat leaves), frugivorous

(herbivores or omnivores that prefer fruit), and insectivorous (a carnivore that eats insects). We will show the SynCut

result, which is based on the synchronizability of pairwise correspondences, and compare it with a distance-based

clustering result using diffusion maps [CL06].

4.1 Geometric Morphometrics and Synchronization

The classic tool in geometric morphometrics is Procrustes analysis. The basic assumption underlying this analysis

framework is that most of the geometric information on each shape can be efficiently encoded in a set of landmark

points carefully picked to highlight the morphometrical phenotypes (variation in the geometric shape of an organism).

The Procrustes distance between two shapes is the average Euclidean distance between corresponding landmarks,

after applying a rigid motion (rotations, reflections, translations, and their compositions) to optimally align the two

sets of landmarks. If all the shapes are marked with an equal number of landmarks but the landmark correspondence is

not known a priori, a combinatorial search can be performed over all permutations of one-to-one landmark correspon-

dences, and the minimum average Euclidean distance between corresponding landmarks can be taken as a dissimilar

measure between the two shapes. Comparing a pair of shapes in this framework thus yields abundant pairwise in-

formation, including a scalar dissimilarity score, a rigid motion, and a permutation matrix encoding the one-to-one

landmark correspondence.

In automated geometric morphometrics, landmark points are not used to represent the shapes, and algorithms

search for an “optimal” transformation between a pair of whole shapes directly by minimizing energy functionals

over a set of admissible transformations. Depending on the specific class of transformations and energy functional, the

pairwise comparisons produce different types of correspondences between surfaces, such as conformal/quasiconformal

transformations, isometries, area-preserving diffeomorphisms, or even transport-plans between surface area measures

in a Wasserstein framework. Regardless of the type of admissible transformations, the algorithm can output a rigid mo-

tion for the optimal alignment between two shapes, as well as a dissimilarity or similarity score for such an alignment.

See Figure 4 for an example of representing a collection of shapes using landmarks versus triangular meshes.

When the analysis is extended from comparing a single pair to a large collection of shapes, a crucial premise for

downstream statistical analysis (e.g. General Procrustes Analysis (GPA) [Gow75, DM98, GD04]) is that the pairwise

correspondences be cycle-consistent, meaning that propagating any landmark on any shape by consecutive corre-

spondences along a close cycle of shapes should land exactly at the original landmark. Traditional landmark-based

Procrustes analysis begins with consistently picking an equal number of landmarks on each shape, resulting in a large

amount of pairwise correspondence relations that are cycle-consistent by construction. This is, however, not the sit-

uation with automated geometric morphometrics, where the correspondence transformations produced by automated

algorithms are rarely cycle-consistent, even when one localizes the transformations within relatively “stable” regions

where landmarks are affixed with the knowledge of an experienced geometric morphometrician. The necessity of

cycle-consistent correspondences links automated geometric morphometrics to synchronization problems. An auto-

mated geometric morphometric algorithm will output for each pair of shapes a triplet consisting of a dissimilarity

score, a rigid motion, and a pairwise transformation. We can use the dissimilarity scores to define a weighted graph

Γ that captures the similarities within the collection, both qualitatively and quantitatively, by adjusting the number of

nearest neighbors of each vertex and the weights on each edge. The rigid motions and pairwise transformations define

two edge potentials on Γ, taking values in different groups. We list below some interesting synchronization problems

arising from this formulation:

Three-Dimensional Euclidean Group. The rigid motions Ri j between shapes S i and S j that share an edge

in Γ define an edge potential R ∈ C1 (Γ; E (3)), where E (3) is the three-dimensional Euclidean group. Solving an

E (3)-synchronization problem over Γ with respect to R results in a globally consistent alignment for a collection of

shapes, which is often crucial for initializing geometric morphometrical analysis algorithms such as Dirichlet Normal

Energy [BBL+11], Orientation Patch Analysis [EWFJ07], and Relief Index [Boy08]. Algorithms that automatically

align a collection of anatomical shapes in a globally consistent manner can also be viewed as primitive approaches for

solving E (3)-synchronization problems; see e.g. [Pue13, BPG+15, PWM+16, GBAD+16].

Orthogonal Group and Orientation Detection. If the shapes are preprocessed to superimpose the centers of

mass at the same point, the translation component of each Ri j output from a pairwise landmark-based Procrustes

analysis vanishes3. This reduces the global alignment problem to standard synchronization problems over the compact

Lie group O (3). Spectral and semidefinite programming (SDP) relaxation methods can then be applied directly to

3Note this is not the case for jointly analyzing a collection of shapes in a landmark-based Procrustes analysis framework; see e.g. [CKS15].
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solve the global alignment problem. If we consider the edge potential ρ ∈ C1 (Γ;Z2) defined by ρi j = det Ri j, a Z2-

synchronization solution can be used to either partition the dataset into “left-handed” and “right-handed” subsets or

conclude that such an orientation-based partition does not exist. We stated a similar situations in Example 3.2; other

examples in this setting can be found in applications of Orientable Diffusion Maps [SW11].

Automorphism Groups. Certain classes of transformations Ci j between each pair of shapes S i, S j give rise to an

edge potential on the graph Γ valued in an automorphism group of a canonical domain. For instance, algorithms such as

Möbius Voting and the Continuous Procrustes Distance [AADL13] between disk-type surfaces rely on the computation

of conformal maps between two shapes, based on uniformization parametrization techniques [PP93, AHTK99] that

map each surface conformally to a canonical unit disk on the plane. By intertwining Ci j with the parametrizations of

the source and the target shape, the correspondence between S iand S j can be equivalently considered as an element

of the conformal automorphism group Aut (D) of the planar unit disk D. The group Aut (D) is isomorphic to the

projective special linear group PSL (2,R), a non-compact simple real Lie group that is equivalent to the quotient of

the special linear group SL (2,R) by {±I2}, where I2 denotes the 2 × 2 identity matrix. Synchronization problems

over PSL (2,R) or SL (2,R) require non-trivial extensions of the non-unique games (NUG) framework [BCS15] over

compact Lie groups.

Groupoids. Other types of transformations Ci j between each pair of shapes S i, S j require further generalizations

of the synchronization framework to edge potentials taking values in a groupoid rather than in a group. As an example,

consider surface registration techniques based on area-preserving maps [AADL13, ZHT03, ZSG+13, SZS+13]. These

techniques use conformal or area-preserving parametrizations to push forward surface area measures on S i, S j to

measures µi, µ j on the planar unit disk D, respectively, then solve for a transport map on D that pulls back µ j to µi

(or equivalently µi to µ j). To formulate such “transport-map-valued” edge potentials in a synchronization framework,

an edge potential should be allowed to take values in different classes of maps on different edges, with the only

constraint that maps on consecutive edges can be composed; these ingredients have much in common in spirit with

fundamental groupoids [Bro67, BHS11] and Haefliger’s complexes of groups [Hae91, Hae92]. Such a generalized

framework for synchronization problems can also be used to analyze correspondences
{
Ci j

}
that are soft maps [RCB97,

SNB+12] or transport plans [LD11, LPD13, LZ14], where one replaces the set of transport maps between µi and

µ j with (probabilistic) couplings Π
(
µi, µ j

)
as in Kantorovich’s relaxation to the Monge optimal transport problem

[Vil03, Vil08]. The Horizontal Diffusion Maps (HDM) framework [Gao16] and the application in automated geometric

morphometrics [Gao15] are among the initial attempts in this direction.

4.2 Clustering Lemurs by Dietary Regimens using Synchronizability of Molar Surfaces

We focus on a real anatomical surface mesh dataset of second mandibular molars from 5 genera of prosimian pri-

mates and nonprimate close relatives. There are a total of 50 molars with 10 specimens from each genus. The five

genera divide into three dietary regimens: the Alouatta and Brachyteles are folivorous, the Ateles and Callicebus are

frugivorous, and the Saimiri are insectivorous. In Figure 4 we display four lemur molars from an anatomical surface

dataset first published in [BLS+11], together with landmarks on each molar placed by evolutionary anthropologists.

Similar datasets have been studied in a series of papers developing algorithms for automatic geometric morphometrics

[BLS+11, AADL13, LD11, LPD13, KH15]. The chewing surface of each molar is digitized as a two-dimensional

triangular mesh in R3 of disk-type topology (i.e. conformally equivalent with a planar disk). We will apply SynCut to

these 50 molars and examine if the clustering is consistent with dietary regimens.

Method We first pre-process the dataset by translating and scaling each shape so that all surface meshes center at the

origin and enclose unit surface area. We then apply the continuous Procrustes distance algorithm for each pair of teeth,

generating a a distance score di j, a diffeomorphism Ci j, and an orthogonal matrix Ri j ∈ O (3) that optimally aligns S j

to S i with respect to the diffeomorphism Ci j. We use the distance scores to construct a weighted K-nearest-neighbor

graph Γ. The weights are defined as wi j = exp
(
−d2

i j

/
σ2

)
with the bandwidth parameter σ > 0 set to be of the order

of the average smallest non-zero distances. We apply SynCut to the edge potential ρ ∈ C1 (Γ; O (3)) defined by the

alignments Ri j on the weighted graph (Γ,w). Finally, we compare the clustering performance of SynCut with applying

diffusion maps and spectral clustering directly to the weighted graph without the alignment information.

Results SynCut and diffusion maps both require the choice of a parameter K determining the number of nearest

neighbors in the construction of the graph Γ. When 6 ≤ K ≤ 10 both procedures accurately cluster the 50 molars in
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Figure 4: The meshes of four lemur molars from an an anatomical surface dataset first published in [BLS+11]. The colored dots

on the molars are landmark points where identical colors indicate corresponding landmarks.

Figure 5: Consistent alignment of 50 lemur teeth based on applying SynCut to all pairwise alignments from the continuous

Procrustes analysis [AADL13]. Each row corresponds to teeth from a genus, from top to bottom: Alouatta, Ateles, Brachyteles,

Callicebus, Saimiri.
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the dataset into the three distinct dietary regimens, see Figure 6 for the two-dimensional embedding plots for K = 7.

SynCut produces slightly tighter and more distinguishable species clusters. Not surprisingly, for K > 10 — when the

number of nearest neighbors exceeds the number of specimens in each genus — both algorithms are less accurate as K

increases, with the accuracy of SynCut dropping faster than diffusion maps. This empirical observation is consistent

with our intuition that the performance of SynCut is more sensitive to increased spectral gaps than diffusion maps.

Figure 6: Embeddings of the 50 lemur teeth dataset into R2, obtained by applying diffusion maps (left) and SynCut (right) to

the 7-nearest-neighbor graph. Both plots are post-processed using t-SNE [MH08]. (a) Diffusion maps applied to the weighted

graph (Γ,w) successfully distinguishes three diet groups, but the genera are less distinguishable. (b) SynCut produces an edge-wise

frustration matrix after the final iteration that can be used by diffusion maps to generate a low-dimensional embedding, in which

both dietary groups and genera are more distinguishable.

5 Conclusion and Discussion

We provided in this paper a geometric framework for synchronization problems. We first related the synchronizabil-

ity of an edge potential on a connected graph to the triviality of a flat principal bundle over the topological space

underlying the graph, then characterized synchronizability from two aspects: the holonomy of the principal bundle,

and the twisted cohomology of an associated vector bundle. On the holonomy side, we established a correspondence

between two seemingly distant objects on a connected graph Γ, namely, the orbit space of the action of G-valued

vertex potentials on G-valued edge potentials, and the representation variety of the fundamental group of Γ into G;

on the cohomology side, we built a twisted de Rham cochain complex on an associated vector bundle Bρ [F] of the

synchronization principal bundle Bρ, of which the zero-th degree cohomology group characterizes the obstruction to

the synchronizability of the prescribed edge potential.

With the presence of a metric on the associated vector bundle Bρ [F], we also developed a twisted Hodge theory

on graphs. Independent of the contribution to synchronization problems, this theory is both a discrete version of the

Hodge theory of elliptic complexes and a fibre bundle analogue of the discrete Hodge theory on graphs. Specifically

for synchronization problems, this twisted Hodge theory realizes the graph connection Laplacian operator as the zero-

th degree Hodge Laplacian in the twisted de Rham cochain complex. A Hodge-type decomposition theorem is also

proven, stating that the image of the twisted codifferential is the orthogonal complement of the linear space of F-valued

synchronization solutions, with respect to the bundle metric.

Motivated by the geometric intuitions gained from these theoretical results, we coined the problem of learning

group actions (LGA), and proposed a heuristic algorithm, which we referred to as SynCut, based on iteratively applying

synchronization and spectral graph techniques. Numerical simulations on synthetic and real datasets indicated that

SynCut has the potential to cluster a collection of objects according to the synchronizability of a subset of partially

observed pairwise transformations.
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We conclude this paper by listing several problems of interest for future exploration. These are only a subset of

a vast collection of potential directions concerning the mathematical, statistical, and algorithmic aspects of synchro-

nization problems:

1) The Representation Variety of Synchronization Problems. When a prescribed edge potential ρ is not synchronizable

over graph Γ, the goal of the synchronization problem is to find a synchronizable edge potential ρ̃ that is as close

as possible to ρ in a sense that has been made clear in this paper. The point of view adopted in Section 2.1 is that

the synchronization problem essentially concerns the orbits of ρ and ρ̃ under the action of all vertex potentials. It

is natural to conceive a synchronization algorithm based on the geometry of the orbit space C1 (Γ; G) /C0 (Γ; G)

that enables efficiently “moving across” the orbits. Since the fundamental group of any connected graph is simply

a free product of copies of Z, we expect the representation variety Hom (π1 (Γ) ,G) /G to possess relatively simple

structures that could be used for guiding the design of novel synchronization algorithms with provable guarantees.

2) Higher-order Synchronization Problems. As a simplicial complex, the graph Γ only has 0- and 1-simplices, which

results in only one cohomology group of interest in the de Rham cochain complex (41). By extending the twisted de

Rham and Hodge theory developed in Section 2.2 to simplicial complexes of higher dimensions, we expect higher-

order synchronization problems can be formulated and studied using tools and insights from high-dimensional

expanders and the Hodge theory of elliptic complexes. Generalizing the current regime of synchronization prob-

lems, in which only pairwise transformations are considered, the higher-order analogies would enable the study of

relations and interactions among multiple vertices in the graph Γ, which potentially opens doors towards higher-

order graphical models and related statistical inference questions as well.

3) Hierarchical Partial Synchronization Algorithms with Provable Guarantees. The SynCut algorithm we proposed

in this paper can be understood as an iterative hierarchical partial synchronization algorithm, based on the assump-

tion that edge-wise synchronization is an indicator of the synchronizability of a prescribed edge potential over a

proper subgraph. The numerical experiments on synthetic and real datasets suggested the validity of this intuition

under our random graph model, but no provable guarantees exist either for the convergence or the effectiveness of

algorithms similar or related to SynCut, to the best of our knowledge. Building a Cheeger-type inequality as the

performance guarantee for SynCut attracted our attention, but even the analogy of Cheeger number (or graph con-

ductance) in the setting of SynCut or LGA is not clear — whereas the Cheeger number depends only on the graph

weights, which are fixed numbers on each edge independent of the graph cut, the notion of edge-wise frustration

is highly non-local as the frustration depends on the behavior of the synchronization solution on the entire graph.

We conjecture that a Cheeger-type inequality for SynCut, if exists, will reflect the global geometry information

encoded by geometric quantities associated with the fibre bundle.

4) Statistical Framework for Learning Group Actions. The LGA problem presented in this paper is not formulated

with a natural generative model for the dataset of objects with pairwise transformations; nor is assumed any con-

crete noise models. It would be of interest to provide a systematic, statistical framework under which the problem

of LGA and LGAS can be quantitatively analyzed and understood; we believe such a framework also has the

potential to bridge statistical inference with synchronization problems.

A Proofs of Proposition 1.1 and Formula (37)

Proof of Proposition 1.1. The construction of U using the stars of the vertices of Γ ensures that

(1) Ui ∩ U j , ∅ if and only if (i, j) ∈ E;

(2) Ui ∩ U j ∩ Uk , ∅ if and only if the 2-simplex (i, j, k) is in X.

For such pair (i, j), define constant map gi j : Ui ∩ U j → G as

gi j (x) = ρi j ∀x ∈ Ui ∩ U j.

Set gii = e for all 1 ≤ i ≤ |V |, and note that gi j (x) = g−1
ji

(x) for all x ∈ Ui ∩ U j by our assumption on ρ. If ρ is

synchronizable over G, let f : V → G be a vertex potential satisfying ρ, then ρi j = fi f −1
j

for all (i, j) ∈ E from (1).
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Thus ρk jρ ji = ρki for any triangle (i, j, k) in Γ, or equivalently that gk j (x) g ji (x) = gki (x) for all x ∈ Ui ∩ U j ∩ Uk.

Therefore,
{
gi j | 1 ≤ i, j ≤ |V |

}
defines a system of coordinate transformations [Ste51, §2] with values in G. These data

determine a principal fibre bundle Pρ with base space X and structure group G — by a standard construction in the

theory of fibre bundles (see e.g. [Ste51, §3.2]) — of which local trivializations are defined on the open sets in U with

constant transition functions gi j; this principal bundle is thus flat by definition. Furthermore, the vertex potential f and

the compatibility constraints (1) ensure that the following global section s : X →Pρ is well-defined on this bundle:

s (x) = φi (x, fi) , x ∈ Ui

where φi : Ui ×G → Pρ is the local trivialization of Pρ over Ui. The triviality of this principal bundle then follows

from the existence of such a global section; see e.g. [Ste51, §8.3]. The other direction of the proposition follows

immediately from this triviality criterion for principal bundles. �

Proof of Formula (37).
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1

2

∑

(i, j)∈E

[
wi j

〈
pi

(
ω

(i)

i j

)
, pi

(
η

(i)

i j

)〉
F
+ w ji

〈
p j

(
ω

( j)

ji

)
, p j

(
η

( j)

ji

)〉
F

]

=
1

2

∑

(i, j)∈E

[
wi j

〈
pi

(
ω

(i)

i j

)
, pi

(
η

(i)

i j

)〉
F
+ wi j

〈
ρi j p j

(
ω

( j)

ji

)
, ρi j p j

(
η

( j)

ji

)〉
F

]

=
1

2

∑

(i, j)∈E

[
wi j

〈
pi

(
ω

(i)

i j

)
, pi

(
η

(i)

i j

)〉
F
+ wi j

〈
pi

(
ω

(i)

ji

)
, ρi j pi

(
η

(i)

ji

)〉
F

]
(see compatibility condition (31))
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�

B Graph Laplacian in Discrete Hodge Theory

Define K-valued 0- and 1-forms on weighted graph Γ = (V, E,w) as

Ω0 (Γ) := { f : V → K} , Ω1 (Γ) :=
{
ω : E → K | ωi j = −ω ji ∀ (i, j) ∈ E

}
,

equipped with natural inner products

〈 f , g〉 :=
∑

i

di 〈 fi, gi〉K , ∀ f , g ∈ Ω0 (Γ) ,

〈ω, η〉 :=
∑

(i, j)∈E

wi j

〈
ωi j, ηi j

〉
K
, ∀ω, η ∈ Ω1 (Γ) ,

where 〈·, ·〉K is an inner product on K, and di =
∑

j:(i, j)∈E wi j is the weighted degree at vertex i ∈ V . Analogous to the

study of differential forms on a smooth manifold, one can define the differential d : Ω0 (Γ)→ Ω1 (Γ) and codifferential

δ : Ω1 (Γ)→ Ω0 (Γ) operators that are formal adjoints of each other:

(d f )i j = fi − f j, ∀ f ∈ Ω0 (Γ) , (δω)i :=
1

di

∑

j:(i, j)∈E

wi jωi j, ∀ω ∈ Ω
1 (Γ) .

These constructions can be encoded into a de Rham cochain complex

0 −−→←−− Ω
0 (Γ)

d
−−→←−−
δ
Ω1 (Γ) −−→←−− 0,
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which realizes Lrw
0

, the graph random walk Laplacian, as the Hodge Laplacian of degree zero:

(
∆(0) f

)
i

:= (δd f )i =
1

di

∑

j:(i, j)∈E

wi j

(
fi − f j

)
=

(
Lrw

0 f
)

i
, ∀i ∈ V, ∀ f ∈ Ω0 (Γ) .

It is well known that Lrw
0

differs from the normalized graph Laplacian L0 by a similarity transform L0 = D−1/2Lrw
0

D1/2,

where D is a diagonal matrix with weighted degrees of each vertex on its diagonal.

Software MATLAB code implementing SynCut for the numerical simulations and application in automated geo-

metric morphometrics is publicly available at https://github.com/trgao10/GOS-SynCut.
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[BtD03] Theodor Bröcker and Tammo tom Dieck. Representations of Compact Lie Groups. Graduate Texts in

Mathematics. Springer Berlin Heidelberg, 2003. 2.2.3

[CdGDS13] Keenan Crane, Fernando de Goes, Mathieu Desbrun, and Peter Schröder. Digital Geometry Processing
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[FL90] Yves Félix and René Lavendhomme. On de Rham’s Theorem in Synthetic Differential Geometry.

Journal of Pure and Applied Algebra, 69(1):21–31, 1990. 1
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