The geometry of tangent conjugate connections

Adara M. Blaga * and Mircea Crasmareanu ${ }^{\dagger}$

Abstract

The notion of conjugate connection is introduced in the almost tangent geometry and its properties are studied from a global point of view. Two variants for this type of connections are also considered in order to find the linear connections making parallel a given almost tangent structure.

2000 AMS Classification: $53 \mathrm{C} 15 ; 53 \mathrm{C} 05 ; 53 \mathrm{C} 10 ; 53 \mathrm{C} 07$.
Keywords: almost tangent structure; conjugate linear connection.
Received 22/02/2013 : Accepted 25/03/2014 Doi : 10.15672/HJMS.2015449431

Introduction

Let F be a tensor field of $(1,1)$-type on a given smooth manifold M. An interesting object in the geometry of pair (M, F) is provided by the class of F-linear connections i.e. linear connections ∇ making F parallel: $\nabla F=0$. In order to determine this class, in [9] is introduced the notion of F-conjugate connection associated to a fixed (non-necessary F-connection) ∇. By denoting $\nabla^{(F)}$ this F-conjugate connection we have studied the geometry of $\left(M, F, \nabla, \nabla^{(F)}\right)$ until now for two cases: almost complex structures in [1] and almost product structures in [2].

The present work is devoted to another remarkable type of tensor fields of $(1,1)$ type, namely almost tangent structures. These structures were introduced by Clark and Bruckheimer [5] and Eliopoulos [10] around 1960 and have been investigated by several authors, see [3], [6]-[8], [16], [18]. As it is well-known, the tangent bundle of a manifold carries a canonical integrable almost tangent structure, hence the name. This tangent structure plays an important rôle in the Lagrangian description of analytical mechanics, [7]-[8], [12].

Recall that we are interested in the class of J-linear connections since, according to [15, p. 120], the existence of a symmetric (torsion-free) one in this class implies the

[^0]integrability of J in the sense of G-structures as is discussed below; for example, J-linear connections of Levi-Civita type are studied in [11]. An important difference between the former structures (almost complex, almost product) and the later (almost tangent) is given by the fact that an almost tangent structure J is a degenerate tensor field due to its nilpotence $J^{2}=0$, see the following Section. An example where this difference is obvious is the duality property $\left(\nabla^{(F)}\right)^{(F)}=\nabla$ which holds for a non-degenerate F while for almost tangent structures we have ii) of our Proposition 2.1.

The content of paper is as follows. After a short survey in almost tangent geometry we introduce the tangent conjugate connection $\nabla^{(J)}$ in Section 2 following the pattern of [1]-[2]. Its properties are studied following the same way as in the cited papers; for example the difference $\nabla^{(J)}-\nabla$ is expressed again in terms of two tensor fields of $(1,2)$ types called structural and virtual tensor fields. We study also the behavior of the tangent conjugate connections for a family of anti-commuting almost tangent structures. In the last two Sections we generalize $\nabla^{(J)}$, firstly through an exponential process and secondly with a general tensor field of (1,2)-type.

1. Almost tangent geometry revisited

Let M be a smooth, m-dimensional real manifold for which we denote: $C^{\infty}(M)$-the real algebra of smooth real functions on $M, \Gamma(T M)$-the Lie algebra of vector fields on M, $T_{s}^{r}(M)$-the $C^{\infty}(M)$-module of tensor fields of (r, s)-type on M. An element of $T_{1}^{1}(M)$ is usually called vector 1 -form or affinor.

Recall the concept of almost tangent geometry:
1.1. Definition. $J \in T_{1}^{1}(M)$ is called almost tangent structure on M if it has constant rank and:

$$
\begin{equation*}
\operatorname{Im} J=\operatorname{ker} J . \tag{1.1}
\end{equation*}
$$

The pair (M, J) is called almost tangent manifold.
The name is motivated by the fact that (1.1) implies the nilpotence $J^{2}=0$ exactly as the natural tangent structure of tangent bundles. Denoting rankJ $=n$ it results $m=2 n$. If in addition, we suppose that J is integrable i.e.:

$$
\begin{equation*}
N_{J}(X, Y):=[J X, J Y]-J[J X, Y]-J[X, J Y]+J^{2}[X, Y]=0 \tag{1.2}
\end{equation*}
$$

then J is called tangent structure and (M, J) is called tangent manifold.
From [17, p. 3246] we get some features of tangent manifolds:
(i) the distribution $\operatorname{ImJ}(=\operatorname{ker} J)$ defines a foliation denoted $V(M)$ and called the vertical distribution.
1.2. Example. $M=\mathbb{R}^{2}, J_{e}(x, y)=(0, x)$ is a tangent structure with ker J_{e} the Y-axis, hence the name. The subscript e comes from "Euclidean".
(ii) there exists an atlas on M with local coordinates $(x, y)=\left(x^{i}, y^{i}\right)_{1 \leq i \leq n}$ such that $J=\frac{\partial}{\partial y^{i}} \otimes d x^{i}$ i.e.:

$$
\begin{equation*}
J\left(\frac{\partial}{\partial x^{i}}\right)=\frac{\partial}{\partial y^{i}}, \quad J\left(\frac{\partial}{\partial y^{i}}\right)=0 . \tag{1.3}
\end{equation*}
$$

We call canonical coordinates the above (x, y) and the change of canonical coordinates $(x, y) \rightarrow(\widetilde{x}, \widetilde{y})$ is given by:

$$
\left\{\begin{array}{l}
\widetilde{x}^{i}=\widetilde{x}^{i}(x) \tag{1.4}\\
\widetilde{y}^{i}=\frac{\partial \widetilde{x}^{i}}{\partial x^{a}} y^{a}+B^{i}(x) .
\end{array}\right.
$$

It results an alternative description in terms of G-structures. Namely, a tangent structure is a G-structure with:

$$
G=\left\{C=\left(\begin{array}{cc}
A & O_{n} \tag{1.5}\\
B & A
\end{array}\right) \in G L(2 n, \mathbb{R}) ; \quad A \in G L(n, \mathbb{R}), B \in g l(n, \mathbb{R})\right\}
$$

and G is the invariance group of matrix $J=\left(\begin{array}{cc}O_{n} & O_{n} \\ I_{n} & O_{n}\end{array}\right)$ i.e. $C \in G$ if and only if $C \cdot J=J \cdot C$.

The natural almost tangent structure J of $M=T N$ is an example of tangent structure having exactly the expression (1.3) if (x^{i}) are the coordinates on N and (y^{i}) are the coordinates in the fibers of $T N \rightarrow N$. Also, J_{e} of Example 1.2 has the above expression (1.3) with $n=1$, whence it is integrable. A third class of examples is obtained by duality: if J is an (integrable) endomorphism with $J^{2}=0$ then its dual $J^{*}: \Gamma\left(T^{*} M\right) \rightarrow \Gamma\left(T^{*} M\right)$, given by $J^{*} \alpha:=\alpha \circ J$ for $\alpha \in \Gamma\left(T^{*} M\right)$, is (integrable) endomorphism with $\left(J^{*}\right)^{2}=0$.

2. Basic properties of tangent conjugate connections

Let ∇ be a linear connection on the almost tangent manifold (M, J) and define the tangent conjugate connection of ∇ by:

$$
\begin{equation*}
\nabla^{(J)}:=\nabla-J \circ \nabla J . \tag{2.1}
\end{equation*}
$$

Remark that $\nabla^{(J)}$ coincides with ∇ if and only if $\nabla J \subseteq \operatorname{ker} J=I m J$ which means the inclusion $\nabla(\Gamma(T M) \times \operatorname{ker} J) \subseteq \operatorname{ker} J=I m J$, in particular if ∇ is a J-linear connection; for another case see i) of Proposition 2.3. For any $X, Y \in \Gamma(T M)$ we get:

$$
\begin{equation*}
\nabla_{X}^{(J)} Y=\nabla_{X} Y-J\left(\nabla_{X} J Y\right) . \tag{2.2}
\end{equation*}
$$

A first set of properties for this linear connection are given by:
2.1. Proposition. The tangent conjugate connection $\nabla^{(J)}$ satisfies:
i) $\nabla^{(J)} J=\nabla J$, which means that ∇ and $\nabla^{(J)}$ are simultaneous J-linear connections or not;
ii) $\nabla^{2(J)}=:\left(\nabla^{(J)}\right)^{(J)}=2 \nabla^{(J)}-\nabla$; more generally $\nabla^{n(J)}=n \nabla^{(J)}-(n-1) \nabla$ for $n \in \mathbb{N}^{*}$; iii) its torsion is $T_{\nabla^{(J)}}=T_{\nabla}-J \circ d^{\nabla} J$ where d^{∇} is the exterior covariant derivative induced by ∇, namely $\left(d^{\nabla} J\right)(X, Y):=\left(\nabla_{X} J\right) Y-\left(\nabla_{Y} J\right) X$;
iv) its curvature is

$$
\begin{gather*}
R_{\nabla^{(J)}}(X, Y, Z)=R_{\nabla}(X, Y, Z)-\nabla_{X} J\left(\nabla_{Y} J Z\right)+\nabla_{Y} J\left(\nabla_{X} J Z\right)- \\
-J\left[\nabla_{X} J\left(\nabla_{Y} Z\right)-\nabla_{Y} J\left(\nabla_{X} Z\right)-\nabla_{[X, Y]} J Z\right] . \tag{2.3}
\end{gather*}
$$

In particular:

$$
\begin{equation*}
R_{\nabla^{(J)}}(X, Y, J Z)=R_{\nabla}(X, Y, J Z)-J\left[\nabla_{X} J\left(\nabla_{Y} J Z\right)-\nabla_{Y} J\left(\nabla_{X} J Z\right)\right] \tag{2.4}
\end{equation*}
$$

Proof The general part of ii) follows by induction while for iii) a direct calculus yields $T_{\nabla^{(J)}}(X, Y)=T_{\nabla}(X, Y)-J\left(\nabla_{X} J Y-\nabla_{Y} J X\right)$.

Let $f: M \rightarrow M$ be a tangentomorphism, that is an automorphism of the G-structure defined by J :

$$
\begin{equation*}
f_{*} \circ J=J \circ f_{*} . \tag{2.5}
\end{equation*}
$$

Recall that f is an affine transformation for ∇ if for any $X, Y \in \Gamma(T M)$:

$$
\begin{equation*}
f_{*}\left(\nabla_{X} Y\right)=\nabla_{f_{*} X} f_{*} Y \tag{2.6}
\end{equation*}
$$

These notions are connected by:
2.2. Proposition. If the tangentomorphism f is an affine transformation for ∇ then f is also affine transformation for $\nabla^{(J)}$.

Proof We have:

$$
\begin{aligned}
& f_{*}\left(\nabla_{X}^{(J)} Y\right)=f_{*}\left(\nabla_{X} Y\right)-\left(f_{*} \circ J\right)\left(\nabla_{X} J Y\right)=\nabla_{f_{*} X} f_{*} Y-J\left(f_{*}\left(\nabla_{X} J Y\right)\right)= \\
= & \nabla_{f_{*} X} f_{*} Y-J\left(\left(\nabla_{f_{*} X} f_{*}(J Y)\right)\right)=\nabla_{f_{*} X} f_{*} Y-J\left(\left(\nabla_{f_{*} X} J\left(f_{*} Y\right)\right)\right)=\nabla_{f_{*} X}^{(J)} f_{*} Y
\end{aligned}
$$

which yields the conclusion.
A second class of properties for the tangent conjugate connection is provided by:
2.3. Proposition. i) If J is ∇-recurrent i.e. $\nabla J=\eta \otimes J$ for η a 1 -form, then $\nabla^{(J)}=\nabla$. ii) If ∇ is symmetric and $\nabla J=\eta \otimes I$ then $\nabla^{(J)}=\nabla-\eta \otimes J$ and $\nabla^{(J)}$ is a quartersymmetric connection.

Proof i) In this case we have $J \circ \nabla J=0$.
ii) Recall after [1, p. 122] that the quarter-symmetry means the existence of a 1-form π and a tensor field F of $(1,1)$-type such that $T_{\nabla^{(J)}}=F \wedge \pi:=F \otimes \pi-\pi \otimes F$. From Proposition 2.1 we have $T_{\nabla(J)}(X, Y)=T_{\nabla}(X, Y)-\eta(X) J Y+\eta(Y) J X$, and the hypothesis $T_{\nabla}=0$ yields the previous equation with $F=J$ and $\pi=\eta$.
2.4. Example. Let N be a smooth n-dimensional manifold and $M=T N$ its tangent bundle; hence $m=2 n$. Let $\left\{x^{i} ; 1 \leq i \leq n\right\}$ be a local system of coordinates on N and consider its lift to M given by $\left\{x^{i}, y^{i} ; 1 \leq i \leq n\right\}$ with y^{i} the coordinates on the fibres of $T N$. The canonical almost tangent structure J of M has the local expression (1.3) and it is integrable. Fix a general linear connection ∇ on M with local Christoffel symbols Γ as follows:

$$
\left\{\begin{array}{l}
\nabla_{\frac{\partial}{\partial x^{i}} \frac{\partial}{\partial x^{j}}=\Gamma_{i j}^{(1) k} \frac{\partial}{\partial x^{k}}+\Gamma_{i j}^{(2) k} \frac{\partial}{\partial y^{k}}}^{\nabla_{\frac{\partial}{\partial x^{i}}}^{\partial y^{j}}=\Gamma_{i j}^{(3) k} \frac{\partial}{\partial x^{k}}+\Gamma_{i j}^{(4) k} \frac{\partial}{\partial y^{k}}} \tag{2.7}\\
\nabla_{\frac{\partial}{\partial y^{i}}}^{\partial x^{j}}=\Gamma_{i j}^{(5) k} \frac{\partial}{\partial x^{k}}+\Gamma_{i j}^{(6) k} \frac{\partial}{\partial y^{k}} \\
\nabla_{\frac{\partial}{\partial y^{i}}}^{\frac{\partial}{\partial y^{j}}}=\Gamma_{i j}^{(7) k} \frac{\partial}{\partial x^{k}}+\Gamma_{i j}^{(8) k} \frac{\partial}{\partial y^{k}} .
\end{array}\right.
$$

Then its tangent conjugate connection has the expression:

$$
\left\{\begin{array}{l}
\nabla_{\frac{\partial}{\partial x^{i}}}^{(J)} \frac{\partial}{\partial x^{j}}=\Gamma_{i j}^{(1) k} \frac{\partial}{\partial x^{k}}+\left(\Gamma_{i j}^{(2) k}-\Gamma_{i j}^{(3) k}\right) \frac{\partial}{\partial y^{k}} \tag{2.8}\\
\nabla_{\frac{\partial}{(J)}}^{\partial x^{i}} \frac{\partial}{\partial y^{j}}=\Gamma_{i j}^{(3) k} \frac{\partial}{\partial x^{k}}+\Gamma_{i j}^{(4) k} \frac{\partial}{\partial y^{k}} \\
\nabla_{\frac{\partial}{\partial y^{i}}}^{(J)} \frac{\partial}{\partial x^{j}}=\Gamma_{i j}^{(5) k} \frac{\partial}{\partial x^{k}}+\left(\Gamma_{i j}^{(6) k}-\Gamma_{i j}^{(7) k}\right) \frac{\partial}{\partial y^{k}} \\
\nabla_{\frac{\partial}{\partial y^{i}}}^{(J)} \frac{\partial}{\partial y^{j}}=\Gamma_{i j}^{(7) k} \frac{\partial}{\partial x^{k}}+\Gamma_{i j}^{(8) k} \frac{\partial}{\partial y^{k}} .
\end{array}\right.
$$

A special case is important in applications: the initial connection ∇ is called distinguished or d-connection if it preserves the linear structure of the fibres of M which means that:

$$
\begin{equation*}
\Gamma^{(2)}=\Gamma^{(3)}=\Gamma^{(6)}=\Gamma^{(7)}=0 . \tag{2.9}
\end{equation*}
$$

It results that ∇ is a J-connection and then its tangent conjugate connection is $\nabla^{(J)}=\nabla$.

3. The structural and the virtual tensor fields

Remark that the tangent conjugate connection $\nabla^{(J)}$ of ∇ can be written in another form as:

$$
\begin{equation*}
\nabla^{(J)}=\nabla+C_{\nabla}^{J}-B_{\nabla}^{J} \tag{3.1}
\end{equation*}
$$

where:

$$
\left\{\begin{align*}
C_{\nabla}^{J}(X, Y) & :=\frac{1}{2}\left[\left(\nabla_{J X} J\right) Y+\left(\nabla_{X} J\right) J Y\right] \tag{3.2}\\
B_{\nabla}^{J}(X, Y) & :=\frac{1}{2}\left[\left(\nabla_{J X} J\right) Y-\left(\nabla_{X} J\right) J Y\right] .
\end{align*}\right.
$$

which we call respectively, the structural and the virtual tensor field of ∇. We obtain also the following expressions for them:

$$
\left\{\begin{array}{l}
C_{\nabla}^{J}(X, Y)=\frac{1}{2}\left[\nabla_{J X} J Y-J\left(\nabla_{J X} Y+\nabla_{X} J Y\right)\right] \tag{3.3}\\
B_{\nabla}^{J}(X, Y)=\frac{1}{2}\left[\nabla_{J X} J Y-J\left(\nabla_{J X} Y-\nabla_{X} J Y\right)\right] .
\end{array}\right.
$$

We notice that they satisfy the following properties:

$$
\begin{cases}C_{\nabla}^{J}(J X, Y)=C_{\nabla}^{J}(X, J Y)=-\frac{1}{2} J\left(\nabla_{J X} J Y\right) ; & C_{\nabla}^{J}(J X, J Y)=0 \tag{3.4}\\ B_{\nabla}^{J}(J X, Y)=-B_{\nabla}^{J}(X, J Y)=\frac{1}{2} J\left(\nabla_{J X} J Y\right) ; & B_{\nabla}^{J}(J X, J Y)=0 \\ C_{\nabla}^{J}(J X, Y)=-B_{\nabla}^{J}(J X, Y) & \end{cases}
$$

and the skew-symmetry (3.42) means that $B_{\nabla}^{J}(J \cdot, \cdot)$ is a vectorial 2-form. Another important property is that these tensor fields are invariant with respect to J-conjugation of linear connections:

$$
\begin{equation*}
C_{\nabla^{(J)}}^{J}=C_{\nabla}^{J} ; \quad B_{\nabla^{(J)}}^{J}=B_{\nabla}^{J} . \tag{3.5}
\end{equation*}
$$

With respect to the invariance of these associated tensor fields under projective changes we get that only C^{J} is invariant:
3.1. Proposition. Let ∇ and ∇^{\prime} be two linear projectively equivalent connections:

$$
\begin{equation*}
\nabla^{\prime}=\nabla+\eta \otimes I+I \otimes \eta \tag{3.6}
\end{equation*}
$$

for η a 1-form. Then $C_{\nabla^{\prime}}^{J}=C_{\nabla}^{J}$ and $B_{\nabla^{\prime}}^{J}=B_{\nabla}^{J}+J \otimes(\eta \circ J)$ while the tangent conjugate connection $\nabla^{\prime(J)}$ of ∇^{\prime} satisfies:

$$
\begin{equation*}
\nabla^{\prime(J)}=\nabla^{(J)}+\eta \otimes I+I \otimes \eta-J \otimes(\eta \circ J) \tag{3.7}
\end{equation*}
$$

and so it is not invariant under projective equivalence.
Proof Follows form a direct computation.

4. Invariant distributions

Let $\mathcal{D} \subset T M$ be a fixed distribution considered as a vector subbundle of $T M$. As usually, we denote by $\Gamma(\mathcal{D})$ its $C^{\infty}(M)$-module of sections.
4.1. Definition. i) \mathcal{D} is called J-invariant if $X \in \Gamma(\mathcal{D})$ implies $J X \in \Gamma(\mathcal{D})$.
ii) The linear connection ∇ restricts to \mathcal{D} if $Y \in \Gamma(\mathcal{D})$ implies $\nabla_{X} Y \in \Gamma(\mathcal{D})$ for any $X \in \Gamma(T M)$.
4.2. Example. The distribution $\mathcal{D}_{J}=\operatorname{ker} J=I m J$ is J-invariant.

If ∇ restricts to \mathcal{D} then it may be considered as a connection in the vector bundle \mathcal{D}. From this fact, a connection which restricts to \mathcal{D} is called sometimes adapted to \mathcal{D}.
4.3. Proposition. If the distribution \mathcal{D} is J-invariant and the linear connection ∇ restricts to \mathcal{D} then $\nabla^{(J)}$ also restricts to \mathcal{D}.

Proof Fix $Y \in \Gamma(\mathcal{D})$. Then $J Y \in \Gamma(\mathcal{D})$ and for any $X \in \Gamma(T M)$ we have $\nabla_{X} Y$, $\nabla_{X} J Y \in \Gamma(\mathcal{D})$. Therefore, $J\left(\nabla_{X} J Y\right) \in \Gamma(\mathcal{D})$ and so $\nabla_{X}^{(J)} Y=\nabla_{X} Y-J\left(\nabla_{X} J Y\right) \in \Gamma(\mathcal{D})$.
4.4. Example. Returning to Example 4.2 we have that $\nabla_{X}=\nabla_{X}^{(J)}$ on $\mathcal{D}_{J}=\operatorname{ker} J=$ $I m J$.

A more general notion like restricting to a distribution is that of geodesically invariance [4, p. 118]. The distribution \mathcal{D} is ∇-geodesically invariant if for every geodesic $\gamma:[a, b] \rightarrow$ M of ∇ with $\dot{\gamma}(a) \in \mathcal{D}_{\gamma(a)}$ it follows $\dot{\gamma}(t) \in \mathcal{D}_{\gamma(t)}$ for any $t \in[a, b]$. The cited book gives a necessary and sufficient condition for a distribution \mathcal{D} to be ∇-geodesically invariant: for any $X, Y \in \Gamma(\mathcal{D})$, the symmetric product $\langle X: Y\rangle_{\nabla}:=\nabla_{X} Y+\nabla_{Y} X$ to belong to $\Gamma(\mathcal{D})$ or equivalently, for any $X \in \Gamma(\mathcal{D})$ to have $\nabla_{X} X \in \Gamma(\mathcal{D})$.

A direct computation gives:

$$
\begin{equation*}
\langle\cdot: \cdot\rangle_{\nabla^{(J)}}=\langle\cdot: \cdot\rangle_{\nabla}-J \circ d^{\nabla} J \tag{4.1}
\end{equation*}
$$

and then the ∇-geodesically invariance and $\nabla^{(J)}$-geodesically invariance for \mathcal{D} coincides if and only if $J \circ d^{\nabla} J$ is zero on $\mathcal{D} \times \mathcal{D}$. In particular, \mathcal{D}_{J} is ∇-geodesically invariant if and only if is $\nabla^{(J)}$-geodesically invariant.

5. Affine combination of tangent conjugate connections

In what follows we shall see what happens to the tangent conjugate connection for families of almost tangent structures. Let J_{1}, J_{2} be two almost tangent structures; conditions for their simultaneous integrability are given in [13]-[14]. Then for any a, $b \in \mathbb{R}$ the tensor field $J_{a b}:=a J_{1}+b J_{2}$ is an almost tangent structure if and only if $J_{1} J_{2}=-J_{2} J_{1}$. Then its tangent conjugate connection is given by:

$$
\begin{equation*}
\nabla_{X}^{\left(J_{a b}\right)} Y=a^{2} \nabla_{X}^{\left(J_{1}\right)} Y+b^{2} \nabla_{X}^{\left(J_{2}\right)} Y+\left(1-a^{2}-b^{2}\right) \nabla_{X} Y-a b\left[J_{1}\left(\nabla_{X} J_{2} Y\right)+J_{2}\left(\nabla_{X} J_{1} Y\right)\right] . \tag{5.1}
\end{equation*}
$$

5.1. Proposition. Let ∇ be a linear connection and J_{1} and J_{2} two anti-commuting almost tangent structures. If $\left(\nabla, J_{1}, J_{2}\right)$ is a mixed-recurrent structure i.e. $\nabla J_{i}=\eta \otimes J_{j}$ for $i \neq j$ then ∇ is the average of the two tangent conjugate connections:

$$
\begin{equation*}
\nabla=\frac{1}{2}\left[\nabla^{\left(J_{1}\right)}+\nabla^{\left(J_{2}\right)}\right] \tag{5.2}
\end{equation*}
$$

and $\nabla^{\left(J_{a b}\right)}$ is an affine combination of them:

$$
\begin{equation*}
\nabla^{\left(J_{a b}\right)}=\frac{1+a^{2}-b^{2}}{2} \nabla^{\left(J_{1}\right)}+\frac{1-a^{2}+b^{2}}{2} \nabla^{\left(J_{2}\right)} . \tag{5.3}
\end{equation*}
$$

Proof Applying J_{i} to $\nabla_{X} J_{i} Y-J_{i}\left(\nabla_{X} Y\right)=\eta(X) J_{j} Y$ with $i \neq j$ and the anticommuting hypothesis we obtain:

$$
\begin{equation*}
J_{1}\left(\nabla_{X} J_{1} Y\right)=-J_{2}\left(\nabla_{X} J_{2} Y\right) . \tag{5.4}
\end{equation*}
$$

Summing the expression of the tangent conjugate connections we get (5.2) and from a previous computation, the relation (5.3).

6. Exponential tangent conjugate connections

For θ a real number we define the exponential tangent conjugate connection of ∇ as:

$$
\begin{equation*}
\nabla^{(J, \theta)}:=\nabla-\exp (-\theta J) \circ \nabla \circ \exp (\theta J) \tag{6.1}
\end{equation*}
$$

where $\exp (\pm \theta J):=\cos (\theta) \cdot I \pm \sin (\theta) \cdot J$. Explicitly we get:
$\nabla^{(J, \theta)}=\sin ^{2}(\theta) \nabla-\frac{1}{2} \sin (2 \theta) \nabla J+\sin ^{2}(\theta) J \circ \nabla J=2 \sin ^{2}(\theta) \nabla-\frac{1}{2} \sin (2 \theta) \nabla J-\sin ^{2}(\theta) \nabla^{(J)}$
and then:

$$
\begin{equation*}
\nabla^{(J, \theta)} J=\sin ^{2}(\theta) \nabla J+\frac{1}{2} \sin (2 \theta) J \circ \nabla J . \tag{6.2}
\end{equation*}
$$

It follows:
6.1. Proposition. Let ∇ be a symmetric linear connection.
i) If J is ∇-recurrent with η the 1-form of recurrence then:

$$
\begin{equation*}
\nabla^{(J, \theta)}=\sin ^{2}(\theta) \nabla-\frac{1}{2} \sin (2 \theta) \cdot \eta \otimes J \tag{6.4}
\end{equation*}
$$

and $\nabla^{(J, \theta)}$ is a quarter-symmetric connection.
ii) If $\nabla J=\eta \otimes I$ then:

$$
\begin{equation*}
\nabla^{(J, \theta)}=\sin ^{2}(\theta) \nabla-\sin (\theta) \cdot \eta \otimes \exp (-\theta J) \tag{6.5}
\end{equation*}
$$

and:

$$
\begin{equation*}
T_{\nabla(J, \theta)}=\sin (\theta) \otimes \exp (-\theta J) \wedge \eta . \tag{6.6}
\end{equation*}
$$

Proof i) Follows from the fact that the hypothesis implies $J \circ \nabla J=0$. The quartersymmetry elements are $F=J$ and $\pi=\sin (\theta) \cos (\theta) \cdot \eta$.
ii) From $\cos (\theta) \cdot \eta \otimes I-\sin (\theta) \cdot \eta \otimes J=\eta \otimes \exp (-\theta J)$ we get:
$T_{\nabla^{(J, \theta)}}=-\sin (\theta) \cdot[\eta \otimes \exp (-\theta J)-\exp (-\theta J) \otimes \eta]$.

7. Generalized tangent conjugate connections

In this section we present a natural generalization of the tangent conjugate connection.
7.1. Definition. A generalized tangent conjugate connection of ∇ is:

$$
\begin{equation*}
\nabla^{(J, C)}=\nabla^{(J)}+C \tag{7.1}
\end{equation*}
$$

with $C \in T_{2}^{1}(M)$ an arbitrary (1,2)-tensor field.
Let us search for tensor fields C such that the duality $\left(\nabla^{(J, C)}\right)^{(J, C)}=2 \nabla^{(J, C)}-\nabla$ holds as is given by Proposition 2.1. It results that we are interested in finding solutions C to the equation:

$$
\begin{equation*}
J(C(X, J Y))=2 C(X, Y) \tag{7.2}
\end{equation*}
$$

for all $X, Y \in \Gamma(T M)$ and let us remark that: i) $C_{0}=0$ is a particular solution of (7.2); ii) applying J to (7.2) gives that $\operatorname{ImC} \subseteq \operatorname{ker} J=I m J$. Then returning to (7.2) it follows from the left-hand-side that C_{0} is the unique solution of (7.2).

Also, we have:

$$
\begin{equation*}
\nabla^{(J, C)} J=\nabla^{(J)} J+C(\cdot, J \cdot)-J \circ C \tag{7.3}
\end{equation*}
$$

and then:
i) $\nabla^{(J, C)} J=\nabla J$ as in i) of Proposition 2.1 if and only if: $C(\cdot, J \cdot)=J \circ C(\cdot, \cdot)$,
ii) $\nabla^{(J, C)}$ is a J-linear connection if and only if:

$$
\begin{equation*}
\nabla J+C(\cdot, J \cdot)=J \circ C \tag{7.4}
\end{equation*}
$$

Acknowledgement. The first author acknowledges the support by the research grant PN-II-ID-PCE-2011-3-0921.

References

[1] A. M. Blaga; M. Crasmareanu, The geometry of complex conjugate connections, Hacet. J. Math. Stat., 41(2012), no. 1, 119-126. MR2976917
[2] A. M. Blaga; M. Crasmareanu, The geometry of product conjugate connections, An. Stiint. Univ. Al. I. Cuza Iaşi Mat. (N. S.), 59(2013), no. 1, 73-84. MR3098381
[3] F. Brickell; R. S. Clark, Integrable almost tangent structures, J. Diff. Geom., 9(1974), 557-563. MR0348666 (50 \#1163)
[4] F. Bullo; A. D. Lewis, Geometric control of mechanical systems. Modeling, analysis, and design for simple mechanical control systems, Texts in Applied Mathematics, 49, SpringerVerlag, New York, 2005. MR2099139 (2005h:70030)
[5] R. S. Clark; M. Bruckheimer, Sur les structures presque tangents, C. R. A. S. Paris, 251(1960), 627-629. MR0115181 (22 \#5983)
[6] R. S. Clark; D. S. Goel, On the geometry of an almost tangent manifold, Tensor, 24(1972), 243-252. MR0326613 (48 \#4956)
[7] M. Crampin, Defining Euler-Lagrange fields in terms of almost tangent structures, Phys. Lett. A, 95(1983), no. 9, 466-468. MR0708702 (84k:58072)
[8] M. Crampin; G. Thompson, Affine bundles and integrable almost tangent structures, Math. Proc. Camb. Phil. Soc., 98(1985), 61-71. MR0789719 (86g:53039)
[9] V. Cruceanu, Connexions compatibles avec certaines structures sur un fibré vectoriel banachique, Czechoslovak Math. J., 24(99)(1974), 126-142. MR0353356 (50 \#5840)
[10] H. A. Eliopoulos, Structures presque tangents sur les variétés différentiables, C. R. A. S. Paris, 255(1962), 1563-1565. MR0142078 (25 \#5472)
[11] D. S. Goel, Selfadjoint metrics on almost tangent manifolds whose Riemannian connection is almost tangent, Canad. Math. Bull., 17(1974/75), no. 5, 671-674. MR0383288 (52 \#4169)
[12] J. Grifone, Structure presque-tangente et connexions, I, II. Ann. Inst. Fourier (Grenoble), 22(1972), no. 1, 3, 287-334, 291-338. MR0336636 (49 \#1409), MR0341361 (49 \#6112)
[13] V. Kubát, Simultaneous integrability of two J-related almost tangent structures, Comment. Math. Univ. Carolin. 20(1979), no. 3, 461-473. MR0550448 (80m:53034)
[14] V. Kubát, On simultaneous integrability of two commuting almost tangent structures, Comm. Math. Univ. Carolinae, 22(1981), no. 1, 149-160. MR0609943 (82e:53052)
[15] M. de León; P. R. Rodrigues, Methods of differential geometry in analytical mechanics, North-Holland Mathematics Studies, 158, North-Holland Publishing Co., Amsterdam, 1989. MR1021489 (91c:58041)
[16] G. Thompson; U. Schwardmann, Almost tangent and cotangent structures in the large, Trans. Amer. Math. Soc., 327(1991), no. 1, 313-328. MR1012509 (91m:53029)
[17] I. Vaisman, Lagrange geometry on tangent manifolds, Int. J. Math. Math. Sci., 51(2003), 3241-3266. MR2018588 (2004k:53116)
[18] K. Yano; E. T. Davies, Differential geometry on almost tangent manifolds, Ann. Mat. Pura Appl. (4), 103(1975), 131-160. MR0390958 (52 \#11781)

[^0]: *Department of Mathematics and Computer Science, West University of Timişoara, Bld. V. Pârvan nr. 4, 300223, Timişoara, România
 Email: adarablaga@yahoo.com
 ${ }^{\dagger}$ Faculty of Mathematics, University "Al. I. Cuza", 700506, Iaşi, România
 Email:mcrasm@uaic.ro

