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The geometry of tangent conjugate connections

Adara M. Blaga ∗ and Mircea Crasmareanu †

Abstract
The notion of conjugate connection is introduced in the almost tangent
geometry and its properties are studied from a global point of view.
Two variants for this type of connections are also considered in order
to find the linear connections making parallel a given almost tangent
structure.
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Introduction
Let F be a tensor field of (1, 1)-type on a given smooth manifold M . An interesting

object in the geometry of pair (M,F ) is provided by the class of F -linear connections i.e.
linear connections ∇ making F parallel: ∇F = 0. In order to determine this class, in [9]
is introduced the notion of F -conjugate connection associated to a fixed (non-necessary
F -connection) ∇. By denoting ∇(F ) this F -conjugate connection we have studied the
geometry of (M,F,∇,∇(F )) until now for two cases: almost complex structures in [1]
and almost product structures in [2].

The present work is devoted to another remarkable type of tensor fields of (1, 1)-
type, namely almost tangent structures. These structures were introduced by Clark and
Bruckheimer [5] and Eliopoulos [10] around 1960 and have been investigated by several
authors, see [3], [6]-[8], [16], [18]. As it is well-known, the tangent bundle of a manifold
carries a canonical integrable almost tangent structure, hence the name. This tangent
structure plays an important rôle in the Lagrangian description of analytical mechanics,
[7]-[8], [12].

Recall that we are interested in the class of J-linear connections since, according to
[15, p. 120], the existence of a symmetric (torsion-free) one in this class implies the
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integrability of J in the sense of G-structures as is discussed below; for example, J-linear
connections of Levi-Civita type are studied in [11]. An important difference between
the former structures (almost complex, almost product) and the later (almost tangent)
is given by the fact that an almost tangent structure J is a degenerate tensor field due
to its nilpotence J2 = 0, see the following Section. An example where this difference is
obvious is the duality property (∇(F ))(F ) = ∇ which holds for a non-degenerate F while
for almost tangent structures we have ii) of our Proposition 2.1.

The content of paper is as follows. After a short survey in almost tangent geometry
we introduce the tangent conjugate connection ∇(J) in Section 2 following the pattern
of [1]-[2]. Its properties are studied following the same way as in the cited papers; for
example the difference ∇(J)−∇ is expressed again in terms of two tensor fields of (1, 2)-
types called structural and virtual tensor fields. We study also the behavior of the tangent
conjugate connections for a family of anti-commuting almost tangent structures. In the
last two Sections we generalize ∇(J), firstly through an exponential process and secondly
with a general tensor field of (1, 2)-type.

1. Almost tangent geometry revisited
Let M be a smooth, m-dimensional real manifold for which we denote: C∞ (M)-the

real algebra of smooth real functions onM , Γ(TM)-the Lie algebra of vector fields onM ,
T rs (M)-the C∞ (M)-module of tensor fields of (r, s)-type on M . An element of T 1

1 (M)
is usually called vector 1-form or affinor.

Recall the concept of almost tangent geometry:

1.1. Definition. J ∈ T 1
1 (M) is called almost tangent structure on M if it has constant

rank and:
ImJ = ker J. (1.1)

The pair (M,J) is called almost tangent manifold.

The name is motivated by the fact that (1.1) implies the nilpotence J2 = 0 exactly as
the natural tangent structure of tangent bundles. Denoting rankJ = n it results m = 2n.
If in addition, we suppose that J is integrable i.e.:

NJ (X,Y ) := [JX, JY ]− J [JX, Y ]− J [X, JY ] + J2 [X,Y ] = 0 (1.2)

then J is called tangent structure and (M,J) is called tangent manifold.

From [17, p. 3246] we get some features of tangent manifolds:
(i) the distribution ImJ (= ker J) defines a foliation denoted V (M) and called the vertical
distribution.

1.2. Example. M = R2, Je (x, y) = (0, x) is a tangent structure with ker Je the Y -axis,
hence the name. The subscript e comes from "Euclidean".
(ii) there exists an atlas on M with local coordinates (x, y) =

(
xi, yi

)
1≤i≤n such that

J = ∂
∂yi
⊗ dxi i.e.:

J

(
∂

∂xi

)
=

∂

∂yi
, J

(
∂

∂yi

)
= 0. (1.3)

We call canonical coordinates the above (x, y) and the change of canonical coordinates
(x, y)→ (x̃, ỹ) is given by: {

x̃i = x̃i (x)

ỹi = ∂x̃i

∂xa
ya +Bi (x) .

(1.4)
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It results an alternative description in terms of G-structures. Namely, a tangent structure
is a G-structure with:

G = {C =

(
A On
B A

)
∈ GL(2n,R); A ∈ GL(n,R), B ∈ gl(n,R)} (1.5)

and G is the invariance group of matrix J =

(
On On
In On

)
i.e. C ∈ G if and only if

C · J = J · C.

The natural almost tangent structure J ofM = TN is an example of tangent structure
having exactly the expression (1.3) if (xi) are the coordinates on N and (yi) are the
coordinates in the fibers of TN → N . Also, Je of Example 1.2 has the above expression
(1.3) with n = 1, whence it is integrable. A third class of examples is obtained by duality:
if J is an (integrable) endomorphism with J2 = 0 then its dual J∗ : Γ(T ∗M)→ Γ(T ∗M),
given by J∗α := α ◦ J for α ∈ Γ(T ∗M), is (integrable) endomorphism with (J∗)2 = 0.

2. Basic properties of tangent conjugate connections
Let ∇ be a linear connection on the almost tangent manifold (M,J) and define the

tangent conjugate connection of ∇ by:

∇(J) := ∇− J ◦ ∇J. (2.1)

Remark that ∇(J) coincides with ∇ if and only if ∇J ⊆ ker J = ImJ which means the
inclusion ∇(Γ(TM)× ker J) ⊆ ker J = ImJ , in particular if ∇ is a J-linear connection;
for another case see i) of Proposition 2.3. For any X,Y ∈ Γ(TM) we get:

∇(J)
X Y = ∇XY − J(∇XJY ). (2.2)

A first set of properties for this linear connection are given by:

2.1. Proposition. The tangent conjugate connection ∇(J) satisfies:
i) ∇(J)J = ∇J , which means that ∇ and ∇(J) are simultaneous J-linear connections or
not;
ii) ∇2(J) =: (∇(J))(J) = 2∇(J)−∇; more generally ∇n(J) = n∇(J)−(n−1)∇ for n ∈ N∗;
iii) its torsion is T∇(J) = T∇ − J ◦ d∇J where d∇ is the exterior covariant derivative
induced by ∇, namely (d∇J)(X,Y ) := (∇XJ)Y − (∇Y J)X;
iv) its curvature is

R∇(J)(X,Y, Z) = R∇(X,Y, Z)−∇XJ(∇Y JZ) +∇Y J(∇XJZ)−

−J [∇XJ(∇Y Z)−∇Y J(∇XZ)−∇[X,Y ]JZ]. (2.3)

In particular:

R∇(J)(X,Y, JZ) = R∇(X,Y, JZ)− J [∇XJ(∇Y JZ)−∇Y J(∇XJZ)]. (2.4)

Proof The general part of ii) follows by induction while for iii) a direct calculus yields
T∇(J)(X,Y ) = T∇(X,Y )− J(∇XJY −∇Y JX). 2

Let f : M →M be a tangentomorphism, that is an automorphism of the G-structure
defined by J :

f∗ ◦ J = J ◦ f∗. (2.5)

Recall that f is an affine transformation for ∇ if for any X,Y ∈ Γ(TM):

f∗(∇XY ) = ∇f∗Xf∗Y. (2.6)

These notions are connected by:
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2.2. Proposition. If the tangentomorphism f is an affine transformation for ∇ then f
is also affine transformation for ∇(J).

Proof We have:

f∗(∇(J)
X Y ) = f∗(∇XY )− (f∗ ◦ J)(∇XJY ) = ∇f∗Xf∗Y − J(f∗(∇XJY )) =

= ∇f∗Xf∗Y − J((∇f∗Xf∗(JY ))) = ∇f∗Xf∗Y − J((∇f∗XJ(f∗Y ))) = ∇(J)
f∗X

f∗Y

which yields the conclusion. 2

A second class of properties for the tangent conjugate connection is provided by:

2.3. Proposition. i) If J is ∇-recurrent i.e. ∇J = η⊗J for η a 1-form, then ∇(J) = ∇.
ii) If ∇ is symmetric and ∇J = η ⊗ I then ∇(J) = ∇ − η ⊗ J and ∇(J) is a quarter-
symmetric connection.

Proof i) In this case we have J ◦ ∇J = 0.
ii) Recall after [1, p. 122] that the quarter-symmetry means the existence of a 1-form
π and a tensor field F of (1, 1)-type such that T∇(J) = F ∧ π := F ⊗ π − π ⊗ F .
From Proposition 2.1 we have T∇(J)(X,Y ) = T∇(X,Y ) − η(X)JY + η(Y )JX, and the
hypothesis T∇ = 0 yields the previous equation with F = J and π = η. 2

2.4. Example. Let N be a smooth n-dimensional manifold and M = TN its tangent
bundle; hence m = 2n. Let {xi; 1 ≤ i ≤ n} be a local system of coordinates on N and
consider its lift to M given by {xi, yi; 1 ≤ i ≤ n} with yi the coordinates on the fibres of
TN . The canonical almost tangent structure J of M has the local expression (1.3) and
it is integrable. Fix a general linear connection ∇ on M with local Christoffel symbols Γ
as follows: 

∇ ∂
∂xi

∂
∂xj

= Γ
(1)k
ij

∂
∂xk

+ Γ
(2)k
ij

∂
∂yk

∇ ∂
∂xi

∂
∂yj

= Γ
(3)k
ij

∂
∂xk

+ Γ
(4)k
ij

∂
∂yk

∇ ∂
∂yi

∂
∂xj

= Γ
(5)k
ij

∂
∂xk

+ Γ
(6)k
ij

∂
∂yk

∇ ∂
∂yi

∂
∂yj

= Γ
(7)k
ij

∂
∂xk

+ Γ
(8)k
ij

∂
∂yk

.

(2.7)

Then its tangent conjugate connection has the expression:

∇(J)
∂
∂xi

∂
∂xj

= Γ
(1)k
ij

∂
∂xk

+
(

Γ
(2)k
ij − Γ

(3)k
ij

)
∂
∂yk

∇(J)
∂
∂xi

∂
∂yj

= Γ
(3)k
ij

∂
∂xk

+ Γ
(4)k
ij

∂
∂yk

∇(J)
∂
∂yi

∂
∂xj

= Γ
(5)k
ij

∂
∂xk

+
(

Γ
(6)k
ij − Γ

(7)k
ij

)
∂
∂yk

∇(J)
∂
∂yi

∂
∂yj

= Γ
(7)k
ij

∂
∂xk

+ Γ
(8)k
ij

∂
∂yk

.

(2.8)

A special case is important in applications: the initial connection ∇ is called distinguished
or d-connection if it preserves the linear structure of the fibres of M which means that:

Γ(2) = Γ(3) = Γ(6) = Γ(7) = 0. (2.9)

It results that∇ is a J-connection and then its tangent conjugate connection is∇(J) = ∇.
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3. The structural and the virtual tensor fields
Remark that the tangent conjugate connection ∇(J) of ∇ can be written in another

form as:
∇(J) = ∇+ CJ∇ −BJ∇ (3.1)

where: {
CJ∇(X,Y ) := 1

2
[(∇JXJ)Y + (∇XJ)JY ]

BJ∇(X,Y ) := 1
2
[(∇JXJ)Y − (∇XJ)JY ].

(3.2)

which we call respectively, the structural and the virtual tensor field of ∇. We obtain
also the following expressions for them:{

CJ∇(X,Y ) = 1
2
[∇JXJY − J(∇JXY +∇XJY )]

BJ∇(X,Y ) = 1
2
[∇JXJY − J(∇JXY −∇XJY )].

(3.3)

We notice that they satisfy the following properties:
CJ∇(JX, Y ) = CJ∇(X, JY ) = − 1

2
J(∇JXJY ); CJ∇(JX, JY ) = 0

BJ∇(JX, Y ) = −BJ∇(X, JY ) = 1
2
J(∇JXJY ); BJ∇(JX, JY ) = 0

CJ∇(JX, Y ) = −BJ∇(JX, Y )

(3.4)

and the skew-symmetry (3.42) means that BJ∇(J ·, ·) is a vectorial 2-form. Another im-
portant property is that these tensor fields are invariant with respect to J-conjugation
of linear connections:

CJ∇(J) = CJ∇; BJ∇(J) = BJ∇. (3.5)

With respect to the invariance of these associated tensor fields under projective changes
we get that only CJ is invariant:

3.1. Proposition. Let ∇ and ∇′ be two linear projectively equivalent connections:

∇′ = ∇+ η ⊗ I + I ⊗ η (3.6)

for η a 1-form. Then CJ∇′ = CJ∇ and BJ∇′ = BJ∇+J ⊗ (η ◦J) while the tangent conjugate
connection ∇′(J) of ∇′ satisfies:

∇′(J) = ∇(J) + η ⊗ I + I ⊗ η − J ⊗ (η ◦ J) (3.7)

and so it is not invariant under projective equivalence.

Proof Follows form a direct computation. 2

4. Invariant distributions
Let D ⊂ TM be a fixed distribution considered as a vector subbundle of TM . As

usually, we denote by Γ(D) its C∞(M)-module of sections.

4.1. Definition. i) D is called J-invariant if X ∈ Γ(D) implies JX ∈ Γ(D).
ii) The linear connection ∇ restricts to D if Y ∈ Γ(D) implies ∇XY ∈ Γ(D) for any
X ∈ Γ(TM).

4.2. Example. The distribution DJ = ker J = ImJ is J-invariant.

If ∇ restricts to D then it may be considered as a connection in the vector bundle D.
From this fact, a connection which restricts to D is called sometimes adapted to D.
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4.3. Proposition. If the distribution D is J-invariant and the linear connection ∇
restricts to D then ∇(J) also restricts to D.

Proof Fix Y ∈ Γ(D). Then JY ∈ Γ(D) and for any X ∈ Γ(TM) we have ∇XY ,
∇XJY ∈ Γ(D). Therefore, J(∇XJY ) ∈ Γ(D) and so∇(J)

X Y = ∇XY−J(∇XJY ) ∈ Γ(D).
2

4.4. Example. Returning to Example 4.2 we have that ∇X = ∇(J)
X on DJ = ker J =

ImJ .

A more general notion like restricting to a distribution is that of geodesically invariance
[4, p. 118]. The distribution D is ∇-geodesically invariant if for every geodesic γ : [a, b]→
M of ∇ with γ̇(a) ∈ Dγ(a) it follows γ̇(t) ∈ Dγ(t) for any t ∈ [a, b]. The cited book gives
a necessary and sufficient condition for a distribution D to be ∇-geodesically invariant:
for any X, Y ∈ Γ(D), the symmetric product 〈X : Y 〉∇ := ∇XY + ∇YX to belong to
Γ(D) or equivalently, for any X ∈ Γ(D) to have ∇XX ∈ Γ(D).

A direct computation gives:

〈· : ·〉∇(J) = 〈· : ·〉∇ − J ◦ d∇J (4.1)

and then the ∇-geodesically invariance and ∇(J)-geodesically invariance for D coincides
if and only if J ◦ d∇J is zero on D×D. In particular, DJ is ∇-geodesically invariant if
and only if is ∇(J)-geodesically invariant.

5. Affine combination of tangent conjugate connections
In what follows we shall see what happens to the tangent conjugate connection for

families of almost tangent structures. Let J1, J2 be two almost tangent structures;
conditions for their simultaneous integrability are given in [13]-[14]. Then for any a,
b ∈ R the tensor field Jab := aJ1 + bJ2 is an almost tangent structure if and only if
J1J2 = −J2J1. Then its tangent conjugate connection is given by:

∇(Jab)
X Y = a2∇(J1)

X Y + b2∇(J2)
X Y + (1− a2 − b2)∇XY − ab[J1(∇XJ2Y ) + J2(∇XJ1Y )].

(5.1)

5.1. Proposition. Let ∇ be a linear connection and J1 and J2 two anti-commuting
almost tangent structures. If (∇, J1, J2) is a mixed-recurrent structure i.e. ∇Ji = η⊗ Jj
for i 6= j then ∇ is the average of the two tangent conjugate connections:

∇ =
1

2
[∇(J1) +∇(J2)] (5.2)

and ∇(Jab) is an affine combination of them:

∇(Jab) =
1 + a2 − b2

2
∇(J1) +

1− a2 + b2

2
∇(J2). (5.3)

Proof Applying Ji to ∇XJiY − Ji(∇XY ) = η(X)JjY with i 6= j and the anti-
commuting hypothesis we obtain:

J1(∇XJ1Y ) = −J2(∇XJ2Y ). (5.4)

Summing the expression of the tangent conjugate connections we get (5.2) and from a
previous computation, the relation (5.3). 2
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6. Exponential tangent conjugate connections
For θ a real number we define the exponential tangent conjugate connection of ∇ as:

∇(J,θ) := ∇− exp(−θJ) ◦ ∇ ◦ exp(θJ) (6.1)

where exp(±θJ) := cos(θ) · I ± sin(θ) · J . Explicitly we get:

∇(J,θ) = sin2(θ)∇− 1

2
sin(2θ)∇J+sin2(θ)J◦∇J = 2 sin2(θ)∇− 1

2
sin(2θ)∇J−sin2(θ)∇(J)

(6.2)
and then:

∇(J,θ)J = sin2(θ)∇J +
1

2
sin(2θ)J ◦ ∇J. (6.3)

It follows:

6.1. Proposition. Let ∇ be a symmetric linear connection.
i) If J is ∇-recurrent with η the 1-form of recurrence then:

∇(J,θ) = sin2(θ)∇− 1

2
sin(2θ) · η ⊗ J (6.4)

and ∇(J,θ) is a quarter-symmetric connection.
ii) If ∇J = η ⊗ I then:

∇(J,θ) = sin2(θ)∇− sin(θ) · η ⊗ exp(−θJ) (6.5)

and:
T∇(J,θ) = sin(θ)⊗ exp(−θJ) ∧ η. (6.6)

Proof i) Follows from the fact that the hypothesis implies J ◦ ∇J = 0. The quarter-
symmetry elements are F = J and π = sin(θ) cos(θ) · η.
ii) From cos(θ) · η ⊗ I − sin(θ) · η ⊗ J = η ⊗ exp(−θJ) we get:
T∇(J,θ) = − sin(θ) · [η ⊗ exp(−θJ)− exp(−θJ)⊗ η]. 2

7. Generalized tangent conjugate connections
In this section we present a natural generalization of the tangent conjugate connection.

7.1. Definition. A generalized tangent conjugate connection of ∇ is:

∇(J,C) = ∇(J) + C (7.1)

with C ∈ T 1
2 (M) an arbitrary (1, 2)-tensor field.

Let us search for tensor fields C such that the duality (∇(J,C))(J,C) = 2∇(J,C) − ∇
holds as is given by Proposition 2.1. It results that we are interested in finding solutions
C to the equation:

J(C(X, JY )) = 2C(X,Y ) (7.2)

for all X,Y ∈ Γ(TM) and let us remark that: i) C0 = 0 is a particular solution of (7.2);
ii) applying J to (7.2) gives that ImC ⊆ ker J = ImJ . Then returning to (7.2) it follows
from the left-hand-side that C0 is the unique solution of (7.2).

Also, we have:
∇(J,C)J = ∇(J)J + C(·, J ·)− J ◦ C (7.3)

and then:
i) ∇(J,C)J = ∇J as in i) of Proposition 2.1 if and only if: C(·, J ·) = J ◦ C(·, ·),
ii) ∇(J,C) is a J-linear connection if and only if:

∇J + C(·, J ·) = J ◦ C. (7.4)
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