
Linguistic Issues in Language Technology – LiLT

December 2009

The GF Resource Grammar Library

Aarne Ranta

Submitted, September 2008

Revised, December 2009

Published by CSLI Publications

LiLT volume 2, issue 2 December 2009

The GF Resource Grammar Library

AARNE RANTA, Department of Computer Science and Engineering,

Chalmers University of Technology and University of Gothenburg, email

aarne@chalmers.se

Abstract

The GF Resource Grammar Library is a set of natural language grammars im-

plemented in GF (Grammatical Framework). These grammars are in a strong

sense parallel: they are built upon a common abstract syntax, i.e. a common

tree structure. Individual languages are obtained via compositional mappings

from abstract syntax trees to feature structures specific to each language.

The grammar defines, for each language, a complete set of morphological

paradigms and a syntax fragment comparable to CLE (Core Language En-

gine). It is available as open-source software under the GNU LGPL License.

The current coverage is fourteen languages: Bulgarian, Catalan, Danish, En-

glish, Finnish, French, German, Italian, Norwegian (bokmål), Polish, Roma-

nian, Russian, Spanish, and Swedish. More languages are under construction.

The library can be used as a resource for language processing tasks, such as

translation, multilingual generation, software localization, natural language

interfaces, and spoken dialogue systems. The library may also have some

language-typological interest as an experiment showing how much grammat-

ical structure can be shared between languages. The focus of this paper is on

the linguistic aspects of the library—in particular, what syntactic structures

are covered and how the problems arising in different languages have been

solved. We will also discuss the nature of the common abstract syntax with

respect to translation equivalence.

1

LiLT Volume 2, Issue 2, December 2009.
The GF Resource Grammar Library.
Copyright c© 2009, CSLI Publications.

2 / LILT VOLUME 2, ISSUE 2 DECEMBER 2009

1 Introduction

GF (Grammatical Framework, Ranta 2004) is a grammar formalism for mul-

tilingual grammars and their applications. The design and implementation of

GF follows state-of-the-art programming language technology, so that GF has

a separate low-level run-time format, a multi-pass compiler, and an interactive

development environment. The GF Resource Grammar Library plays the role

of the standard library. In this perspective, it is a software library, similar to

the Standard Template Library of C++ or the Java API. In another, linguisti-

cally more familiar perspective, the GF Resource Grammar Library is a set of

parallel grammars, similar to the Core Language Engine (Alshawi, 1992),

the LinGO Matrix (Bender and Flickinger, 2005), and the ParGram grammar

collection (Butt et al., 2002).

1.1 Grammars as software libraries

The purpose of a software library is to gather and encapsulate low-level pro-

gram details, which require expert knowledge, and make them available for

non-expert application programmers. In the case of grammars, the most ob-

vious example of such knowledge is morphological inflection patterns. Con-

sider, for instance, regular verb inflection in English. It is presented to the

user by a type signature

mkV : Str -> V

introducing a function named mkV, which takes a string (Str) and returns a

verb (V), i.e. a complete inflection table listing all forms of a verb. Thus

the function application (mkV "walk") yields the forms walk, walks,

walked, walked, walking. The function mkV implements what we call a smart

paradigm: it analyses of its input string and recognizes regular variations, so

that, for instance, (mkV "cry") yields cry, cries, cried, cried, crying.

By the use of smart paradigms, an application programmer can quickly

build a morphological lexicon, which may in itself be the goal of the project.

But the lexicon may also be a component of a larger program, such as a trans-

lator. In such projects, the GF Resource Grammar Library helps by providing

a set of syntactic functions as well. As an example, the function

mkCl : NP -> V -> Cl

builds a clause (Cl) from a noun phrase (NP) and a verb. This function takes

care of agreement (she walks vs. they walk), negation (she doesn’t walk),

question forming (does she walk), and tenses. The user of the library does not

need to worry about agreement features, constituent order, etc. Getting such

syntactic functions right requires even more specialized linguistic expertise

than morphological functions.

THE GF RESOURCE GRAMMAR LIBRARY / 3

The idea of using a grammar as a software library is, to our knowledge,

new in GF. It has required a considerable effort in the design and implementa-

tion of the GF programming language: a type system, a module system, com-

pilation techniques, and optimizations. These aspects are covered in other

publications (Ranta, 2004, 2007b, 2009, Angelov et al., 2009). The effort

made in this work is supplemented by a substantial effort in the library itself.

The code included in the library is more than twice in size compared to the

implementation of GF.

The GF Resource Grammar Library implements a comprehensive frag-

ment of fourteen natural languages: Bulgarian (Angelov, 2008), Catalan,

Danish, English, Finnish (Ranta, 2008), French, German, Italian, Norwe-

gian (bokmål), Polish, Romanian, Russian (Khegai, 2006a), Spanish, and

Swedish, and the artificial language Interlingua (Union Mundial pro Inter-

lingua, 2001). Also fragments of Arabic (Dada and Ranta, 2007), Dutch,

Hindi/Urdu (Humayoun et al., 2007), Latin, Thai, and Turkish are available,

and about 15 more languages are under construction. The availability of such

a set of languages as an easy-to-use library has made GF into a tool for several

projects in multilingual authoring and generation (Khegai et al., 2003, Burke

and Johannisson, 2005), dialogue systems (Ljunglöf et al., 2006, Perera and

Ranta, 2007), technical translation (Khegai, 2006b, Caprotti, 2006), multilin-

gual web pages moises-gotal, and tools for controlled languages (Ranta and

Angelov, 2009).

1.2 Multilinguality

The GF Resource Grammar Library is roughly divided into morphological

and syntactic compoments. The morphological component varies from one

language to another, as regards the sets of inflection forms and the inflec-

tion engine itself, but uses common naming conventions, such as mkV for

verb inflection whenever possible. The syntax component displays a stronger

parallelism: all languages in the library have a common representation of syn-

tactic structures and structural words such as pronouns. Functions like mkCl

above are implemented for all languages covered by the library, and so are

pronouns like we_NP. Thus the function application

mkCl we_NP (mkV "walk")

yielding the English clause we walk can be turned into producing Finnish by

just changing the lexical item "walk":

mkCl we_NP (mkV "kävellä")

yielding me kävelemme. The syntax function mkCl forms correct sentences

in both languages. The morphology function and mkV builds inflection tables

for verbs in both languages, producing five forms in English and 103 forms

in Finnish. The application programmer’s advantage is great: she has to learn

4 / LILT VOLUME 2, ISSUE 2 DECEMBER 2009

only one set of functions to master 14 languages, instead of 14 sets.

Now, the linguist reader will certainly have questions concerning the rad-

ical approach to multilinguality enabled by GF. The first question is whether

all languages really have the same categories and structures. Aren’t, for in-

stance, English and Finnish so different that it hardly makes sense to define

the same syntactic constructions for them? The second question is whether

the same structures, even if they exist, can be used as translation equivalents

by just changing lexical items, as in the example with we walk above. These

two questions will motivate much of the discussion in this paper.

To address the first question, we will show that the GF grammar formalism

can indeed give common structures to seemingly very different languages.

But we will not make this ideal into a straight-jacket: we will also leave room

for structures that are defined only for some languages. However, since the

engineering gains of common structures are so high, and since they also give

interesting linguistic parallels, we will try to maximize the set of common

structures and see how far we can get. Whole Section 4 and the Appendix can

be seen as a demonstration of this.

The second question, about translation equivalence, has to do with how

the library is applied. We approach this question by separating the levels

of resource grammars and application grammars. Resource grammars

are about syntactic structures, such as noun-phrase verb-phrase predica-

tion, whereas application grammars are about semantic structures, such

as logical predicates. Only semantic structures are expected to guarantee

structure-based translation equivalence. Thus the sentences we walk and me

kävelemme, even though they have the same syntactic structure, are not al-

ways translation equivalents, because the Finnish sentence often has to be

translated by the progressive we are walking. To take a more complex exam-

ple from translation theory, the predicate contained in the English sentence

she swam across the river is in English expressed by the verb swim and

the preposition across. In the French equivalent, elle a traversé la rivière

en nageant, a transitive verb traverser ("to cross") is used together with an

adverbial en nageant ("by swimming"). We will show in Section 6 how such

situations are handled in GF, and keep in mind in the entire discussion that

resource grammar structures do not always support translation equivalence.

1.3 The structure of this paper

To make the discussion technically precise, we introduce the main concepts

and notations of GF in Section 2. Section 3 gives an overview of the design

principles and the structure of the GF Resource Grammar Library. Section 4

is the central part of this paper, giving a tour of the syntactic structures in the

Library. It discusses and motivates the most controversial choices and points

out implementation issues for different languages; the full set of rules is given

THE GF RESOURCE GRAMMAR LIBRARY / 5

in the Appendix. Section 5 explains how morphology is implemented in the

library. Section 6 takes a look at how the library is used, both in application

grammars and as a general linguistic resource. Section 7 contains an evalua-

tion of the library, addressing correctness, coverage, and usability. Section 8

gives a brief survey of related work, and Section 9 concludes.

2 GF and multilingual grammars

The most fundamental concepts of GF are abstract syntax and concrete syn-

tax. An abstract syntax defines a set of tree structures. A concrete syntax

maps trees into strings and, more generally, to records, which resemble fea-

ture structures as used in many other grammar formalism. Both trees and

records are typed, by a type system similar to the functional programming

languages ML (Milner et al., 1990) and Haskell (Peyton Jones, 2003). While

GF has some built-in types and type constructors—strings, record types, func-

tion types—types in general are user-defined.

2.1 Abstract syntax

A grammar is a set of judgements. The first kid of judgements are those that

introduce categories, i.e. basic types in an abstract syntax. They are marked

by the keyword cat. Thus the judgement

cat CN

defines a category named CN, used in the library for common nouns. A cate-

gory is a set of trees, and trees are built by using functions, which are defined

by judgements marked by the keyword fun. Thus the judgement

fun House : CN

defines a zero-place function (a constant) House, which does not take any

arguments and is hence itself a tree, of type CN. Given that we have a category

AP (adjectival phrases), we can also write a judgement

fun Mod : AP -> CN -> CN

for building trees by adjectival modification. Thus Mod takes an adjectival

phrase and a common noun and produces another common noun. If Big is a

constant of type AP, we can build the tree

Mod Big House

of type CN. The type of Mod permits iteration, so that we also have

Mod Big (Mod Big House)

Mod Big (Mod Big (Mod Big House))

and so on. As for the notation, notice that a function is just prefixed to its

arguments, and parentheses are only needed for grouping together complex

6 / LILT VOLUME 2, ISSUE 2 DECEMBER 2009

arguments. Thus trees in GF look like Lisp terms, except that the outermost

parentheses are usually omitted.

2.2 Concrete syntax

A concrete syntax defines linearization types for every category in an ab-

stract syntax. This is done by judgements marked by the keyword lincat.

Thus the judgement

lincat CN = Str

says that common nouns have the linearization type Str of strings (which are

actually token lists). Linearization types must be obeyed in the judgements

that assign linearization functions to abstract syntax functions, marked by

the keyword lin. Thus the judgement

lin House = "house"

says that the tree House is linearized to the string "house". The judgement

lin Mod ap cn = ap ++ cn

says that a tree of the form Mod ap cn, where ap is a variable for the

first argument and cn for the second, is linearized by concatenating (++) the

linearization of ap with the linearization of cn. To be type-correct, this rule

of course presupposes that the linearization type of AP is also Str.

Judgements of the lin form can be seen as clauses in the definition of

a recursive linearization function. The linearization of trees into strings is

straightforward evaluation of function applications. Parsing strings into trees

is a more involved operation, but it has a general solution that constructs a

polynomial parsing algorithm for any given GF grammar (Ljunglöf, 2004).

2.3 Parameters, tables, and variable features

Common nouns in English have two forms, singular and plural (ignoring the

genitive case to keep the example simple). They could be handled by distin-

guishing two categories in abstract syntax, say, CNSg and CNPl. But a more

elegant and powerful solution is to introduce the distinction in concrete syntax

only, by defining a parameter type of number, and making the linearization

of CN produce these two forms.

Parameter types are defined by judgements marked by the keyword param.

Thus the judgement

param Number = Sg | Pl

defines the parameter type Number with its two elements, Sg and Pl. The

judgement

lincat CN = Number => Str

says that the linearization type of CN is a table that assigns strings to numbers.

THE GF RESOURCE GRAMMAR LIBRARY / 7

Notice the usage of the double arrow => for table types, in contrast to the

single arrow -> for function types. A table object is defined by using the

following syntax, exemplified by a modified linearization rule for House:

lin House = table {Sg => "house" ; Pl => "houses"}

Thus a table must assign a value of the expected value type to every element

of the argument type. This can be done by explicitly listing all cases, as here;

it can also be done by passing a variable of the argument type from the left

of the arrow to the right of it. Such is the case with the number-sensitive

linearization rule for Mod:

lin Mod ap cn = table {n => ap ++ cn ! n}

Here the variable n of type Number is passed to the common noun argu-

ment cn, which itself is a common noun linearization and hence a table from

numbers to strings. The operator ! is used for selecting the value assigned to

n from the table that is the value of cn. As a result of these definitions, the

linearization of the tree Mod Big House computes to the table

table {Sg => "big house" ; Pl => "big houses"}

A constant like House is thus a lexeme rather than a single word: it contains

all forms of the word. The concept of a lexeme is in GF generalized from

words to complex phrases, such as Mod Big House. Since common nouns

have different forms depending on number, we say that number is a variable

feature of common nouns.

2.4 Records and inherent features

Varying the parameter types and linearization types in a concrete syntax is

what ultimately enables GF to give the same structure to different languages.

Working with the same abstract syntax as before, we can now add a concrete

syntax for French. Anticipating the addition of new nouns and adjectives, we

have to account for gender agreement (grande maison "big house" vs. grand

arbre "big tree") as well as for the position of adjectives (grande maison vs.

maison blanche "white house").

Agreement is expressed by passing values of inherent features to variable

features. In French, the gender of nouns is inherent, whereas the gender of

adjectives is variable. This is easy to see by looking at any French dictionary,

where the entries for nouns indicate what gender a noun has, and there is (with

some rare exceptions) no such thing as a masculine and a feminine form of a

noun. If we define the gender type by

param Gender = Masc | Fem

we can write

lincat CN = {s : Number => Str ; g : Gender}

8 / LILT VOLUME 2, ISSUE 2 DECEMBER 2009

to indicate that common nouns in French have a variable number (as in En-

glish) and an inherent gender (which English doesn’t have). The linearization

type is now a record type, with two fields, each having a label and a type.

The first field here has the label s, whose type is tables from numbers to

strings. The second field has the label g and the type gender.

Adjectives and adjectival phrases in French have both a variable gender

and a variable number. Thus we write

lincat AP = Gender => Number => Str

The adjectival modification rule expresses agreement as follows (ignoring the

position for a little while):

lin Mod ap cn = {

s = table {n => cn.s ! n ++ ap ! cn.g ! n} ;

g = cn.g

}

The value here, as expected, is a record giving values of expected types to

both fields. The variable cn is a common noun, thus itself a record, from

which the values of the two fields are extracted by the projection operator

(.). Thus cn.g is a gender, and cn.s is a table from numbers to strings.

The rule can be read as follows:

In adjectival modification, the noun is prefixed to the adjective. The variable

number of the complex noun formed is passed to both the noun and the ad-

jective. The inherent gender of the noun is passed to the adjective, and also

inherited by the complex noun that is formed.

Designing the parameter system and, in particular, deciding what is inher-

ent and what is variable, is one of the main tasks in GF grammar writing,

and makes it different from unification grammars, where the distinction is not

made (Cooper, 2008, Ranta, 2007a). Traditional dictionaries give good hints

for how this works for lexical categories, and these hints can be generalized

to phrases where these words function as heads. Some traditional grammars

make the distinction explicit; for instance, the authoritative French grammar

Grevisse (1993) carefully lists the two kinds of features separately when in-

troducing parts of speech. The type checker of GF grammars ensures that

features are passed in correct ways; if it reports on a missing feature, this will

force the grammarian to think about where it is inherited from.

Interestingly, the features of the main parts of speech tend to be simi-

lar in different languages. For instance, if a language has number, gender,

and case, nouns tend to have a variable number and case and an inherent

gender, whereas adjectives are like nouns except that the gender is variable.

These similarities help in building concrete syntaxes for new languages. But

some features are not uniform across languages. The position of adjectives in

THE GF RESOURCE GRAMMAR LIBRARY / 9

French (and other Romance languages) is a case in point. A straightforward

solution to the problem is to introduce an inherent Boolean feature that says

whether an adjective comes before the noun it modifies:

lincat AP = {

s : Gender => Number => Str ;

isPre : Bool

}

Adjectival modification can use this feature to select the order of the noun

and the adjective, as shown below in Section 2.7.

2.5 Discontinuous constituents

A record in GF may contain several fields for strings. In the Resource Gram-

mar Library, this has proved particularly useful for the category of verb

phrases, VP. An obvious example is from Germanic languages, where inver-

sion places the subject between the finite verb and the rest of the verb phrase.

Thus, in Swedish, hon köper bröd ("she buys bread") becomes in questions

and also after leading adverbials köper hon bröd, where the verb phrase is

köper - bröd ("buys" - "bread"). The minimal model for this is a record with

two string fields, where the first field is the finite verb and the second field the

complement (ignoring tense and agreement):

lincat VP = {fin : Str ; compl : Str}

An inversion question, with abstract syntax

fun Quest : NP -> VP -> Q

can now be linearized in an obvious way:

lin Quest np vp = vp.fin ++ np.s ++ vp.compl

As an example of how discontinuous VPs are built, consider complementation

with transitive verbs (V2):

fun Compl : V2 -> NP -> VP

lin Compl v np = {fin = v.s ; compl = np.s}

The technique of discontinuous constituents scales up to the topological struc-

ture of Germanic clauses (Diderichsen, 1962) and also to Romance clitics. It

thus "rescues" the NP-VP analysis of these languages and thereby permits a

compact abstract syntax for predication in the Resource Grammar Library.

2.6 Compositionality

Linearization, a recursive function from trees to strings, looks very powerful—

almost like transformations (Chomsky, 1957) or natural language generation

(NLG). But linearization is less powerful than transformations and NLG,

because it is compositional: a concrete syntax is a homomorphic mapping

10 / LILT VOLUME 2, ISSUE 2 DECEMBER 2009

of the free algebra defined by the abstract syntax to the universe of records,

parameters, and strings. In precise terms, if

fun f : C1 -> ... -> Cn -> C

then

lin f : C1* -> ... -> Cn* -> C*

where the type C* is the linearization type the category C. This notion of com-

positionality is the same as the one satisfied by semantics in Montague gram-

mar (Montague, 1974). Montague’s linearization rules, however (the rules

converting analysis trees to strings), are not compositional. In fact, he did not

formalize these rules at all. Concrete syntax in GF is technically just another

semantics of analysis trees, in the model of records, parameters, and strings.

Compositionality is a strong constraint on linearization. It implies that lin-

earization cannot be just whatever function on trees, like transformations or

NLG. No reanalysis of subtrees is permitted in linearization, but every tree

must have a fixed linearization that it retains in all constructs in which it

serves as a subtree. In other words, all abstract syntax trees correspond to

fixed concrete syntax objects. This means that a multilingual grammar estab-

lishes a non-trivial relation between the languages it involves, and is thereby

potentially interesting as a cross-linguistic hypothesis.

2.7 Auxiliary operations

GF is a functional programming language, which means that it uses functions

to capture patterns of computation to avoid repeating them. Such functions are

recognized by the keyword oper. An example is an operation that decides

on the mutual order of two strings, as a function of a Boolean parameter:

oper prefixIf : Bool -> Str -> Str -> Str =

\p,x,y -> case p of {

True => x ++ y ;

False => y ++ x

} ;

This definition introduces two new GF constructs: the lambda binding of

variables to form a function (\p,x,y ->), and case expressions. These

are standard functional programming constructs, which contribute to the

power of GF as a programming language.

An example of using the operation prefixIf is the French adjectival

modification rule, now taking into account that some adjectives appear before

the noun, some after (cf. Section 2.4 above):

lin Mod ap cn = {

s = table {n =>

prefixIf ap.isPre (ap ! cn.g ! n) (cn.s ! n)

THE GF RESOURCE GRAMMAR LIBRARY / 11

} ;

g = cn.g

}

The same function can be used for several tasks, such as ordering Romance

clitics and distinguishing between prepositions and postpositions in Finnish.

This helps to maintain a language-independent abstract syntax, since we can

include clitics in the normal category of noun phrases, and need not have

postpositions separate from prepositions.

The keyword oper distinguishes auxiliary concrete-syntax functions

from the abstract syntax fun functions, which construct trees. The term

top-level grammar is used for the set of rules defined by the cat, fun,

lincat, and lin judgements. Only top-level grammars are used in parsing

and linearization, whereas oper and param are just auxiliaries: they are

eliminated in the process of grammar compilation. In this sense, operations

are like macros. Technically, however, they are different from macros, since

they enjoy separate compilation: they are not expanded syntactically before

compilation, but type-checked and evaluated on their own.

Operations can be overloaded, which means that one and the same name

can be used for different operations. This is technically possible for any set

of operations that have different types: the type checker of GF can then per-

form overload resolution on the actual function calls. Overloading is useful

for managing large libraries, since it decreases the number of names the pro-

grammer has to memorize.

As an example of overloading, the name mkCl is used for building clauses

(Cl) in different ways. Most of these ways have a noun phrase (NP), which

can be followed by either a verb phrase (VP), a verb (V), an adjective (A), or

a two-place verb (V2) with its complement NP, to give just a few examples:

mkCl : NP -> VP -> Cl

mkCl : NP -> V -> Cl

mkCl : NP -> A -> Cl

mkCl : NP -> V2 -> NP -> Cl

As we will see in Section 3.4, the Library is rather promiscuous in intro-

ducing new instances of overloaded constructors to help the user; since these

constructors are operations and not abstract syntax functions, this redundancy

does not compromise the compactness of the core of the grammar.

2.8 Grammar composition and partial evaluation

Top-level grammar rules can be reused as operations, via the following map-

pings:

. a pair cat C ; lincat C = T becomes oper C : Type = T. a pair fun f : A ; lin f = t becomes oper f : A* = t, where A* is the

12 / LILT VOLUME 2, ISSUE 2 DECEMBER 2009

homomorphic linearization type of A

The opers created in this way become usable for concrete syntax definitions

of other grammars. The combinations of operations correspond exactly to the

syntax trees in the original abstract syntax. This technique is usually called

grammar composition: the abstract syntax of one grammar is used as the

concrete syntax of another grammar. The most typical example of this is the

use of the resource grammar library in application grammars: the semantic

structures of the application are mapped into the syntactic structures of the

resource.

Proper examples of grammar composition will be given in Section 6. Just

to give a brief example, assume we have the question function Quest and the

categories shown in Section 2.5 in a resource. Assume a domain semantics

that implements a query system about songs and artists (as in Perera and

Ranta 2007), with functions such as

fun DoesSing : Artist -> Song -> Query

(does x sing y). Using the library starts with assigning resource categories as

linearization types:

lincat Artist, Song = NP ; Query = Q

Given the Swedish transitive verb sjunga_V2 (sjunga, "sing"), we can now

write the linearization rule as

lin DoesSing x y = Quest x (Compl sjunga_V2 y)

The GF grammar compiler evaluates this into a run-time linearization rule

lin DoesSing x y = "sjunger" ++ x.s ++ y.s

where the discontinuity of VPs is no longer visible. The technique is known

as partial evaluation. It evaluates everything in the linearization except the

subtree variables, which can be evaluated only at run time. All linearization

types disappear, except those that are types of some run-time variables. These

are exactly the ones that are used in lincat judgements in the application

grammar—in the present example, NP and Q, but not VP or V2.

Partial evaluation can have dramatic effects on the grammar size and its

parsing behaviour. For instance, discontinuous constituents are usually asso-

ciated with "theoretical" categories such as VP, and they disappear in compi-

lation if VP is not used on the top level in the application grammar. Hence,

for instance, an application grammar can be context-free even though the re-

source grammar isn’t. It is due to partial evaluation that applications can use

large-scale grammars as libraries and still remain light-weight in processing

tasks.

THE GF RESOURCE GRAMMAR LIBRARY / 13

3 An overview of the library

3.1 Background

With a theoretical background in Ranta (1994), GF was first implemented

as a full-fledged grammar formalism in 1998 within the project "Multilin-

gual Document Authoring" at Xerox Researche Centre Europe in Grenoble

(Dymetman et al., 2000). The leading idea of this project was to develop a

tool for producing documents in multiple languages simultaneously. A mul-

tilingual document is produced by constructing an abstract syntax tree and

linearizing it to different languages. To support meaning-preserving transla-

tions, the abstract syntax has to encode a domain semantics, i.e. the semantic

structures of some domain; it was not considered feasible to have a universal

abstract syntax applicable to all domains.

The concept of Multilingual Document Authoring had previously ap-

peared in the WYSIWYM system (Power and Scott, 1998). which was im-

plemented by hard-coded generation rules. GF replaced the hard-coded rules

with declarative grammars, which made the generation rules into a replace-

able component of the system, and moreover supported the reverse operation

of parsing.

Writing multilingual grammars for various domains in GF turned out to

be possible: prototypes were built for mathematical proofs, business letters,

restaurant phrasebooks, database queries, and medical drug descriptions, cov-

ering up to seven languages. At the same time, even simple grammars turned

out to require considerable linguistic knowledge. "Difficult" structures such

as German word order and French clitics were soon encountered in most do-

mains. Since the rules governing them are independent of domain, the idea

arose to create libraries that take care of the linguistic details and give appli-

cation programmers high-level access to them.

The development of the library started in 2003. Since the first stable ver-

sion in 2006, two releases have been made every year. While the coverage of

grammatical structures and languages is growing, the ambition is to keep the

library backward compatible, so that old applications grammars continue to

work with new versions of the library.

3.2 Coverage

The coverage of the GF resource grammar library has been guided by its

growing set of applications. The first major application was an authoring and

documentation system for the KeY software specification system (Burke and

Johannisson, 2005). It was followed by the somewhat related WebALT math-

ematical exercise translator (Caprotti, 2006). These applications demanded a

coverage of written technical language and accurate rendering of logical for-

mulas. The TALK project on spoken dialogue systems (Ljunglöf et al., 2006)

14 / LILT VOLUME 2, ISSUE 2 DECEMBER 2009

extended the scope to spoken, more casual language.

In addition to applications, the coverage of the library was defined by a

priori considerations: we wanted to give, for each language, a complete in-

flectional morphology, as well as a syntax comparable to the Core Language

Engine (Alshawi, 1992), in the form described in Rayner et al. (2000). The

lexicon was considered to have a secondary importance: instead of a static

lexicon, we wanted to make it easy to build lexica on demand by high-level

morphological paradigms (Section 5.3).

The core syntax, which is implemented for all languages, has around 60

categories and 200 construction functions. It covers texts built from declara-

tives, questions, and imperatives, which in turn are built from noun phrases

and interrogative phrases, verbs with various subcategorization patterns, em-

bedded sentences and questions, relative clauses, and adverbials. Coordina-

tion on different levels (sentences, noun phrases, etc) is also covered.

The lexicon has about 500 lexemes, including 100 structural words, 50

words for the numeral system, and 350 content words. The structural words

are presented as core facilities provided by the library, on a par with the syn-

tactic constructors. The content words are used mostly for test and illustration

purposes. Since they include many of the oldest and most "worn" words, such

as the 207 "basic words" of Swadesh (1955), they usually cover quite well the

inflection patterns of each language.

In addition to the core syntax and the lexicon, the library has language-

dependent extensions given in separate modules. For instance, the rich tense

system of Romance languages is not completely covered by the core syntax,

but only by the Romance-specific extensions. For some languages, a lexicon

of irregular verbs is provided. Wide-coverage lexica have been constructed

for some languages, usually by code generation from other sources, such as

the Finnish word list from Kotimaisten Kielten Tutkimuskeskus (2006), the

Swedish lexicon SALDO (Borin et al., 2009) with 70,000 lemmas, the Ox-

ford Advanced Learner’s Dictionary of English, and the Bulgarian OpenOf-

fice spell checking dictionary.

3.3 Module structure

The GF resource grammar library has two layers: the user API and the core

grammar. The user API for every language X consists of three modules:

. SyntaxX, giving high-level access to the core syntax

. ParadigmsX, giving the inflection paradigms used for building a lexicon

. ExtraX, giving access to extensions of the core syntax

The Syntax modules have a common interface for all languages in the li-

brary, providing exactly the same categories and functions. The Paradigms

modules are language-specific, but maintain as much uniformity in naming as

THE GF RESOURCE GRAMMAR LIBRARY / 15

possible. For instance, every language has functions mkN, mkA, and mkV for

constructing nouns, adjectives, and verbs from the forms conventionally used

in dictionaries of that language (see Section 5.3). The Extra modules are

partly overlapping, and less developed for some languages than for others.

The library API Syntax is built by using grammar composition (see Sec-

tion 2.8) from the core grammar, which is not a library but a top-level gram-

mar that permits parsing and generation. Thus the linguists who build the core

grammar can test it independently of applications. The main parts of the core

grammar are the following:

. GrammarX, all syntactic combination rules. LexiconX, a test lexicon. LangX, combining GrammarX with LexiconX. AllX, combining LangX with ExtraX and a language-specific lexicon

Thus the syntactic constructs presented in this section and Appendix A are

those belonging to the module Grammar and reused in Syntax. Section 5

gives an overview of what is contained in Paradigms.

3.4 Presentation

The user API is a set of overloaded functions, which follows three naming

conventions:

. mkC is an overloaded function that construct objects of type C. word_C is a lexical item of type C. descrC is any other operation constructing C, with the description descr

The first two conventions have turned out to be intuitive and easily memoriz-

able for users; the third is avoided as much as possible, but cannot be avoided

when there are two or more functions of the same type. The API covers all

ways of forming trees that are provided in the core grammar, both directly

and with shortcuts. Shortcuts are functions that construct trees directly from

subtrees of subtrees, omitting intervening levels. For example, the clause this

is cool can in English be constructed in several ways, including the following

two:

mkCl

this_NP

(mkA "cool")

mkCl

(mkNP (mkDet this_Quant sgNum))

(mkVP (mkComp (mkAP (mkA "cool"))))

In the core grammar, there is only one tree, corresponding to the latter one

above:

16 / LILT VOLUME 2, ISSUE 2 DECEMBER 2009

PredVP

(DetNP (DetQuant this_Quant NumSg))

(UseComp (CompAP (PositA (mkA "cool"))))

Its outermost form is a clause built by predication (PredVP) from a noun

phrase built from a determiner and a verb phrase built with a copula and

its complement, which in turn is an adjectival phrase, and so on. The core

grammar aims at a minimal set of constructors, which usually take just one or

two arguments and result in deep tree structures.

Now, the combination shown by this is cool is so common that the user

API has chosen to provide a shortcut for building a clause directly from a

noun phrase and a lexical adjective; the definition is, indeed,

mkCl np adj =

PredVP np (UseComp (CompAP (PositA adj)))

The noun phrase this_NP is a shorcut for the quantifier this_Quant used

without a noun. In addition to conciseness and flatness, the shortcuts have the

virtue of skipping theory-laden categories like verb phrase and complement,

which would otherwise add to the cognitive load of the non-linguist library

user.

Separating the user API from the internals is normal software engineering

practice: it allows the library programmer to change the internals while keep-

ing the API constant. This has happened several times during the evolution of

the GF Resource Grammar Library, when new linguistic ideas have permitted

more general constructors; it is important that such ideas can be implemented

without destroying the applications of the library.

Put in a different way, the API and the core grammar are kept separate

because their users and goals are different: the API should be easy to use for

the non-linguist, whereas the core grammar should be easy to write for the

linguist. Redundancy is a distinguishing property: it is useful in the API but

harmful in the core.

4 Syntactic structures

In this section, we will go through the syntactic structures of the GF resource

grammar library. The purpose is twofold: to give an exact characterization of

the linguistic coverage of the library, and to discuss some aspects that a priori

create problems for a common abstract syntax. The complete list of categories

and constructors is given in the Appendix, which is divided into subsections

with the same numbers as this section.

4.1 An introductory example

To get an overview of the syntax, let us first consider the tree in Figure 1. It

is an abstract syntax tree, whose linearizations in 15 languages are shown in

THE GF RESOURCE GRAMMAR LIBRARY / 17

FIGURE 1 Abstract syntax tree.

Figure 2. The construction steps used in Figure 1 are the minimal constructors

of the core resource grammar, but we have used the constructor names of

the API, which follow the conventions listed in Section 3.4. The relation of

each word into its smallest spanning subtree in the abstract tree defines a

relation of word alignment between languages, a part of which is shown in

Figure 3. Both the tree and the alignment figure have been produced by GF’s

visualization tools.

4.2 Suprasentential level: texts and utterances

The topmost category of the library (not shown in Figure 1) is Text, com-

prising lists of phrases (Phr), each terminated with punctuation marks. The

punctuation mark is independent of the type of phrase, so that we can write

John walks. John walks? John walks!

Phrases are build from utterances (Utt), which can be declarative sen-

18 / LILT VOLUME 2, ISSUE 2 DECEMBER 2009

FIGURE 2 Linearizations in 15 languages (from above: Bulgarian, Catalan, Danish,

English, Finnish, French, German, Interlingua, Italian, Norwegian, Polish,

Romanian, Russian, Spanish, Swedish).

FIGURE 3 Word alignment between English, Finnish, French, and German.

THE GF RESOURCE GRAMMAR LIBRARY / 19

tences, questions, or imperatives, but also subsentential, e.g. noun phrases

(John), adverbs (here), and interrogatives (who). When an Utt is made into

a Phr, it can be preceded by a phrasal conjunction and have a vocative at-

tached (but come here, John). Subsentential utterances are needed in answers

in spoken dialogues and also in titles in written texts.

4.3 Sentence level: polarity, tense, and mood

The main categories from which utterances are constructed are sentences S,

question sentences QS, and imperatives Imp. The difference between S and

QS is that QSmay contain interrogative noun phrases and adverbials. Relative

sentences (RS) are in many respects similar to questions, but they occure

mainly in embedded positions rather than as top-level utterances.

Sentences are constructed from clauses (Cl) by fixing their tense and po-

larity. A clause itself has variable tense and polarity: parsing John walks,

John wouldn’t have walked, etc, yields one and the same clause, but different

sentences. Thus the clause category corresponds to the logical predication,

or the sentence radical, which is common to the different tense and polarity

forms.

Imperatives are not formed from clauses, but directly from subjectless verb

phrases. They have no tense distinctions, but just polarity (walk vs. don’t

walk) and, in various combinations depending on language, person, number,

and politeness. Thus e.g. English walk has three German variants: the familiar

singular geh, the familiar plural geht, and the polite singular gehen Sie.

While polarity is uniformly either positive or negative, the tense param-

eter varies from one language to another. Germanic languages have a two-

dimensional structure, in which one can distinguish anteriority (whether the

tense has an auxiliary have or not) and temporal order (past, present, future).

The conditional mood can be seen on a par with the temporal order; mor-

phologically, it is indeed often realized as "the past of the future", both in

Germanic (John would walk vs. John will walk) and Romance (French Jean

marcherait vs. Jean marchera).

The bivalent polarity with the Germanic tense system thus gives us 2*2*4

= 16 different forms of a clause (Cl), each of which corresponds to a different

top-level sentence (S). This system is close to the semantic tense system of

Reichenbach (1948), based on the distinction between event and reference

times. Romance languages add to this system a specific "simple past" tense,

and Slavic languages have a rather different system where aspect is central.

The common abstract syntax has constructors for the two polarities and

eight Germanic tenses, which are used for building sentences from clauses.

This means that the clauses of all languages in the library can be "inflected" in

the Germanic system, and hence mapped into the Reichenbachian semantics.

However, this mapping can be very rough in languages whose native tense

20 / LILT VOLUME 2, ISSUE 2 DECEMBER 2009

systems are different. Even among Germanic languages, the tense system ex-

emplifies a case in which the resource grammar does not guarantee transla-

tion equivalence. For instance, the English simultaneous past (he slept) is in

German normally translated as anterior present (er hat geschlafen), whereas

the German simultaneous past (er schlief) often corresponds to the English

progressive past (he was sleeping).

Despite the semantic discrepancies, it has turned out useful to have a

language-independent abstract syntax of tenses. This is illustrated by the pre-

vious example: even though "simultaneous past", etc, doesn’t have the same

use in English and German, the same forms do exist, and we can use the same

grammatical terms to speak about these different uses. Languages that have

a different set of tenses even morphologically, such as French, Finnish, and

Russian, have their proper tense systems defined in language-specific mod-

ules. The common abstract syntax can still give an approximation of transla-

tion equivalence. For instance, Finnish has no form for the future tense, but

realizing the abstract future tense with the present usually captures the right

meaning.

In addition to tense, many languages have distinctions of mood. For in-

stance, Romance sentences come in indicative and subjunctive moods. The

mood distinction is, however, grammatically determined: the subjunctive is

compulsory in certain kinds of subordinate clauses. Therefore, it does not

surface in the abstract syntax at all. Instead, mood is preserved as a variable

feature in the linearization type of sentences:

lincat S = {s : Mood => Str}

The corresponding type for clauses is

lincat Cl = {s : Pol => Tense => Mood => Str}

Thus, after the tense and polarity are fixed when a sentence is formed, the

linearization is still a table that has both indicative and subjunctive forms.

The mood is fixed when the sentence is put to a larger context. For instance,

sentence-complement verbs in French select the mood of their complent sen-

tence as function of the polarity of the verb. Thus croire selects the indicative

when used positively (je crois qu’il dort "I believe that he sleeps") and the

subjunctive when used negatively (je ne crois pas qu’il dorme "I don’t be-

lieve that he sleeps").

In addition to mood, sentences can have a contextually determined word

order. German and Scandinavian are prime examples, distinguishing (roughly)

between main, inverted, and subordinate clause order. Thus there is, for in-

stance, no abstract syntax category of subordinate clauses, but the word orders

are treated as "inflection forms" of sentences, which are in complementary

distribution: he is tired in German is er ist müde in a main clause, ist er müde

THE GF RESOURCE GRAMMAR LIBRARY / 21

(inverted) after an adverbial, and er müde ist in a subordinate clause.

Variable word order is even more common in questions. Most languages

have some distinction between direct and indirect questions, which are like-

wise treated as inflection forms depending on a variable feature of questions.

4.4 Clause level: predication and complementation

The main way of forming clauses is by predication: by combining a noun

phrase (NP) subject and a verb phrase (VP) predicate into a clause (Cl).

Thus John and walk are combined to John walks. As seen in the previous sec-

tion, the clause formed in this way covers all polarity and tense combinations

of the noun phrase and the verb phrase.

A verb phrase is primarily formed from a verb and its required comple-

ments. There are several categories of verbs, corresponding to the possible

complements and their combinations, and shown in Appendix, Section 1.2.

The division of verbs by the complement is known as subcategorization. In

the GF resource grammar library, subcategorization is more abstract than in

many other grammars, since there are no PP (prepositional phrase) comple-

ments separate from NP. Prepositional phrases are treated like different cases

of noun phrases. The case is a language-dependent concrete syntax feature,

and complement cases are inherent features of verbs. For instance, the lin-

earization type of V3 is formed from the linearization type of one-place verbs

by adding two cases (the operator ** expresses record extension):

V ** {c2 : Case ; c3 : Case}

In English, a case is simply a preposition, which can be expressed as a string.

Thus the verb talk (to sb about st) has the linearization

mkV "talk" ** {c2 = "to" ; c3 = "about"}

where mkV yields the regular verb inflection. In Finnish, the complement

case is a combination of an inflectional case and an optional preposition or

postposition. The verb corresponding to talk is in a Finnish dictionary given

as "puhua (jlle jsta)", which means that the first complement is in the allative

and the second in the elative case. This linearization is given by

mkV "puhua" ** {

c2 = {c = allative ; p = [] ; isPrep = False} ;

c3 = {c = elative ; p = [] ; isPrep = False}

}

An example of a verb with a non-empty postposition is "puhua (jnk puolesta)"

("speak for sb"),

mkV "puhua" ** {c2 =

{c = genitive ; p = "puolesta" ; isPrep = False}

}

22 / LILT VOLUME 2, ISSUE 2 DECEMBER 2009

When declaring a verb in the abstract syntax, we only need to decide the num-

ber of NP complements and not whether, for instance, the verb takes direct

objects. Abstracting away from complement case is useful because it often

happens that a verb takes a direct object in one language but its equivalent

in another language takes a prepositional phrase. The price to pay is that we

cannot have V2 coordination in the common abstract syntax; cf. Section 4.8.

The category V2V comprises both subject-control verbs, like promise, and

object-control verbs, like force. These categories are distinguished in concrete

syntax by a parameter telling where the agreement features of the verb phrase

complement come from: he promised us to behave himself vs. he forced us to

behave ourselves. An application grammar may want to distinguish them in

abstract syntax because they have different semantic interpretations.

Some of the complementation rules are given explicitly in Appendix, Sec-

tion 4. Some of them are derived from more primitive rules, which also sup-

port the extraction of NP complements ("wh movement"), in Appendix, Sec-

tion 5. Notice that the tense and polarity of sentence and question comple-

ments are fixed independently of the main clause. Therefore we use S and QS

rather than Cl and QCl as complements.

The copula (the verb be) is not treated as a lexical verb. In some languages

(e.g. Russian and Arabic) it is not necessarily expressed by a verb at all. The

complement (Comp) of a copula can come from different categories: noun

phrase, adjectival phrase, and adverbial phrase. The category Comp gathers

all these complement alternatives and is then made into a VP by adding a

copula if needed.

The verb phrase category is recursive because of the category VV of verbs

that take verb phras complements (want to sleep), and also because given verb

phrases can be modified by adverbs. Sentential adverbs (AdV, e.g. always)

are distinguished from ordinary adverbs (Adv, e.g. here), not because of their

placement (which could be regulated by a parameter) but because they have

different combinatorial properties. For instance, a sentential adverb cannot

serve as a complement of the copula (I am here vs. *I am always).

4.5 Questions and relative clauses

The category Cl gives the basis of forming sentential questions, since a clause

can always be converted to a question clause (QCl): does John walk, wouldn’t

John have walked, etc. Another way to form questions from clauses is by

adding interrogative adverb (IAdv, e.g. why): why does John walk. Notice

that this cannot be applied to question clauses: *why who walks. Construc-

tions such as where is John, with a noun phrase subject and a copula with an

interrogative complement (IComp) do not reduce to any of these cases and

are hence treated separately.

The most part of the question forming grammar is concerned with clauses

THE GF RESOURCE GRAMMAR LIBRARY / 23

that contain interrogative phrases (IP, e.g. who) as subjects or complements:

who walks, whom does John love. Such questions are very similar to relative

clauses (RCl), which are from relative pronouns (RP, e.g. that) as subjects

or complements: that walks, that John loves. In many languages, when inter-

rogative and relative pronouns are used in non-subject noun phrase positions,

they are "moved" from that position and put to the front of the clause. The

terms used for this phenomenon are wh movement and extraction; we will

mostly stick to the latter term.

In extraction, the role of a complement is occupied by an interrogative or

a relative pronoun, which typically appears in the beginning of the clause:

whom did he see, that he saw. The extracted position can also be deep inside

a complement, which is what makes extraction to create unbounded depen-

dencies: whom did he say that John saw.

Extraction is in the resource grammar treated by means of slash cate-

gories, inspired by GPSG (Gazdar et al., 1985). A slash category CSlash

is like the category C but "missing" a noun phrase. Four slash categories are

used: Slash sentences (SSlash) are formed from slash clauses (ClSlash)

by fixing tense and polarity. Slash clauses are formed from slash verb phases

(VPSlash) by adding a subject noun phrase. Finally, slash verb phrases are

formed from various kinds of verbs by providing all their complements except

one of type NP. For V3, which has two NP complements, there are two ways

to do this. The rules for forming VPSlash correspond to slash termination

in GPSG, and they are shown in Appendix, Section 5. The missing comple-

mentation rules of Appendix, Section 4 can be derived from these rules by

means of the constructor that forms a VP from a VPSlash and an NP.

Yet another way to form a slash clause is by adding a slash adverb

(AdvSlash) to a complete clause: he walks with. This rule permits ex-

traction from an adjunct rather than a complement. With the constructors

of Appendix, Section 5, extraction sites can be pushed inside verb phrase

complements: want to use (it), force me to use (it). These rules are examples

of slash propagation in GPSG. They permit, by iteration, missing NPs at

unbounded depth.

Rather than a general slash category constructor as in GPSG, we have

chosen to use a small number (four) of slash categories with fixed names. A

general constructor would be technically possible by using dependent types

(Ranta, 2004), but, since the number of slash categories in actual use is limited

and moreover language-dependent, a productive form would be overgenerat-

ing. The correspondences between our categories and those of GPSG are the

following:

. ClSlash corresponds to S/NP and S/PP

. SSlash corresponds to S/NP and S/PP

24 / LILT VOLUME 2, ISSUE 2 DECEMBER 2009

. VPSlash corresponds to VP/NP and VP/PP. AdvSlash corresponds to PP/NP

Thus GPSG does not make the Cl vs. S distinction, whereas we don’t make

the NP vs. PP distinction.

Semantically, extraction (slash formation) can be interpreted as function

abstraction. Thus CSlash is as semantic type equal to NP -> C. Slash

propagation is function composition. Both these interpretations could be ex-

pressed by using higher-order abstract syntax (functions that take functions

as arguments; see Ranta 2004). But the results would be overgenerating, for

instance, because of island constraints (Ross, 1967). Thus we have chosen

to approach full coverage from below, by using weak rules to cover only the

cases that are certain. The approach is inspired by Combinatory Categorial

Crammar, CCG (Steedman, 1988, 2000), where a set of combinators, such as

function composition, are used instead of unrestricted lambda binding.

Although the abstract syntax type has no cross-categorial slash mecha-

nism, all slash rules are internally defined by a small common set of opera-

tions. The linearization type of every slash category is that of the "mother"

category extended with an expected NP case. For instance,

lincat VPSlash = VP ** {c2 : Case}

The case is in obvious ways inherited from verbs in slash formation; as ex-

plained in Section 4.4, verbs that take complements have complement cases

as inherent features.

Relative clause construction with relative pronouns is similar to question

construction with interogative phrases. However, while questions are nor-

mally used as top-level utterances, relative clauses are used lower in syntax

trees for modifying common nouns and noun phrases; see Appendix, Sec-

tion 6. They must therefore agree in gender and number, and even person:

the system which damages itself, we who damage ourselves. The relative pro-

noun inherits the agreement features from the noun phrase, and passes them

to other parts of the relative clause. With simple pronouns, the features in-

herited are the same as the features passed, but with modified pronouns (such

as only one of which), they may be different: three cars only one of which is

black.

With both interrogative and relative pronouns, the inherent case and prepo-

sition of a slash clause usually attaches to the pronoun: French nombre par

lequel 24 est divisible, in English number by which 24 is divisible. This be-

haviour is known as pied-piping. In English and the Scandinavian languages,

there is also a variant behaviour, preposition stranding, in which the prepo-

sition is left in place in the verb frame: number which 24 is divisible by. Pied-

piping is presented as default behaviour in the library, whereas preposition

stranding is accessible via language-specific extensions.

THE GF RESOURCE GRAMMAR LIBRARY / 25

Interrogative pronouns cover, in addition to lexical ones such as who and

what, complex ones formed with interrogative determiners (which five songs)

possibly without a noun (which five). An interrogative can be modified with

an adverb (who in Paris). Interrogative adverbs can be formed from noun

phrases by prepositions (with whom), but there are also lexical ones (when,

where, why). Relative pronouns are built recursively from a base "identity

pronoun" (which, who) by adding prepositional phrases (only one of the parts

of which).

4.6 Noun phrases and determiners

Noun phrases are formed in three main ways: from common nouns (CN) using

determiners (Det), e.g. the man; from proper names (PN), e.g. John, and from

personal pronouns (Pron), e.g. he. Determiners can also form noun phrases

alone, without a noun (these five). Similarly, nouns without determiners can

be used as noun phrases, so-called mass terms (beer). A complete noun phrase

can be modified by a predeterminer (Predet), such as only. It can also be

postmodified by an adverb (Paris today) or by a relative clause (Paris, which

is here).

Determiners are a category with a complex internal structure. Following

Rayner et al. (2000), we distinguish three parts: Quant (quantifier), Num

(cardinal numeral), and Ord (ordinal, including superlatives). The quantifier

is the main part of the determiner, in the sense that both Num and Ord are op-

tional. Quantifiers have both singular and plural forms, which are sometimes

distinct (this-these), sometimes identical (some), depending on language. Pos-

sessives pronouns are quantifiers formed from personal pronouns, e.g. his

from he. Also the definite and indefinite articles (the, a) are treated as quanti-

fiers.

The inherent number of the determiner is set by the Num component.

This component can be phonologically dummy: there is no number word, but

just an inherent grammatical number. Non-dummy numerals are either verbal

(fifty-six) or symbolic (56). The ordinal is an optional part of the determiner,

but can likewise be verbal (fifty-sixth) or symbolic (56th). Also superlative

forms of adjectives behave syntactically like ordinals (best).

The verbal numeral system from 1 to 999,999 has been implemented for

90 languages in GF (Hammarström and Ranta, 2004). This implementation

shows some of the power of concrete syntax in GF, which makes it possible to

deal with different groupings, such as Hindi lakhs (hundreds of thousands) as

opposed to Western thousands, and even to some extent with different bases

of the numeral system. Adapting these number systems to the resource library

required supplementary work on case and gender inflection and on the ordi-

nals, since the original grammar set covered only the enumeration cardinals.

Even symbolic numerals are language-dependent. This is obvious with

26 / LILT VOLUME 2, ISSUE 2 DECEMBER 2009

ordinals (3rd in English is 3e in French), but occurs even with cardinals

(1.000.000 in Finnish is 1,000,000 in English). In Finnish, numerals even

get case endings (13:ssa "in 13").

Using a quantifier alone as a noun phrase often requires a special sub-

stantival form. Thus Italian quel ("that", masculine) has the substantival form

quello, and English my has the form mine. Articles can sometimes be used

substantivally (e.g. German der "the" and ein "a", with some case forms dif-

fering from the use with nouns). We have in those cases used equivalents of

it for the definite and equivalents of one for the indefinite article, which also

matches with the standard translations of the German determiners when used

substantivally.

Articles are in many languages realized by non-lexical means. For in-

stance, the definite article in Scandinavian languages is an inflectional fea-

ture passed to the noun that is determined. In Finnish, it is a feature shown

only in some constructs, e.g., when a numeral is present. Thus kolme taloa

covers both (the three houses and three houses), but the definite use behaves

as plural in the agreement with a verb, whereas the indefinite use behaves as

singular. Because of such subtle differences, the definiteness distinction has

been found appropriate even for languages like Finnish, where it sometimes

leaves no trace and therefore creates ambiguities.

In Romance languages, pronouns have unstressed clitic forms which, when

used as complements (Section 4.4), are placed before the verb. From the

abstract syntax point of view, clitics are just inflection forms of pronouns.

Their placement is regulated by the use of parameters and discontinuous con-

stituents, largely in the same way in the different languages of the family; cf.

Section 7.4.

4.7 Common nouns, adjectives, and adverbs

Common nouns (CN) are phrases ultimately formed from lexical nouns (N) as

their heads, i.e. parts determining most inherent features and receiving most

variable features. Common nouns can be modified by adjectival phrases (old

man) and relative clauses (man who walks). There are also relational nouns,

which take noun phrase arguments, one for N2 (mother of x) and two for

N3 (connection from x to y). Nouns can moreover be modified by embedded

sentences (fact that she sleeps) and questions (question where she sleeps). For

most nouns such combinations make little sense, but the library leaves this for

applications to decide.

The library does not distinguish mass nouns from other common nouns.

This can result in semantically odd expressions, when countable nouns are

used as mass terms. But the distinction can be forced in an application gram-

mar by splitting the common noun category into two semantic categories;

these two categories can both use CN as their linearization type.

THE GF RESOURCE GRAMMAR LIBRARY / 27

Tha category CN is the same as what is called NBAR in the Core Language

Engine and many other grammars, with reference to the X-bar theory (Jack-

endoff, 1977). The most logical name would be NP, in analogy with AP and

VP, but this name is traditionally (and in X-bar theory) used for determinate

noun phrases, as we did in Section 4.6. The naming N-N2-N3 is analogous

to V-V2-V3 in Section 4.4 above. It can be motivated by semantics: these

expressions denote 1-, 2-, and 3-place relations, respectively.

Adjectival modification has in many languages variable word order, e.g. in

French: grande maison ("large house") vs. maison bleue ("blue house"). The

order is regulated by using a Boolean parameter saying whether the adjec-

tive is postfix (cf. Section 2.7). In some languages, unmodified and modified

common nouns have different properties, which can be controlled by using a

parameter. Thus the Swedish definite article is realized by just inflection for

simple nouns, whereas modified nouns require an additional article word (bil

"car", bilen "the car", den svarta bilen "the black car").

The principal ways of forming an adjectival phrase (AP) are as positive

and comparative forms of one-place adjectives (warm, warmer than Paris),

and by providing arguments to relational adjectives (A2: divisible by 3). Sen-

tence and question complements are defined for all adjectival phrases (good

that she sleeps), although the semantics is clear only for some adjectives. An

adjectival phrase can be modified by an adadjective (AdA, very good).

No distinction is made between adjectives that have degrees and ones that

do not. This can lead to semantic overgeneration, in both comparison (3 is

more prime than 2) and adadjective application (3 is very prime). The iterated

application of AdA is likewise overgenerating: while very very good is all

right, very too good is not. This problem is related to the previous one: while

good has degrees, applying too to it results in a non-degree adjectival phrase.

The two main ways of forming adverbs are from adjectives (quickly) and

by prepositions from noun phrases (in the house). Comparison adverbs have

a noun phrase or a sentence as object of comparison (less quickly than John,

less quickly than I ran). Adverbs can be modified by adadjectives, just like

adjectives (very quickly). Subordinate clauses, formed from subjunctions with

sentences, can function as adverbs (when he arrives). Adadjectives can be

formed from adjectives, either by the same morphological means as adverbs

(unexpectedly) or by different means (in Finnish, odottamaton, "unexpected",

gives the Adv odottamattomasti and the AdA odottamattoman).

Some types of adverbs are missing, e.g. prepositionless time adverbials

(this year). They can of course be easily introduced in the lexicon, but a set of

functions forming time adverbials syntactically would be more satisfactory.

28 / LILT VOLUME 2, ISSUE 2 DECEMBER 2009

4.8 Coordination

Coordination means the use of conjunctions (such as and) for combining lists

of expressions in the same category. The list can have length 2 (X and Y) or

more (X, Y, Z and U), and the library allows coordination of five categories:

adverbs (here or there), adjectival phrases (cold and warm), noun phrases (she

or John), relative clauses (who walks or whom she loves), and sentences (he

walks and she runs). Conjunctions are given in the lexicon of structural words.

They can be either simple (and, or) or discontinuous (both-and, either-or).

Many categories are missing from the list of coordination rules in the

common abstract syntax, because it would be difficult to maintain them. For

instance, two-place verbs (V2) can generally be coordinated only if they

have the same complement case; see Section 4.4. Since cases are language-

specific, and we don’t want to reject constructions at linearization phase

(which would make the library unreliable), we cannot include V2 coordi-

nation in the language-independent resource. In a language-dependent ex-

tension, one can of course define special categories of two-place verbs at a

higher precision to permit their coordination, and coerce these categories to

V2 to inherit the already defined V2 combinations.

Verb phrase (VP) coordination is another interesting issue. For most lan-

guages, full coordination in the category VP is neither possible nor powerful

enough. One reason is tense: if the coordination of verb phrases were to pro-

duce a verb phrase, this verb phrase would have to be inflectible in all tenses.

But the conjuncts need not have the same tense: John has left or will leave.

Language-specific extensions implement different variants of VP coordina-

tion.

The abstract syntax of the library makes no generalization amounting to

the coordination of an arbitrary category X. But the concrete syntax does so

by using generic, dependently typed coordination operations. These opera-

tions deal with the propagation of variable and inherent features in a general

manner. Thus, if

lincat X = {s : V => Str ; i : I}

then for [X] (lists of trees of type X),

lincat [X] = {s1,s2 : V => Str ; i : I}

where the string field s is split into two fields. The conjuction word is placed

between these fields, whereas the elements of s1 are separated by commas.

The variable V feature is propagated to both these fields. For the inherent fea-

tures, a calculus for conjoining the values is needed. For instance, gender in

Romance works like a product in which the Masculine is 0 and the Feminine

is 1. This is definable as the operation

conjGender : Gender -> Gender -> Gender = \m,n ->

THE GF RESOURCE GRAMMAR LIBRARY / 29

case m of {Fem => n ; _ => Masc}

The above explanation of coordination gives another reason why VP is prob-

lematic: the general formula for coordination does not apply to discontinuous

constituents.

4.9 Idiomatic constructs and structural words

The library contains some functions that are common to languages but not

as uniform syntactically as the constructs introduced so far. Existentials is a

typical example. They have a common semantic structure, which is expressed

by different syntactic means. English uses a copula with a special formal

subject there: there is a house. German has an ordinary pronoun as formal

subject es ("it"), and the verb is geben ("give"): es gibt ein Haus ("it gives a

house"). Even the closely related Romance languages differ from each other:

the French phrase is il y a une maison ("it has a house there"), the Italian is

c’è una casa ("there is a house"), and the Spanish, hay una casa ("(it) has a

house", with a special form of the verb "have").

Constructs like existentials are very common and therefore often needed

by the users of the library. Usually they can be constructed in the "regular" re-

source grammar, but since they can get widely different syntax trees in differ-

ent languages, this treatment would miss an important structure. We have thus

decided to have a collection of idiomatic constructs, which cannot be cap-

tured by regular grammatical means. They include existentials, impersonal

constructs (it is cold), generics (one sleeps well here), and cleft constructions

emphasizing a noun phrase or an adverb (it is John who did it; it is here she

slept).

The repository of idiomatic constructions is no doubt incomplete. In ad-

dition to common constructs, there are many language-specific ones. For in-

stance, Finnish has localized existentials (tuolla vuorella on talo, "there is a

house on that mountain"), which cannot be reduced to ordinary existentials

like their English translations can.

The language-independent library includes a list of structural words. Their

constructors in the abstract syntax use English words postfixed by category

names, such as here_Adv, by_Prep. The constructors are meant to stand

for precise syntactic and semantic functions; in some cases they are therefore

disambiguated by additional notes, e.g. by expressing agent as opposed to by

expressing means. The disambiguated variants of an English word are likely

to get different linearizations in different languages. More structural words

are added in language-specific lexica, often expressing distinctions that not

all languages make. A typical example of this is the personal pronoun system,

where the gender distinctions made in each person vary from one language to

another.

30 / LILT VOLUME 2, ISSUE 2 DECEMBER 2009

The division between open and closed lexical classes is not rigid. Thus,

for instance, while verb-complement verbs (VV) in general appear in the open

lexicon, some of them occur among the structural words. This is mainly for

traditional reasons: e.g. in English, verbs like must have a special behaviour

of auxiliaries, and are traditionally explained in the grammar and not only

in the lexicon. In other languages, e.g. French, there is nothing special about

such verbs, except that they may be irregular.

5 Morphology and lexicon

The resource grammar library aims to provide a complete inflectional mor-

phology for each language it includes. By this we mean that

. all lexical categories are included;. the linearization types of lexical categories comprise all forms;. there are paradigm functions sufficient for constructing all forms.

The morphology component is usable as a linguistic resource independently

of the syntax component. This is the main reason to make it complete, even

to cover forms that are not used in the syntactic constructs of the library. The

technique we use is based on typed functional paradigms as in the Zen toolkit

(Huet, 2005). This idea is in GF complemented with regular expressions, in-

spired by XFST (Xerox Finite-State Tool, Beesley and Karttunen 2003).

5.1 Inflection paradigms

A paradigm, in the sense of GF, is an operation (oper), which takes as its

arguments one or more strings and yields as its value a linearization with

all forms required by the type. For example, the linearization type of Italian

nouns is

N = {s : Number => Str ; g : Gender}

The first step of a morphology implementation is to privide a worst-case

function, which is in all cases sufficient for determining an object of the de-

sired type. For Italian nouns, this function takes three arguments: the singular

and plural form strings, and the gender:

mkN : (uomo, uomini : Str) -> Gender -> N

The function type notation (x,...,y : A) ->B displaying variable names x,...,y

is equal to A -> ... -> A -> B, with as many A’s as there are variables in

the list. The morphology libraries make a heavy use of this notation, because

it provides documentation: the variable names can be chosen to look like

examples of strings that can be given to the function as arguments.

Paradigms such as usually listed in grammar books can be defined by using

the worst-case function. Here is a set of ones for Italian, with names that

display example words as a part of their documentation. The operation init

THE GF RESOURCE GRAMMAR LIBRARY / 31

returns the initial segment of a string, dropping its last character, e.g. init

"vino" is "vin".

vinoN x = mkN x (init x + "i") Masc

melaN x = mkN x (init x + "e") Fem

olioN x = mkN x (init x) Masc

saccoN x = mkN x (init x + "hi") Masc

saleN x = mkN x (init x + "i") Masc

carneN x = mkN x (init x + "i") Fem

tramN x = mkN x x Masc

The lexicon writer assigns one of these paradigms to each word she wants to

add to the lexicon. If the word is so irregular that there is no suitable paradigm,

she uses the worst-case function.

5.2 Smart paradigms

The above rather traditional notion of paradigms was the one primarily used

in the early versions of the library. Its advantage is its familiarity from school

grammars; its disadvantages are that the number of paradigms can grow quite

large, and that it can be difficult for the user to make correct choices. A con-

siderable improvement results from the introduction of smart paradigms,

which analyse the ground form and select the inflection accordingly. Smart

paradigms use pattern matching with regular expressions. Here is a smart

paradigm dealing with a part of Italian nouns. It is called regN, because it

captures the regular inflection behaviour.

regN : Str -> N = \x -> case x of {

_ + "io" => olioN x ;

_ + ("c"|"g") + "o" => saccoN x ;

_ + "o" => vinoN x ;

_ + ("c"|"g") + "a" => mkN x (init x+"he") Fem ;

_ + "a" => melaN x ;

_ + "ione" => carneN x ;

_ + "e" => saleN x ;

_ + "à" => mkN x x Fem ;

_ => tramN x

}

The regular expression _ matches any string. P + Q matches any concatena-

tion of P and Q. P | Q matches anything that either P or Q matches.

Since the introduction of regular pattern matching and smart paradigms,

morphology implementations in GF don’t necessarily need the traditional

paradigms at all. Notice that the "intelligence" of a smart paradigm can be

increased almost ad libitum by adding special cases such as the ending ione

above. A limiting case would be to include all irregular words as patterns in a

32 / LILT VOLUME 2, ISSUE 2 DECEMBER 2009

smart paradigm. But this would still not cover cases like the English verb lie,

which is inflected in two different ways (lie-lay-lain vs. lie-lied-lied).

The lexicographer now needs only the smart paradigm and the worst case

function to define Italian nouns. To make the naming still simpler, the li-

brary uses the overloaded name mkN for both functions—thus, both the syn-

tax functions and paradigms that construct a C have the name mkC.

mkN : (vino : Str) -> N

mkN : (uomo, uomini : Str) -> Gender -> N

5.3 Paradigm libraries

What forms and parameters are needed in paradigms depends on language

and category. However, just like in syntax, the user is helped by uniformity

in the library. Thus the library defines, in all languages, the functions mkN,

mkPN, mkA, and mkV, which take just one string as their argument and pro-

duce the most likely inflection of desired type. More arguments can be pro-

vided to give more forms and parameters, the most complex case being the

worst-case function.

A paradigm library exports all functions that are needed for building a

lexicon. In addition to inflection paradigms, this includes names of inherent

features (such as feminine) and functions for words that take arguments.

Thus for two-place verbs, there are two variants of mkV2: the default one that

forms regular transitive verbs, and the worst-case one that can handle any

verb inflection and any complement case or preposition:

mkV2 : Str -> V2 -- kill

mkV2 : V -> Prep -> V2 -- speak about

6 Using the library

The main usage of GF Resource Grammar Library is as a standard library for

programmers writing natural language applications. The library is expected

both to save work and to improve quality, as compared with hand-written

grammars. At the same time, the library is a linguistic resource that can be

used in traditional natural language processing. In this section, we give brief

descriptions of a few different ways of using the library. In the next section,

we refer to these applications when evaluating the library.

6.1 Application grammars

An application grammar usually starts with a domain ontology, which is

expressed as an abstract syntax in GF. Concrete syntaxes permit natural lan-

guage input and output of semantic content in the domain. Multilingual do-

main grammars can be used for translation via the abstract syntax, but this

is not always exploited: the purpose of multilingual grammars may be just

THE GF RESOURCE GRAMMAR LIBRARY / 33

abstract Music = {

cat

Request ; Kind ; Property ;

fun

Play : Kind -> Request ;

PropKind : Kind -> Property -> Kind ;

Song : Kind ;

American : Property ;

}

concrete MusicGer of Music =

open SyntaxGer, ParadigmsGer in {

lincat

Request = Phr ;

Kind = CN ;

Property = AP ;

lin

Play k = mkUtt (mkImp famImpForm (mkV2 "spielen")

(indefNP k)) ;

PropKind k p = mkCN p k ;

Song = mkCN (mkN "Lied" "Lieder" neuter) ;

American = mkAP (mkA "amerikanisch") ;

}

FIGURE 4 Abstract and concrete syntax of an application grammar.

to localize the same system in different languages. The abstract syntax is the

interface between the languages and the rest of the system. It also provides a

completeness check of concrete syntaxes, guaranteeing that exactly the same

domain ontology is covered in all languages.

Domain ontology and concrete syntax

As an example of an application grammar, let us consider a music player

dialogue system (a subset of the one studied in Perera and Ranta (2007)). The

user of the system can say e.g. play an American song. To make the structure

of the application clear, we show in Figure 4, for the first time in this paper,

entire GF modules: an abstract syntax module Music and a concrete

syntax MusicGer. (cf. Ranta 2007b for details of the module system).

The concrete syntax in Figure 4 uses resource categories as linearization

types of the domain categories, and resource functions for defining the lin-

earizations of domain functions. Using a resource is indicated by the keyword

open. For instance, the tree Play (PropKind Song American) gets

linearized spiele ein amerikanisches Lied.

34 / LILT VOLUME 2, ISSUE 2 DECEMBER 2009

interface LexMusic = open Cat in {

oper

play_V2 : V2 ;

song_N : N ;

american_A : A ;

}

incomplete concrete MusicI of Music =

open Syntax, MusicLex in {

lincat

Request = Phr ;

Kind = CN ;

Property = AP ;

lin

Play k = mkUtt (mkImp famImpForm play_V2

(indefNP k)) ;

PropKind k p = mkCN p k ;

Song = mkCN song_N ;

American = mkAP american_A ;

}

FIGURE 5 A lexicon interface and a functor for Music.

Functor implementation

The concrete syntax for other library languages is basically the same as for

German, except for the lexical units included. This is because the resource

interface Syntax provides the same functions for all languages, and they

are most of the time used in the same ways in different languages. This com-

mon structure can be exploiting for sharing code between languages. The

technique that makes this possible is functors, also known as parametrized

modules. A functor is a module that depends on some interfaces, i.e. mod-

ules that declare constants but don’t implement them. The resource grammar

API module Syntax is such an interface; its implementations are the library

modules SyntaxEng, SyntaxGer, etc. A typical functor in GF depends

on two interfaces: the Syntax API provided by the library and a domain

lexicon written by the application programmer.

In the case at hand, the domain lexicon interface declares a verb play,

a noun song, and an adjective American. Their types are resource grammar

categories inherited from the module Cat. The GF keyword for functors is

incomplete, prefixed to the module header. Figure 5 shows an interface

and a functor for Music.

The code in a functor works for any language for which its interfaces

are instantiated. To make the functor MusicI in Figure 5 work for Finnish,

THE GF RESOURCE GRAMMAR LIBRARY / 35

instance LexMusicFin of LexMusic = CatFin **
open ParadigmsFin in {

oper

play_V2 = mkV2 "soittaa" ;

song_N = mkN "laulu" ;

american_A = mkA "amerikkalainen" ;

}

concrete MusicFin of Music = MusicI with

(Syntax = SyntaxFin),

(LexMusic = LexMusicFin) ;

FIGURE 6 A Finnish lexicon instance and functor instantiation.

we write an instance LexMusicFin of the domain lexicon. An instance of

Syntax is given in the resource grammar library. Hence we can instantiate

both interfaces of the functor MusicI and obtain a complete concrete syntax

for Finnish, as shown in Figure 6. When porting the grammar to a new lan-

guage, we need only these two modules: a domain lexicon interface (which

requires only knowledge of words and their inflection paradigms), and a func-

tor instantiation (which is mechanical to write).

By-passing the functor implementation

We said above that languages use the same structures "most of the time". For

the cases where they don’t, GF provides three possibilities. Let us use the

function Play from Music as an example. The functor MusicI above im-

plements Play with a structure using the familiar form of the second person

singular imperative (famImpForm): spiele ein Lied ("play a song"). Assume

the German grammarian wants the polite form instead: spielen Sie ein Lied.

Then she wants to use another linearization rule,

lin Play k =

mkUtt (mkImp polImpForm play_V2 (indefNP k))

The first way to force this is not to define the linearization of Play in the

functor at all, but to do it separately in each language. This approach gives

maximal freedom for using different structures. Following it to the extreme is

to avoid the use of functors altogether. This way can be chosen by grammar-

ians who are pessimistic about the similarities between languages. They can

still use the resource grammar library, but separately for each language.

The second way to by-pass the functor implementation is a moderate vari-

ant of avoiding the functor. The functor maybe works fine for most languages,

with just a few exceptions. Then we can use it as it is for those languages, and

make explicit exceptions for the others. The GF mechanism for this is called

restricted inheritance, which is expressed by the minus symbol (-) prefixed

36 / LILT VOLUME 2, ISSUE 2 DECEMBER 2009

to a list of excluded functions:

concrete MusicGer of Music = MusicI - [Play] with

(Syntax = SyntaxGer),

(LexMusic = LexMusicGer) **
open SyntaxGer, LexMusicGer in {

lin Play k =

mkUtt (mkImp polImpForm play_V2 (indefNP k)) ;

}

The restriction list (here [Play]) can contain any number of categories and

functions, which can then be defined separately for the language in question.

However, abandoning the functor in this example would miss an impor-

tant point: that an imperative is used in all languages, just in different forms

of politeness. This leads us to the third solution: to make the functor more

general, by introducing in LexMusic a parameter that decides what form of

imperatives the user can choose when addressing the system:

oper systemImpForm : ImpForm

This parameter is defined separately in each domain lexicon instance, and the

functor uses the rule

lin Play k =

mkUtt (mkImp systemImpForm play_V2 (indefNP k))

Generalizing functors can go further than this, because functor parameters

need not be atomic constants but can be functions as well. Consider the case

in which a French grammarian wants to use the infinitive instead of the im-

perative: jouer la chançon ("to play the song"). The parameter we need is a

function for building requests from verb phrases:

oper systemRequest : VP -> Utt

The functor now says

lin Play k =

systemRequest (mkVP play_V2 (indefNP k))

The domain lexica define systemRequest in different ways:

systemRequest vp

= mkUtt vp -- Fre

= mkUtt (mkImp polImpForm vp) -- Ger

= mkUtt (mkImp famImpForm vp) -- Fin

In general, by-passing a functor implementation in a multilingual grammar

is similar to structure-changing transfer in translation systems. Due to partial

evaluation, transfer such as shown in this section can be performed at compile

time, so that run-time translation is purely interlingual.

THE GF RESOURCE GRAMMAR LIBRARY / 37

Variants in concrete syntax

In the dialogue system experiment of (Perera and Ranta, 2007), the German

corpus permitted several ways of making requests to the system: the familiar

and the polite imperatives, as well as the infinitive: spiele ein Lied, spielen

Sie ein Lied, ein Lied spielen, and also kannst du ein Lied spielen, können

Sie ein Lied spielen ("can you play a song"). Since other languages may have

different sets of such ways and since there is no semantic difference between

these ways from the functionality point of view, we don’t want to distinguish

them in the abstract syntax. Instead, we can use the GF construct for variants

(|), which, for any type in concrete syntax, constructs a list of alternative

objects of that type. If we choose the last alternative functor implementation

of the previous section, we thus write

systemRequest vp =

mkUtt vp |

mkUtt (mkImp (polImpForm | famImpForm) vp) |

mkUtt (mkQCl (you_NP | youPol_NP) can_VV vp)

Another, simpler example of the use of variants is in the lexicon:

song_N =

mkN "Lied" "Lieder" neuter |

mkN "Song" "Songs" masculine

Combinations of variants may easily produce hundreds of alternative expres-

sions for some requests.

Variants are useful in application grammars, since they neutralize syntactic

and lexical distinctions that are irrelevant on the chosen level of abstraction.

In the resource grammar itself, however, they are avoided. This is because

the library cannot anticipate what distinctions may turn out relevant in future

applications. Contracted and uncontracted negations (don’t sleep vs. do not

sleep) in English are a typical example. In many applications, they can cer-

tainly be treated as variants. But in some applications, stylistic reasons may

exclude one or the other. The resource grammar library, which has to cater for

all uses, treats them as separate constructs and leaves it to the user to decide

whether they are variants or not. In general, grammars used for parsing need

more variants than grammars used for generation.

6.2 Corpus and treebank generation

Any GF grammar can be used for generating corpora, the richest form of

which is a multilingual treebanks: a list of trees with linearizations in dif-

ferent language. This has been an important tool in regression testing of the

library itself, but it is also usable for other linguistic tasks, such as in the

evaluation of translation systems, and even for training statistical language

38 / LILT VOLUME 2, ISSUE 2 DECEMBER 2009

processing tools with synthesized data (Jonson, 2006).

A treebank can be generated from a list of trees (by linearizing them)

or strings (by first parsing and then linearizing). GF development tools also

support random and exhaustive generation. Using the raw resource grammar

(LangX) for this gives lots of semantically anomalous sentences, and cer-

tainly a strange distribution, because rare constructs are on a par with com-

mon ones. For instance, embedded sentences have the same probability as

noun phrases to become subjects of clauses. GF supports the assignment of

weights to tree constructors to relieve this problem. But the best synthetic

corpora and treebanks are obtained from semantics-driven application gram-

mars.

6.3 Reusing linguistic information

The library contains linguistic information of a very general kind, and this

information can be reused in other formats. For instance, a morphological

lexicon created by using the resource paradigms can be converted to finite

state transducers in the XFST format (Beesley and Karttunen, 2003) and to

SQL databases by using techniques developed in Forsberg and Ranta (2004).

Any GF grammar can be converted to a context-free approximation in

the language model format required by speech recognition systems such as

Nuance (Bevocal Inc., 2005), and further into finite-state approximations

as required by HTK/ATK (Young et al., 2002); see Bringert (2007) for the

supported formats and conversions. There is also a lossless compilation of

grammars to Javascript code. This makes it possible to construct dynami-

cally changing multilingual web pages via grammar-based translation (Meza

Moreno and Bringert, 2008).

In each of the cases mentioned, GF can be seen as a high-level front end to

the other formats, exploiting their standardized and optimized back-ends but

adding a module system and a type-checker that help in large-scale engineer-

ing and prevent run-time errors.

6.4 Text parsing

For the task of text parsing, the library alone is usually not sufficient. There

are three reasons for this. First, the coverage is too restricted, and parsing un-

constrained text would require constructs that would compromise the quality

of the library. Secondly, due to its abstractness, the raw resource grammar

is not optimal for large-scale parsing; some exact figures can be found in

Section 7.2. Thirdly, the combinations provided by the library may create un-

desired ambiguities. However, all these problems can be solved by building

extensions to the grammar (the coverage problem), and by changing the tree

structures via an application grammar (the efficiency and ambiguity prob-

lems). The key technique is the flattening of tree structures, of which exam-

THE GF RESOURCE GRAMMAR LIBRARY / 39

ples are shown in Section 2.8 and Section 3.4.

The semantics project of Bringert (2009) targeted the coverage of the

FRACAS test suite (Kamp et al., 1994). In addition to a lexicon, he needed to

add a dozen rules to the English resource grammar, i.e. less than 10% of the

size of the available resource grammar.

6.5 Semantics

Since the abstract syntax of the resource grammar is not a semantic struc-

ture, its trees can be meaningless or ambiguous. However, the structure is

not far from the analysis trees of Montague grammar (Montague, 1974) and

the Quasi-Logical Form (QLF) of CLE (Alshawi, 1992). Much of the ambi-

guity can therefore be treated as underspecification. Therefore, it is possible

to translate most of the abstract syntax of the resource grammar to predicate

calculus by compositional semantic rules (Bringert, 2009). This translation

gives logical semantics simultaneously to all resource languages. On the top

of the translation, Bringert built an interface to the first-order theorem prover

Equinox (Claessen, 2005) and a web interface for natural language inference

tasks (Bringert, 2009).

7 Evaluation

Corpora and treebanks are traditionally the main devices for testing grammar

implementations. They are important for the GF Resource Grammar Library

as well, but they are not sufficient when evaluating a grammar that is not only

used for parsing and generation but also as a software library.

In this section, we will first summarize the goals against which the library

should be evaluated. Then we will summarize some results in relation to these

criteria.

7.1 Criteria

The following have been used as the main criteria of evaluation for the library.

. Syntactic correctness. The user must be able to trust the library: what-

ever use of library functions is type-correct and passes the GF grammar

compiler must result in grammatically correct expressions in the target

language.

. Semantic coverage. The user must be able to find some ways to express

any content she wants to express.

. Usability. The library must be intuitive and easy to use for an average

programmer who knows some GF and is fluent in the target language. In

particular, it should save work in comparison to writing grammars by hand.

The following properties are important for grammar libraries in general, but

they are automatically fulfilled by any implementation that passes the GF

40 / LILT VOLUME 2, ISSUE 2 DECEMBER 2009

grammar compiler.

. API completeness. A grammar must implement all constructs of the API.. Failure-freeness. Linearization must give a result for all combinations of

syntactic constructions.

The following properties are desirable, but secondary to the main criteria.

. Efficiency. Parsing and linearization must take only a short time and a

small amount of memory.. Naturalness. The linearizations must in each language be natural and

stylistically correct.. Elegance. The implementations must have good programming style and

satisfy the critical linguistically trained reader.

The following properties, although good by themselves, have not been used

as criteria for the library.

. Syntactic coverage. A resource grammar implementation must cover all

constructs of the target language.. Semantical correctness. The grammars may only generate meaningful

expressions.. Translation equivalence. The linearizations of an abstract syntax tree

must be valid translations of each other.. Linguistic innovation. The implementation must solve open linguistic

problems.

In addition to the libraries once produced, it is interesting to evaluate the

feasibility of the whole project. We want to reach a situation in which writing

a resource grammar for a new language is a reasonable undertaking in terms

of skill and effort. This involves the following factors:

. Development effort. Writing a new resource grammar implementation

should not take too much time.. Developer skill. Resource grammar writing should be accessible for per-

sons with standard training in linguistics and programming.. Reuse of code and experience. The growth of the library should make it

increasingly easy to add new languages.

7.2 Results

Correctness

The main way of controlling syntactic correctness has been the creation of

test suites, which are rerun whenever the library changes. Test suites can be

organized as multilingual treebanks, with which one can assess a new gram-

mar by comparing its linearizations with an old, trusted grammar. The trusted

grammar can be a grammar of the same language as is being tested, but also

THE GF RESOURCE GRAMMAR LIBRARY / 41

of some other language. No trees are then needed to make comparisons, and

the evaluation can be carried out without a knowledge of GF: it is enough

to be sufficiently fluent in both involved languages. Thus one can verify, not

only that a linearization is grammatically correct, but also that it corresponds

to a trusted linearization. English is typical as such a trusted language, both

because it is the oldest and the most well-proven language in the library and

because it is widely known. For instance, when evaluating a French grammar,

a sentence pair

she has always loved us

elle nous a aimés

would indicate that the French linearization, literally translated as she has

loved us, mistakenly suppresses sentential adverbs. This would reveal an error

in the grammar. But a bad translation might also be considered harmless,

because we do not require translation equivalence. Such is the case with

she arrived yesterday

elle arrivait hier

where the English past tense is translated by the French imperfect. To get

the correct form, the composed past elle est arrivée hier, a more fine-grained

semantic model of the tenses would be needed (cf. Section 4.3).

Coverage

As for coverage, targeted applications have played a crucial role, as described

in Section 3.2. Usually the applications have led to extensions in the library,

without any explicit measurement of the sufficiency of the existing library.

An exception is the GF-Sammie project (Perera and Ranta, 2007), which was

formulated as an evaluation of the library in comparison to other grammar

writing methods.

The in-car dialogue system Sammie was built within the European di-

alogue system project TALK. It targeted English and German, and was

based on corpora collected for both languages in Wizard-of-Oz experiments

(Becker et al., 2007). It used hand-written context-free grammars in the Nu-

ance speech recognition format (Bevocal Inc., 2005). GF-Sammie was an

experiment in which the grammars were rewritten in GF and ported to four

new languages (Finnish, French, Spanish, Swedish) by using the resource

grammar library. The experiment aimed to test both coverage and usability.

The starting point was the English Sammie grammar, hand-written in the

Nuance format, with 2,400 context-free rules. This grammar was automat-

ically translated to GF format, to generate a test corpus. But the automatic

translation did not give a good basis for making the grammar multilingual. For

this purpose, an abstract syntax was created on the basis of the semantic ac-

tions returned by the Nuance parser. For this abstract syntax, a functor-based

42 / LILT VOLUME 2, ISSUE 2 DECEMBER 2009

concrete syntax was built with the purpose of covering all functionalities of

Sammie, with at least some possible utterances for every semantic action.

As another experiment, a full coverage of the German original grammar was

attempted.

Two aspects of coverage were thus considered. The first aspect was seman-

tic coverage: whether the library gives adequate expressions for all semantic

actions required in the application. This aspect is classified as essential for

the library, and it was indeed satisfied by the library without any additions

(other than in the lexicon). The second aspect was syntactic coverage, which

we have classified as less important for the library. Here the result was that

about 70% of the coverage was reached. This was mostly due to colloquial,

often telegraphic, expressions in the German corpus.

Usability

A central question in the GF-Sammie experiment (Perera and Ranta, 2007)

was how easy is it to port a dialogue system grammar to a new language by

using the library, compared with hand-writing it? The abstract syntax of the

grammar included 10 categories and 50 rules (plus a vocabulary of artist, al-

bum, and song names). Covering this domain with a functor and instantiating

it to one language took one working day. Each addition of a new language

to the functor-based system took less than an hours’ work, to reach a mini-

mal coverage. The extension of the German grammar to the coverage of the

original was is harder to evaluate, since the full user input coverage was not

reached by the resource grammar.

One clear gain in GF vs. Nuance was due to the use of a feature-based, as

opposed to a string-based, approach: GF-Sammie avoided, for instance, the

expansion of the 16 forms of German noun phrases (combinations of number,

gender, and case) into different rules, which means an order of magnitude less

to write.

The overloaded API was not yet available at the time of the GF-Sammie

experiment. It simplifies the use of the library considerably, since it decreases

both the number of names to be memorized and the complexity of trees (Sec-

tion 3.4). As a general library-related issue, an IDE (Integrated Development

Environment) was put on the wish list, to match the customary skills and

working habits of programmers.

Another evaluation of usability concerns the smart inflection paradigms,

as used for lexicon construction in Finnish (Ranta, 2008). In this experiment,

it was tested how many forms need to be given to the smart paradigms (Sec-

tion 5.2) to get all the 26 inflection forms of Finnish nouns correct. It turned

out that 82% of nouns were covered by the 1-argument paradigm and 96% by

the 2-argument paradigm. In average, 1.42 word forms per noun were needed.

Verbs, even though they have many more forms than nouns, were even more

THE GF RESOURCE GRAMMAR LIBRARY / 43

FIGURE 7 Parser speed in milliseconds per word. (Figure by Krasimir Angelov.)

predictable than nouns. This confirmed that the smart paradigms system gives

a productive lexicon building tool to a lexicographer who knows how to in-

flect the target language in practice.

Efficiency

The efficiency of the library can be measured on several dimensions: the time

and space needed for parsing and generation; the time and space needed for

compiling the library and applications that use it; and the object file size cre-

ated in compiling the library and its applications. One desired property of

a library is that it should not come with a run-time penalty when compared

with hand-written code. In GF, the partial evaluation performed in grammar

compilation (see Section 2.8) usually takes care of this.

Careful optimization work on the resource grammars and parser genera-

tion have led to a situation in which all current resource grammars can be used

for parsing by themselves, not only via application grammars. The sizes of the

binary parser files for LangX vary from less than 400kB (English and Scan-

dinavian) to more than 3,000kB (Bulgarian, Finnish, French); see Angelov

et al. 2009 for more details. The parsing speed varies from 4ms to 120ms per

word, as shown in Figure 7 (on a MacBook Intel Core 2 Duo 2 GHz). What

is even more interesting is that parsing is in practice linear, as shown in Fig-

ure 8, which shows the time (in milliseconds) needed for parsing a sentence

of a given number of words. Finnish is the slowest language, followed by Ital-

ian and German, whereas English and Scandinavian are the fastest, reaching

a speed of ten 20-word sentences per second.

Application grammars built using the resource behave much better, due

to partial evaluation. The improvement of parsing times can easily be by an

order of magnitude, even if the coverage of the grammar remains the same.

One can even return the same trees as the original grammar, by definining the

44 / LILT VOLUME 2, ISSUE 2 DECEMBER 2009

FIGURE 8 Parser speed in milliseconds as a function of sentence length. Finnish is the

slowest, followed by Italian and German; English and Scandinavian are the fastest.

(Figure by Krasimir Angelov.)

application’s constructors in terms of the resource grammar’s ones by means

of GF’s semantic definitions (Ranta, 2004).

Linearization in GF is fast regardless of grammar. The generation of 1,000

sentences and their linearization takes less than a second in any of the lan-

guages of the library. Thus a 1,000,000-sentence corpus used for training a

speech recognition language model (Jonson, 2006) can be synthesized in less

than 20 minutes.

In addition to parsing and linearization, the compilation of grammars is

a relevant performance factor, since partial evaluation takes time and mem-

ory. The current resource grammars compile from source code to a run-time

linearization grammar in 1 to 20 seconds, using 50M to 400MB of RAM,

depending on language. If a precompiled parser is wanted, more time is

needed—from 2 seconds to several minutes.

The performance results above are, of course, not only results about the

library, but also about GF itself. The size and complexity of the resource

grammars have been a driving force for performance improvements of GF.

7.3 Work and skills required

In the beginning of the project in 2001, writing a resource grammar was a

demanding research task, which involved at the same time descriptive work

on the target language and contributions to the design of the common abstract

THE GF RESOURCE GRAMMAR LIBRARY / 45

syntax. Thus the Russian grammar implementation was a part of the PhD

thesis of Khegai (2006c), with an invested work between one and two person

years, going through two major revisions of the abstract syntax. This time has

been going down as the abstract syntax has become stable and as experience

and code has been gained from more and more languages.

Thus the Bulgarian grammar by Angelov (2008) was finished in two

months as a part of Angelov’s PhD project, and the Romanian by Ramona

Enache in 2009 was a three-month MSc-level project. The current rule of

thumb is that adding a language to a library is a task between the Master’s

and Doctoral level and takes two to six months. It needs solid theoretical

knowledge of the target language, but this knowledge can usually be acquired

from literature, and doesn’t hence require a native speaker’s competence. In

fact, it is in applications targeted for end users that native-speaker expertise

is needed, often in combination with domain expertise, so that the resource is

used in natural and idiomatic ways for expressing the domain concepts. The

resource itself can only guarantee grammatical correctness.

Code size

Figure 9 is a summary of the numbers of lines of code in version 1.6 im-

plementation. The figures marked by an asterisk (*) include low-level code

generated from a source written in Haskell using the Functional Morphol-

ogy library (Forsberg and Ranta, 2004). The table shows that one language

implementation requires 5,000 lines of code in average. If we eliminate the

generated code in Italian and Spanish, and use the French code size as esti-

mate for the morphology for these languages, we get the average of around

3,700 lines per language.

7.4 Sharing code between languages

In Figure 9, there are rows for Romance and Scandinavian, which are not

languages but language families. Within these families, common modules are

used for implementing individual languages. Thus Catalan, French, Italian,

and Spanish result from common Romance code together with language-

specific code. Danish, Norwegian, and Swedish result from Scandinavian in

the same way. The common code is used for syntactic combinations: no at-

tempt was made to share code in morphology and lexicon. So, if we consider

syntax alone, we see that 74–76% of the code for each Romance language is

shared. The corresponding figure for Scandinavian is even higher, 82–83%.

The technique used for sharing code is functors, as explained in Ranta

(2007b) and also briefly in Section 6.1 above. The idea is that the common

Romance or Scandinavian concrete syntax is written relative to a set of pa-

rameters, which are then instantiated separately for each languages. In Ro-

mance, for instance, there are around 30 such parameters. Most of them are

46 / LILT VOLUME 2, ISSUE 2 DECEMBER 2009

language syntax morpho lex total months start

common 413 - - 413 2 2001

abstract 729 - 468 1197 24 2001

Bulgarian 1200 2329 502 4031 3 2008

English 1025 772 506 2303 6 2001

Finnish 1471 1490 703 3664 6 2003

German 1337 604 492 2433 6 2002

Polish 2466 5370 508 8344 6 2008

Russian 1492 3668 534 5694 18 2002

Romanian 1713 3513 666 5892 3 2009

Romance 1346 - - 1346 10 2003

Catalan 521 *9000 518 *10039 4 2006

French 468 1789 514 2771 6 2002

Italian 423 *7423 500 *8346 3 2003

Spanish 417 *6549 516 *7482 3 2004

Scandinavian 1293 - - 1293 4 2005

Danish 262 683 486 1431 2 2005

Norwegian 281 676 488 1445 2 2005

Swedish 280 717 491 1488 4 2001

total 16724 *43636 7892 *70199 112 2001

FIGURE 9 Programming effort in lines of code (* = includes generated code).

THE GF RESOURCE GRAMMAR LIBRARY / 47

lexical units that are baked in into syntax rules, such as the definite and in-

definite articles, and the verb used as the passive auxiliary (être in French,

venire in Italian, ser in Spanish). Some are more fundamental, for instance,

the operation

clitInf : Bool -> Str -> Str -> Str

which decides how infinitives and clitics are placed relative to each other

(French la voir, Italian vederla, "to see her"). Scandinavian has 23 parameters.

Using functors instead of separate implementations saves a lot of work in

the implementation of new languages and, in particular, in the maintenance

of the code. At the same time, it is an interesting linguistic experiment, which

illustrates the abstraction capabilities of GF. On the other hand, precisely be-

cause functors work on a higher level of abstraction, they are more difficult to

get started with than separate implementations. They won’t necessarily give

any practical advantage for languages that are more remotely related than the

ones in the Romance family; therefore, we have not attempted to build func-

tor implementations for Germanic and Slavic languages. Also the Romanian

grammar was built independently of the Romance functor.

The common abstract syntax is of course also a way to share code between

languages, even unrelated ones. If we count it as a part of the syntax imple-

mentation for a language, then the amount of shared syntax code in the library

is 32% in the worst case (Polish) and 89% in the best case (Danish).

8 Related work

8.1 Multilingual grammars

The closest inspiration of the GF Resource Grammar Library is CLE, as pre-

sented in Rayner et al. (2000). They report on covering four languages: Dan-

ish, English, French, and Swedish. The described coverage was used as a

benchmark for the GF library. Some of the more language-specific constructs

of CLE are not yet available in the GF library, e.g., French complex inversion

questions (Jean aime-t-il Marie?). The heritage of CLE is used in the Regu-

lus resource grammar library (Rayner et al., 2006), which provides grammars

for seven languages: Catalan, Finnish, English, French, Greek, Japanese, and

Spanish. Their coverage varies, but it is smaller than CLE. The focus of Reg-

ulus is very much on spoken language translation. CLE has a proprietary

license, which is difficult to obtain, whereas Regulus is open-source.

Despite the formal difference between GF and CLE/Regulus’s unification

grammars, there are three major similarities: the specialization of large gram-

mars to domain-specific applications, the reuse of code between languages,

and the compilation to speech recognition language models. Specialization in

CLE/Regulus is performed using explanation-based learning, which imple-

ments an idea that could be characterized as intersecting the grammar with a

48 / LILT VOLUME 2, ISSUE 2 DECEMBER 2009

training corpus. The partial evaluation used in GF has similar effects in prac-

tice, although the technique itself is different. Code sharing among e.g. the

Romance languages has similar effects in both Regulus and GF; in Regulus

it is implemented by the low-end techniques of macros and file inclusions,

whereas GF uses separately compiled functions and functors, as explained

in Section 6.1. These latter techniques are, as it were, internalizations of the

low-end techniques as first-class language constructs, which is a general trend

in the development of programming languages.

The LinGO Matrix/DelphIn grammar set (Bender and Flickinger, 2005)

is based on large-scale grammars from earlier projects for English, German,

Japanese, and Spanish, and many more languages are under construction. The

languages are related to each other by a common representation in Minimal

Recursion Semantics (Copestake et al., 2001), using transfer rules. There is,

moreover, a "Matrix questionnaire", which is a set of questions whose an-

swers generate a basic grammar implementation for a language. This ques-

tionnaire can be seen as a semi-formal version of an abstract syntax in GF.

LinGO also has a grammar-driven treebank (Oepen et al., 2004) supporting

the development. The grammar formalism is HPSG (Pollard and Sag, 1994),

as implemented in the LKB framework (Copestake, 2002). In most applica-

tions, HPSG grammars are used as stand-alone wide-coverage parsers com-

municating with the rest of the system via pipes, rather than via grammar

specialization. LingGO Matrix/DelphIn grammars are available under open

source licenses.

In the Pargram project (Butt et al., 2002), the aim is to "produce wide

coverage grammars for English, French, German, Norwegian, Japanese, and

Urdu which are written collaboratively within the linguistic framework of

LFG and with a commonly-agreed-upon set of grammatical features" (ac-

cording to the Pargram project description at www.ist-world.org). Sev-

eral more languages are treated in ongoing projects: Arabic, Chinese, Geor-

gian, Hungarian, Tigrinya, Turkish, Vietnamese, and Welsh. The English

grammar is used in a commercial prototype within the Powerset company;

since the goal is to parse documents on the web, wide coverage is essential.

8.2 Grammar formalisms

As a grammar formalism, GF belongs to the family of categorial grammars,

in the broad sense that syntactic categories are encoded as types in typed

lambda calculus and syntactic construction is function application. The most

well-known categorial grammars are those based on Lambek calculus (Lam-

bek, 1958), which treats the linear order of constituents with the same type

system as constituency, and is therefore not usable for multilingual grammars.

The fusion of linear order and constituency in Lambek calculus (as well

as in Chomsky’s transformational grammar) was criticized by Curry (1961),

THE GF RESOURCE GRAMMAR LIBRARY / 49

whose own suggestion was to separate the tectogrammatical rules, which

define constituency, from the phenogrammatical ones, which define linear

order. This distinction is in computer science known under the terms abstract

and concrete syntax (McCarthy, 1962), which terms have been adopted in

GF. GF can thus be seen as an implementation of Curry’s grammar archi-

tecture, adding the parameter system (see Section 2.3) to phenogrammatical

descriptions. Also Montague grammar (Montague, 1974) can been seen as an

instance of Curry’s architecture (Dowty, 1979). The separation between ID

and LP rules (immediate dominance vs. linear precedence) in GPSG (Gazdar

et al., 1985) is another approach with similar effects. The grammar compo-

sition idea, where trees on higher abstraction levels are mapped to trees on

lower levels, also appears in the Meaning-Text theory of Mel’cuk (1997).

A new wave of categorial grammars in Curry style started at the same time

as GF, in the late 1990’s. ACG (Abstract Categorial Grammars, de Groote

2001), is more general than GF in the sense that linearization types can be

function types just like the abstract syntax types, but less general in the sense

that functions have to be linear (that is, use every argument exactly once).

HOG (Higher Order Grammars, Pollard 2004) aims to solve some problems

of HPSG by introducing a Curry-style architecture. In the published examples

of HOG grammars, language-specific features are integrated in abstract syn-

tax types, which is not compatible with GF-style multilinguality. Pollard’s

later formalism, convergent grammars (Pollard, 2009), takes a step back in

the direction of HPSG. Lambda grammars (Muskens, 2001) is yet another

formalism in this new wave, focusing on semantics. These formalisms have

not yet received substantial computer implementations or produced sizable

grammars. In the categorial grammar tradition, it is CCG (Steedman, 1988,

2000) that has produced the most substantial grammars, which are moreover

combined with statistic parsing and generation (Bos et al., 2004, Espinosa

et al., 2008). The variable-free categorial treatment of binding in the GF Re-

source Grammar Library was originally inspired by CCG; see Section 4.5.

9 Conclusion

The experience from the GF Resource Grammar Library can be summarized

as follows:

. It formalizes the inflectional morphology and a comprehensive fragment

of the syntax of 14 languages.

. It uses a common abstract syntax that is feasible to implement for new

languages.

. It provides a platform on which non-linguist application programmers can

easily write multilingual application programs.

50 / LILT VOLUME 2, ISSUE 2 DECEMBER 2009

Applications using the library have been built on various domains of mul-

tilingual generation, technical text translation, and spoken dialogue systems.

The library can also be used as a general resource for computational lin-

guistics, and it can be converted to several standard formats with GF gram-

mar compiler tools, e.g., to language models for speech recognition and to

JavaScript code for web applications.

The library is being extended to several new languages, around 20 at the

moment. The library makes no claim to be a universal grammar, which would

fit all languages: we keep the question of applicability to different languages

open and challenge grammarians to try it out and see how far they can get.

The extension of the grammar of one language to a full coverage of that

language yet largely unexplored. It requires the addition of lexical entries

and language-specific rules. It can also be useful to write the parser as an

application grammar that flattens the tree structures and reduces ambiguity.

Acknowledgments

The author is grateful to Robin Cooper and Elisabet Engdahl, as well as to

two anonymous referees, for comments on earlier versions of this paper, and

to Annie Zaenen for editorial support. The resource grammar project itself is

a collaborative effort, where substantial contributions have been made by at

least Inger Andersson, Krasimir Angelov, Jean-Philippe Bernardy, Ludmilla

Bogavac, Björn Bringert, Ali El Dada, Ramona Enache, Markus Forsberg,

Harald Hammarström, Muhammad Humayoun, Janna Khegai, Ilona Ko-

morowski, Anni Laine, Wanjiku Ng’ang’a, Andreas Priesnitz, Jordi Saludes,

Adam Slaski, Therése Söderberg, and Shafqat Virk. Moreover, the 30 par-

ticipants of the Resource Grammar Summer School 2009 will certainly have

produced important contributions by the time this article is being read. The li-

brary has enjoyed financial support from several grants, including Interactive

Language Technology (Vinnova P20018-2A), Records, types and computa-

tional dialogue semantics (VR 2002-4879), Library-based Grammar Engi-

neering (VR 2005-4211), TALK (IST-506802), WebALT (EDC-22253), and

JEM (ECP-2005-EDU-038208).

References

Alshawi, H. 1992. The Core Language Engine. Cambridge, Ma: MIT Press.

Angelov, K. 2008. Type-Theoretical Bulgarian Grammar. In B. Nordström and

A. Ranta, eds., Advances in Natural Language Processing (GoTAL 2008), vol.

5221 of LNCS/LNAI, pages 52–64. URL http://www.springerlink.com/

content/978-3-540-85286-5/.

Angelov, K., B. Bringert, and A. Ranta. 2009. PGF: A Portable Run-Time Format

for Type-Theoretical Grammars. Journal of Logic, Language and Information To

appear.

http://www.springerlink.com/content/978-3-540-85286-5/
http://www.springerlink.com/content/978-3-540-85286-5/

REFERENCES / 51

Becker, T., N. Blaylock, C. Gerstenberger, A. Korthauer, N. Perera, M. Pitz, P. Poller,

J. Schehl, F. Steffens, R. Stegmann, and J. Steigner. 2007. In-Car Showcase Based

on TALK. TALK. Talk and Look: Tools for Ambient Linguistic Knowledge. IST-

507802. Deliverable 5.3. URL http://www.talk-project.org/.

Beesley, K. and L. Karttunen. 2003. Finite State Morphology. CSLI Publications.

Bender, Emily M. and Dan Flickinger. 2005. Rapid prototyping of scalable gram-

mars: Towards modularity in extensions to a language-independent core. In Pro-

ceedings of the 2nd International Joint Conference on Natural Language Process-

ing IJCNLP-05 (Posters/Demos). Jeju Island, Korea. URL http://faculty.

washington.edu/ebender/papers/modules05.pdf.

Bevocal Inc. 2005. Nuance GSL Grammar Format. URL http://cafe.

bevocal.com/docs/grammar/gsl.html.

Borin, L., M. Forsberg, and L. Lönngren. 2009. SALDO 1.0 (Svenskt as-

sociationslexikon version 2). Språkbanken, Göteborgs universitet. URL

http://spraakbanken.gu.se/personal/markus/publications/

saldo_1.0.pdf.

Bos, J., S. Clark, M. Steedman, J. Curran, and J. Hockenmaier. 2004. Wide-Coverage

Semantic Representations from a CCG Parser. In Coling 2004. URL http://

www.iccs.inf.ed.ac.uk/~stevec/papers/bos_etal.pdf.

Bringert, Björn. 2007. Speech Recognition Grammar Compilation in Grammatical

Framework. In Proceedings of the Workshop on Grammar-Based Approaches to

Spoken Language Processing, pages 1–8. Association for Computational Linguis-

tics. URL http://www.cs.chalmers.se/~bringert/publ/gf-srg/

gf-srg.pdf.

Bringert, B. 2009. Delimited Continuations, Applicative Functors and Natural Lan-

guage Semantics. Technical Report, Chalmers University of Technology. URL

http://digitalgrammars.com/gf/demos/mosg/.

Burke, D. A. and K. Johannisson. 2005. Translating Formal Software Specifications

to Natural Language / A Grammar-Based Approach. In P. Blache and E. Stabler

and J. Busquets and R. Moot, ed., Logical Aspects of Computational Linguistics

(LACL 2005), vol. 3492 of LNCS/LNAI, pages 51–66. Springer. URL http://

www.springerlink.com/content/?k=LNCS+3492.

Butt, M., H. Dyvik, T. Holloway King, H. Masuichi, and C. Rohrer. 2002. The Par-

allel Grammar Project. In COLING 2002, Workshop on Grammar Engineering

and Evaluation, pages 1–7. URL http://www2.parc.com/isl/groups/

nltt/pargram/buttetal-coling02.pdf.

Caprotti, O. 2006. WebALT! Deliver Mathematics Everywhere. In Proceedings of

SITE 2006. Orlando March 20-24. URL http://webalt.math.helsinki.

fi/content/e16/e301/e512/PosterDemoWebALT_eng.pdf.

Chomsky, N. 1957. Syntactic Structures. The Hague: Mouton.

Claessen, K. 2005. Equinox, A New Theorem Prover for Full First-

Order Logic with Equality. In Dagstuhl Seminar 05431 on Deduction

and Applications. URL http://www.cs.chalmers.se/~koen/pubs/

entry-dagstuhl05-equinox.html.

http://www.talk-project.org/
http://faculty.washington.edu/ebender/papers/modules05.pdf
http://faculty.washington.edu/ebender/papers/modules05.pdf
http://cafe.bevocal.com/docs/grammar/gsl.html
http://cafe.bevocal.com/docs/grammar/gsl.html
http://spraakbanken.gu.se/personal/markus/publications/saldo_1.0.pdf
http://spraakbanken.gu.se/personal/markus/publications/saldo_1.0.pdf
http://www.iccs.inf.ed.ac.uk/~stevec/papers/bos_etal.pdf
http://www.iccs.inf.ed.ac.uk/~stevec/papers/bos_etal.pdf
http://www.cs.chalmers.se/~bringert/publ/gf-srg/gf-srg.pdf
http://www.cs.chalmers.se/~bringert/publ/gf-srg/gf-srg.pdf
http://digitalgrammars.com/gf/demos/mosg/
http://www.springerlink.com/content/?k=LNCS+3492
http://www.springerlink.com/content/?k=LNCS+3492
http://www2.parc.com/isl/groups/nltt/pargram/buttetal-coling02.pdf
http://www2.parc.com/isl/groups/nltt/pargram/buttetal-coling02.pdf
http://webalt.math.helsinki.fi/content/e16/e301/e512/PosterDemoWebALT_eng.pdf
http://webalt.math.helsinki.fi/content/e16/e301/e512/PosterDemoWebALT_eng.pdf
http://www.cs.chalmers.se/~koen/pubs/entry-dagstuhl05-equinox.html
http://www.cs.chalmers.se/~koen/pubs/entry-dagstuhl05-equinox.html

52 / LILT VOLUME 2, ISSUE 2 DECEMBER 2009

Cooper, R. 2008. The abstract-concrete syntax distinction and unification in multilin-

gual grammar. URL http://publications.uu.se/abstract.xsql?

dbid=8933.

Copestake, A. 2002. Implementing Typed Feature Structure Grammars. CSLI Publi-

cations.

Copestake, A., D. Flickinger, C. Pollard, and I. Sag. 2001. Minimal recursive seman-

tics: An introduction. Language and Computation 1:1–47.

Curry, H. B. 1961. Some logical aspects of grammatical structure. In R. Jakob-

son, ed., Structure of Language and its Mathematical Aspects: Proceedings of the

Twelfth Symposium in Applied Mathematics, pages 56–68. American Mathematical

Society.

Dada, A. El and A. Ranta. 2007. Implementing an Open Source Arabic Resource

Grammar in GF. In M. Mughazy, ed., Perspectives on Arabic Linguistics XX, pages

209–232. John Benjamin’s.

de Groote, Ph. 2001. Towards Abstract Categorial Grammars. In Association for

Computational Linguistics, 39th Annual Meeting and 10th Conference of the Eu-

ropean Chapter, Toulouse, France, pages 148–155. URL http://www.loria.

fr/~degroote/papers/acl01.pdf.

Diderichsen, Paul. 1962. Elementaer dansk grammatik. Kobenhavn: Gyldendal.

Dowty, D. 1979. Word Meaning and Montague Grammar. Dordrecht: D. Reidel.

Dymetman, M. V. Lux, and A. Ranta. 2000. XML and multilingual docu-

ment authoring: Convergent trends. In COLING, Saarbrücken, Germany, pages

243–249. URL http://www.cs.chalmers.se/~aarne/articles/

coling2000.ps.gz.

Espinosa, D., M. White, and D. Mehay. 2008. Hypertagging: Supertagging for Surface

Realization with CCG. In ACL 2008. Columbus, Ohio.

Forsberg, M. and A. Ranta. 2004. Functional Morphology. In ICFP 2004, Showbird,

Utah, pages 213–223. URL http://www.cs.chalmers.se/~markus/

FM/FM_ICFP2004.pdf.

Gazdar, G., E. Klein, G. Pullum, and I. Sag. 1985. Generalized Phrase Structure

Grammar. Oxford: Basil Blackwell.

Grevisse, Maurice. 1993. Le bon usage, 13me edition. Paris: Duculot.

Hammarström, H. and A. Ranta. 2004. Cardinal Numerals Revisited in GF. In

Workshop on Numerals in the World’s Languages, Dept. of Linguistics, Max

Planck Institute for Evolutionary Anthropology, Leipzig. URL http://www.

cs.chalmers.se/%7Eharald2/numabstract.pdf.

Huet, Gerard. 2005. A Functional Toolkit for Morphological and Phonological Pro-

cessing, Application to a Sanskrit Tagger. The Journal of Functional Programming

15(4):573–614.

Humayoun, M., H. Hammarström, and A. Ranta. 2007. Urdu Morphology, Orthogra-

phy and Lexicon Extraction. In CAASL-2: The Second Workshop on Computational

Approaches to Arabic Script-based Languages, LSA 2007 Linguistic Institute, Stan-

ford University, July 21-22, 2007.

Jackendoff, R. 1977. X-Bar Syntax: A Study of Phrase Structure. MIT Press.

http://publications.uu.se/abstract.xsql?dbid=8933
http://publications.uu.se/abstract.xsql?dbid=8933
http://www.loria.fr/~degroote/papers/acl01.pdf
http://www.loria.fr/~degroote/papers/acl01.pdf
http://www.cs.chalmers.se/~aarne/articles/coling2000.ps.gz
http://www.cs.chalmers.se/~aarne/articles/coling2000.ps.gz
http://www.cs.chalmers.se/~markus/FM/FM_ICFP2004.pdf
http://www.cs.chalmers.se/~markus/FM/FM_ICFP2004.pdf
http://www.cs.chalmers.se/%7Eharald2/numabstract.pdf
http://www.cs.chalmers.se/%7Eharald2/numabstract.pdf

REFERENCES / 53

Jonson, Rebecca. 2006. Generating statistical language models from interpretation

grammars in dialogue system. In Proceedings of EACL’06, Trento, Italy.

Kamp, H., R. Crouch, J. van Genabith, R. Cooper, M. Poesio, J. van Eijck, J. Jaspars,

M. Pinkal, E. Vestre, and S. Pulman. 1994. Specification of linguistic coverage.

FRACAS Deliverable D2.

Khegai, J. 2006a. GF Parallel Resource Grammars and Russian. In Coling/ACL 2006,

pages 475–482.

Khegai, J. 2006b. Grammatical Framework (GF) for MT in sublanguage domains. In

Proceedings of EAMT-2006 (11th Annual conference of the European Association

for Machine Translation, Oslo, Norway, pages 95–104.

Khegai, J. 2006c. Language Engineering in Grammatical Framework (GF). Ph.D.

thesis, Dept. of Computing Science, Chalmers University of Technology and Uni-

versity of Gothenburg. URL http://www.cs.chalmers.se/~janna/

Janna_Khegai_phd.pdf.

Khegai, J. B. Nordström, and A. Ranta. 2003. Multilingual Syntax Editing in

GF. In A. Gelbukh, ed., Intelligent Text Processing and Computational Lin-

guistics (CICLing-2003), Mexico City, February 2003, vol. 2588 of LNCS, pages

453–464. Springer-Verlag. URL http://www.cs.chalmers.se/~aarne/

articles/mexico.ps.gz.

Kotimaisten Kielten Tutkimuskeskus. 2006. KOTUS Wordlist. URL http://

kaino.kotus.fi/sanat/nykysuomi.

Lambek, J. 1958. The mathematics of sentence structure. American Mathematical

Monthly 65:154–170.

Ljunglöf, P. 2004. The Expressivity and Complexity of Grammatical Framework.

Ph.D. thesis, Dept. of Computing Science, Chalmers University of Technology and

University of Gothenburg. URL http://www.cs.chalmers.se/~peb/

pubs/p04-PhD-thesis.pdf.

Ljunglöf, P., G. Amores, R. Cooper, D. Hjelm, O. Lemon, P. Manchón,

G. Pérez, and A. Ranta. 2006. Multimodal Grammar Library. TALK.

Talk and Look: Tools for Ambient Linguistic Knowledge. IST-507802. Deliv-

erable 1.2b. URL http://www.talk-project.org/fileadmin/talk/

publications_public/deliverables_public/TK_D1-2-2.pdf.

McCarthy, J.1̇962. Towards a mathematical science of computation. In Proceedings

of the Information Processing Cong. 62, pages 21–28. Munich, West Germany:

North-Holland.

Mel’cuk, I. 1997. Vers une linguistique Sens-Texte. Leçon inaugurale. URL http:

//olst.ling.umontreal.ca/pdf/MelcukColldeFr.pdf.

Meza Moreno, M. S. and B. Bringert. 2008. Interactive Multilingual Web Ap-

plications with Grammarical Framework. In B. Nordström and A. Ranta,

eds., Advances in Natural Language Processing (GoTAL 2008), vol. 5221 of

LNCS/LNAI, pages 336–347. URL http://www.springerlink.com/

content/978-3-540-85286-5/.

Milner, R., M. Tofte, and R. Harper. 1990. Definition of Standard ML. MIT Press.

http://www.cs.chalmers.se/~janna/Janna_Khegai_phd.pdf
http://www.cs.chalmers.se/~janna/Janna_Khegai_phd.pdf
http://www.cs.chalmers.se/~aarne/articles/mexico.ps.gz
http://www.cs.chalmers.se/~aarne/articles/mexico.ps.gz
http://kaino.kotus.fi/sanat/nykysuomi
http://kaino.kotus.fi/sanat/nykysuomi
http://www.cs.chalmers.se/~peb/pubs/p04-PhD-thesis.pdf
http://www.cs.chalmers.se/~peb/pubs/p04-PhD-thesis.pdf
http://www.talk-project.org/fileadmin/talk/publications_public/deliverables_public/TK_D1-2-2.pdf
http://www.talk-project.org/fileadmin/talk/publications_public/deliverables_public/TK_D1-2-2.pdf
http://olst.ling.umontreal.ca/pdf/MelcukColldeFr.pdf
http://olst.ling.umontreal.ca/pdf/MelcukColldeFr.pdf
http://www.springerlink.com/content/978-3-540-85286-5/
http://www.springerlink.com/content/978-3-540-85286-5/

54 / LILT VOLUME 2, ISSUE 2 DECEMBER 2009

Montague, R. 1974. Formal Philosophy. New Haven: Yale University Press. Collected

papers edited by Richmond Thomason.

Muskens, R. 2001. Lambda Grammars and the Syntax-Semantics Interface. In

R. van Rooy and M. Stokhof, eds., Proceedings of the Thirteenth Amsterdam Collo-

quium, pages 150–155. Amsterdam. URL http://let.uvt.nl/general/

people/rmuskens/pubs/amscoll.pdf.

Oepen, S., D. Flickinger, K. Toutanova, and C. D. Manning. 2004. LinGO Redwoods,

A Rich and Dynamic Treebank for HPSG. Research on Language and Com-

putation 2:575–596. URL http://www.springerlink.com/content/

t851781443373812/.

Perera, N. and A. Ranta. 2007. Dialogue System Localization with the GF Resource

Grammar Library. In SPEECHGRAM 2007: ACL Workshop on Grammar-Based

Approaches to Spoken Language Processing, June 29, 2007, Prague. URL http:

//www.cs.chalmers.se/~aarne/articles/perera-ranta.pdf.

Peyton Jones, S. 2003. Haskell 98 language and libraries: the Revised

Report. URL http://www.haskell.org/haskellwiki/Language_

and_library_specification.

Pollard, C. 2004. Higher-Order Categorical Grammar. In M. Moortgat, ed.,

Proceedings of the Conference on Categorial Grammars (CG2004), Montpel-

lier, France, pages 340–361. URL http://www.ling.ohio-state.edu/

~hana/hog/pollard2004-CG.pdf.

Pollard, C. 2009. Convergent Grammar web page. URL http://www.ling.

ohio-state.edu/~scott/cvg/.

Pollard, C. and I. Sag. 1994. Head-Driven Phrase Structure Grammar. University of

Chicago Press.

Power, R. and D. Scott. 1998. Multilingual authoring using feedback texts. In

COLING-ACL.

Ranta, A. 1994. Type Theoretical Grammar. Oxford University Press.

Ranta, A. 2004. Grammatical Framework: A Type-Theoretical Grammar Formalism.

The Journal of Functional Programming 14(2):145–189. URL http://www.

cs.chalmers.se/~aarne/articles/gf-jfp.ps.gz.

Ranta, A. 2007a. Features in Abstract and Concrete Syntax. In NODALIDA Workshop

on Typed Feature Structure Grammars, Tartu, 24 May 2007. URL http://www.

cs.chalmers.se/~aarne/articles/ranta-tfsg2007.pdf.

Ranta, A. 2007b. Modular Grammar Engineering in GF. Research on Language and

Computation 5:133–158. URL http://www.cs.chalmers.se/~aarne/

articles/multieng3.pdf.

Ranta, A. 2008. How predictable is Finnish morphology? an experiment on lexi-

con construction. In J. Nivre and M. Dahllöf and B. Megyesi, ed., Resourceful

Language Technology: Festschrift in Honor of Anna Sågvall Hein, pages 130–148.

University of Uppsala. URL http://publications.uu.se/abstract.

xsql?dbid=8933.

http://let.uvt.nl/general/people/rmuskens/pubs/amscoll.pdf
http://let.uvt.nl/general/people/rmuskens/pubs/amscoll.pdf
http://www.springerlink.com/content/t851781443373812/
http://www.springerlink.com/content/t851781443373812/
http://www.cs.chalmers.se/~aarne/articles/perera-ranta.pdf
http://www.cs.chalmers.se/~aarne/articles/perera-ranta.pdf
http://www.haskell.org/haskellwiki/Language_and_library_specification
http://www.haskell.org/haskellwiki/Language_and_library_specification
http://www.ling.ohio-state.edu/~hana/hog/pollard2004-CG.pdf
http://www.ling.ohio-state.edu/~hana/hog/pollard2004-CG.pdf
http://www.ling.ohio-state.edu/~scott/cvg/
http://www.ling.ohio-state.edu/~scott/cvg/
http://www.cs.chalmers.se/~aarne/articles/gf-jfp.ps.gz
http://www.cs.chalmers.se/~aarne/articles/gf-jfp.ps.gz
http://www.cs.chalmers.se/~aarne/articles/ranta-tfsg2007.pdf
http://www.cs.chalmers.se/~aarne/articles/ranta-tfsg2007.pdf
http://www.cs.chalmers.se/~aarne/articles/multieng3.pdf
http://www.cs.chalmers.se/~aarne/articles/multieng3.pdf
http://publications.uu.se/abstract.xsql?dbid=8933
http://publications.uu.se/abstract.xsql?dbid=8933

REFERENCES / 55

Ranta, A. 2009. Grammars as Software Libraries. In Y. Bertot, G. Huet, J.-J.

Lévy, and G. Plotkin, eds., From Semantics to Computer Science. Cambridge Uni-

versity Press. URL http://www.cs.chalmers.se/~aarne/articles/

libraries-kahn.pdf.

Ranta, A. and K. Angelov. 2009. Implementing Controlled Languages in GF.

In N. Fuchs, ed., CNL 2009, Controlled Natural Languages, Marettimo, Sicily,

vol. 448 of CEUR Proceedings. URL http://sunsite.informatik.

rwth-aachen.de/Publications/CEUR-WS/Vol-448/.

Rayner, M., D. Carter, P. Bouillon, V. Digalakis, and M. Wirén. 2000. The Spoken

Language Translator. Cambridge: Cambridge University Press.

Rayner, M., B. A. Hockey, and P. Bouillon. 2006. Putting Linguistics into Speech

Recognition: The Regulus Grammar Compiler. CSLI Publications.

Reichenbach, Hans. 1948. Elements of Symbolic Logic. New York: The MacMillan

Company.

Ross, J. 1967. Constraints on Variables in Syntax. Ph.D. thesis, Massachusetts Insti-

tute of Technology.

Steedman, M. 1988. Combinators and grammars. In R. Oehrle, E. Bach, and

D. Wheeler, eds., Categorial Grammars and Natural Language Structures, pages

417–442. Dordrecht: D. Reidel.

Steedman, M. 2000. The Syntactic Process. The MIT Press.

Swadesh, Morris. 1955. Towards Greater Accuracy in Lexicostatistic Dating. Inter-

national Journal of American Linguistics 21:121–137.

Union Mundial pro Interlingua. 2001. Interlingua Homepage. URL http://www.

interlingua.com/.

Young, Steve, Gunnar Evermann, Dan Kershaw, Gareth Moore, Julian Odell, Dave

Ollason, Dan Povey, Valtcho Valtchev, and Phil Woodland. 2002. The HTK Book,

Version 3.2. Cambridge University Engineering Dept, December 2002, URL

http://www.htk.eng.cam.ac.uk.

http://www.cs.chalmers.se/~aarne/articles/libraries-kahn.pdf
http://www.cs.chalmers.se/~aarne/articles/libraries-kahn.pdf
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-448/
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-448/
http://www.interlingua.com/
http://www.interlingua.com/
http://www.htk.eng.cam.ac.uk.

Appendix

The core syntax categories and functions

This Appendix gives a complete summary of the language-independent core syntax.

Section 1 shows the categories, and the remaining sections show the construction func-

tions. The subsection numbering corresponds to the numbering in Section 4, where the

syntax is discussed.

The syntax rules are given in a BNF format, where each line defines an abstract

syntax constructor. Thus, for instance,

Phr ::= PConj Utt Voc but walk, my friend

means that there is a constructor of type PConj -> Utt -> Voc -> Phr.

Identifiers in angle brackets, such as <fullstopPunct>, are not categories but

atomic constructors. After each rule, an English example is given. Most examples

can be automatically translated to all library languages, since they use the vocabulary

included in the common test lexicon.

The entire library with on-line documentation is available as open-source software

under the GNU LGPL license in digitalgrammars.com/gf.

1 Categories

1.1 Phrasal and closed lexical categories

AdvSlash adverb missing complement (= Prep) with

Ant anteriority simultaneous, anterior

CAdv comparative adverb more

CN common noun (without determiner) red house

Card cardinal number seven

Cl declarative clause, with all tenses she looks at this

Comp complement of copula, such as AP very warm

Conj conjunction and

Det determiner phrase those seven

Digits cardinal or ordinal in digits 1,000/1,000th

IAdv interrogative adverb why

IComp interrogative complement of copula where

IDet interrogative determiner how many

IP interrogative pronoun who

57

http://digitalgrammars.com/gf

58 / THE GF RESOURCE GRAMMAR LIBRARY

Imp imperative look at this

NP noun phrase (subject or object) the red house

Num number determining element seven

Numeral cardinal or ordinal in words five/fifth

Ord ordinal number (used in Det) seventh

PConj phrase-beginning conjunction therefore

Phr phrase in a text but be quiet please

Pol polarity positive, negative

Predet predeterminer (prefixed Quant) all

Prep preposition, or just case in

Pron personal pronoun she

QCl question clause, with all tenses why does she walk

QS question where did she live

Quant quantifier (’nucleus’ of Det) this/these

RCl relative clause, with all tenses in which she lives

RP relative pronoun in which

RS relative sentence in which she lived

S declarative sentence she lived here

SC embedded sentence or question that it rains

Subj subjunction if

Temp temporal and aspectual features past anterior

Tense tense present, past, future

Text text consisting of several phrases He is here. Why?

Utt utterance: sentence, question... be quiet

VP verb phrase is very warm

VPSlash verb phrase missing complement give to John

Voc vocative my darling

[C] list of category C X, Y, Z

1.2 Open lexical categories

AdA adjective-modifying adverb very

AdN numeral-modifying adverb more than

AdV adverb directly attached to verb always

Adv verb-phrase-modifying adverb in the house

A one-place adjective warm

A2 two-place adjective divisible

AP adjectival phrase very warm

N common noun house

N2 relational noun son

N3 three-place relational noun connection

PN proper name Paris

V one-place verb sleep

V2 verb with an NP complement love

APPENDIX: THE CORE SYNTAX CATEGORIES AND FUNCTIONS / 59

VA verb with an AP complement look

VQ verb with a QS complement wonder

VS verb with an S complement claim

VV verb with a VP complement want

V2A verb with NP and AP complement paint

V2Q verb with NP and QS complement ask

V2S verb with NP and S complement tell

V2V verb with NP and VP complement cause

V3 verb with two NP complements show

2 Suprasentential level: texts and utterances

Text ::= ǫ (empty text)

| Phr Punct Text Who walks? John.

Punct ::= <fullstopPunct> .

| <questionPunct> ?

| <exclamationPunct> !

Phr ::= PConj Utt Voc but walk, my friend

PConj ::= PConj and

Voc ::= NP my friend

Utt ::= S John walks

::= QS who walks

| Imp don’t walk

| NP this man

| Adv here

| VP to sleep

| IP who

| IAdv why

3 Sentential level: polarity, tense, and mood

S ::= Tense Pol Cl John wouldn’t have walked

QS ::= Tense Pol QCl wouldn’t John have walked

RS ::= Tense Pol RCl that wouldn’t have walked

Pol ::= <positivePol> (as in he walks)

| <negativePol> (as in he doesnät walk)

Tense ::= Temp Ant (the two components of a tense)

Temp ::= <presentTemp> (as in he walks)

| <pastTemp> (as in he walked)

| <futureTemp> (as in he will walk)

| <conditionalTemp> (as in he would walk)

Ant ::= <simultaneousAnt> (as in he walks)

| <anteriorAnt> (as in he has walked)

Imp ::= ImpForm Pol VP don’t forget yourselves

ImpForm ::= <famImpForm> (as in help yourself)

| <polImpForm> (as in help yourself, sir)

| <pluralImpForm> (as in help yourselves)

60 / THE GF RESOURCE GRAMMAR LIBRARY

4 Clause level: predication and complementation

Cl ::= NP VP John walks

| SC VP that he walks is good

VP ::= V sleep

| VV VP want to run

| VS S know that she runs

| VQ QS wonder if she runs

| VA AP look red

| VPSlash NP VP use it

| VPSlash love himself

| VPSlash be loved

| Comp be small

| VP Adv sleep here

| VP AdV always sleep

Comp ::= AP (be) small

| NP (be) a man

| Adv (be) here

SC ::= S that she goes

| QS who goes

| VP to go

5 Questions and relatives

5.1 Clause formation and extraction

SSlash ::= Tense Pol ClSlash he used (it)

QCl ::= Cl does John walk

| IP VP who walks

| IP ClSlash whom does John love

| IAdv Cl why does John walk

| IComp NP where is John

RCl ::= RP VP who walks

| RP ClSlash whom John loves

ClSlash ::= NP VPSlash he uses (it)

| Cl AdvSlash he walks with (her)

| ClSlash Adv he uses (it) today

| NP VS SSlash she says that he uses (it)

VPSlash ::= V2 use (it)

| V3 NP send it (to her)

| V3 NP send (it) to her

| V2V VP force (her) to run

| V2S S tell (us) that she runs

| V2Q QS ask (us) if she runs

| V2A AP paint (it) red

| VV VPSlash want to use (it)

| V2V NP VPSlash force me to use (it)

APPENDIX: THE CORE SYNTAX CATEGORIES AND FUNCTIONS / 61

5.2 Interrogative and relative pronouns

IP ::= IDet CN which five songs

| IDet which five

| IP Adv who in Paris

IDet ::= IQuant Num IDet which five

IAdv ::= Prep IP with whom

IComp ::= IAdv where (is it)

| IP who (is it)

RP ::= <idRP> which

| Prep NP RP only one of which

6 Noun phrases and determiners

NP ::= Det CN the man

| PN John

| Pron he

| Predet NP only the man

| NP V2 the man seen

| NP Adv Paris today

| NP RS Paris, which is here

| Det these five

| CN beer

Det ::= Quant Num Ord these five best

| Quant Num Det these five

Quant ::= Pron Quant my

| <defArt> the

| <indefArt> a

Num ::= Card fifty-six

| <sgNum> (as in this)

| <plNum> (as in these)

Card ::= Numeral fifty-six

| Digits 56

Ord ::= Numeral fifty-sixth

| Digits 56th

| A best

6.1 The numeral system

Digits ::= Dig 5

| Dig Digits 528

Dig ::= <0_Dig>...<9_Dig> 0,1,2,3,4,5,6,7,8,9

Numeral ::= Sub1000000 coerce 1..999999

Sub1000000 ::= Sub1000 m * 1000

| Sub1000 Sub1000 m * 1000 + n

| Sub1000 coerce 1..999

62 / THE GF RESOURCE GRAMMAR LIBRARY

Sub1000 ::= Sub10 m * 100

| Sub10 Sub100 m * 100 + n

| Sub100 coerce 1..99

Sub100 ::= Sub10 m * 10

| Sub10 Sub10 m * 10 + n

| Sub10 coerce 1..9

Sub10 ::= <one_Sub10>,...,<nine_Sub10> one,...,nine

7 Common nouns, adjectives, and adverbs

CN ::= N man

| CN AP old man

| CN RS man who walks

| N2 NP mother (of x)

| N3 NP NP distance (from x) (to y)

| CN SC question where she sleeps

AP ::= A warm

| A NP warmer than Paris

| A2 NP married to her

| A2 married to himself

| A2 married

| AP SC good that she sleeps

| AdA AP very good

AdN ::= CAdv more (than five)

AdA ::= A extremely

Adv ::= A quickly

| Prep NP in the house

| CAdv A NP less quickly than John

| CAdv A S less quickly than I ran

| AdA Adv very quickly

| Subj S when he arrives

8 Coordination

For C = Adv, AP, NP, RS, S:

C ::= Conj [C] X, Y and Z

[C] ::= C C Y, Z

| C [C] X, Y, Z

9 Idiomatic constructions

QCl ::= IP which houses are there

Cl ::= NP there is a house

| VP it is hot (impersonal)

| VP one sleeps (generic)

| NP RS it is I who did it

| Adv S it is here she slept

APPENDIX: THE CORE SYNTAX CATEGORIES AND FUNCTIONS / 63

9.1 Structural words

AdA ::= almost, quite, so, too, very

AdV ::= always

Adv ::= everywhere, here, from-here, to-here, somewhere, there

| from-there, to-there

CAdv ::= less, more

Conj ::= and, both-and, either-or, or

Det ::= every, few, many, much, some(Pl), some(Sg)

IAdv ::= how, when, where, why

IDet ::= how-many

IP ::= what(Pl), what(Sg), who(Pl), who(Sg)

IQuant ::= which

NP ::= everybody, everything, somebody, something

PConj ::= but, otherwise, therefore

Predet ::= all, most, only

Prep ::= above, after, before, behind, between, by(agent), by-means

| during, for, from, in-front, in, on, of(partitive)

| of(possessive), through, to, under, with, without

Pron ::= I, you(Sg), you(Polite), he, she, it, we, you(Pl), they

Quant ::= that, this

Subj ::= although, because, if, when

Utt ::= no, yes

VV ::= can, can(know-how), must, want

	Appendix: The core syntax categories and functions

