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Abstract
The widespread increase in life expectancy is accompanied

by an increased prevalence of features of physical frailty.

Signs and symptoms may include sarcopenia and osteopenia,

reduced exercise capacity, and diminished sense of well-

being. The pathogenesis of age-associated sarcopenia and

osteopenia is multifactorial, and hormonal decline may be a

contributing factor. Aging is associated with a progressive

decrease in GH secretion, and more than 30% of elderly

people have circulating IGF1 levels below the normal range

found in the young. GH acts directly on target tissues,

including skeletal muscle and bone among many others,

but many effects are mediated indirectly by circulating
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(liver-derived) or locally produced IGF1. Aging is also

associated with reduced insulin sensitivity which, in turn,

may contribute to the impairment of IGF1 action. Recent

experimental evidence suggests that besides the age-

dependent decline in GH and IGF1 serum levels, the

dysregulation of GH and IGF1 actions due to impairment of

the post-receptor signaling machinery may contribute to the

loss of muscle mass and osteopenia. This article will focus on

the molecular mechanisms of impaired GH and IGF1

signaling and action in aging, and their role in the

pathogenesis of sarcopenia and osteoporosis.
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Introduction

Age-related muscle wasting and sarcopenia are characterized

by the loss of skeletal muscle mass with a gradual decline in

muscle function, including a decrease in power-producing

capacity, contraction, and relaxation, but also by metabolic

abnormalities, including reduced insulin sensitivity, impaired

oxidative defense, and decreased mitochondrial function

(Dela & Kjaer 2006). During aging, the loss of muscle mass

and strength is due to progressive atrophy, loss of muscle

fibers, and reduction in muscle capacities. Although these

changes are, to some extent, the consequence of the reduced

level of physical activity, they can also be influenced by

biological processes, including infiltration of fat and connec-

tive tissue into the muscle, changes in muscle metabolism,

insulin resistance, reduced levels of specific hormones, and

the oxidative stress accumulated during the lifespan (Cree

et al. 2004, Hagen et al. 2004). The oxidative stress leads to

mitochondrial DNA mutations resulting in dysfunctional

mitochondria, and this promotes a reduced efficiency of

skeletal muscle, which is particularly susceptible to this
biological phenomenon (Hagen et al. 2004). When muscle

activity is reduced, metabolites and survival factors that

are normally stored in the muscle are no longer available.

In addition, aging is typically associated with bone loss,

leading to bone fragility and increased risk for osteoporosis

and fractures. In fact, age-related wasting may coexist with

osteoporosis, establishing a vicious circle between dysfunc-

tional muscle and bone.

GH regulates important physiological processes, including

somatic growth and development (Giustina et al. 2008), as

well as carbohydrate and lipid metabolism (Perrini et al.

2008a,b, Møller et al. 2009), directly through the activation of

specific GH receptors (GHRs; Giustina et al. 2008), or

indirectly through insulin-like growth factor 1 (IGF1; Laviola

et al. 2007), which is produced mainly in the liver in response

to GH stimulation (Ohlsson et al. 2009; Fig. 1). IGF1 is also

produced by a variety of cell types, and acts in a paracrine

fashion in most tissues (see below). Circulating GH levels

decline progressively after 30 years of age at a rate of w1% per

year (Hermann & Berger 2001). In the skeletal muscle, GH

promotes cell growth by favoring the fusion of myogenic
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Figure 1 GH and IGF1 signaling and action in skeletal muscle and osteoblastic cells. Individual signaling molecules with the
phosphorylated amino acid residues are indicated. GHR, GH receptor. IGF1R, insulin growth factor 1 receptor.
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precursor cells into existing myotubes, and this requires the

IGF1-independent activation of nuclear factor of activated

T-cell C2 (Sotiropoulos et al. 2006). Acute administration of

GH regulates muscle mitochondrial function by increasing

the levels of several key mitochondrial proteins, and by

switching fuel utilization toward fat oxidation (Short et al.

2008). In addition, exogenous administration of IGF1 induces

an increase in muscle oxidative enzymes and fatigue resistance

(Schertzer et al. 2006). In bone, both GH and IGF1 are

essential for the development and growth of the skeleton and

maintenance of bone mass. IGF1, which mediates most of the

effects of GH on skeletal metabolism, promotes chondrogen-

esis and increases bone formation by regulating the functions

of the differentiated osteoblasts (Giustina et al. 2008).

This review will summarize current information on the

mechanisms and intracellular signaling involved in the

development of age-related changes in muscle mass and

bone. In addition, the specific role of the GH/IGF1 system in

the pathogenesis of age-related skeletal muscle wasting and

osteoporosis will be discussed.
Regulation of the GH/IGF1 axis during aging

GH

GH is a single-chain peptide of 191 amino acids produced and

secreted mainly by the somatotrophs of the anterior pituitary

gland (Davidson 1987). GH secretion occurs in a pulsatile

manner with a major surge at the onset of slow-wave sleep
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and less conspicuous secretory episodes a few hours after

meals (Ho et al. 1988, Hartman et al. 1991), and is controlled

by the action of two hypothalamic factors, GHRH, which

stimulates GH secretion, and somatostatin, which inhibits

GH secretion (Giustina et al. 2008). During fasting, GH

secretion is amplified, whereas excess of glucose and lipids

inhibits GH release (Ho et al. 1988). In addition, different

stimuli, including gender, age, adiposity, sleep, diet, and

exercise, affect the frequency and magnitude of the GH

pulses. The secretion of GH is maximal at puberty

accompanied by very high circulating IGF1 levels (Moran

et al. 2002), with a gradual decline during adulthood (Corpas

et al. 1993). Indeed, in aged men, daily GH secretion is 5- to

20-fold lower than that in young adults (Ryall et al. 2008).

The age-dependent decline in GH secretion is secondary to a

decrease in GHRH, and to an increase in somatostatin

secretion (Veldhuis & Iranmanesh 1996). These changes

occur at the hypothalamic level, although their cause is still

unknown. As a consequence of the decline in GH synthesis

and release, systemic IGF1 levels decline with advancing age

(Landin-Wilhelmsen et al. 1994). The changes in GH and

IGF1 secretion that occur with aging are paralleled by a

progressive loss of muscle mass and bone mineral density

(BMD; Bohannon 1997). Overload and stretch-dependent

IGF1 and IGF2 production in the skeletal muscle has been

found to be impaired in older humans (Hameed et al. 2004).

In addition, in the last 10 years, several studies have

demonstrated a significant inverse relationship between peak

stimulated GH levels and body mass index (BMI; Bonert et al.

2004, Corneli et al. 2005, Franco et al. 2006). Multiple lines
www.endocrinology-journals.org
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of evidence indicate that apparently healthy overweight

and obese subjects meet standard diagnostic criteria used

to diagnose GH deficiency (GHD) in hypopituitarism

( Johannsson & Bengtsson 1999). On the other hand, the

role of the peripheral fat in impairing the regular pattern of

GH release was recently shown in postmenopausal women

with abdominal obesity. In this clinical context, the pulsatile

GH secretion was negatively associated with the amount of

thigh intermuscular adipose tissue, whereas basal GH

secretion demonstrated an independent negative association

with visceral adipose tissue (Franco et al. 2006). Furthermore,

Møller et al. (2009) have recently shown that lipid infusion

during GH stimulation decreases signal transducer and

activator of transcription 5 (STAT5) phosphorylation (the

major target of GH intracellular signaling) by about 40%, an

effect that was evident already at low lipid infusion rates. This

suggests that whenever free fatty acid (FFA) levels are high,

e.g. during fasting/protracted exercise, dyslipidemia, excess

body fat, type 2 diabetes, or inflammatory illness, the

activation of intracellular GH signaling and its related

growth-promoting and anabolic effects are restricted. Thus,

the direct correlation between high FFA levels and reduced

intracellular GH signaling and action may be applied to

subjects with central obesity and/or high BMI. Since recent

studies have demonstrated a significant increase in BMI

and visceral fat accumulation with aging (Rössner

2001, Hajian-Tilaki & Heidari 2007), the reciprocal interplay

of increasing BMI, central obesity, and FFA excess may

be relevant to the age-dependent decline in GH secretion

and action.
Insulin-like growth factor 1

IGF1 is perhaps the most important mediator of muscle and

bone growth (Goldspink 2007). Systemic IGF1 is synthesized

primarily in the liver, where its synthesis is GH dependent;

IGF1 is also produced in multiple extrahepatic tissues, where

it acts locally as an autocrine/paracrine growth factor under

the control of multiple hormones (Laviola et al. 2007). The

IGFs, including IGF1 and IGF2, are single-chain poly-

peptides, which share a similar secondary structure, with three

a-helices and three disulfide bonds (Mathews et al. 1986).

Despite a significant structural similarity, each ligand can

result in unique signaling outcomes. As an example, IGF2 is

unable to compensate for the loss of IGF1 activity in patients

with IGF1 deficiency, leading to severe growth and mental

retardation (Chen et al. 2001). Similarly, mice with targeted

disruption of the IGF1 or IGF2 genes are born at 60% birth

weight compared with wild-type littermates (Baker et al.

1993). Although in rodents IGF2 is predominantly expressed

in fetal life whereas IGF1 is considered an adult growth factor,

this expression pattern is not observed in humans, as both

ligands are produced in multiple human tissues throughout

life, which is consistent with the concept that IGF1 and

IGF2 have potentially divergent roles in human physiology

(Rosenfeld & Hwa 2009). It has been shown that IGF1 exists
www.endocrinology-journals.org
in at least two isoforms as a result of alternative splicing of the

IGF1 gene. IGF1Ea, which is produced in both liver and

muscle tissues, was the first isoform to be discovered and is

often referred to as liver-type or systemic IGF1. IGF1Eb

(rodent form) and IGF1Ec (human form) are produced

mainly by the skeletal muscle, and are usually referred to as

mechano growth factors (MGFs; Goldspink 2004). Unlike

MGFs, liver-type IGF1 is glycosylated, and this modification

protects it from proteolysis and confers a relatively long half-

life. In addition, IGF1 half-life in plasma and the interaction

of IGF1 with the IGF1 receptor (IGF1R) are regulated either

positively or negatively by a family of six high-affinity IGF

binding proteins (IGFBPs; IGFBP1 to IGFBP6; Laviola et al.

2007, Rosenfeld & Hwa 2009). In tissues, IGFBPs can both

inhibit or potentiate IGF1 actions either by sequestering

IGF1 from the IGF1R or by releasing free IGF1 available for

receptor binding. IGF1 is released from the complex by either

proteolysis of IGFBPs or binding of IGFBPs to the

extracellular matrix. IGFBP phosphorylation can also alter

the affinity for the IGFs (Rosenfeld & Hwa 2009).

IGF-independent actions have also been recently described

for most IGFBPs, and can involve intracellular localization or

integrin binding (Woodhouse et al. 2006).

Unlike GH, serum IGF1 levels are stable without significant

variability in healthy individuals. In contrast to GH, the

circulating IGF1 levels are reduced during fasting, and IGF1

infusion suppresses GH release, suggesting a negative feedback

loop between the two hormones. Recently, in an 8-year

prospective study conducted in elderly men, Brugts et al. (2008)

have shown that higher circulating IGF1 bioactivity was

associated with better overall survival, since individuals in the

lowest quartile of IGF1 bioactivity had a 1.8-fold increased

mortality risk compared with individuals in the highest quartile.

Besides the age-dependent decline in GH and IGF1 serum

levels, the increased mortality risk and diminished sense of

well-being may be also due to the impairment of the GH and

IGF1 post-receptor signaling machinery. In line with these

findings, Dennis et al. (2008) have reported that median IGF1

and IGFBP5 mRNA levels in resting young muscle are more

than twice higher than those in elderly muscle. In general, tissue

responsiveness to IGF1 is altered with aging. Aging is associated

with decreases in IGF1R content and IGF1R phosphorylation

in muscle (Li et al. 2003). Furthermore, in fibroblasts, DNA

synthesis and cell proliferation in response to IGF1 decrease

with older age (Sell et al. 1993). Bone responsiveness to IGF1

also decreases with aging (Kveiborg et al. 2000). The skeletal

anabolic response to IGF1 administration is weakened in the

elderly, and biopsy-derived osteoblasts from patients of different

ages respond to IGF1 by increasing proliferation, but the dose

needed to elicit a response is an order of magnitude greater for

cells from aged patients (Pfeilschifter et al. 1993). These studies

suggest that low circulating IGF1 bioactivity and abnormalities

of IGF1 signaling in elderly subjects, especially in those

individuals with an age-related proinflammatory state (i.e.

subjects with visceral or central obesity), may play an important

role in age-related sarcopenia and osteopenia (Fig. 2).
Journal of Endocrinology (2010) 205, 201–210
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Figure 2 A schematic model of the mechanisms leading to sarcopenia, osteoporosis, physical
impairment, and functional limitations and disabilities in aging subjects.
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GH intracellular signaling

GH effects are mediated via the GHR, which is a member of

the cytokine receptor superfamily. The critical step in

initiating GH signaling is the activation of receptor-associated

Janus kinase ( JAK) 2, which induces cross-phosphorylation of

tyrosine residues in the kinase domain of JAK2 and GHR

(Fig. 1). Phosphorylated residues on JAK2 and GHR form

docking sites for the members of the STAT family of

transcription factors (Perrini et al. 2008b). Phosphorylation

of the STATs by JAK2 results in their dissociation from the

receptor and translocation to the nucleus, with subsequent

binding to DNA and regulation of gene expression. Among

the target genes, GH regulates the expression of suppressor of

cytokine signaling (SOCS), a family of negative regulators

that terminate the GH signaling cascade (Hansen et al. 1999).

SOCS proteins bind to phosphotyrosine residues on the

GHR or JAK2 and suppress GH signaling by inhibiting JAK2

activity, competing with STATs for binding to the GHR, or

inducing degradation of the GHR complex (Fig. 1).
Journal of Endocrinology (2010) 205, 201–210
The RAS/mitogen-activated protein kinase (MAPK)

pathway has also been shown to be activated by GH. The

GHR–JAK2 complex has been shown to recruit the adapter

protein SHC, resulting in SHC tyrosine phosphorylation

and binding to GRB2, and activation of RAS, RAF, MAPK/

extracellular-regulated protein kinase (MEK), and ERK-1/2

(Vanderkuur et al. 1997; Fig. 1). Alternatively, it has been

suggested that GH might also regulate the activation of ERK-

1/2 by a SRC-dependent, JAK2-independent mechanism

which involves phopholipase D (Zhu et al. 2002). Tyrosine

phosphorylation of a GRB2-binding site in the epidermal

growth factor receptor could also be involved in GH-

mediated MAPK activation (Yamauchi et al. 1997).

GH has also been shown to stimulate the phosphatidyl-

inositol 3-kinase (PI3-K) pathway through JAK2-mediated

tyrosine phosphorylation of the insulin receptor substrates

(IRS-1 to IRS-3), leading to their association with PI3-K

regulatory subunits (Zhu et al. 2001). In addition, direct

binding of the p85a and p85b subunits to phosphotyrosine

residues in the carboxyl terminus domain of the GHR
www.endocrinology-journals.org
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has also been demonstrated (Moutoussamy et al. 1998).

GH stimulation of PI3-K is linked to the stimulation of

the antiapoptotic serine protein kinase B or AKT (Costoya

et al. 1999). Akt activation has been shown to be dependent

on the presence of the JAK2-binding region of GHR, and to

promote cell survival through the inhibition of the

proapoptotic protein caspase 3 (Sanders et al. 2006).
IGF1 intracellular signaling

Most biological actions of IGF1 are mediated through the

type I IGF receptor (IGF1R), which is a transmembrane

tyrosine kinase that is structurally and functionally related to

the IR. Both receptors show a heterotetrameric structure

(two a-subunits and two b-subunits), with an extracellular

hormone-binding domain, a transmembrane region, and an

intracellular portion, which contains the kinase domain and

multiple regulatory residues. Upon ligand binding, the

intrinsic tyrosine kinase of the IGF1R is activated, and this

results in autophosphorylation of tyrosine residues in the

intracellular portion of the b-subunit, including tyrosine

residues in the juxtamembrane and C-terminal domains.

Once phosphorylated, tyrosine 950 in the juxtamembrane

domain can serve as a docking site for several receptor

substrates, including the IRSs and Shc (Laviola et al. 2008).

These substrates initiate phosphorylation cascades that serve

to transmit the IGF1R signal (Fig. 1). Phosphorylated IRS-1

can activate the p85 regulatory subunit of PI3-K, leading to

the activation of several downstream substrates, including Akt

(Giorgetti et al. 1993). AKT phosphorylation, in turn, enhances

protein synthesis through mechanistic target of rapamycin

(MTOR) and p70S6 kinase activation, and mediates the

antiapoptotic effects of the IGF1R through phosphorylation

and inactivation of BAD (Petley et al. 1999). In parallel to PI3-

K-driven signaling, recruitment of GRB2/SOS by phosphory-

lated IRS-1 or SHC leads to recruitment of Ras and activation

of the RAF-1/MEK/ERK pathway and downstream nuclear

factors, resulting in the induction of cell proliferation (Fig. 1;

Grey et al. 2003). Shc may actually compete with IRS-1 for a

limited cellular pool of GRB2, and the extent of SHC/GRB2

binding appears to correlate with the amount of insulin-

activated ERK and c-fos transcription (Yamauchi & Pessin

1994). Therefore, the SHC/GRB2 pathway represents the

predominant mechanism activating the RAS/ERK signaling

pathway in response to IGF1. Recent experimental evidence

has shown that distinct SHC isoforms exert opposite effects

on the ERK signaling cascade. The SHC proteins originate

by alternative use of three distinct translation starting points

on a longer transcript (p46Shc, p52Shc, and p66Shc) and two

translation starting points on a shorter transcript (p46Shc and

p52Shc); the two mRNA transcripts are generated by

alternative splicing from a single gene (Pelicci et al. 1992,

Natalicchio et al. 2004). Although all three SHC isoforms can

be tyrosine phosphorylated upon growth factor stimulation,

p46/p52Shc transduce growth and survival signals, whereas
www.endocrinology-journals.org
p66Shc is also modified by serine phosphorylation and plays an

important role in mediating oxidative stress-dependent cell

damage and apoptosis (Migliaccio et al. 1999). Indeed, the

p66Shc protein has been shown to regulate intracellular

oxidant levels and hydrogen peroxide-mediated forkhead

inactivation (Nemoto & Finkel 2002), effects that are

probably relevant to the reported ability of p66Shc to control

lifespan in mammals (Migliaccio et al. 1999). Furthermore,

while p46/p52Shc trigger the activation of the ERK pathway

via GRB2/SOS/RAS, p66Shc exerts an inhibitory effect on

ERK, because reduced p66Shc expression levels are associated

with persistent ERK activation (Natalicchio et al. 2004). The

opposite regulation of ERK effects by p46/p52Shc and p66Shc

respectively may be physiologically relevant, since human

breast cancer tissues with high p46/p52Shc to p66Shc

expression ratios are characterized by increased cell prolifer-

ation and poor prognosis (Davol et al. 2003).
Abnormalities in GH/IGF1 signaling and
age-related muscle mass wasting

Age-related skeletal muscle wasting affects all elderly subjects

by impairing their functional independence and increasing

their risk for falls and fractures (Szulc et al. 2005). It has been

suggested that during aging, the loss of muscle mass and

strength is due to the progressive atrophy, decrease in

myofiber cross-sectional area (CSA), loss of muscle fibers

(Ryall et al. 2008), and reduction in muscle capacities (Szulc

et al. 2005). An age-related reduced efficiency of the multistep

GH/IGF signaling machinery may also play a role in the

reduced skeletal muscle structure and function. Indeed,

reduced mRNA expression levels of the GHR in skeletal

muscle have been observed in older versus younger healthy

men, exhibiting a significant negative relationship with

myostatin levels (Marcell et al. 2001). Myostatin functionally

impairs satellite cell (myoblast) activity by inhibiting protein

and DNA synthesis and cell proliferation (Taylor et al. 2001),

and counteracting GH-dependent promotion of muscle

protein synthesis and activation of satellite cells (Marcell

et al. 2001). In addition, myostatin null mutations (Zhu et al.

2000) and gene knockout experiments (McPherron et al.

1997) result in a significant increase in muscle mass. Thus, the

observed increased expression of muscle myostatin with aging

may be due, at least in part, to the age-related decrease in

endogenous GH, contributing to age-related sarcopenia. It

has also been shown that mice lacking GHR (GHRK/K)

exhibit proportional growth retardation and delayed and/or

diminished responses in IRS-1 phosphorylation following

in vivo insulin stimulation in muscle (Robertson et al. 2006).

Dysregulation of the IRS/PI3-K/AKT pathway appears to be

particularly relevant to the development of age-related muscle

wasting, because in vitro studies have implicated this signaling

pathway in myocyte growth and muscle mass regulation

(Rommel et al. 2001). Skeletal muscle biopsies from older

male subjects show a reduction in the CSA of type II muscle
Journal of Endocrinology (2010) 205, 201–210
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fibers by 40–45%, in parallel with a 45% decreased GHR

protein and IGF1 mRNA levels, as well as increased TNF-a

and SOCS-3 mRNA levels, when compared with younger

donors (Léger et al. 2008). Furthermore, total AKT, but not

phosphorylated AKT, proteins levels are increased by 2.5-fold,

resulting in a 30% reduction in the efficiency of AKT

phosphorylation in older subjects. Indeed, multiple studies

have shown that SOCS-3 has been casually linked to insulin

resistance either by associating with the IR and suppressing its

tyrosine kinase activity, or by decreasing IRS phosphorylation

and downstream signaling reactions. Deletion of PI3-K in the

muscle per se results in decreased muscle size and inefficient

muscle metabolism (Luo et al. 2006), and the inhibition of

PI3-K or AKT prevents the anabolic effects of IGF1 in

cultured cells (Giorgino et al. 1997). In fact, an age-related

deficit in IGF1R activation has been demonstrated in the

muscle of old rats, and this was associated with a reduced

activity of the IRS-1/PI3-K pathway (Haddad & Adams

2006). Conversely, AKT hyperactivation leads to muscle

hypertrophy in vivo (Lai et al. 2004). At the molecular level,

myocyte growth is thought to be promoted by AKT signaling

through MTOR and GSK-3 (Bodine et al. 2001, Rommel

et al. 2001). In addition, AKT-mediated phosphorylation of

forkhead transcription factors results in reduced expression of

atrogin-1 (also known as MAFbx or FBXO) and MuRF1,

twoE3ubiquitin ligases that promotemuscle proteindegradation

(Sandri et al. 2004). More recently, an impaired AKT kinase

activity in myocytes has been found to be associated with

higher levels of apoptosis, lower abundance of the contractile

proteins myosin and actin, and a smaller muscle fiber CSA

(Wu et al. 2009). Interestingly, the restoration of AKT kinase

activity was associated with increased amount of contractile

proteins and myocyte size, and decreased apoptotic rates. More

limited studies are available in humans. Recently, a reduced effect

of insulin on leg protein breakdown has been observed in older

versus younger subjects, and this appears to be associated

with blunted AKT activation (Wilkes et al. 2009).

In conclusion, the age-associated reduction in GH and

IGF1 plasma levels, and their reduced intracellular signaling

efficiency are associated with decreased muscle size and

strength, diminished protein synthesis, and increased cell

apoptosis. Therefore, age-related human sarcopenia may be

linked to impaired activation of anabolic signaling pathways

emanating from the GHR and IGF1R and involving the

IRSs, PI3-K, and AKT (Fig. 2).
Abnormalities in GH/IGF1 signaling and
age-related osteoporosis

The GH/IGF1 axis provides the main stimulus for bone

growth regulation by activating the osteoblast differentiation

program, stimulating chondrocyte proliferation at the growth

plate, and modulating tubular re-absorption of phosphate and

25-hydroxyvitamin D3 1a-hydroxylase activity in the kidney

(Giustina et al. 2008). Consistent with these findings, a decline
Journal of Endocrinology (2010) 205, 201–210
in GH and IGF1 secretion has been correlated with BMD loss

in postmenopausal women; in addition, IGF1 promoter

polymorphisms have been linked to bone mass (Zhao et al.

2008). GH stimulates the proliferation of cells of the

osteoblastic lineage, although IGF1 is required for the

selected anabolic lineage (Slootweg et al. 1988), suggesting

either a direct effect of GH on chondrocytes or an effect

mediated by the locally secreted IGF1. Indeed, GHR null

mice exhibit decreased bone remodeling, which is rescued by

IGF1, suggesting a role of GH/IGF1 in bone remodeling that

is independent of STAT5. The fundamental role of IGF1 in

regulating bone formation is demonstrated by the analysis of

IGF1-deficient mice, which exhibit skeletal malformations,

delayed mineralization, reduced chondrocyte proliferation,

and increased chondrocyte apoptosis (Laviola et al. 2008). The

expression of functional IGF1R and GHRs mediating effects

on cell proliferation and differentiation has been reported in

cultured human osteoblast-like cells (Nilsson et al. 1995) and

in clonal rat and mouse osteoblast-like cell lines (Slootweg

et al. 1996). In addition, it has been shown that IGF1

treatment is effective in inducing gene expression of

osteoblastic markers independent of age, identifying exogen-

ous IGF1 as a potential beneficial treatment in age-related

bone loss (Tanaka et al. 1994). IGF1R expression has also been

demonstrated in mature rabbit osteoclasts, as well as in human

pre-osteoclasts (Hou et al. 1997), and IGF1 enhances the

formation of osteoclast-like cells in long-term bone marrow

cultures ( Jonsson et al. 1996). In contrast, IGF1 has an

inhibitory effect on stimulated bone resorption in bone organ

cultures ( Jonsson et al. 1996). Osteoblasts also produce

IGFBPs, dependent upon the stage of maturation and

stimulation with GH or IGFs. These IGFBPs regulate GH

and IGF responses by modulating receptor expression and

bioavailability of IGF1 and IGF2. IGFBP2 is important as a

circulating carrier of IGFs, and IGFBP2 serum levels correlate

with BMD and turnover in humans (Amin et al. 2004). The

effects of IGFBP2 are complex: female igfbp2 null mice have

increased cortical bone, whereas male igfbp2 null mice display

decreased cortical and trabecular bone secondary to decreased

bone formation (DeMambro et al. 2008). These observations

suggest that IGFBP2 is required for normal bone formation in

male mice, and are in agreement with clinical observations

indicating a correlation between serum IGFBP2 levels

following the administration of IGF2/IGFBP2 and bone

remodeling and anabolic effects in disuse osteoporosis

(Amin et al. 2007). It is also of interest that mechanical

loading upregulates the expression of IGF1 and IGFBP2

mRNA transcripts in osteocytes (Reijnders et al. 2007). The

IGFs increase collagen production, and are incorporated

into bone matrix bound to IGFBP5. During osteoclastic

resorption, IGF1 and IGF2 are released and may again

regulate osteoblastic functions, thereby coupling bone

resorption and formation. Finally, GH, IGFs, and IGFBPs

may all regulate osteoclastic bone resorption through direct

and indirect effects on osteoclast differentiation and activation.
www.endocrinology-journals.org
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IGF1 action on bone cells requires the integrity of the

IGF1R signaling pathway (Fig. 1). As an example, both IRS-I

and IRS-2 are expressed in osteocytes (Yamauchi et al. 1997).

It has been proposed recently that IRS-2 is needed to

maintain the predominance of bone formation over bone

resorption, whereas IRS-1 maintains bone turnover, and that

the integration of these two signals mediates a potent anabolic

response to IGF1 in the bone (Ogata et al. 2000, Akune et al.

2002). The PI3-K/AKT pathway is utilized by IGF1 to

decrease osteoblast apoptosis. Sustained activation of ERK-1

and ERK-2 by IGF1 is also important for the regulation of

osteoblast proliferation (Zhang et al. 1999, Grey et al. 2003),

whereas other MAP kinase family members, such as JNK

and p38, seem to play a minor role (Grey et al. 2003).

Abnormalities in IGF1 action and signaling occur in human

osteoblasts under conditions of net bone loss. Individuals with

insulin deficiency, as exemplified by type 1 diabetic patients,

are susceptible to develop osteoporosis (Krakauer et al. 1997).

Patients with Laron’s syndrome caused by IGF1 deficiency are

also prone to osteoporosis (Laron 1999). A reduction in IGF1

levels is implicated as an important factor in the etiology of

evolutional osteoporosis, especially of age-related bone loss

(Nicolas et al. 1994, Rosen 2004). Interestingly, while it has

been shown that recombinant human IGF1 (rhIGF1)

administration increases osteoblast function in healthy females

in whom IGF1 levels and bone turnover were decreased

by short-term caloric deprivation (Grinspoon et al. 1996),

rhIGF1 was ineffective in increasing BMD in women with

postmenopausal osteoporosis (Ghiron et al. 1995). Thus,

abnormalities in IGF1 signaling may be responsible for altered

IGF1 action on osteoblasts in human osteoporosis. Recently, a

comparative analysis of IGF1 signaling was carried out in

primary cultures of human osteoblasts isolated from osteo-

porotic and control bone specimens (Perrini et al. 2008a,b). In

the osteoblasts from osteoporotic bone, tyrosine phosphoryl-

ation of the IGF1R was found to be increased in the basal

state, but it was poorly responsive to IGF1 stimulation.

Augmentation of IGF1R phosphorylation in the basal state

was associated with increases in tyrosine phosphorylation of

IRS-2 and activation of ERK, which were also poorly

responsive to IGF1 stimulation. By contrast, phosphorylation

levels of IRS-1, AKT, and GSK-3 were similar in the basal

state in control and osteoporotic osteoblasts, and showed an

increase after IGF1 stimulation in both cell populations, albeit

the response in the osteoporotic osteoblasts was lower.

Specifically, phosphorylation of AKT on Ser473 and Thr308

following IGF1 stimulation was significantly reduced in

osteoporotic cells compared with control cells, leading to

decreased GSK-3 phosphorylation. The IGF1 signaling

abnormalities in osteoporotic osteoblasts were associated

with reduced DNA synthesis both under basal conditions

and after stimulation with IGF1 (Perrini et al. 2008a,b).

Therefore, abnormalities in IGF1 signaling may explain the

impaired cell proliferation and decreased bone formation that

occur in human osteoporosis (Fig. 2).
www.endocrinology-journals.org
Further complexity is added to this scenario while

considering the role of the insulin/IGF system throughout

evolution. Indeed, strong similarities exist in the insulin/IGF1

signaling machinery in worms, flies, mammals, and humans.

However, worms and flies have only one receptor for both

hormones, whereas the vertebrates have at least three closely

related receptors (Katic & Kahn 2005). In addition, studies in

invertebrates suggest that insulin/GH/IGFs control lifespan.

In fact, the impairment of the GH/IGF1 signaling has been

correlated with extended longevity in worms, flies, and

transgenic rodent models (Berryman et al. 2008). These

observations are apparently in contrast with the above-

described effects of reduced GH/IGF1 action on muscle

strength and trabecular bone mass; however, the complete

removal of GH action by disrupting or knocking out the GHR

gene (GHRK/K) in rodents (which resulted in GH resistance,

elevated GH levels, and markedly reduced IGF1 levels)

determined both a significant increase in lifespan and reduced

muscle mass and BMD compared with littermate controls

(Berryman et al. 2008). Thus, the insulin/GH/IGF signaling

systems are involved in an integrated interplay between

anabolic and life-cycle-controlling mechanisms.
Conclusions

The GH and IGF1 signaling pathways are important

regulators of muscle and bone cell survival and function.

The commonly observed decline in circulating GH and IGF1

levels that accompanies aging may contribute to reduced

muscle strength and trabecular bone mass. Indeed, multiple

long-term GH replacement trials, with a duration of at least

5 years, have shown that GH protects against the normal age-

related decline in muscle strength, neuromuscular function,

and bone mass (Gibney et al. 1999, Svensson et al. 2003,

Götherström et al. 2005). However, in elderly GHD adults

above 60 years of age, the main effect of GH replacement

seems to be a prevention of the age-related decline in muscle

efficiency, rather than a significant increase in absolute values

of muscle strength. In line with these observations, a recent

10-year GH replacement trial in GHD adults has shown that

the increased muscle strength and improved neuromuscular

function are more evident in younger subjects than in older

subjects (Götherström et al. 2009). In addition, subjects

receiving GH demonstrated no significant changes in BMD

(Fernholm et al. 2000, Hoffman et al. 2004). The reduced

effect on BMD and muscle strength noted in elderly subjects

during prolonged GH replacement therapy suggests that

other mechanisms, including abnormalities of the GH/IGF1

signaling in muscle and bone cells, may contribute to age-

related muscle wasting and osteoporosis. The identification of

distinct abnormalities in GH/IGF1 signaling contributing to

impaired cell proliferation and decreased functional efficiency

in the muscle–bone system with aging may help to identify

novel therapeutic targets for improving health and quality of

life in aged humans.
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Götherström G, Elbornsson M, Stibrant-Sunnerhagen K, Bengtsson B,

Johannsson G & Svensson J 2009 Ten years of growth hormone (GH)

replacement normalizes muscle strength in GH-deficient adults.

Journal of Clinical Endocrinology and Metabolism 94 809–816.

Grey A, Chen Q, Xu X, Callon K & Cornish J 2003 Parallel

phosphatidylinositol-3 kinase and p42/44 mitogen-activated protein

kinase signaling pathways subserve the mitogenic and antiapoptotic

actions of insulin-like growth factor I in osteoblastic cells. Endocrinology

144 4886–4893.

Grinspoon S, Baum H, Lee K, Anderson E, Herzog D & Klibanski A 1996

Effects of short-term recombinant human insulin-like growth factor I

administration on bone turnover in osteopenic women with anorexia

nervosa. Journal of Clinical Endocrinology and Metabolism 81 3864–3870.

Haddad F & Adams GR 2006 Aging-sensitive cellular and molecular

mechanisms associated with skeletal muscle hypertrophy. Journal of Applied

Physiology 100 1188–1203.
www.endocrinology-journals.org

Downloaded from Bioscientifica.com at 08/23/2022 04:23:44AM
via free access



GH/IGF1 signaling in muscle and bone . S PERRINI and others 209
Hagen JL, Krause DJ, Baker DJ, Fu MH, Tarnopolsky MA & Hepple RT

2004 Skeletal muscle aging in F344BN F1-hybrid rats: I. Mitochondrial

dysfunction contributes to the age-associated reduction in VO2 max.

Journals of Gerontology Series A: Biological Sciences and Medical Sciences 59

1099–1110.

Hajian-Tilaki KO & Heidari B 2007 Prevalence of obesity, central obesity and

the associated factors in urban population aged 20–70 years, in the north of

Iran: a population-based study and regression approach. Obesity Reviews 8

3–10.

Hameed M, Lange KHW, Andersen JL, Schjerling P, Kjaer M, Harridge SDR

& Goldspink G 2004 The effect of recombinant human growth hormone

and resistance training on IGF-I mRNA expression in the muscles of

elderly men. Journal of Physiology 555 231–240.

Hansen JA, Lindberg K, Hilton DJ, Nielsen JH & Billestrup N 1999

Mechanism of inhibition of growth hormone receptor signaling by

suppressor of cytokine signaling proteins. Molecular Endocrinology 13

1832–1843.

Hartman ML, Faria AC, Vance ML, Johnson ML, Thorner MO &

Veldhuis JD 1991 Temporal structure of in vivo growth hormone secretory

events in humans. American Journal of Physiology 260 E101–E110.

Hermann M & Berger P 2001 Hormonal changes in aging men: a therapeutic

indication? Experimental Gerontology 36 1075–1082.

Ho KY, Veldhuis JD, Johnson ML, Furlanetto R, Evans WS, Alberti KG

& Thorner MO 1988 Fasting enhances growth hormone secretion and

amplifies the complex rhythms of growth hormone secretion in man.

Journal of Clinical Investigation 81 968–975.

Hoffman AR, Kuntze JE, Baptista J, Baum HBA, Baumann GP, Biller BMK,

Clark RV, Cook D, Inzucchi SE, Kleinberg D et al. 2004 Growth hormone

(GH) replacement therapy in adult-onset gh deficiency: effects on

body composition in men and women in a double-blind, randomized,

placebo-controlled trial. Journal of Clinical Endocrinology and Metabolism 89

2048–2056.

Hou P, Sato T, Hofstetter W & Foged NT 1997 Identification and

characterization of the insulin-like growth factor I receptor in mature rabbit

osteoclasts. Journal of Bone and Mineral Research 12 534–540.

Johannsson G & Bengtsson BA 1999 Growth hormone and the metabolic

syndrome. Journal of Endocrinological Investigation 22 41–46.

Jonsson KB, Wiberg K, Ljunghall S & Ljunggren O 1996 Insulin-like growth

factor I does not stimulate bone resorption in cultured neonatal mouse

calvarial bones. Calcified Tissue International 59 366–370.

Katic M & Kahn CR 2005 The role of insulin and IGF-1 signaling in

longevity. Cellular and Molecular Life Sciences 62 320–343.

Krakauer JC, McKenna MJ, Rao DS & Whitehouse FW 1997 Bone mineral

density in diabetes. Diabetes Care 20 1339–1340.

Kveiborg M, Flyvbjerg A, Rattan SI & Kassem M 2000 Changes in the

insulin-like growth factor-system may contribute to in vitro age-related

impaired osteoblast functions. Experimental Gerontology 35 1061–1074.

Lai KV, Gonzalez M, Poueymirou WT, Kline WO, Na E, Zlotchenko E,

Stitt TN, Economides AN, Yancopoulos GD & Glass DJ 2004

Conditional activation of akt in adult skeletal muscle induces rapid

hypertrophy. Molecular and Cellular Biology 24 9295–9304.

Landin-Wilhelmsen K, Wilhelmsen L, Lappas G, Rosén T, Lindstedt G,

Lundberg PA & Bengtsson BA 1994 Serum insulin-like growth factor I

in a random population sample of men and women: relation to age, sex,

smoking habits, coffee consumption and physical activity, blood pressure

and concentrations of plasma lipids, fibrinogen, parathyroid hormone and

osteocalcin. Clinical Endocrinology 41 351–357.

Laron Z 1999 The essential role of IGF-I: lessons from the long-term study

and treatment of children and adults with Laron syndrome. Journal of Clinical

Endocrinology and Metabolism 84 4397–4404.

Laviola L, Natalicchio A & Giorgino F 2007 The IGF-I signaling pathway.

Current Pharmaceutical Design 13 663–669.

Laviola L, Natalicchio A, Perrini S & Giorgino F 2008 Abnormalities of IGF-I

signaling in the pathogenesis of diseases of the bone, brain, and fetoplacental

unit in humans. American Journal of Physiology. Endocrinology and Metabolism

295 E991–E999.
www.endocrinology-journals.org
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