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Ghrelin, the endogenous ligand for the GH secretagogue receptor (GHSR), is a peptide hormone with diverse
physiological roles. Ghrelin regulates GH release, appetite and feeding, gut motility, and energy balance and also
has roles in the cardiovascular, immune, and reproductive systems. Ghrelin and the GHSR are expressed in a wide
range of normal and tumor tissues, and a fluorescein-labeled, truncated form of ghrelin is showing promise as a
biomarker for prostate cancer. Plasma ghrelin levels are generally inversely related to body mass index and are
unlikely to be useful as a biomarker for cancer, but may be useful as a marker for cancer cachexia. Some single
nucleotide polymorphisms in the ghrelin and GHSR genes have shown associations with cancer risk; however, larger
studies are required. Ghrelin regulates processes associated with cancer, including cell proliferation, apoptosis, cell mi-
gration, cell invasion, inflammation,andangiogenesis;however, theroleofghrelin incancer is currentlyunclear.Ghrelin
has predominantly antiinflammatory effects and may play a role in protecting against cancer-related inflammation.
Ghrelin and its analogs show promise as treatments for cancer-related cachexia. Further studies using in vivo models are
required to determine whether ghrelin has a role in cancer progression. (Endocrine Reviews 33: 849–891, 2012)
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I. Introduction

Ghrelin, a 28-amino acid peptide hormone, was first
discovered in 1999 as the endogenous ligand for the

GH secretagogue receptor (GHSR) (1), through which it

stimulates GH release. The first evidence for the ghrelin
axis was provided when synthetic peptide ligands based on
the structure of enkephalins were found to stimulate GH
release from the anterior pituitary (2). These GH-releasing
peptides (GHRP) and nonpeptidyl secretagogues, now
collectively known as GH secretagogues (GHS), were
found to act through the GHSR, a seven-transmembrane
domain, G protein-coupled receptor (GPCR), expressed in
the hypothalamus and pituitary (3, 4). Unexpectedly in
1999, the endogenous ligand for the GHSR, ghrelin, was
first isolated from rat and then human stomach (1). Ghre-
lin has an unusual posttranslational modification because
an octanoyl group is added to the third amino acid residue,
which is a serine (1). Ghrelin stimulates the release of GH
from the anterior pituitary through the GHSR1a, the full-
length isoform of the receptor (1). This discovery demon-
strated that the control of GH release was more complex
thanpreviously recognized. It rapidly emerged that ghrelin
had numerous roles beyond the stimulation of GH release
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prostatic hyperplasia; CI, confidence interval; COX-2, cyclooxygenase 2; DSS, dextran
sodium sulfate; ECM, extracellular matrix; EGFR, epidermal growth factor receptor;
ESCC, esophageal squamous cell carcinoma; FGF-2, fibroblast growth factor 2; GHRP,
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tion study; HEL, human erythrocytic leukemia; HMVEC, human microvascular endo-
thelial cell; HUVEC, human umbilical vein endothelial cell; IBD, inflammatory bowel
disease; In1, intron 1 variant of ghrelin; KLF4, Kruppel-like factor 4; MBOAT, mem-
brane-bound O-acyltransferase; MMP, matrix metalloprotease; NF�B, nuclear factor
�B; NO, nitric oxide; NSCLC, non-small cell lung cancer; OR, odds ratio; PI3K, phos-
phoinositide 3 kinase; PKC, protein kinase C; SNP, single nucleotide polymorphism;
TNBS, 2,4,6-trinitrobenzene sulfonic acid; UAG, unacylated ghrelin.
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and actions that are independent of GH. Ghrelin also po-
tently stimulates appetite (5, 6); plasma ghrelin levels are
elevated before meals and reduced after feeding (7). Since
the initial discovery of ghrelin, the range of physiological
and pathophysiological functions attributed to this hor-
mone has grown rapidly and includes roles in regulating
metabolism and energy balance, insulin release, inflam-
mation, and the cardiovascular system (8–12).

In 2005, Zhang et al. (13) described a second hormone,
obestatin, that is also derived from the ghrelin preprohor-
mone. This 23-amino acid, C-terminally amidated peptide
was demonstrated to oppose the effects of ghrelin on ap-
petite and feeding. The obestatin receptor was reported to
be GPR39, a GPCR closely related to GHSR1a (13). This
exciting finding in the ghrelin field suggested that obesta-
tin and GPR39 could be useful targets for the development
of therapeutics for the prevention of obesity. It soon
emerged, however, that these results were difficult to re-
peat, and many subsequent studies have failed to demon-
strate that obestatin opposes the effects of ghrelin on food
intake. Many studies have indicated that obestatin has
little or no effect on appetite (14–20). Moreover, many
studies failed to confirm that GPR39 is the obestatin re-
ceptor (21–23).

In 2008, a major advance in the ghrelin field was made
by two independent research groups who described the
enzyme that octanoylates ghrelin, ghrelin O-acyltrans-
ferase (GOAT) (24, 25). GOAT is a member of the mem-
brane-bound O-acyltransferase (MBOAT) family and is
encoded by the MBOAT4 gene. The discovery of GOAT
has led to new insights into the function and mechanism of
action of the ghrelin/GHSR1a axis. Recent studies in the
GOAT knockout mouse demonstrated that the ghrelin axis
plays an important role in glucose balance during caloric
restriction (26). A more recent study in a number of mouse
modelshas refuted this findinghowever (27).GOATis likely
to regulate the balance between acylated ghrelin and its un-
acylated form, which is more abundant in the circulation
than acylated ghrelin (28, 29). Although unacylated ghrelin
(UAG) was originally thought to be an inactive form of ghre-
lin, because it does not activate GHSR1a, it is now clear that
ithasanumberoffunctions(30–33).Thefindingthatghrelin
has functions in cells that do not express GHSR1a and the
fact that UAG also has a number of actions led to the hy-
pothesis that there is an alternative ghrelin receptor that me-
diates these effects (33–36). The identity of this receptor re-
mains unknown.

The first suggestion that the ghrelin/GHSR1a axis
could be involved in cancer progression, before the dis-
covery of ghrelin itself, was the finding that the
GHSR1a is expressed not only in normal pituitary, but
also in pituitary and neuroendocrine tumors (37). Soon

after its discovery, ghrelin was shown to be expressed in
pituitary tumors (38 – 40). It was suggested that ghrelin
and GHSR1a could play a role in pituitary pathogenesis
through an autocrine or paracrine pathway (40) by
modulating pituitary hormone release (38). Ghrelin was
later demonstrated to increase cell proliferation in the
rat pituitary somatotroph GH3 cell line through the
ERK1/2 pathway (41).

Ghrelin and its receptor are now known to be expressed
by a range of peripheral tumor types and may be an au-
tocrine/paracrine growth factor in a number of cancers.
Although it is known that many tumors express members
of the ghrelin axis (Table 1), the role of ghrelin in cancer
has not been extensively studied. The first functional stud-
ies indicating that ghrelin may have a role in peripheral
cancers demonstrated that ghrelin treatment stimulated
cell proliferation in the HepG2 hepatoma cell line (42),
and it was suggested that ghrelin has an autocrine or para-
crine role in prostate cancer cell lines (43). Ghrelin in-
creases proliferation in a large number of normal cell lines
(33, 36, 44–66), whereas it inhibits cell proliferation in
normal vascular smooth muscle and Leydig cells (67,
68) (see Section IV.A). In cancer cell lines, ghrelin in-
creases cell proliferation in some studies (42, 43, 69 –
79), but decreases cell proliferation in others (34, 80,
81). Ghrelin may also regulate cell number by influenc-
ing apoptosis, and ghrelin decreases apoptosis in the
majority of cell lines and cell types studied (36, 54, 57,
60, 63– 67, 69, 72, 74, 82–93). The role of the ghrelin
axis in cancer has not been widely studied; however,
ghrelin and ghrelin analogs are promising treatments
for patients with cancer cachexia (Section V). The role
of the ghrelin preprohormone-derived peptide, obesta-
tin, has not been widely explored; however, obestatin
may play a role because it has been demonstrated to
increase cell proliferation or inhibit apoptosis in some
cell types (94 –97) and decrease cell proliferation in oth-
ers (98, 99).

In this review, we will summarize findings demonstrat-
ing that ghrelin, GHSR, and obestatin are widely ex-
pressed in cancer tissues and cancer cell lines and that
ghrelin may have a role in a number of processes related to
cancer progression, including cell proliferation, cell mi-
gration and invasion (77), apoptosis and cell survival, and
angiogenesis. Ghrelin may also play a role in modulating
cancer-related inflammation. Although there are conflict-
ing studies, some single nucleotide polymorphisms (SNP)
in the ghrelin and ghrelin receptor (GHSR) genes sug-
gest that the ghrelin axis could be associated with cancer
risk (100 –103). Finally, we discuss the potential for the
ghrelin axis to be a useful target for the treatment of
cancer cachexia through a number of processes, includ-
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TABLE 1. The expression of ghrelin and GHSR, GHSR1a, and GHSR1b isoforms at the mRNA and protein levels in
human tumors and cell lines

Tumor type

Ghrelin GHSR1a GHSR1b

Refs.mRNA Protein mRNA Protein mRNA Protein

Adrenal tumors
Pheochromocytoma (�)2 (�)(�) (�)(�) (�) 222, 223
Adrenocortical adenoma (�)2 (�)(�)1 (�)(�) (�)(�) (��)1 222, 252
Adrenocortical carcinoma (�) (�)(�)2 (�) (��)1 252
SW-13 adrenocortical carcinoma cell line (�)(�) 69

Astrocytoma
Low and high grade (�)(��) (�)(��) 235
Astrocytoma cell lines (U-118, U-87, CCFSTTG1

SW1088)
(��) 235

Breast cancer
Breast carcinoma (��)1 (��) (��) 70

Breast cancer cell lines
MDA-MB 231, MCF7, T47D (��) (�)(�) (��) 34, 70, 71
MDA-MB 435 (��) (��) (��) 70

Endometrial tumors
Endometrial cancer (��) (�)2 (�) (�) 74, 232
Endometrial cancer cell lines Ishikawa, KLE, Hec1b (�) (�) (�) (�) (�) 74

Gastrointestinal tract
Oral squamous cell carcinoma (�)2 371
Esophageal adenocarcinoma (�) (�) (��)1 (��)1 386, 387
AGS gastric cancer cell line (�) 236
Gastric adenocarcinoma (��) (��)2 (�)(�)1 (��)1 (�) 227, 228, 387
Gut endocrine tumors (�)(��) (�)(��) (�)(��)1 (�)(��) 241, 388–391
Colorectal adenocarcinoma (��) (��)1 (�) (��)1 (��) (��)1 73, 387
Stromal tumors (�)(��) (��) 229

Liver tumors
Liver cancer (��) 387
Hepatoma cell line-HepG2 (��) (�) 42, 139

Leukemia
HEL erythroleukemic cell line (�) (�) (�) 75
HL-60 promyelocytic cell line (�) (�) (�) (�) 76
THP-1 monocytic leukemia cell line (�) (�) (�) (�) 76
SupT1 lymphoblastic leukemia (�) (�) (�) 76

Lung cancer (�)
Lung endocrine carcinoid tumors (��) (��) (�)(��)1 (��)1 80, 238, 253, 392
Nonendocrine carcinoma (��) (�) (�) 80, 253
NSCLC (��)1 254
Adenocarcinoma (�)(�) (�) (�)(�) 80
Squamous cell carcinoma (��) (�) (�) 80
NSCLC cell lines
A549, NCI-H358, NCI-H522, NCI-H1435,

LC176, LC319, PC13, PC14
(�) (��) 254

NCI-H23, NCI-H1793, LC174, PC9, SK-LU-1,
RERF-LC-AI, SK-MES-1

(�) (�) 254

Small cell lung cancer (�) (��)1 80, 254
H345 SCLC cell line (��) (�) (�) 80

Osteosarcoma cell lines
ROS172.8, UMR-106, MG63, SaOS2 (�) (�) (�) 57

Ovarian tumors
Benign tumors

Serous mucinous cystadenoma (��) 247
Brenner’s tumor (�) 247

Malignant tumors
Serous adenocarcinoma, low grade (�) 247
Serous adenocarcinoma, high grade (�) 247
Mucinous adenocarcinoma (�) 247
Endometrioid (�)(�)2 (�) 232, 247
Clear cell carcinoma (�) 247

(Continued)
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ing the stimulation of appetite and improvements in
energy balance (104).

II. The Ghrelin Axis—Gene, Peptides,
and Receptors

A. The ghrelin gene, transcription products,
and peptides

The ghrelin gene (GHRL) is located on the short arm of
chromosome3(3p26) (105)andconsistsof fourpreproghre-
lin coding exons (exons 1–4) and a number of 5� exons (106)
(Fig. 1). The ghrelin gene is transcribed as a preproghrelin
mRNA isoform, which leads to the translation of a 117-
amino acid preprohormone, preproghrelin (1). The pre-

proghrelin signal peptide is encoded by exon 1, and the 28-
amino acid peptide hormone ghrelin is encoded by exon 1
and part of exon 2 (107) (Fig. 2). C-ghrelin consists of the
remainingC-terminal regionofpreproghrelinandisencoded
bypartofexon2,andexons3and4of theghrelingene(108).
Within the C-ghrelin coding region, the peptide hormone
obestatin is encoded by exon 3 (13). Although the proghre-
lin-derived peptide obestatin is thought to arise through the
posttranslational cleavage of the proghrelin hormone, novel
transcripts that encode obestatin and not ghrelin have also
recently been described and could provide a second mecha-
nism for its synthesis (106).

Preproghrelin contains a 23-amino acid, N-terminal
signal peptide that is cleaved from the polypeptide to form

TABLE 1. Continued

Tumor type

Ghrelin GHSR1a GHSR1b

Refs.mRNA Protein mRNA Protein mRNA Protein

Pancreatic endocrine tumors
Glucagonoma (��) (��) (�) 230, 393
Insulinoma (�)(��) (�)(�) (�)(��) (�)(�) (�)(�) 214, 230, 393
Nonfunctioning adenoma (�)(�)(��) (�)(��) (�)(�) (�)(�)(��) (�)(�) 214
Gastrinoma (��) (�) 230

Parathyroid
Parathyroid adenoma (��) 223

Pituitary adenomas
Somatotroph (��)(�) (��) (��)1(�) (��)1(�) 37–40, 221, 248, 250, 394, 395
Corticotroph (�)2 (�) (��)(��) (��)(��) 37, 39, 40, 250, 394, 396
Gonadotroph (��) (�)(��) (�) 38, 40, 250, 394
Nonfunctioning adenoma (��) (��) (�)(��)(��) (�)(��)(��) 38, 40, 248, 394, 395
Lactotroph (��) (��) (��) (��) 37, 39, 40, 221, 248, 394, 395
Thyrotroph (��) (��)1/(�) (�) 40, 250, 394

Prostate tumors
BPH (��) (�) (�) (��) 35
Prostatic carcinoma (��) (�)/(��) (�) (�) 35, 127
Androgen-independent cancer

cell lines (PC3, DU-145)
(��) (��) (��) (��) (��)1 35, 43, 127

Androgen-dependent cancer
cell lines (LNCaP, ALVA-41)

(��) (��) (��) (��)1 43, 127

Renal tumors
Clear cell renal carcinoma (��)2 231
Chromophobic type carcinoma (��)2 231
Papillary type (��)2 231
Oncocytoma (��)2 231

Salivary gland tumors
Mucoepidermoid carcinoma (�)2 227

Testicular cancer
Leydig cell tumors
Differentiated (��) (��) 219
Poorly differentiated (�)2 (��) 219
Germ cell tumors (�) (��) 219

Thyroid cancer (TC)
Medullary (��)1 223, 234, 297
Follicular (��)1 (�) 81, 223
Papillary (�)2/(��) 223, 370
Medullary cell line (TT) (��) (��) 234
ARO and N-PAP cell lines (�) 81

(�), No expression; (�/�), negative and positive for expression within the same study; (�), low expression levels; (��), moderately or highly expressed;1, expression
increased compared to normal tissue levels;2, expression decreased compared to normal tissue levels. A number of different results have been reported in different
studies.
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the 94-amino acid peptide, proghrelin. Proghrelin is pro-
cessed further by proteases, prohormone convertases
(PC1/3 or PC2), or furin to produce the 28-amino acid
ghrelin peptide (109, 110). Acylation of ghrelin is thought
to occur before proteolytic cleavage from the prohormone
(110). The cleavage of the 28-amino acid ghrelin molecule
from proghrelin produces the 66-amino acid C-terminal
peptide, C-ghrelin, and the 23-amino acid hormone
obestatin is cleaved from C-ghrelin and is C-terminally
amidated (13). C-ghrelin (108) and obestatin circulate in
human plasma (13).

Proghrelin can be posttranslationally modified in the en-
doplasmic reticulum with the addition of an octanoyl group
to the third residue of mature ghrelin, a serine residue, by the
newly discovered enzyme GOAT (24, 25). The GOAT en-
zyme is a member of the MBOAT family and is encoded by
the MBOAT4 gene. GOAT is a highly hydrophobic enzyme
with eight membrane-spanning domains. It recognizes the
first four amino acids of ghrelin, and it uses the substrate,
octanoylcoenzymeA,whichitattachestotheserine3residue
of ghrelin through an acyl bond with its side chain (25). Not
all circulating ghrelin is octanoylated, however, and the ma-
jority of plasma ghrelin (approximately 80%) is a nonacy-
lated form, desacyl ghrelin or UAG (28, 111, 112). A ghrelin
deacetylation enzyme, acyl-protein thioesterase-1 (APT1),
has also been described recently, and it may convert ghrelin
to UAG in the plasma (113). Ghrelin deacetylation in serum
has also been correlated with paraoxonase-1, butyrylcholin-
esterase,andplatelet-activating factoracetylhydrolase (113–
115),althoughSatouetal. (116)havestated that there isonly
conclusive evidence for APT1 as a ghrelin deacetylase in the
circulation or in serum (116). High-density lipoprotein may
be a ghrelin transporter in the serum, and other lipoproteins,
including low-density lipoprotein, very low-density lipopro-
tein, and triglyceride-rich lipoproteins may also transport
ghrelin (115).

There are a number of forms of ghrelin that are acylated
with groups other than octanoic acid, and acylation may
be manipulated through dietary modification. Decanoy-

lated forms of ghrelin, which are modified by decanoic
acid, also occur naturally (117) and have been termed
D-ghrelin (118). Unlike acylated ghrelin, levels of D-ghre-
lin do not appear to decrease after a meal, and the kinetics
of this form of ghrelin in modulating appetite may be dif-
ferent from octanoylated ghrelin (118). Other forms of
ghrelin have also been described, including a putative al-
ternatively spliced isoform, which is expressed in the rat
stomach and would encode prepro-des-Gln (14), which
lacks one glutamine residue (29). In this splice variant, an
alternative splice site in exon 2 is used, and a 116-amino
acid preproghrelin peptide is translated (117). This 27-
amino acid form of ghrelin is believed to have similar func-
tions to the wild-type, 28-amino acid ghrelin peptide; this
form of ghrelin stimulates GH secretion in rats (29, 119),
and some cardiovascular effects have been reported (120).
Another octanoylated, 27-amino acid form of ghrelin,
which lacks the C-terminal arginine residue, has been iso-
lated from human stomach tissue (117).

It has recently been demonstrated that the ghrelin gene
locus has a broad transcriptional repertoire (121). This
includes putative noncoding RNA transcripts from GHR-
LOS, a gene on the opposite strand of ghrelin (GHRL)
(106, 122) (Fig. 1), and ghrelin gene transcripts with het-
erogeneous 5� untranslated exons, between 20 and several
hundred base pairs long (121). The length of these un-
translated regions is likely to affect translational efficiency
(106, 107, 123–125). A range of alternative splice variants
also arise from the ghrelin gene, many of which may en-
code novel peptides (43, 71, 106, 126, 127). Although the
functions and phenotypic implications of the majority of
the sense and antisense transcripts arising from the ghrelin
transcripts remain to be explored, evidence is emerging that
they could play important roles in disease. For example, an
exon 3-deleted ghrelin transcript and its peptide are up-
regulated in prostate and breast cancer (70, 127), whereas
the mRNA expression of a novel intron 1-retained transcript
is down-regulated in particular brain regions in Alzheimer’s

Figure 1.

Figure 1. Overview of the ghrelin locus showing the ghrelin gene, GHRL (with exons in blue), and the ghrelin antisense gene, GHRLOS (red boxes).
Transcription start sites are shown as green arrows.
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patients (128) and appears to be up-regulated in invasive
ductal breast cancers (71).

B. The ghrelin and obestatin receptors
The GHSR gene is present on chromosome 3q26.2

(129), and consists of two coding exons, separated by a
1958-bp intronic region (130). There are two known
mRNA isoforms of the GHSR, GHSR1a and GHSR1b,
transcribed from the GHSR gene (3). GHSR1a is known
as the functional form of the receptor (3). It is a 366-amino
acid, seven-transmembrane domain GPCR that mediates

many of the effects of ghrelin. The GHSR1b is a trun-
cated GPCR, and the mRNA encodes the first five-trans-
membrane domains, followed by intronic sequence that
encodes a unique 24-amino acid C-terminal tail (3,
130). Ghrelin does not bind or activate this form of the
receptor (3), and GHSR1b has been regarded as a non-
functional receptor. There is evidence that GHSR1b
may have some important regulatory actions, however,
and may interact with the GHSR1a to alter its expression
at the cell surface and attenuate constitutive GHSR1a sig-
naling (131, 132). Both isoforms of the GHSR are widely

Figure 2.

Figure 2. Structure of the ghrelin gene (GHRL) and the wild-type, 117-amino acid ghrelin preprohormone showing preproghrelin-coding exons,
exons 1–4 (dark blue boxes), and untranslated exonic regions (light blue boxes). Introns are shown as horizontal lines. The 28-amino acid (AA)
ghrelin peptide is encoded by parts of exons 1 and 2, whereas the 23-amino acid obestatin peptide is cleaved from the C-terminal region of
proghrelin (C-ghrelin). Ghrelin is posttranslationally modified at Ser3 by GOAT to form acylated ghrelin, whereas acylated ghrelin can be deacylated
by the enzyme APT1 to form UAG and other enzymes. UAG is also likely to be synthesized in cell types lacking GOAT. Obestatin requires
C-terminal amidation for its biological activity. Acylated ghrelin activates the GHS receptor 1a isoform (GHSR1a); both ghrelin and UAG are likely
to function through an alternative ghrelin receptor. The identity of the obestatin receptor is currently unknown.
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expressed. GHSR1a expression was first identified in the
pituitary and hypothalamus, where it is highly expressed
(3). GHSR1a expression has also been demonstrated in a
number of brain regions and in a wide range of peripheral
tissues, including the stomach, intestine, pancreas, spleen,
thyroid gland, prostate, ovaries and testes, adrenal gland,
kidney, heart, lung, liver, lymphocytes, adipose tissue, and
bone (3, 43, 133–138). GHSR1a mRNA may be expressed
at lower levels inother tissues comparedwith thepituitary,
however (133). GHSR1b mRNA expression has been
demonstrated in numerous tissues, including the pituitary
and many peripheral tissues (133).

Although acylated ghrelin binds to the GHSR1a and
signals through this receptor to exert many of its endocrine
effects, including the release of GH, it is now clear that
there is an alternative ghrelin receptor (36, 120, 139–
146). Ghrelin has a number of actions in cell types that do
not express the GHSR1a, and these effects must be medi-
ated through the hypothesized alternative receptor. In ad-
dition, UAG has a number of effects (30, 32, 33, 69, 90,
120), but it does not displace ghrelin from the GHSR1a or
signal through this receptor, indicating that UAG also sig-
nals through an alternative receptor.

It was originally suggested that the receptor for obesta-
tin was GPR39, a receptor that is closely related to GHSR
and a member of the ghrelin receptor family (13). Subse-
quent studies, however, have failed to repeat this work. It
is now clear that GPR39 is unlikely to be the obestatin
receptor (23), and the identity of the obestatin receptor
remains unknown. GPR39 may have roles in regulating
metabolism, however, and this receptor binds zinc ions,
which stimulate signaling (147–149).

C. Functions of ghrelin, UAG, GOAT, and obestatin
Although ghrelin was originally discovered as an endog-

enous GHRP, it also has a wide range of other functions.
Ghrelin plays an important role in energy homeostasis, po-
tently stimulating appetite; increasing feeding, weight gain,
and adiposity; and altering energy expenditure (5, 6, 150).
Ghrelin plasma levels are elevated before meals, and levels
decline after eating (5, 7). Although ghrelin circulates as an
endocrine hormone, ghrelin signals to the brain from the
stomach via afferent neurons of the vagus nerve, and vagot-
omy abolishes the effects of iv-injected ghrelin to stimulate
food intake and GH release (151). Ghrelin increases gut mo-
tility in preparation for feeding and stimulates gastric acid
production in preparation for a meal (152–154). Ghrelin
also stimulates food-seeking behavior and olfactory sensi-
tivity, influences taste responsiveness (155, 156), and could
play a role in addiction and alcoholism (157).

Ghrelin plasma levels are largely inversely correlated
with body mass index (BMI), and ghrelin levels are de-

creased in obese subjects compared with normal-weight
subjects (158), whereas ghrelin levels are elevated in pa-
tients with anorexia nervosa and cachexia (159, 160). Pa-
tients with Prader Willi syndrome are an exception, be-
cause these patients have obesity, high BMI, hyperphagia,
and high circulating ghrelin levels (161, 162). Although
levels of ghrelin decrease in obesity, levels increase with
weight loss, and this may lead to difficulties in maintaining
weight after dieting (163).

Rodent models have been useful in dissecting the role
of ghrelin, GHSR, and GOAT in appetite, energy bal-
ance, and glucose balance (164). Initial studies in ghre-
lin (Ghrl�/�) or GHSR (Ghsr�/�) knockout mice fed
a normal chow diet failed to show a distinct phenotype,
and no changes in growth, food intake, or lean and fat
mass were seen (165, 166). Subsequent studies have
demonstrated inconsistent findings (164). Ghrelin may
play a role in obesity and the response to a high-fat diet,
however (167–169). Ghrelin knockout mice are resis-
tant to high-fat diet-induced obesity, indicating that ghrelin
could be a target for interventions for obesity (168). In one
study, when ghrelin knockout mice were fed a high-fat diet
from 6 wk of age, they remained leaner than their wild-type
counterparts, and showed higher levels of energy expendi-
ture, decreased adiposity, reduced body weight, improved
glucose tolerance, and reduced plasma triglycerides and cho-
lesterol (168). The introduction of a high-fat diet at a young
age appears to be critical because this effect was not seen in
animals with the same genetic background where a high-fat
diet was initially fed at 8–10 wk of age (167).

Studies in the GHSR knockout mouse have demon-
strated that ghrelin mediates its effects on GH release and
appetite through the GHSR (170). In a study of C57BL6J
mice, food intake on normal chow was not changed.
GHSR-null mice fed a high-fat diet did not eat as much as
wild-type mice, gained less body weight and less body fat,
and stored fewer calories (171). These mice had lower
levels of energy expenditure and decreased locomotor ac-
tivity (171). Double knockout mice, which do not express
ghrelin or GHSR, demonstrated a clear phenotype when
fed a standard diet (172). These mice showed a decrease in
body weight, increased motor activity, and increased en-
ergy expenditure compared with control mice (172). In
these mice, food intake, lean mass, and the pattern of feed-
ing are not altered, however (172). In another study,
young adult (16 wk) double knockout C57BL/6 mice
(Ghsr�/�, ghrl�/�) were not resistant to diet-induced
obesity, however, and did not show a different response to
wild-type littermates (173). Discrepancies in results be-
tween these studies could be a result of the different genetic
backgrounds of the mice (173).
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Studies into the newly discovered ghrelin octanoyla-
tion enzyme, GOAT, have led to new insights into the
function of the ghrelin axis. GOAT is frequently coex-
pressed with ghrelin and is present in the same cell types,
including cells in the gastrointestinal tract, with highest
concentrations in the stomach, and also in the pancreas
(24, 174). The ghrelin/GOAT system may act by in-
forming the central nervous system and endocrine sys-
tem that high-calorie food has been ingested (175).
GOAT knockout mice (Mboat4�/�), which produce
UAG but not octanoylated ghrelin, did not show altera-
tions in body weight or fat mass on a normal chow diet
(175). When these mice were fed a high-fat diet for at least
8 wk, however, GOAT knockout mice had a lower body
weight than wild-type mice, although their fat mass was
unchanged (175). Knockout mice fed a diet rich in medi-
um-chain triglycerides demonstrated a lower body weight
and lower fat mass than wild-type, despite the fact that
their food intake was higher, and this probably resulted
from their higher level of energy expenditure during the
light phase (175). Glucose tolerance was not significantly
altered in these mice (175). Transgenic mice overexpress-
ing the human GHRL and MBOAT4 genes in the liver and
fed a diet rich in medium-chain triglycerides demonstrated
an increase in plasma human acylated ghrelin, body
weight, and fat mass and a decrease in energy expenditure
during the light and dark phases compared with the wild-
type mice, but this was not accompanied by an increase in
food intake (175). Interestingly, these mice lost weight
when they were returned to a normal chow diet.

In a recent study, GOAT knockout mice were unable to
adequately regulate blood glucose balance during severe
(60%) caloric restriction and became moribund after 7 d
(26). Acylated ghrelin appeared to mediate survival in
these animals by regulating GH because acylated ghrelin
or GH treatment rescued them from hypoglycemia (26).
Recent findings in male and female GOAT (Mboat4),
ghrelin or GHSR knockout mice, and ghrelin and GHSR
double knockout mice, however, indicate that GOAT may
not play a role in preventing hypoglycemia in chronic ca-
loric restriction (27). Because ghrelin is the specific target
for GOAT, this enzyme is likely to be a useful target for
drugs inhibiting ghrelin octanoylation and preventing the
effectsof ghrelinonappetite stimulation.Byoctanoylating
ghrelin, GOAT is likely to regulate the balance between
acylated and unacylated ghrelin.

In addition to its effects on the gastrointestinal system,
ghrelin plays a role in regulating the reproductive, cardio-
vascular and immune systems. It may also have roles in the
regulation of anxiety, memory, and sleep and play a role
in depression (176–178). Ghrelin has a number of bene-
ficial roles in the cardiovascular system because it im-

proves cardiac function, including contractility, reduces
blood pressure without affecting heart rate, and promotes
vasodilation (179–181), and ghrelin protects cardiomyo-
cytes and endothelial cells against apoptosis (36, 182).
Studies into the role of ghrelin in insulin release have been
somewhat conflicting. Ghrelin has been shown to increase
or decrease insulin secretion in different models, and the
mechanisms involved are also currently unclear (10, 183–
185). Ghrelin also has a role in modulating the immune
response, reduces circulating levels of proinflammatory
cytokines, and increases the expression of IL-10, an anti-
inflammatory cytokine (9, 186, 187).

UAG is also likely to have an important physiological
role (175). Because it does not bind and activate the ghrelin
receptor, GHSR1a, it was originally thought to be an in-
active form of ghrelin (1, 29). There have been conflicting
reports regarding the role of UAG on appetite, with some
studies indicating that UAG reduces appetite (188, 189),
whereas some studies have shown that it promotes feeding
(146) and others have reported that it has no effect on
feeding and appetite (190). In mice, the use of an antibody
that specifically hydrolyzed the octanoyl group of ghrelin
to produce UAG reduced refeeding and increased meta-
bolic rate, suggesting that UAG does not have a potent
effect on appetite (191). There is evidence that UAG plays
a role in energy balance, however, because transgenic mice
that overexpress UAG show a decrease in fat mass, body
weight, and food intake compared with control mice (188,
192). UAG secretion is elevated in response to caloric re-
striction, and this appears to be highly regulated, indicat-
ing an important physiological role (175, 193). UAG may
play an important role in glucose balance, mediated by an
alternative ghrelin receptor (175). UAG has roles in stim-
ulating cell proliferation and improves pancreatic �-cell
survival (194). It may also oppose the effects of ghrelin on
the endocrine pancreas and improve insulin sensitivity
through a pathway independent of the GHSR and through
an alternative ghrelin receptor (32).

Obestatin, a hormone derived from the ghrelin prepro-
hormone, was originally described as having the opposite
effects to ghrelin on appetite, with ghrelin increasing ap-
petite and feeding and obestatin opposing these effects
(13). Few studies have been able to replicate these findings
to confirm a role for obestatin in appetite regulation, how-
ever (14, 15, 18, 20, 146, 195–200). Unlike ghrelin,
obestatin does not appear to affect the secretion of hor-
mones from the anterior pituitary (201). Although the role
of obestatin in appetite regulation remains speculative,
obestatin does appear to be an endocrine hormone in its
own right. The role of obestatin in obesity also remains
unclear; however, it may play a role in adipocyte function
(202). Obestatin has a role in a number of processes un-
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related to appetite regulation; it may improve memory
performance and act as an anxiolytic. It may also play a
role in the regulation of metabolism during sleep and tor-
por and inhibit thirst (203–206).

Obestatin also plays a role in regulating the function
of the endocrine pancreas. The role of obestatin in the
regulation of insulin secretion is currently controver-
sial, however, because some studies have suggested that
obestatin stimulates insulin release, whereas other stud-
ies indicate that it has no role (94, 207–209). Plasma
obestatin levels are inversely correlated with insulin lev-
els, indicating that the regulation of these hormones may
indeed be related (210–212). Obestatin increases insulin
secretion and activates the expression of genes associated
with insulin synthesis in isolated human pancreatic islet
cells (94). In contrast, studies in rats and mice have indi-
cated that obestatin inhibits insulin secretion in response
to glucose or has no effect on insulin levels under basal or
fasting conditions (207–209). It may have a role in dia-
betes mellitus, however, because exogenous obestatin
treatment improved glucose balance in a streptozotocin-
induced rat model of diabetes mellitus and prevented the
development of diabetes in these animals (96).

III. Expression of the Ghrelin Axis in Cancer

A. The expression of ghrelin and GHSR proteins and
sense and antisense transcript isoforms in normal cells
and tissues and in tumors

Ghrelin mRNA and the peptide are expressed in a wide
range of normal tissues, including the stomach, duode-
num, and to a lesser extent in the colon, hypothalamus,
pituitary, endocrine pancreas, placenta, lung, cardiomy-
ocytes, ovaries, and testes (39, 133, 213–219). Similarly,
ghrelin mRNA and protein are expressed in many cancer
and tumor tissues, including pituitary adenomas; cancers
of the digestive tract; in lung, thyroid, breast, prostate,
ovarian, testicular, endometrial, renal, and adrenocortical
tumors; and in cancers of the endocrine pancreas (Table 1)
(38, 39, 43, 74, 80, 81, 127, 214, 220–233). Ghrelin is
secreted from a number of different cell lines, including
colorectal cancer cell lines, the AGS gastric cancer cell line,
the TT thyroid cancer cell line, astrocytoma cell lines, and
the human erythrocytic leukemia (HEL), HL-60, THP-1,
and SupT1 leukemic cell lines, and prostate cancer cell
lines (73, 75, 76, 127, 234–236). Few studies have dis-
tinguished whether cancer cells produce octanoylated
ghrelin, UAG, or both. The HEL, HL-60, THP-1, and
SupT1 cell lines produce both acylated and unacylated
ghrelin, but proportionally more acylated ghrelin (75, 76).
Ghrelin production has been described in a number of

neuroendocrine carcinoid tumors, including a rare tumor
arising from a tailgut cyst (237), bronchial carcinoid tu-
mors (238), gastric and intestinal endocrine tumors (239–
241), and pancreatic neuroendocrine tumors (240).

Ghrelin and obestatin protein expression has been in-
vestigated in 137 patients with a range of breast cancer
grades using tissue microarrays and immunohistochemis-
try (242). Moderate to strong cytoplasmic immunostain-
ing for obestatin was present in 77% of cases and ghrelin
immunoreactivity in 71% of cases. Ghrelin and obestatin
immunoreactivity was positively correlated with the pa-
tients’ estrogen receptor status, but negatively correlated
with tumor size and grade and Ki67 staining (which is an
indicator of the rate of cell proliferation). This study dem-
onstrated that patients with tumors that expressed higher
levels of ghrelin also had higher survival rates, and ghrelin
could, therefore, be a useful prognostic marker for breast
cancer (242).

Tissue levels of ghrelin in colorectal cancer could be
informative because colorectal cancer cells were demon-
strated to secrete ghrelin and produce significantly more
ghrelin than normal colonocytes (73). Levels of ghrelin
tissue expression were highly correlated with more ad-
vanced tumors (73). Tissue ghrelin levels were propor-
tional to the BMI of the patient, and increased BMI and
obesity are important risk factors for colorectal cancer
(73). The results of this study suggest that there is a mech-
anistic link between obesity, ghrelin, and the development
of colorectal cancer (73). In contrast, other studies in colo-
rectal cancer have suggested that ghrelin levels may be
lower in patients with colorectal cancer compared with
healthy controls (243). It was suggested that ghrelin could
be a useful biomarker for non-small cell lung cancer
(NSCLC) because in one study, ghrelin expression was
detected in a majority of the 41 lung cancer tissues exam-
ined (80).

GOAT is coexpressed in the human stomach with ghre-
lin and is expressed in cells in the gut and the endocrine
pancreas and also at lower levels in other tissues (25).
GOAT mRNA expression has been demonstrated in a
wide range of normal human tissues (71, 244), correlating
with the widespread expression of ghrelin (244). Expres-
sion is higher in the stomach, gut, and pituitary, but
GOAT is also expressed in numerous normal tissues, in-
cluding the adrenal cortex, kidney, lung, spleen, fat, pan-
creas, and placenta (244). Studies of the level of protein
expression of GOAT and measuring the activity of GOAT
in different tissues are more likely to be conclusive and
physiologically relevant to our understanding of the func-
tion of GOAT in different tissues. The expression of
GOAT in cancer tissues is yet to be fully investigated.
GOAT expression has recently been described in breast
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cancer cell lines, and mean GOAT mRNA expression was
elevated in 40 ductal breast tumor specimens compared
with the mean value for four normal breast samples (71).
It is unclear whether increases in GOAT mRNA expres-
sion also lead to an increase in GOAT protein expression
or increased enzymatic activity. Although the expression
of total ghrelin has been widely investigated in cancer tis-
sues, the balance between the expression of acylated ghre-
lin and unacylated ghrelin has been largely unexplored.

We have also described a number of ghrelin natural
antisense transcripts that are encoded by a gene (GHR-
LOS) on the opposite strand of the ghrelin gene (106,
122). Although the function of this gene is currently un-
known, natural antisense transcripts are now recognized
to have a range of important regulatory roles in health and
disease through numerous mechanisms (245). A number
of ghrelin transcript isoforms and ghrelin natural anti-
sense transcripts are expressed in cancer. A novel exon
3-deleted proghrelin isoform, which lacks exon 3, was
described in normal and malignant prostate cancer tissue
and cell lines (246). This ghrelin isoform would produce
mature ghrelin and a novel C-terminal peptide, but not the
obestatin peptide. Using antibodies raised against the
novel C-terminal peptide derived from this isoform, our
studies suggested that it is expressed in breast cancer tis-
sues with high-grade carcinoma exhibiting the strongest
immunoreactivity (70).

A newly described intron 1 retained variant of ghrelin
(In1-ghrelin) contains intron 1 and exon 2 of ghrelin but
lacks exons 3 and 4 (71). This isoform, which encodes
the first 12 amino acids of ghrelin, followed by a novel
C-terminal peptide, is expressed in a range of normal
tissues and is highly expressed in the thymus (71). This
variant lacks the coding region for obestatin. The mean
expression of the In-1 ghrelin isoform was eight times
higher in ductal breast cancer specimens (n � 40) than
in normal controls (n � 4) (71). Expression of this vari-
ant was highly correlated with levels of GOAT mRNA
expression, and these authors suggested that this form of
ghrelin could be the major substrate for GOAT in breast
cancer (71). It is currently unclear whether this ghrelin
isoform is translated or octanoylated, however.

The functional form of the ghrelin receptor, GHSR1a,
is expressed in a large number of normal tissues and tu-
mors. GHSR1a expression was first demonstrated in the
hypothalamus and pituitary (3), and expression has also
been demonstrated in a wide range of peripheral tissues at
the mRNA and protein levels, including the stomach, in-
testine, pancreas, lung, kidney, adipose tissue, thyroid,
adrenal glands, prostate, ovaries, and testes (1, 43, 133,
135). GHSR1a is also expressed in a wide range of cancer
tissues (Table 1), including tumors of the prostate, breast,

endometrium, and ovaries, and in pituitary tumors and
astrocytomas (37, 43, 71, 219, 235, 247–251). Interest-
ingly, GHSR1a expression is reduced in some cancer tis-
sues compared with the normal tissues from which they
are derived, and GHSR1a expression appears to be down-
regulated or absent in some colorectal, adrenocortical, and
breast cancers, in NSCLC, leukemia, and follicular thyroid
tumors (34, 81, 214, 252, 253). In astrocytoma cell lines,
however, GHSR1a is up-regulated compared with normal
primary human astrocytes (235). In GH-secreting pituitary
adenomas, GHSR1a expression increased with tumor size
and invasiveness of tumors (251).

Although the function of the GHSR1b isoform is un-
clear, it is expressed in a number of cancer types (Table 1)
and may be overexpressed in some cancers including pros-
tate and breast tumors, compared with normal tissues (43,
71, 247, 252). In human adrenocortical carcinoma cell
lines and a number of other tumor types, GHSR1a ex-
pression is down-regulated, and GHSR1b expression is
increased (73, 252). GHSR1b is overexpressed in NSCLC
cell lines and in tumor samples (254). GHSR1b is thought
to form a heterodimer with the neurotensin 1 receptor, a
closely related GPCR in the small ghrelin receptor gene
family (254). Dimerization of these two receptors leads to
the formation of a novel receptor for neuromedin, and
acting through this GPCR dimer, autocrine/paracrine neu-
romedin stimulates cell proliferation in NSCLC cell lines
(254). Although this finding has not been confirmed, the
GHSR1b/neurotensin 1 receptor dimer could prove a use-
ful target for intervention in NSCLC.

Specific binding sites for ghrelin and for GHS have
been described in a number of normal tissues (255) and
in prostate cancer cell lines (35), and GHSR expression
has previously been demonstrated in prostate cancer
cell lines (43). A recent study has demonstrated that the
use of a fluorescein-labeled, truncated ghrelin (amino
acids 1–18) analog could be useful as a diagnostic tool
for prostate cancer (256). Signal from the fluorescein-
labeled ghrelin analog was amplified using a hapten
amplification technique and used to examine prostate
cancer, benign prostatic hyperplasia (BPH), and normal
prostate tissue from 13 patients with prostate cancer
(256). Ghrelin signal was significantly higher in pros-
tate cancer tissue specimens compared with normal tis-
sue and BPH. Although in vivo studies are required,
coupled with imaging techniques, this method could be
useful in discriminating benign disease and cancer in
patients (256), and this is currently problematic using
prostate-specific antigen screening methods. Although
these authors conclude that the ghrelin probe is binding
the GHSR1a in the prostate, it may also be binding the
alternative ghrelin receptor. Although the role of ghre-
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lin in prostate cancer proliferation is currently unclear
(see Section IV.A), short-term use of this imaging probe
is unlikely to cause clinical concern (256). Novel PET
imaging probes based on GHSR agonists, antagonists,
and inverse agonists have been developed and may also
provide the basis for targeted drug delivery for obesity
and other diseases (257, 258).

B. Ghrelin (GHRL) and GHSR gene single nucleotide
polymorphisms (SNP) and cancer

Although results have been conflicting and inconclu-
sive, a number of polymorphisms in the ghrelin axis have
been associated with cancer risk, supporting a possible
role for the ghrelin axis in cancer. Association studies in-
volving the ghrelin and GHSR genes and height, obesity,
type 2 diabetes, and cardiovascular disease have recently
been extensively reviewed (259).

A number of studies have investigated the association
between SNP in the ghrelin (GHRL) or GHSR genes and
breast cancer risk, with one study demonstrating a link
(100). In a study of 1359 breast cancer patients and 2389
matched controls, 15 common polymorphisms in the
ghrelin and GHSR genes were investigated and correlated
with anthropometric data as a part of the EPIC (European
Prospective Investigation into Cancer and Nutrition)
study (100). A SNP, rs171407-G, in the noncoding region
of the ghrelin gene (GHRL) has been associated with a
20% increase in breast cancer risk [odds ratio (OR), 1.2;
95% confidence interval (CI), 1.0–1.4] and also correlates
with an increase in height (100). Although cancer risk is
frequently associated with an increase in BMI, surpris-
ingly, the rs171407-G SNP is associated with a decrease in
BMI (100). A SNP (rs3755777) in the 5� promoter region
of the ghrelin gene was significantly associated with a 5%
increase in IGF-I levels (100). These authors also described
a GHSR polymorphism, rs572169 (Arg159Arg), that
conferred a 20% increased risk of breast cancer and was
associated with increased height, but not an increase in
BMI (100). In another study, however, no association was
seen between the rs572169 SNP and breast cancer (260).
This SNP has also been associated with height in a ge-
nome-wide association study (GWAS) (261) and was also
modestly associated with obesity in a study of a large Eu-
ropean cohort (1275 obese subjects and 1059 controls)
(262). However, this association with obesity could not be
validated in a GWAS in a German cohort (262).

The EPIC study also suggested that homozygotes
with a GHSR polymorphism in the noncoding region of
the gene (rs2948694) have a 2-fold increased risk of
developing breast cancer (100). Although the potential
mechanism of action of this SNP is unknown, this poly-
morphism could alter GHSR gene expression. This was

a very small study (n � 18), however, and these authors
have recognized that the results of this study may be due
to chance and studies with larger numbers of subjects
are required (100).

Other studies have shown no association between
breast cancer and ghrelin and GHSR polymorphisms,
however. A study in a Polish cohort with 405 breast
cancer patients and 460 controls, found no association
between SNP in the ghrelin gene (rs26311, rs34911341,
rs696217, and a SNP in the 3� untranslated region) and
breast cancer risk (260). In the same study no associa-
tion was seen with the GHSR synonymous SNP rs572169
(Arg159Arg) and rs495225 (Gly57Gly) (260). Fourteen
different ghrelin SNP (including rs26311 and rs696217)
were not associated with breast cancer risk, or with adi-
posity in a study of 648 patients with breast cancer and
659 controls from the Cancer Prevention Study II cohort
(263). The rs572169 and the rs171407 SNP that were
associated with breast cancer in the EPIC study (100) were
not investigated in this study. This study was limited by a
relatively small sample size, however, and the authors note
that associations between the SNP studied and breast can-
cer may have been missed (263).

Ghrelin and GHSR SNP have been associated with
colorectal cancer, although a strong association is not sup-
ported by the current data (103). In a study of four poly-
morphisms in the GHSR gene and seven polymorphisms
in the ghrelin gene, two tagging SNP in GHRL (rs27627,
rs35683) have been associated with a decreased risk of
colorectal cancer. A T allele in the rs27647 SNP showed a
protective effect against colorectal cancer with an OR of
0.82 (95% CI, 0.69–0.98) for heterozygotes and an OR of
0.73 (95% CI, 0.58–0.93) for homozygotes (103). The
intronic SNP rs27647 (�501A�C) may have a small im-
pact on BMI and was associated with BMI in a Caucasian
(European-American) cohort (102). A SNP in the intronic
region of the ghrelin gene (rs35683) was also associated
with a reduced risk of colorectal cancer (103) and has also
been associated with insulin levels and obesity (262). In
this study, no association was seen with the GHSR gene
using four tagging SNP, and there was no correlation be-
tween colorectal cancer and five other SNP in the ghrelin
gene that were tested (103). Obesity and metabolic dis-
turbance are risk factors for colorectal cancer; the ghrelin
axis plays roles in regulating metabolism, and these SNP
may therefore have an indirect effect on cancer risk. How-
ever, these findings in a Czech cohort (of 680 patients and
593 controls) could not be replicated by the same research-
ers in a German population (of 569 patients and 726
healthy controls) (103). This is unlikely to represent a pop-
ulation difference because the populations are genetically
very similar and environmental influences are unlikely to
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play a role (103). Ghrelin could have indirect effects on
cancer risk due to its influence on BMI. The German pop-
ulation was younger in this study, and the effects on ele-
vated BMI may not have affected cancer development in
this group (103). Further and larger independent studies
are required to determine whether this association is valid;
however, theseauthors excludedamajor role foranumber
of ghrelin and GHSR SNP in colorectal cancer (103).

Obesity is a major risk factor for adenocarcinoma of the
esophagus and of the esophagogastric junction, and it may
play a role in the pathogenesis of these diseases (264). BMI
has been recognized as a key environmental factor in this
disease, and gastroesophageal reflux disease, also associ-
ated with obesity, is a strong risk factor (265). Using a
genome-wide approach, in a study of 335 patients with
esophageal adenocarcinoma, 1330 SNP were genotyped,
and important SNP were identified and adjusted for co-
variates and false discovery rate (265). This study identi-
fied the ghrelin SNP, rs696217 (Leu72Met), as one of the
most significant SNP associated with early onset of esoph-
ageal adenocarcinoma (265). Other significant SNP in
other genes were associated with apoptosis pathways
(265). An earlier study investigated the association be-
tween 12 SNP associated with obesity in 260 patients with
esophageal adenocarcinoma, 301 patients with esopha-
gogastric junction adenocarcinoma, 213 patients with
esophageal squamous cell carcinoma, and 1352 controls
(264). In this study, candidate SNP in the ghrelin gene,
rs696217 and rs4684677, were investigated (264). This
study also demonstrated a positive association between
the rs696217 (Leu72Met) SNP and esophageal cancer,
and although the association was modest and not statis-
tically significant (264), it supports the findings of the
more recent study by Wu et al. (265). Although the func-
tional consequence of this polymorphism is unclear, the
Leu72Met SNP is within the coding region for proghrelin,
but not the mature ghrelin peptide itself (266). This SNP
has been associated with obesity and type 2 diabetes mel-
litus, but results of different studies have been very incon-
sistent (259). Further studies into the association between
SNP in the ghrelin gene and esophageal carcinoma are,
therefore, warranted.

SNP in the ghrelin gene have also been associated with
risk for non-Hodgkin lymphoma (101), and this disease
has previously been positively associated with BMI (267).
In a study of 458 patients and 812 controls, the linked
ghrelin gene SNP rs1629816 (4427G�A in a noncoding
region) and rs35684 (5179A�G in exon 1 of the gene)
were associated with an approximate 65% decreased risk
of non-Hodgkin lymphoma in homozygotes and a re-
duced risk for homozygotes with diffuse large cell lym-
phoma (101). Although this study involved a relatively

small number of participants, particularly in the diffuse
large cell lymphoma homozygote subgroup, and the CI
were large, these results justify larger studies to validate
the correlation between ghrelin gene SNP and this disease
(101). Because ghrelin has antiinflammatory effects and
ghrelin is chronically decreased in obesity, low ghrelin
levels in obesity could increase the risk of developing non-
Hodgkin lymphoma (101).

Few studies have demonstrated associations between
SNP in ghrelin and/or GHSR genes and cancer risk. As-
sociations with alleles may be due to chance, may reflect
that the allele is functional, or may be due to the fact that
the allele is in linkage disequilibrium with a locus that
influences phenotype (259). Associations between cancer
and SNP in the ghrelin and ghrelin receptor genes do not,
therefore, necessarily indicate a functional role. The func-
tional effects and biological and functional significance of
a number of SNP in the ghrelin axis have not been estab-
lished, and many of these are in noncoding regions. SNP
in noncoding regions and synonymous SNP may influence
phenotype through regulatory mechanisms.

There have been no reports of any associations be-
tween the ghrelin gene and human traits or the GHSR
gene and cancer in the National Human Genome Re-
search Institute GWAS database (268). A locus in the
GHSR gene is one of hundreds of variants that has been
associated with human height in a GWAS of over 100
000 individuals, the strongest association being with the
synonymous SNP rs572169 (261). Studies into the re-
lationship between SNP in the ghrelin and GHSR genes
have been conflicting, however (262). GWAS have also
found an association between chromosome 3q24–28 and
increased risk of obesity and diabetes, and this includes the
GHSR locus (3q26.31) (259). Amplifications of this re-
gion (3q26.2-q9) have also been associated with NSCLC
(269), and an amplification unit at chromosome 3q25–27
has been associated with prostate cancer growth (270).
The recruitment of very large cohorts for GWAS may lead
to the identification of an association between ghrelin,
GHSR, and disease traits (259). Many cancers, including
breast and prostate cancer, are highly heterogeneous dis-
eases, with a number of distinct molecular phenotypes
(271, 272). Further stratification of patient groups to re-
flect their molecular subtypes may lead to more informa-
tive genome-wide studies in the future.

C. Epigenetic changes in the ghrelin axis in cancer
Epigenetic alterations and site-specific hypermethyl-

ation of promoter regions are typical features in cancer
(273). Using a genome-wide approach, targeting high fre-
quency DNA methylation changes in nine invasive ductal
breast tumors, and comparing these to normal breast tis-
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sue, a locus associated with the GHSR gene promoter re-
gion was shown to be highly methylated in breast cancer
(274). Validation studies in 103 samples of invasive ductal
carcinoma (and 104 benign or normal controls) demon-
strated that the methylation status of the GHSR could
distinguish between invasive ductal carcinomas and nor-
mal breast tissue with 90% sensitivity and 96% specificity
(274). The authors noted that this locus was the most
sensitive and specific biomarker for breast cancer reported
and is an exceptionally sensitive tumor-associated DNA
methylation-based biomarker (274). Methylation of pro-
moter regions is an important mechanism that can regu-
late gene transcription and cell-specific mRNA expression
(275). Hypermethylation of the gene led to the down-
regulation of GHSR1a expression (in the small number
of breast cancer samples tested); and using quantitative
RT-PCR, GHSR1a expression could not be detected in
the four breast cancer samples but was present in nor-
mal breast tissues (274). GHSR methylation could be a
useful biomarker for breast cancer and allow the dis-
crimination of new molecular subtypes of breast cancer
(274). As discussed in Section III.A, GHSR1a expres-
sion is also reduced in a number of other cancer types
compared with normal tissues, including colorectal, ad-
renocortical, and follicular thyroid tumors, NSCLC,
and leukemia, and it would be useful to investigate the
methylation status of the GHSR promoter in these can-
cers (34, 73, 81, 214, 252, 253).

The functional significance of GHSR1a hypermethyl-
ation and down-regulation in breast cancer is currently
unknown; however, it has been hypothesized that it could
play a role in tumorigenesis (274). If a causal link was
proven, it is conceivable that preventing methylation of
the receptor or demethylation of the receptor could lead to
altered function and may affect cancer progression. DNA
methyltransferase inhibitors are promising new therapeu-
tic agents that target epigenetic alterations in cancer, and
they may be used to reactivate tumor suppressor genes
(276). These drugs are currently highly nonspecific, how-
ever, and have a range of adverse side effects (273). GHSR
methylation could also regulate the balance between ex-
pression of GHSR1a and the GHSR1b isoform, which
does not bind ghrelin. In a small immunohistochemical
study, we demonstrated that GHSR1b expression was not
present in normal breast glandular tissue, but was up-
regulated in breast cancer specimens (70). Differential ex-
pression of GHSR1a could partly explain discrepant re-
sults in proliferation assays in breast cancer cell lines (see
Section IV.A). Inone study,MDA-MB231cellswere shown
to express GHSR1a and proliferate in response to ghrelin
treatment (70),whereas inanother studyMDA-MB231cells
did not express GHSR1a, and ghrelin treatment reduced cell

proliferation (34). Although the expression of GHSR1a may
regulate the response of cells to ghrelin (275), some of the
effectsofghrelinanddesacylghrelinaremediatedthroughan
alternative ghrelin receptor.

A recent study in rodent cell lines also suggested that the
expression of GHSR1a is regulated by methylation of CpG
islands in the promoter region of the GHSR gene, and
these CpG island methylation sites are conserved in ro-
dents and humans (275). In the rodent cell lines studied,
hypermethylation of CpG regions in the GHSR promoter
corresponded with low or absent GHSR1a expression,
whereas in cell lines where the promoter region is hypom-
ethylated, GHSR1a mRNA was expressed (275). Treat-
ments to demethylate DNA led to an increase in GHSR1a
expression in cell lines (275). Although these studies in-
dicated that the relative expression of GHSR1a in different
cell lines is regulated by GHSR promoter methylation,
studies in normal tissues were inconclusive, and further
studies are required (275).

D. Plasma ghrelin levels and cancer
Elevated ghrelin plasma levels have been detected in

some studies in a number of cancer types (277, 278),
whereas some studies have shown no correlation (73).
Plasma ghrelin levels are largely inversely correlated to
BMI, and because changes in circulating ghrelin levels are
correlated to nutritional status, this is likely to greatly limit
the use of ghrelin as a biomarker for cancer. Ghrelin levels
are elevated before meals and decrease with feeding (7,
279). The significance of ghrelin plasma levels should not
be interpreted without taking the nutritional status and
the BMI of the subject into account; however, few studies
have corrected for BMI. Ghrelin levels are frequently el-
evated in patients with cancer cachexia (73, 159, 280,
281), and ghrelin levels are reduced in most cases of obe-
sity (158), with the exception of Prader-Willi syndrome,
where ghrelin is greatly elevated (162). In cancer, altered
ghrelin levels are more likely to be indicative of the met-
abolic state of the patient, rather than being directly re-
lated to the cancer itself (73), and gastric ghrelin may be
secreted in response to a negative energy balance associ-
ated with cachexia (282).

The accurate measurement of plasma acylated ghrelin
levels is critically dependent on the protocols used in the
preparation of samples and the assays used (116). Differ-
ent assays may lead to different measurements of plasma
ghrelin levels (283–285). There are a number of limita-
tions that must be considered when interpreting measure-
ments of plasma ghrelin, including the lack of interna-
tional standards, limitations of some antibody-based
methods, and the rapid deacetylation and degradation of
ghrelin in samples. Acylated ghrelin is quickly degraded in
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the plasma, with the rapid removal of the acyl modifica-
tion, and therefore, the collection and processing of blood
samples is crucial to the accurate measurement of acylated
ghrelin (116, 286). The half-life of the ghrelin acyl mod-
ification in the plasma is short, with a 2.9-h half-life
measured for endogenous ghrelin at room temperature,
a half-life of 4 h at 37 C in ghrelin-spiked serum samples
in one study, and a 45-min half-life reported in another
study using plasma (114, 193, 287). Ghrelin is also de-
graded into C-terminal fragments by proteolysis, and a
number of biologically inactive cleavage products were
identified after ghrelin (amino acids 1–23) was incu-
bated with stomach, liver, and kidney tissue homoge-
nates (114). Although deacetylation, but not peptide
degradation, was observed when ghrelin peptide was
exposed to serum for several hours in this study (114),
another study has indicated that ghrelin is rapidly de-
graded into smaller peptides in bovine plasma (116).

Because ghrelin degradation is inhibited by acidifica-
tion and the acyl group is easily removed at a neutral pH,
it is recommended that plasma is rapidly acidified using
HCl (193,288), although someresearchershave suggested
that acidification is not necessary (287). In a number of
published studies, it is not clearly specified whether or not
plasma samples were acidified and whether the acyl mod-
ification was largely maintained, and therefore, it is un-
clear in many studies whether the proportion of acylated
ghrelin measured is accurate (289). The addition of 4-(2-
aminoethyl)-benzene sulfonyl fluoride to the sample and
preventing coagulation with EDTA and aprotinin can also
prevent ghrelin deacetylation (116, 193, 287, 288).

There is evidence that both acylated and unacylated
forms of ghrelin should be assayed, particularly given the
fact that UAG is likely to have unique functions (193). The
ratio of acylated ghrelin and UAG can be altered while
the level of total ghrelin remains constant, and therefore,
assaying total ghrelin alone is likely to be less informative
(193, 283, 290). For example, with long-term fasting, to-
tal ghrelin levels remain the same, whereas the ratio be-
tween ghrelin and UAG is altered and acylated ghrelin
levels decline (193). In some studies in cancer, acylated
ghrelin levels are elevated while total ghrelin levels are
unaltered (278). The measurement of total ghrelin levels
has some advantages, however, because collection meth-
ods are less critical, as the acylation of ghrelin does not
need to be preserved, but this method is less specific be-
cause degradation products are also likely to be detected
(283). A number of studies have measured total ghrelin
levels alone in cancer patients (291), whereas others have
measured acylated ghrelin and total ghrelin (277).

There are no available international standards for the
measurement of ghrelin, and results from different labo-

ratories and different assays can vary widely. Different
results may be obtained using different assays or assay
methods (193, 283, 285, 292), with 2-fold and up to 10-
fold differences in ghrelin levels from the same samples
being reported between some assays (285, 288, 293). A
number of factors are likely to affect the sensitivity of
antibody-based ghrelin assays (283). This includes inter-
ference by plasma proteins and other molecules through
nonspecific competition (283). Specific competition with
ghrelin degradation products, including inactive C-termi-
nal fragments, can be detected in single antibody (single-
site) assays (including RIA) and could account for up to
60% of the total ghrelin measured in single-site RIA (193,
283, 294). This source of interference is minimized by the
use of sandwich assays, however, where ghrelin must be
recognized by antibodies to two different epitopes, leading
to a more specific assay (283). Therefore, RIA have lower
specificity and are less likely to detect more subtle changes
in ghrelin levels than two-site assays (283). To date, most
studies in cancer patients have been performed using sin-
gle-site assays. In a comparative study, higher ghrelin lev-
els were measured in a single sample tested using a single-
site assay compared with a sandwich assay, and this is
likely to be due to the measurement of ghrelin fragments
in the single-site assays (283). Because ghrelin binds to
plasma proteins, including high-density lipoproteins, the
epitopes recognized may not be available to the antibody;
however, this could be reversed by acidification of the
sample (283). Hemolysis has also been demonstrated to
affect the measurement of acylated ghrelin in a sandwich
immunoassay and may also lead to variations in ghrelin
measurements (295).

Several studies have investigated ghrelin plasma levels
in patients with prostate cancer. In a very small study of 18
patients with prostate cancer, 12 patients with BPH, and
16 healthy controls, fasting acylated and total ghrelin lev-
els were measured using Linco immunoassays (277). Se-
rum levels of acylated ghrelin and the acyl ghrelin to total
ghrelin ratio were significantly higher in patients with
prostate cancer compared with patients with BPH or nor-
mal prostates, whereas the levels of total ghrelin were sim-
ilar in all groups (277). In this study, ghrelin levels were
not correlated with cachexia or reduced BMI, suggesting
that this effect was not due to metabolic status (277). It is
not clear whether the samples were acidified in this study.
In a small study of 30 patients with prostate cancer and 50
patients with BPH, differences in total fasting ghrelin
(measured using a competitive ELISA) were seen between
these two patient groups, and BMI was not significantly
different between the two groups (291). No correlation
was observed between circulating total ghrelin or acylated
ghrelin and testosterone levels in a cohort of 18 prostate
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cancer patients receiving two different hormone-suppress-
ing treatments and a control group of 40 participants
(296). Although studies linking levels of acylated ghrelin
and prostate cancer have been conflicting and have inves-
tigated small cohorts, the results of these studies indicate
that larger studies may be warranted.

Levels of acylated ghrelin were significantly higher in a
cohort of 39 uterine leiomyoma patients than in the con-
trol group of 32 healthy patients, whereas levels of total
ghrelin were not altered (278). Changes in acylated ghrelin
levels were not correlated with BMI or cancer cachexia in
this study (278). These assays were performed using im-
munoassays (278), and although assays were performed
according to the manufacturer’s instructions, it is unclear
whether samples were acidified at the point of collection
to stabilize the octanoyl modification. In a small study of
22 patients with benign ovarian tumors and 31 patients
with ovarian cancers, acylated ghrelin levels were higher in
patients with tumors than in the control group (n � 32),
whereas levels of total ghrelin were similar in all groups
(289). The ratio of acylated to total ghrelin was also ele-
vated in these patients. These authors concluded that el-
evated plasma levels may indicate that ghrelin plays a role
in the progression of these cancers (278), although larger
studies are required.

Levels of ghrelin are elevated in medullary thyroid car-
cinoma tumor tissues; however, in 22 patients with med-
ullary thyroid carcinoma, plasma ghrelin levels (measured
using RIA) were comparable to those in patients with be-
nign thyroid disease (nontoxic goiter) matched for BMI
(297). These authors concluded that ghrelin was unlikely
to be a useful biomarker for this disease (297).

A number of studies have measured total ghrelin levels
in colorectal cancer patients (73, 243, 282), with one small
study showing an inverse correlation between colorectal
cancer and plasma ghrelin (243). In a study of patients
with gastric and colorectal cancer, 31 patients were con-
sidered to be cachectic, based on their weight loss, whereas
47 patients were noncachectic, and there were 24 healthy
controls (282). Fasting blood total ghrelin levels were
measured using RIA (282). In this small group of patients,
no correlation was seen between ghrelin levels and nutri-
tional status, and there was no significant increase in
plasma ghrelin levels in the small groups of patients with
cachexia for either cancer type (282). A study of 110 colo-
rectal cancer patients demonstrated that fasting total ghre-
lin levels, measured using RIA (Phoenix Pharmaceuticals),
were not correlated with the stage or grade of the cancer
(73). Cachectic patients with weight loss had higher levels
of ghrelin compared with controls, and therefore, this
study demonstrated that ghrelin levels were more likely to
be indicative of metabolic status, rather than being specific

to the disease itself (73). This was not supported by an
earlier study (243) in colorectal cancer patients, however.
In a study of 29 colorectal cancer patients with different
cancer stages and 50 healthy controls, fasting total ghrelin
levels were measured by RIA (Linco) (243). Serum ghrelin
levels were significantly lower in the cancer patients com-
pared with controls, and ghrelin levels decreased as the
aggressiveness of the tumor increased (243). Although
an inverse correlation between ghrelin levels and BMI
was seen in the control group, this was not seen in the
cancer patient group (243). In a study of patients with
gastric and colorectal cancer, 31 patients were consid-
ered to be cachectic based on weight loss, whereas 47
patients were noncachectic, and there were 24 healthy
controls (282). Fasting blood total ghrelin levels were
measured using RIA (282). In this small group of pa-
tients, ghrelin levels were not correlated with nutri-
tional status, and there was no significant increase in
plasma ghrelin levels in the small groups of patients with
cachexia for either cancer type (282).

It has been suggested that ghrelin may have a role in the
pathogenesis of gastric cancer, and tissue levels of ghrelin
may be useful as a prognostic or diagnostic marker (73).
Because the stomach is the major source of ghrelin, ac-
counting for approximately 80% of ghrelin in the circu-
lation, treatment of gastric cancer with total or partial
gastrectomy reduces circulating levels of ghrelin (298,
299). Surgery for gastric cancer may require total, distal,
or partial gastrectomy, depending on the site and extent of
the tumor (299). A decrease in the level of plasma ghrelin
in patients with the disease could contribute to cancer
cachexia, and ghrelin replacement therapy may be useful
in these patients to protect against these effects (282) (see
Section V). Gastric ghrelin expression is also reduced in
cases of atrophic gastritis associated with chronic Helico-
bacter pylori infection (300), and the number of ghrelin-
producing cells in the stomach decreases with the progres-
sion of chronic gastritis (301). In a study of 261 patients
with gastric non-cardia adenocarcinoma, 98 patients with
esophagogastric junctional adenocarcinoma, and 441
controls, total fasting ghrelin levels (measured by RIA) in
the lowest quartile were correlated with an increase in
cancer risk (302). Ghrelin levels were inversely correlated
with BMI in this study (302).

Few cases of ghrelinoma, where ghrelin is secreted at
high levels in the circulation, have been described. A small
number of neuroendocrine tumors, including carcinomas
of the pancreas, gallbladder, and parts of the gastrointes-
tinal tract, including the stomach and rectum, have been
described where patients have exhibited high plasma ghre-
lin levels resulting from ghrelin hypersecretion (240, 303,
304). A transgenic mouse model of ghrelinoma has been

Endocrine Reviews, December 2012, 33(6):849–891 edrv.endojournals.org 863

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/33/6/849/2354797 by U

.S. D
epartm

ent of Justice user on 16 August 2022



developed, and these mice have high levels of circulating
ghrelin and exhibit hypertrophy of the stomach wall
(305). Chronic hyperghrelinemia in transgenic mice stim-
ulates the GH-IGF axis, and these mice show elevated
levels of IGF-I (305). Interestingly, IGF-I is strongly cor-
related with an increased risk of a range of cancers, in-
cluding colorectal, breast, and prostate cancer, and a num-
ber of anticancer therapies targeting the IGF axis have
been developed (306). Because IGF-I is strongly correlated
with cancer progression (306), this model would be useful
for studying the links between the ghrelin axis and cancer
development (305).

In the majority of studies, ghrelin levels are elevated in
cancer cachexia; however, the mechanisms leading to el-
evated ghrelin levels are currently unclear (307). Elevated
total plasma ghrelin levels have been reported in patients
with cachexia associated with breast, colon, and lung can-
cer (73, 159, 280, 281). Plasma ghrelin levels are also
elevated in patients with anorexia nervosa (308), and this
disease appears to be a ghrelin insensitivity syndrome.
Cancer cachexia has previously been described as a GH-
resistant state because GH levels are elevated, whereas
IGF-I levels are not (309). Similarly, anorexia associated
with cancer cachexia may be a ghrelin insensitivity syn-
drome (310). Elevated ghrelin plasma levels could be the
result of a compensatory mechanism in cancer, represent-
ing an attempt to improve the body’s energy balance and
to stimulate food intake (159). It has been suggested that
ghrelin secretion is increased in response to inflammation
during cachexia because ghrelin has antiinflammatory
properties (281, 311). The symptoms of cancer cachexia
are associated with increased plasma levels of proinflam-
matory cytokines, including TNF�, IL-1�, IL-6, and in-
terferon � (307, 312). Ghrelin has been demonstrated to
reduce levels of TNF�, IL-1�, IL-6, and IL-8, and the pro-
inflammatory transcription factor, nuclear factor �B
(NF�B), and to increase the production of the antiinflam-
matory cytokine IL-10 (311) (see Section IV.D). There
have been some conflicting studies, however, with some
studies demonstrating unchanged or lower levels of ghre-
lin in patients with cancer cachexia compared with con-
trols (282, 313, 314).

In NSCLC patients, ghrelin levels were elevated, and
patients with weight loss had significantly higher levels of
ghrelin (281). In this study of 76 NSCLC patients without
prior weight loss, 25 patients with prior weight loss, and
60 controls, total serum ghrelin levels were measured us-
ing a sandwich immunoassay, and comparisons were
made after adjustment for age, gender, and BMI (281).
Ghrelin serum levels were elevated in patients with and
without weight loss compared with healthy volunteers. In
this study, ghrelin levels were not correlated with disease

progression or with overall survival, however, indicating
that ghrelin may not be a useful prognostic marker for
NSCLC (281). Up to 60% of lung cancer patients present
with weight loss as a symptom on diagnosis. Ghrelin could
be a useful marker for cachexia in this disease, allowing
early detection and treatment of this syndrome (281) (see
Section V).

Similarly, in a study of gastric cancer patients with more
than 10% weight loss due to cancer cachexia, mean ghre-
lin levels were elevated in patients compared with patients
without cachexia and normal controls (315). In lung and
gastric cancerpatientswith cachexia, plasmaghrelin levels
were inversely correlated with a decrease in BMI (310,
315). In a study of patients with cancer, ghrelin levels were
compared between a group of 21 patients with cancer-
related cachexia, 24 cancer patients without cachexia, and
23 normal controls (310). Fasting blood samples were
acidified and treated with phenylmethanesulfonyl fluo-
ride for acylated ghrelin determination using Linco RIA
(310). Acylated ghrelin levels and the acyl ghrelin to total
ghrelin ratio were significantly higher in subjects with can-
cer cachexia compared with patients with cancer, or un-
affected controls, and total and acylated ghrelin levels
were inversely proportional to BMI (310). In another
study of patients with gastrointestinal cancer, plasma lev-
els of total ghrelin and acylated ghrelin were elevated;
however, there was no strong inverse correlation between
ghrelin and BMI in this study (307).

Although a number of studies have demonstrated ele-
vated levels of ghrelin in some cancers, results are currently
conflicting and many studies are based on small cohorts.
Further optimization and standardization of ghrelin mea-
surement techniques and the introduction of more robust
assay methods is likely to lead to more consistent results
that will facilitate the correlation between disease and
plasma ghrelin levels. Nevertheless, plasma ghrelin levels
are more likely to correlate with metabolic state and may,
therefore, not be useful as a plasma marker for most can-
cers but could be useful for the early detection of cancer
cachexia.

IV. The Role of Ghrelin in Processes Related to
Cancer Progression

A. Ghrelin and cell proliferation and apoptosis
An increase in cell proliferation and the evasion of ap-

optosis are hallmarks of cancer (316, 317), and ghrelin
may play a role in regulating cell number in normal and
cancer cells by affecting cell survival, apoptosis, and cell
proliferation (Fig. 3). Ghrelin stimulates cell proliferation
in the majority of normal cell lines and cell types tested
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(Table 2), including human oral keratinocytes (44), fetal
skin cells (45, 46), the rat somatotroph GH3 cell line (41),
a range of neuronal cell types (47–51), human and rat os-
teoblasts (33, 52, 53), adipocytes (54, 55), and human aortic
endothelial cells (56). Ghrelin both stimulates cell prolifera-
tion and protects cells against apoptosis in normal-
derived cells and cell lines including mouse MC3T3-E1
osteoblastic cells (57), pancreatic �-cells and pancreatic
islet cells (58, 59), 3T3-L1 preadipocytes (54), H9c2
cardiomyocyte cells (36, 60), ovarian follicular cells
(61, 62), and adrenocortical cells (63, 64). Ghrelin stim-
ulates cell proliferation and healing in gastric and du-
odenal ulcers induced by acetic acid in rats (65) and
increases cell proliferation and decreases apoptosis in
hypotrophic gut mucosa (66). Conversely, ghrelin has
been shown to inhibit proliferation in human aortic
smooth muscle cells (318) and immature testicular Ley-
dig cells in vivo (68).

Ghrelin stimulates cell proliferation by signaling through
the MAPK extracellular signal-related kinase 1/2 (ERK1/2)
pathway in a number of normal cell lines, including the
FRTL-5 rat thyrocyte cell line (319), the normal rat soma-
totroph GH3 cell line (41), mouse osteoblastic cells and hu-
man osteoblasts (33, 57), and human adrenocortical cells
(64). In the GH3 cell line, treatment with the nitric oxide

(NO) donor, S-nitroso-N-acetylpenicillamine,
reduced both basal and ghrelin-induced cell pro-
liferation and reduced ERK1/2 activation in re-
sponse to ghrelin treatment (320). In contrast, in
theTE85humanosteoblasticcell line,ghrelinstim-
ulates cell proliferation through the NO pathway,
and the NO inhibitor N-�-nitro-l-arginine methyl
ester inhibits the proliferative response to ghrelin,
whereas treatmentwith theNOdonorS-nitroso-
N-acetylpenicillamine stimulated cell prolifera-
tion (52).

Ghrelin stimulates cell proliferation and
protects against apoptosis in the normal gut,
including the small intestine in a hypotrophic
gut mucosa rat model (66), and ghrelin has
protective effects in the gut against a wide
range of insults (321). Although fasting in rats
stimulates mucosal cell apoptosis, cerebroven-
tricular infusion or injection of ghrelin reduced
apoptosis in the intestinal mucosa, demon-
strated by a decrease in terminal deoxynucleo-
tidyl transferase dUTP staining, DNA frag-
mentation assays, villous height and caspase 3
expression (88). Bromodeoxyuridine staining
indicated that ghrelin treatment also increased
cell proliferation in the intestine (88).

UAG has similar effects to ghrelin, increas-
ing cell proliferation in a number of normal cell lines,
including the SW-13 and NCI-H295R adrenocortical cell
lines, in the GH3 somatotroph cell line, in human osteo-
blasts, in the rat INS-IE and hamster HIT-T15 � pancre-
atic cell lines, and in human pancreatic islet cells (10, 33,
41, 59, 69, 194). UAG also increases the mass of the pan-
creatic islets in the streptozotocin-treated diabetic rat
model, preventing the development of diabetes (96).

Ghrelin may act as an autocrine/paracrine growth fac-
tor in some cancers (43, 246). Ghrelin stimulates cell pro-
liferation in most of the normal cell types tested, and there-
fore, it is not surprising that ghrelin also increases
proliferation in a number of cancer cell lines. Ghrelin has
been demonstrated to decrease cell proliferation in some
cancer cell types, and some conflicting findings have been
reported in different studies using the same cell lines (Table
2). Ghrelin may play a role in promoting pancreatic cancer
because exogenous ghrelin treatment stimulates cell pro-
liferation in the PANC1, MIAPaCa2, BxPC3, and Capan2
pancreatic cancer cell lines (77). This response was inhib-
ited by the GHSR1a inverse agonist, D-[Lys-3]-GHRP-6,
demonstrating that this effect is likely to be mediated
through the GHSR1a (77). In endometrial cancer cell
lines, acylated ghrelin treatment increases cell prolifera-
tion and also protects against apoptosis induced by doxo-

Figure 3.

Figure 3. Ghrelin is involved in a number of processes associated with cancer
progression, including cell proliferation, cell migration and invasion, and the
inhibition of apoptosis, and ghrelin could play a role in angiogenesis and cancer-
related inflammation.
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TABLE 2. The effects of ghrelin on cell proliferation, apoptosis, and cell migration and invasion in normal cell lines
and cell types and in tumors and cancer and tumor-derived cell lines

Cell type Proliferation Apoptosis
Migration and/

or invasion

Normal cell types
Adipocytes

3T3 preadipocytes 1(54, 55, 397) �(54)
Adrenocortical cells 1(63, 64) �(64)
Breast cell lines

MCF10A normal-derived N (70)
Cardiomyocytes

H9c2 cardiomyocytes 1(60) �(36, 60, 82, 341)
Endothelial cells

Aortic endothelial cells 1(56) �(36, 182)
HUVEC �(85, 86)
HMVEC 12(339) 1(339)
Pancreatic islet endothelial cells �(87)
Rat CMEC 1(365) 1(365)

Gut cells 1(65, 66, 88) �(65, 66, 88)
Neuronal cells 1(45, 47–49, 51) �(89–91)
Osteoblasts 1(33, 52, 53, 57, 78) �(57)
Ovarian follicular cells 1(61, 62) �(61, 92)
Pancreatic cells

�-cells and islet cells 1(59) �(58, 87, 399)
INS-IE and HIT-T5 cells 1(59, 194) �(59, 194)
Pituitary cells

ACTH pituicytes 1(400)
Rat diabetic lactotrophs �(93)

Skin cells
Keratinocytes and skin 1(44–46)

Testes
Immature Leydig cells �(68)

Vascular smooth muscle �(67, 318) �(67)
Tumor-derived cell lines

Astrocytoma
CCF-STTG1, U-118, U-87, SW1088 cell lines 1(235)

Adrenocortical tumors
NCI-H295R cell line �(252),1(69) �(69),1(328)
SW13 cell line �(252).1(69) �(69),1(328)
Aldosteroma 1(328)

Breast cancer
MCF7 �(34), N (70)
MDA-MB231 1(70), �(34),1In-1 (71)
MDA-MB435 1(70)

Choriocarcinoma
JEG-3 choriocarcinoma cell line 1(72) �(72)

Colorectal cancer
SW-48, RKO cell lines 1(73) 1(73)
HT-29 cell line �(83)

Endometrial cancer
Ishikawa, HEC1B, KLE cell lines 1(74) �(74)

Esophageal cancer
OE-19/esophageal adenocarcinoma cells N (329)

Leukemia
Human erythroleukemic cell line (HEL) 1(75)
HL-60 and THP-1 cells 1(76)

Liver tumor
Hepatoma cell-line HepG2 1(42)

Lung tumor
H345 small cell lung cancer cell line �(80) 1(80)
Calu-1 lung epidermoid carcinoma cell line N (253)

Pancreatic cancer
Adenocarcinoma cell lines PANC1, MIAPaCa2, BxPC3, Capan2 1(77) 1(77)

(Continued)
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rubicin (74). Ghrelin also stimulates cell proliferation and
protects against apoptosis in the JEG-3 choriocarcinoma
cell line (72).

Ghrelin may play a role in gastric and colorectal cancer
(73). Although normal human colonocytes produce low lev-
els of ghrelin, expression is higher in the SW-48 and RKO
malignant human colon cell lines (73). Ghrelin may be an
autocrine/paracrine growth factor in these cells because
treatment with the GHSR1a inverse agonist D-[Lys-3]-
GHRP-6 or treatment with a ghrelin-neutralizing antibody
greatly reduced proliferation in these cell lines (73). In the
human HT-29 colon cancer cell line, ghrelin treatment had
an antiapoptotic effect, protecting cells against the toxic ef-
fects of 5-fluorouracil, a cytotoxic drug used in the treatment
of colorectal cancer (83). Ghrelin reduced the rate of apo-
ptosis in thesecells throughalteringtheratioofBcl-2andBax
proteins (83).

It has recently been demonstrated that the transcription
factor KLF4 (Kruppel-like factor 4), interacts with re-
sponse regions in the promoter region of the ghrelin gene
(322). KLF4 has roles in stimulating genes associated with
gastric epithelial cell proliferation and differentiation and
is involved in p53-mediated cell cycle arrest in response to
DNA damage (322). KLF4 expression in the AGS gastric
cancer cell line stimulates ghrelin expression (322). Ghre-
lin secretion in the AGS gastric cancer cell line is influenced
by lysophosphatidic acid, an extracellular lipid-signaling
molecule secreted by adipocytes, which strongly decreases
ghrelin secretion (236).

Although ghrelin has been demonstrated to increase
cell proliferation in a large number of normal cell lines and
some cancer cell lines, ghrelin inhibits cell proliferation in
some cell lines. In the H345 small cell lung cancer cell line,
ghrelin and UAG inhibit cell proliferation, and ghrelin has
proapoptotic effects leading to a reduction in cell number
(80). In the CALU-1 lung epidermoid carcinoma cell line,
ghrelin treatment had no effect on cell proliferation over
24 h, but the synthetic GHS, hexarelin and EP0–80317,

inhibited cell proliferation and also inhibited IGF-II-stim-
ulated proliferation (253). Ghrelin also appears to de-
crease cell proliferation in the N-PAP papillary thyroid
cancer cell line (81), whereas in the ARO anaplastic thy-
roid carcinoma cell line, ghrelin was shown to inhibit cell
proliferation in one study (81), but it had no effect alone
or in combination with TSH treatment in another study
(319). In contrast, ghrelin treatment stimulates cell pro-
liferation in the rat FRTL-5 thyrocyte cell line (81).

The role of ghrelin in cell proliferation in breast and
prostate cancer cell lines remains unclear due to con-
flicting studies. In the MCF7 and MDA-MB-231 breast
cancer cell lines, ghrelin was shown to decrease cell
proliferation in one study, although ghrelin stimulated
cell proliferation in the MDA-MB-231 cell line in dif-
ferent studies (34, 70, 71). Ghrelin had no significant
effect on cell proliferation in the MCF7 cell line or the
MCF10A normal breast-derived cell line (34, 70). A
novel ghrelin isoform, In1-ghrelin, which retains intron
1, is expressed in a range of tissues, appears to be over-
expressed in breast cancer, and may also play a role in cell
proliferation (71). MDA-MB231 cells overexpressing the
In1-ghrelin variant proliferated at a higher rate than con-
trol cells expressing vector alone (71). Interestingly, mean
expression of this isoform in breast cancer samples was
significantly correlated with the levels of expression of
cyclin-D3, a marker of tumor cell proliferation (71). Wild-
type ghrelin treatment stimulates cell proliferation in the
MDA-MB-435 cell line, although there is some suggestion
that this breast cancer cell line may be derived from a
malignant melanoma (70). Transcriptomic studies in ca-
nine mammary cancer cell lines also support the fact that
ghrelin may play a role in proliferation in breast cancer.
The expression of ghrelin and GHSR1a was related to
cancer cell lines with a high rate of proliferation (323).

GHSR1a mRNA expression has been demonstrated in
the MDA-MB-231, MCF7, MDA-MB-435, and T47D
breast cancer cell lines using RT-PCR (70) but was not

TABLE 2. Continued

Cell type Proliferation Apoptosis
Migration and/

or invasion

Pheochromocytoma
Rat PC-12 pheochromocytoma cell line �(84)

Pituitary tumors
Rat GH3 pituitary somatotroph cell line 1(41)

Prostate cancer
PC3 1(43),12 (35), �(79) 1(79), N (127)
LNCaP 1(127), �(35)

Thyroid cancer (TC)
N-PAP, ARO follicular cell lines �(81)

1, Increases; �, decreases/inhibits;12, increases at lower concentrations and decreases at higher concentrations; N, ghrelin was reported to have no effect; CMEC,
cardiac microvascular endothelial cells; ROS, reactive oxygen species.
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detected in the MDA-MB-231 and MCF7 breast cancer
cell lines in another study (34). These contrasting obser-
vations could indicate that the cell lines used in this study
could be different variants, and this may explain some of
the different functional results observed. Discrepancies
between studies could also result from the RT-PCR assays
themselves or a number of variations in the methods ap-
plied, including the types of proliferation assays used, the
concentrations and purity of ghrelin applied, and the con-
fluency of the cells at the beginning of the experiment.
Ghrelin is unstable in cell culture and is likely to have a
short half-life because the octanoyl group is rapidly re-
moved and the ghrelin peptide is proteolytically cleaved
(114,288). Studies into the effectsof ghrelinare, therefore,
likely to require the frequent, continuous, or pulsatile ap-
plication of ghrelin peptide.

Conflicting results have been observed in the study of
prostate cancer cell lines. In one study in the PC3 prostate
cancer cell line, cells (grown in the presence of 10% fetal calf
serum)were treatedwithghrelinover72h,which stimulated
cell proliferation with 10 nM treatments (43, 127). A less
significant proliferative response was seen with 1 �M ghrelin
treatment. Ghrelin was replenished every 24 h in this assay,
and cell number was estimated using a colorimetric, meta-
bolic assay (127). These cells were shown to express
GHSR1a. A similar response was seen in the PC3 cell line
in another study, where lower concentrations of ghrelin
stimulated cell proliferation, whereas higher concentra-
tions (1 �M) inhibited cell proliferation (35). This study
failed to demonstrate GHSR1a mRNA expression in this
cell line, although binding sites for ghrelin were reported,
indicating that ghrelin could act through an alternative
ghrelin receptor in this cell line (35). Differences in ex-
pression of GHSR1a and the ratio between the GHSR1a
and the alternative ghrelin receptor, even within the same
cell line, could contribute to these different results. In con-
trast, a more recent study demonstrated that ghrelin de-
creased the rate of PC3 prostate cancer cell proliferation
(79). In this study, PC3 cells were treated with serum with-
drawal, were routinely grown in low serum media (3%),
and may, therefore, have been phenotypically different
(79). It is unclear whether ghrelin was replenished during
the 72-h treatment period. These authors measured pro-
liferation using tritiated thymidine incorporation in the
last 6 h of a 72-h ghrelin treatment, and therefore, only
cells dividing in the last 6 h of the assay would have in-
corporated tritiated thymidine into newly synthesized
DNA and have been measured (79). The confluency of the
cells at this time may have varied between the treatments,
and more confluent cells may have stopped dividing in this
time. Because ghrelin is rapidly inactivated in serum (114,
288), low levels of acylated ghrelin, UAG, and ghrelin

breakdown products may have been present in the media
after 66-h incubation. Ghrelin fragments are also known
to inhibit the activity of the ghrelin acylation enzyme,
GOAT (324). Indeed, the purity of ghrelin used in different
assays and the presence of shorter forms of ghrelin pro-
duced during the synthesis process, or as a result of stor-
age, could lead to discrepant results. Short-term assays
using tritiated thymidine may be more informative.

Ghrelin was also shown to have a proapoptotic effect in
PC3 cells (using terminal deoxynucleotidyl transferase
dUTP assays), signaling through T-type calcium channels
(79). These authors demonstrated expression of GHSR1a
and GHSR1b mRNA and GHSR1a protein expression
using immunohistochemistry (79). Although cell prolifer-
ation in response to ghrelin treatment has also been dem-
onstrated in the LNCaP prostate cancer cell line (43), an-
other study demonstrated that ghrelin treatment had no
effect in this cell line (35). In the DU145 prostate cancer
cell line, treatment with ghrelin alone had no effect on cell
proliferation, but ghrelin and UAG inhibited cell prolif-
eration in response to IGF-I (35).

Ghrelin (or GHS) may stimulate or inhibit cell prolif-
eration in cell lines that do not express the GHSR1a, sug-
gesting that these effects must be mediated through the
hypothesized alternative ghrelin receptor, the identity of
which remains unknown (253). For example, although the
HepG2 cell line does not express the GHSR1a (139), ghre-
lin stimulates cell proliferation and signals through the
insulin pathway (42). In the HEL, HL-60, and THP-1 hu-
man leukemic cell lines, ghrelin appears to play a role in
stimulating cell proliferation, although these cell lines do
not express GHSR1a mRNA (75, 76). This may be an
autocrine effect because these cell lines produce and se-
crete ghrelin and proliferation is inhibited by treatment
with two different antighrelin antibodies. This effect ap-
pears to be mediated by the alternative ghrelin receptor
(75, 76). The addition of exogenous acylated or unacy-
lated ghrelin did not affect cell proliferation in the HL-60
and THP-1 cell lines, however (76). In addition, UAG,
which does not activate the GHSR1a, also stimulates cell
proliferation in some cell lines, and these effects must be
mediated by an alternative ghrelin receptor (33, 69).

There have been few in vivo studies into the role of the
ghrelin axis in cancer, although the ghrelin axis has been
targeted as a treatment for cachexia (see Section V), and
this has been investigated using mouse and rat models.
Two studies investigating the effects of ghrelin treatment
on cachexia in mouse and rat tumor-bearing models dem-
onstrated that short-term treatment did not lead to an
increase in tumor size (325, 326). A transgenic model of
ghrelinoma, using the ghrelin promoter and an SV40 T
antigen, has been developed to investigate the chronic ef-
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fects of ghrelin overexpression (305). These mice demon-
strated hypertrophy of the stomach mucosa from 9 wk of
age and the development of ghrelin-producing tumors
(305). These animals also had elevated levels of IGF-I,
independent of nutritional status (305), and chronically
elevated IGF-I levels could promote the development of
cancer. Other studies have not reported an increase in
cancer risk in transgenic mice overexpressing ghrelin or
desacyl ghrelin, although this may not have been investi-
gated (192, 327).

Ghrelin may protect against apoptosis in a number of
cancer cell types, while increasing apoptosis in others. In
the SW-13 adrenocortical carcinoma cell line, UAG treat-
ment reduced basal apoptosis and had a more protective
effect against basal apoptosis than acylated ghrelin (69).
Ghrelin may inhibit cancer progression in adrenocortical
cell lines because it stimulated a marked increase in the
basal apoptotic rate in the SW-13 and NCI-H295 adre-
nocortical carcinoma cell lines and in an aldosteroma cell
line (328). In contrast, however, this effect was not seen in
another study in the SW-13 adrenocortical carcinoma cell
line because ghrelin reduced basal apoptosis and caspase
3/7 activity (69). Ghrelin protected against apoptosis,
which was induced using sodium nitroprusside, in a rat
PC-12 pheochromocytoma cell line (from an adrenomed-
ullary tumor) (84). This was mediated by the inhibition of
the proapoptotic MAPK apoptosis signal regulating ki-
nase 1 pathway and through the induction of the heat
shock protein, Hsp70 (84). In contrast, ghrelin did not
affect apoptosis in Barrett’s esophageal adenocarcinoma
cells treated with a number of apoptosis-inducing agents
(329), and no effect was seen in prostate cancer cell lines
treated with actinomycin in another study (127). Ghrelin
may protect against apoptosis in a range of normal cell
types in response to a wide range of insults and has a
protective role in the gastrointestinal tract, the cardiovas-
cular system, and the nervous system (89, 330–334) (Ta-
ble 2). Ghrelin inhibits apoptosis by signaling through the
ERK1/2 pathway in 3T3-L1 preadipocytes and in rat hy-
pothalamic and cortical neurons (54, 89, 90).

HEK293 human embryonic kidney cells overexpress-
ing GHSR1a were protected against apoptosis stimulated
by cadmium, and this effect was not seen in cells lacking
GHSR1a expression (335). It was not clear whether this is
mediated through the constitutive action of the GHSR1a
or through the action of autocrine ghrelin, however (335).
The GHSR1a has a high level of constitutive activity and
signals through the protein kinase C/phospholipase C
pathway, and therefore, stimulation by the agonist ghrelin
is not required for activity (336).

Although there have been few studies into the effect of
ghrelin on apoptosis in cancer cell lines, most studies have

reported that ghrelin protects against apoptosis (36, 54,
57, 60, 63–67, 69, 72, 74, 82–93), although in some cell
types ghrelin may be proapoptotic (79, 80, 328) and ghre-
lin increases basal apoptosis in some cell lines (328). Ghre-
lin may promote cancer progression in some cell types by
stimulating cell proliferation and inhibiting apoptosis
and may inhibit cancer progression in others. Different
responses in different cell lines may be due to the ex-
pression of different proportions of ghrelin receptors;
however, the distribution of the alternative ghrelin re-
ceptor is currently unknown. Discrepancies in different
cell types may also reflect the fact that a wide range of
different insults can be applied to promote apoptosis.
Further studies are required to determine whether ghre-
lin may play a role in cancer by stimulating cell prolif-
eration and inhibiting apoptosis, and in vivo studies
using mouse xenograft models will help to determine
the significance of ghrelin in cancer progression.

B. Ghrelin and cell migration, invasion, and metastasis
The ability of cancer cells to migrate from the primary

tumor site, to invade the surrounding tissues, and to spread
to distant tissues via hematogenous or lymphatic routes is a
hallmark of cancer, and these processes are required for can-
cer progression (316, 317). Although there have been few
studies intotheroleofghrelin intheseprocesses, there is some
evidence that ghrelin may stimulate cell invasion and migra-
tion in a number of cancer cell lines (Table 2). Ghrelin treat-
ment significantly increases cell migration and invasion
through Matrigel [a mouse-derived extracellular matrix
(ECM)] in the PANC1, MIAPaCa2, BxPC3, and Capan2
pancreatic cancer cell lines (77). Invasion and migration in
response to ghrelin treatment occurred through the acti-
vation of the phosphoinositide 3 kinase (PI3K)/Akt path-
way, a signaling pathway that is often associated with an
increase in cell motility and invasion (77). Treatment with
D-[Lys-3]-GHRP-6 inhibited ghrelin-stimulated cell inva-
sion and also decreased Akt signaling in these cell lines,
indicating that the effects of ghrelin may be mediated by
the GHSR1a, which these cells express (77). Alternatively,
it is possible that the GHSR1a inverse agonist, D-[Lys-3]-
GHRP-6, may also bind and inhibit an alternative ghrelin
receptor.

Ghrelin stimulates cell migration in human astrocy-
toma cell lines, and ghrelin may play an autocrine/para-
crine role because these cells also secrete ghrelin (235). In
Transwell and scratch assays, ghrelin treatment increased
the rate of cell migration and cell invasion through Matri-
gel in a dose-dependent manner. UAG did not have a sig-
nificant effect on cell motility, however. Invasion is a can-
cer-related process that requires the detachment of cells,
the degradation of the ECM, and the subsequent migra-
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tion of cells through the ECM. The matrix metallopro-
teases (MMP) are key ECM-degrading enzymes, and their
secretion is frequently altered in cancer (156). The en-
hanced motility and invasiveness exhibited by astrocy-
toma cells in response to ghrelin treatment corresponded
to an increase in MMP-2 activity (235). The effects of
ghrelin on MMP-2 expression and cell invasion and mo-
tility in astrocytoma cells were abolished when ghrelin
secretion was reduced by treatment with small interfering
RNA, indicating that these processes are stimulated in an
autocrine manner. Ghrelin treatment altered the distribu-
tion of the GHSR1a in the cell, increasing its expression at
the membrane ruffles at the leading edge of the migrating
cell (235). GHSR1a colocalizes with Rac, a member of the
Rho family of small GTPases that plays a role in formation
of lamellipodia, which are important in cell migration, and
this strongly supports a role for GHSR1a in cell migration.
Ghrelin signaling occurs through activation of protein ki-
nase C (PKC) in the U-87 cell line, a signaling pathway that
has been associated with increased motility and invasion
in other cancer cell types. PKC activation and cell motility
were inhibited by small interfering RNA treatment down-
regulating GHSR1a (235), indicating that these effects
were mediated by GHSR1a, rather than through the al-
ternative ghrelin receptor (235). Because ghrelin is also
expressed in astrocytoma, it may play a role as an auto-
crine factor that stimulates cancer progression (235).

Autocrine ghrelin may also stimulate cell invasion in
the SW-48 or RKO human colon cancer cell lines because
treatment of these cells with a ghrelin-neutralizing anti-
body, or with the GHSR1a inverse agonist D-[Lys-3]-
GHRP-6, significantly decreases the migration and inva-
sion of cells through Matrigel in an invasion chamber (73).
Because these effects are blocked by D-[Lys-3]-GHRP-6,
they are likely to be mediated through the GHSR1a (73),
assuming that this antagonist is specific to the GHSR1a
and does not interact with the alternative ghrelin receptor.

C. Ghrelin and angiogenesis
Angiogenesis is a key process in cancer development

(317) and is regulated by a balance of proangiogenic and
antiangiogenic molecules. For angiogenesis to occur, a
number of processes are required, including endothelial
cell proliferation, migration, and capillary tubule forma-
tion (337). Although the role of ghrelin in angiogenesis
associated with cancer has not been investigated, there is
evidence that ghrelin has proangiogenic effects in some
studies, although antiangiogenic effects have also been
reported.

Angiotensin II and fibroblast growth factor 2 (FGF-2) are
two major factors that stimulate angiogenesis in health and
disease. In human aortic endothelial cells, ghrelin treatment

inhibits angiotensin II-stimulated migration, but ghrelin
alone had no effect on these cells (337). Ghrelin also inhibits
FGF-2-stimulated proliferation and antiapoptotic effects in
cultured rat brain endothelial cells and inhibits FGF-2-
mediated proliferation and tubule formation in human um-
bilical vein endothelial cells (HUVEC) (338).

In contrast, a number of studies indicate that ghrelin
may be proangiogenic, and ghrelin may have different
effects on angiogenesis in different vessel types. The
human microvascular endothelial cell (HMVEC) line
expresses ghrelin and the GHSR1a (339). Ghrelin treat-
ment, at lower concentrations, increases endothelial cell
proliferation, whereas concentrations of over 100 nM

were inhibitory (339). Ghrelin also stimulates endothelial
cell migration, a process that is important in angiogenesis
(339). In vitro angiogenesis assays were applied to dem-
onstrate that ghrelin treatment stimulates the formation of
capillary-like tubules in Matrigel, signaling through the
ERK1/2 pathway. These authors concluded that ghrelin,
at physiological concentrations, stimulates angiogenesis,
and therefore, ghrelin may have a role in angiogenesis
associated with wound healing and may also promote tu-
mor growth by enhancing angiogenesis (339).

A role for ghrelin in promoting angiogenesis is supported
by another study demonstrating that a decrease in ghrelin
expression is associated with a decrease in angiogenesis in
aging HMVEC, and treatment with ghrelin restored angio-
genesis through ERK1/2 signaling (340). Ghrelin protects
againstapoptosis induced inanumberofwaysandpromotes
survival incardiomyocytesandendothelial cells (36,86,182,
341). In the H9c2 cardiomyocyte and PAE (pig aortic endo-
thelial) cell lines, ghrelin and UAG protect against apoptosis,
with ghrelin signaling through the ERK1/2 and PI3K/Akt
pathways (36). These effects are likely to be mediated
through the alternative ghrelin receptor because H9c2 cells
do not express GHSR1a (36). In diabetes mellitus, advanced
glycation end-products are generated and induce apoptosis
in endothelial cells. In HUVEC, ghrelin protects endothelial
cells from apoptosis induced by advanced glycation end-
products by acting through the GHSR1a and stimulating the
ERK1/2 MAPK signaling pathway (85).

D. Ghrelin and cancer-related inflammation
Ghrelin has been shown to have an immunomodula-

tory role and potent antiinflammatory effects (186, 311),
and it could therefore play a role in the prevention of
cancers associated with chronic inflammation. Ghrelin is
also elevated in patients with cancer cachexia, which has
a significant inflammatory component (see Section V).
Chronic inflammation and, particularly, elevated levels of
IL-6 and IL-1 play a role in tumor progression (342) and
may predispose patients to a number of different cancers
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including esophageal, gastric, lung, prostate, and colon
cancer, and local inflammation is associated with most
tumor microenvironments (343, 344). Antiinflammatory
therapies are, therefore, currently of great interest for the
prevention or treatment of cancer (344). Ghrelin is ex-
pressed in a number of cell types in the immune system,
including mast cells, monocytes, macrophages, and den-
dritic cells (311), and it is likely to be produced locally by
a number of cell types in the tumor microenvironment.
Cancer-related inflammation has many effects, influenc-
ing cell proliferation, survival, angiogenesis, and metas-
tasis, and it may lead to genetic alterations (343).

Ghrelin inhibits the production of proinflammatory cy-
tokines, including TNF�, IL-1�, IL-6, and IL-8 and in-
hibits the activation of NF�B, a key molecule that regu-
lates inflammation and cytokine production (281, 311).
Ghrelin can also up-regulate antiinflammatory molecules,
including the cytokine IL-10 (281, 311).

Esophageal cancer is strongly associated with chronic
inflammation. In the OE-19 esophageal adenocarcinoma
cell line, ghrelin treatment prevents inflammation induced
by the potent proinflammatory cytokine TNF-� and de-
creases the expression of proinflammatory molecules, cy-
clooxygenase 2 (COX-2) and IL-1�, in this cell line (329).
Interestingly, high ghrelin levels were shown to be protec-
tive against esophageal cancer, but only in obese subjects
(345). A decrease in circulating ghrelin levels in patients
with esophageal cancer could down-regulate the protec-
tive effect of ghrelin in these cancers. In the A549 NSCLC
cell line, ghrelin inhibits the action of the proinflammatory
transcription factor, NF�B, and inhibits IL-8 expression
stimulated by reactive oxygen species (346). Ghrelin
could, therefore, protect the lung against reactive oxygen
species, which can play a role in chronic inflammation and
the development of lung cancer (347).

Chronic gastric inflammation associated with Helico-
bacter pylori infection predisposes patients to gastric car-
cinoma (243). The relationship between blood ghrelin lev-
els and H. pylori infection is unclear, but the development
of atrophic gastritis with chronic infection reduces plasma
and gastric ghrelin levels due to damage of the gastric
mucosa (348). Because ghrelin has protective and antiin-
flammatory effects on the stomach, lower ghrelin levels in
patients with H. pylori could exacerbate this disease, and
low ghrelin levels may accelerate changes leading to the
development of gastric carcinoma.

Although further studies are required, ghrelin may play
a role in inflammatory bowel disease (IBD), and it could be
a useful therapeutic agent (321, 349). IBD is a chronic
disease that predisposes patients to the development of
colorectal cancer. In some studies in rodent models of IBD,
ghrelin appeared to have strong antiinflammatory effects

(321, 332), and it down-regulated NF�B production, in-
hibited the production of proinflammatory cytokines, and
inhibited the Th1 response (321, 332), with a down-reg-
ulation of TNF-�, IL-1�, and IL-6 (321). In a rodent model
where IBD was induced using treatment with 2,4,6-trini-
trobenzene sulfonic acid (TNBS), colitis led to an increase
in the expression of COX-2, and COX-2 expression was
greater in animals treated with ghrelin (332). These au-
thors hypothesized that an increase in COX-2 expression
in response to ghrelin treatment would lead to an increase
in prostaglandin synthesis, which would promote healing
in the gut (332). If this finding is replicated, an increase in
COX-2 expression could be a concern that could limit the
use of ghrelin as a therapeutic in IBD because a number of
prostaglandins in the COX-2 pathway promote tumor
progression. COX-2 is often elevated in cancer, and
COX-2 inhibitors have been shown to have anticarcino-
genic activity in colon cancer (350).

In contrast, it has been hypothesized that ghrelin may
have proinflammatory effects in colitis, and ghrelin has
also been demonstrated to up-regulate NF�B activity and
IL-8 expression in human colonic epithelial cells (351). In
a mouse model of IBD [induced using 3% dextran sodium
sulfate (DSS)], ghrelin treatment worsened symptoms, in-
creased inflammation, and increased levels of the proin-
flammatory cytokine, IL-1� (352). Interestingly, the dis-
ease was less severe in ghrelin knockout mice, and the
authors concluded that endogenous ghrelin could exacer-
bate the response to DSS (352). Although ghrelin amelio-
rated the effects of colitis in TNBS models and exacerbated
disease in a DSS model, the TNBS model is likely to be a
better model for human disease, and studies in mice and
rats have shown similar responses (349). The majority of
studies in a range of model systems have demonstrated
that ghrelin largely has antiinflammatory effects (311).

In a rodent TNBS model of IBD, the antiinflamma-
tory effects of ghrelin appear to be mediated by NO,
produced by indicuble NO synthase, and these effects
are antagonized by NO synthase inhibitors (332). Al-
though it has antiinflammatory effects, paradoxically,
NO synthesis may also be damaging. It produces reac-
tive nitrogen species, which can cause DNA damage,
and this may play a key role in carcinogenesis resulting
from chronic inflammation (347). By activating NO,
ghrelin may therefore have antiinflammatory effects,
but may also lead to increased DNA damage (347).

Hepatocellular carcinoma is associated with chronic
inflammation resulting from infection with viral hepatitis
(due to hepatitis B and D viruses), and cirrhosis from hep-
atitis is associated with malnutrition and increased catab-
olism (353). Serum ghrelin levels are significantly elevated
in cases of cirrhosis, and hepatocellular carcinoma is as-
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sociated with viral hepatitis (353); however, it is unclear
whether this is due to the metabolic disturbance associated
with cirrhosis or with the cancer itself. TNF� and IL-6 are
both elevated in liver disease and ghrelin levels were di-
rectly correlated with TNF� levels, although the relation-
ship between plasma ghrelin and TNF� levels remains
unclear (353).

Ghrelin appears to have predominantly antiinflamma-
tory effects (311), and we hypothesize that ghrelin could
be useful in suppressing the chronic inflammation that is
associated with cancer progression. Inflammation may ei-
ther promote cancer or suppress cancer, however, and an-
tiinflammatory treatments could suppress protective an-
titumor immunity (342, 344). Inflammation can both
promote tumor growth and spread and inhibit tumor pro-
gression, and the balance between these effects is poorly
understood (344). Cancer immunosurveillance is believed
to require, in addition to a number of antiinflammatory
cytokines, the expression of proinflammatory cytokines,
including IL-1�, IL-1�, and IL-6 (342). In some models of
inflammation, ghrelin has been demonstrated to suppress
IL-1� or IL-6 (281, 329, 349). A better understanding of
the influence of ghrelin on cancer immunosurveillance,
tumor promotion, and tumor-preventing effects is re-
quired to determine whether ghrelin may promote or pre-
vent cancer progression through its antiinflammatory
actions.

V. Ghrelin as a Treatment for Cancer Cachexia

Cachexia is a complex, multifactorial process associ-
ated with increased inflammation, catabolism, im-
paired energy balance, anorexia, muscle wasting, lipol-
ysis, and substantial weight loss (104, 311, 354).
Cachexia is associated with a number of chronic dis-
eases including congestive heart failure, chronic renal
failure, AIDS, chronic obstructive pulmonary disease,
and cancer, and it may occur as a result of cancer che-
motherapy (104, 354). Cancer cachexia is frequently
associated with malignancy and contributes to an in-
creased cancer mortality rate (355). Cachexia also re-
duces the quality of life of patients, who frequently expe-
rience nausea and fatigue (355), and new treatments to
more effectively manage the symptoms are urgently re-
quired. Plasma ghrelin levels are elevated in cancer ca-
chexia (see Section III.D), and although the mechanisms
leading to elevated ghrelin levels in cachexia are unclear,
ghrelin may be secreted in response to negative energy
balance, reduced food intake, and inflammation associ-
ated with cachexia (311). Treatment with ghrelin, ghrelin

analogs, and GHS may be useful as an approach for cancer
cachexia and cachexia resulting from other diseases (354).

Ghrelin and synthetic GHS could ameliorate a number
of the symptoms of cancer cachexia through a range of
mechanisms, including its antiinflammatory effects and its
ability to promote appetite stimulation, improve gastric
motility, and alter energy balance. The orexigenic effects
of ghrelin may be particularly beneficial (356), and better
treatments for cancer-related anorexia, with fewer side
effects than traditional treatments, are urgently required.
In healthy male and female volunteers, ghrelin treatment
stimulates food intake by approximately 28%, and no
adverse side effects have been observed (5).

Ghrelin has been shown to be beneficial in mouse mod-
els of cancer cachexia. In cachectic MCG101 mice bearing
methylcholanthrene-induced sarcoma cells, the animals
demonstrated anorexia, fat loss, and muscle wasting and
elevated levels of proinflammatory cytokines, TNF�, IL-
1�, and IL-6 (325). Higher doses of ghrelin (given ip twice
daily) improved food intake and body composition, in-
cluding increased body weight and fat mass in mice with
tumors, compared with mice that were not treated with
ghrelin or mice that received lower doses (325). Ghrelin
treatment increased the expression of hypothalamic
GHSR1a and plasma ghrelin levels in these mice, however,
which indicates that some ghrelin resistance had devel-
oped (325). Because ghrelin levels are elevated in cancer
cachexia, supraphysiological doses of ghrelin are likely to
be required to exert a positive effect on appetite and body
composition in patients with cachexia (326). Using a
mouse model of cancer cachexia, in nude mice bearing a
human SEKI melanoma cell line xenograft, twice daily
ghrelin injections over 6 d increased food intake and de-
creased weight loss compared with controls (357, 358).
Ghrelin treatment did not stimulate feeding in a rat ca-
chexia model, however, where anorexia was induced by
the sc implantation of methylcholanthrene-induced sar-
comas (359). In this model, ghrelin infusion led to a sig-
nificant maintenance of fat mass compared with untreated
controls, but muscle protein was not preserved (359). This
study indicated that ghrelin may not be useful for treating
anorexia in cancer cachexia, although a number of studies
have demonstrated a beneficial effect.

In a small study of cancer patients with anorexia, the
acute infusion of ghrelin for 90 min led to a significant
increase in caloric content ingested and improved subjec-
tive scores of meal appreciation, with treatment stimulat-
ing appetite in all of the subjects studied (360). In another
small study comparing the effects of daily high-dose ghre-
lin (10 �g/kg) and low-dose ghrelin (0.5 �g/kg) in patients
with malignant gastrointestinal disease, weight loss, and
anorexia, patients in the high-dose group demonstrated
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better subjective appetite scores, serum GH, and im-
proved whole body fat retention compared with the
low-dose group (356). Although there were many lim-
itations to this study, ghrelin treatment did not cause
any significant side effects and did not alter the expres-
sion of tumor-related biomarkers, providing some evi-
dence that ghrelin did not accelerate cancer progression
in this short-term study (356).

GHSR1a agonists are likely to be useful substitutes for
ghrelin in the treatment of cancer cachexia because ghrelin
has a very short half-life, requiring iv infusions (326). In a
tumor-bearing rat model of cancer cachexia, animals were
treated with ghrelin or the GHSR1a agonist BIM-28131
(Ipsen, Milford, MA), which helped to maintain lean body
mass (326). This, therefore, has potential as a therapeutic
intervention for cancer cachexia (326). The ghrelin mi-
metic, RC-1291 (Helsinn Therapeutics, Bridgewater, NJ)
is an orally active GHS with potential as a treatment for
cancer cachexia (361). In healthy patients, RC-1291 stim-
ulates a significant increase inappetite, foodconsumption,
and weight gain and was well tolerated (361), and in phase
II trials in cancer patients, treatment improved total body
mass, lean body mass, and hand-grip strength (361).

Because the pathophysiology of cachexia has a sig-
nificant inflammatory component, some of the effects of
ghrelin in cachexia may result from its antiinflamma-
tory properties; however, this has not yet been proven
experimentally. Treatment of tumor-bearing rats with
ghrelin, or BIM-28131, reduced the expression of hy-
pothalamic IL-1 receptor, and this is likely to reduce the
response to IL-1� and may play a role in mediating the
anticatabolic activity of ghrelin (326). In this study,
ghrelin and BIM-28131 treatment did not alter plasma
cytokine expression, however (326). In patients with
colon cancer and elevated levels of proinflammatory
cytokines, ghrelin levels were elevated compared with
plasma levels in normal controls (313).

Chemotherapy for cancer can also lead to significant
side effects including anorexia, weight loss, nausea, vom-
iting, and disrupted gut motility, and it decreases the qual-
ity of life of cancer patients (362). In patients with ca-
chexia associated with lung cancer, ghrelin levels were
elevated in patients with anorexia after chemotherapy, but
ghrelin levels were not altered in patients without anorexia
and decreased food intake (159). Cisplatin is a commonly
used chemotherapeutic, with significant side effects, in-
cluding nausea, vomiting, and anorexia and a decreased
quality of life (363). A recent study in cisplatin-treated rats
demonstrated that treatment decreased hypothalamic
ghrelin expression, and this may contribute to anorexia
associated with this drug (363). In a cisplatin chemother-
apy-associated dyspepsia model in rodents, the ip injec-

tion of ghrelin improved feeding and energy intake and
led to an increase in locomotor activity, which may in-
dicate a reduction in the level of nausea experienced
(362). Ghrelin, injected ip, is believed to interact with
GHSR expressed by vagal nerve endings, and these va-
gal afferents communicate with nuclei in the hypothal-
amus (362). Because rodents are incapable of vomiting,
it could not be demonstrated that ghrelin acted as an
antiemetic in this model; however, a similar study in
ferrets demonstrated that ghrelin reduced vomiting in-
duced by cisplatin treatment when it was injected into
the cerebral ventricles (364).

Studies that have demonstrated that ghrelin treatment
increases cell proliferation (33, 36, 41–66, 69, 70, 73–77,
127), protects against apoptosis (36, 54, 57, 60, 63–67,
69, 72, 74, 82–93), or increases cell migration or invasion
(73, 77, 235, 339, 365) may indicate that there should be
some caution associated with the use of ghrelin for cancer
cachexia and for treating symptoms associated with che-
motherapy, particularly because supraphysiological doses
of ghrelin are likely to be required. A number of short-term
studies have demonstrated that ghrelin treatment does not
increase tumor size or the expression of tumor markers
(325, 326, 366), but elevated ghrelin levels led to gut hy-
pertrophy and gastric tumors in transgenic mice and stim-
ulated the IGF-I axis, which is strongly linked with cancer
(305, 306). Longer term in vivo studies are required to
determine whether ghrelin could promote tumor growth,
particularly in cancer patients.

VI. Obestatin and Cancer

Obestatin plays a role in cell proliferation, and there is
some evidence that it could have a role in cancer progres-
sion. Obestatin is expressed in a number of normal tissues,
including the gastrointestinal tract, with highest levels in
the stomach and lower levels in the duodenum and colon
(98). Obestatin expression has also been demonstrated
immunohistochemically and at the mRNA level in the an-
terior pituitary, pancreatic islets, and bronchi (98), and it
is also expressed in the liver, thyroid gland, testes, and
mammary glands (98, 367–369). In the pancreatic islets,
obestatin colocalizes with ghrelin expression, and in the
anterior pituitary it colocalizes in the somatotrophs with
GH (98). In normal fetal tissues, obestatin is expressed in
the thyroid gland, pituitary, lung, pancreatic islets, and
gastrointestinal tract, whereas most other tissues exhibit
no obestatin immunoreactivity (98).

Obestatin expression has been demonstrated immuno-
histochemically in a relatively small proportion of endo-
crine tumors, including thyroid carcinomas (papillary, fol-
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licular, and medullary) (98, 370), in well-differentiated
neuroendocrine tumors of the stomach and small intes-
tine, and some neuroendocrine pancreatic tumors (98).
The obestatin peptide is expressed in normal stratified
squamous epithelium, but expression is reduced in oral
squamous cell carcinoma, and levels are lowest in the most
poorly differentiated cancers (371). Plasma obestatin lev-
els are elevated in patients with ovarian cancer and benign
ovarian tumors (289). It is currently unclear whether the
tumors themselves are the source of elevated plasma
obestatin levels; however, obestatin levels could be a use-
ful marker for ovarian tumors. In contrast, in patients with
uterine leiomyoma and prostate cancer, obestatin plasma
levels were not elevated (277, 278).

In elderly men with chronic atrophic gastritis, but with-
out H. pylori infections, obestatin levels are significantly
lower than in healthy controls, and the preprandial plasma
ghrelin to obestatin ratio is also reduced (367). As is the
case with ghrelin, obestatin levels are likely to be decreased
as a result of damage to ghrelin-secreting cells in the gastric
mucosa (367). H. pylori infection plays a key role in the
development of many gastric carcinomas (372). In a study
in Chinese subjects, obestatin levels were not different be-
tween patients with and without H. pylori infections, but
the obestatin/ghrelin ratio was lower in patients with H.
pylori and was inversely correlated with BMI (372). Ghre-
lin and obestatin could play a role in the pathogenesis of
atrophic gastritis and H. pylori infection (372).

Although there have been few studies into the role of
obestatin in cancer, it may play a role in a number of
processes related to cancer progression, and it influences
cell proliferation in some normal-derived cell lines. In the
INS-IE and HIT-T15 pancreatic �-cell lines and in isolated
human pancreatic islet cells, obestatin stimulates cell pro-
liferation (94). In primary cultures of retinal pigment ep-
ithelial cells, exogenous obestatin stimulates cell prolifer-
ation through activation of the ERK1/2 MAPK pathway
(95). Obestatin signaling in these cells appeared to be me-
diated through the G�i protein subunit, and activation of
PI3K, PKC, and Src (95). Obestatin could play a role in
diseases associated with uncontrolled retinal cell prolifer-
ation, including proliferative vitreoretinopathy, where ep-
ithelial cells migrate, differentiate into myofibroblasts,
and then proliferate (95).

There have been few studies into the role of obestatin in
cancer cell proliferation. In the KATO-III gastric cancer
cell line, exogenous obestatin treatment stimulates cell
proliferation, but obestatin had no effect on cell prolifer-
ation in the AGS normal stomach-derived cell line (97,
236). Obestatin stimulated cell proliferation in the KATO-
III cell line through activation of the MAPK, ERK1/2 path-
way, and this signaling appears to be mediated by PKC�

phosphorylation and activation of a pertussis toxin-sen-
sitive G protein (97). Similar results were observed in hu-
man retinal pigment epithelial cells, and together, these
studies suggest that obestatin signals in these cells through
a GPCR, the identity of which remains unknown (97).
Further dissection of the obestatin signaling pathway in
the KATO III gastric cancer cell line indicated that obesta-
tin may signal through cross talk with the epidermal
growth factor receptor (EGFR) (373). Although it is
largely accepted that GPR39 is not the obestatin receptor
(21), this study suggested that obestatin stimulates the for-
mation of a complex between GPR39, �-arrestin, and the
signaling molecule Src (373). This resulted in transactiva-
tion of the EGFR, which required MMP activity, but did
not require pertussis toxin-sensitive G proteins or the
G��-subunit (373). EGFR activation stimulated the phos-
phorylation of Akt, which required the activation of phos-
phoinositol-dependent kinase and mammalian target of
rapamycin kinase complex 2 (373). This potential role of
GPR39 in obestatin signaling requires further clarifica-
tion, however.

Using cDNA microarray studies, it was demonstrated
that GPR39 was up-regulated in primary esophageal squa-
mouscell carcinomas(ESCC)comparedwithmatchednormal
controls (374). GPR39 protein expression was elevated in
over 50% of 207 ESCC tested compared with controls,
and expression was associated with lymph node metasta-
sis and advanced disease (374). Forced overexpression of
GPR39 increased the rate of cell proliferation, clonogenic
growth, and cell migration and invasion in ESCC cell lines.
The morphology of the cells was altered toward a fibro-
blastic phenotype from a more cobblestone appearance,
and cells showed signs of lamellipodia formation and cy-
toskeletal rearrangements, indicating an increase in cell
motility (374). These cells formed larger tumors in xeno-
grafts in nude mice, and GPR39 could, therefore, be a
useful therapeutic target in ESCC that overexpress this
receptor (374).

In some cell lines, exogenous obestatin treatment appears
to decrease cell proliferation. Obestatin is secreted into the
culture medium at levels higher than human serum from the
BON-1 pancreatic neuroendocrine and the TT thyroid car-
cinoma cell lines (98). At high concentrations, obestatin
treatment decreased cell proliferation in these cell lines, in
contrast to ghrelin, which increases cell proliferation at sim-
ilar concentrations (98). In the mouse ATDC-5 embryonic
carcinoma-derived cell line, which has been differentiated
into chondrocytes, obestatin inhibits cell proliferation, and it
has a similar effect in the C28–12 normal human rib-derived
chondrocyte cell line (99).

Although the role of obestatin in apoptosis in cancer
has not been investigated, obestatin protects against ap-
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optosis in normal cell types and cell lines. In the rodent
INS-IE and HIT-T15 pancreatic �-cell lines and in isolated
human pancreatic islet cells, obestatin enhances cell sur-
vival and protects against apoptosis stimulated by serum
withdrawal, or by treatment with proinflammatory cyto-
kines, by stimulating PI3K/Akt and ERK1/2 pathways
(94). In these cells, obestatin up-regulates the expression
of genes associated with cell survival (94). In rat H9c2
cardiac cells, isolated myocardiocytes, and a rat isolated
heart model of ischemia/reperfusion injury, obestatin pro-
tected against apoptosis through activation of Akt, PI3K,
PKC�, PKC�, and ERK1/2 (375). Obestatin treatment
stimulates porcine ovarian granulosa cell proliferation,
and in contrast to other cell lines, it also stimulates apo-
ptosis, indicated by increased expression of caspase 3 and
Bax (376). Obestatin may play a role in protecting these
tissues against a number of conditions that stimulate ap-
optosis and could also increase cell survival in cancer cells,
promoting cancer progression.

The role of obestatin in cancer-related inflammation
has not been investigated; however, obestatin may also
have antiinflammatory properties. In a cerulein-induced
pancreatitis rat model, obestatin protected against the de-
velopment of acute pancreatitis, improved blood flow to
the pancreas, and reduced plasma levels of the key proin-
flammatory molecule, IL-1� (377). Although cerulein
treatment decreased cell proliferation (DNA synthesis) in
pancreatic cells, obestatin treatment partially reversed this
effect (377).

VII. Summary and Perspectives

Ghrelin, GHSR1a, and obestatin are widely expressed in
normal tissues, and ghrelin is expressed in many cancer
and tumor cell types and cell lines (Table 1). Ghrelin ex-
pression may be up-regulated in some cancers, including
colon and breast cancer (73, 242). Although the patho-
physiological significance of this expression is unclear,
there is evidence that ghrelin could be useful as prognostic
or diagnostic markers for prostate cancer in particular
(256) and possibly for other cancers (43, 246). In vitro
studies using a fluorescein-labeled, C-terminally truncated
18-amino acid ghrelin probe demonstrated that the quan-
tification of binding to ghrelin receptors in prostate tissues
allows prostate cancer to be distinguished from BPH and
normal prostate (256). Because better prognostic and di-
agnostic methods for prostate cancer are urgently re-
quired, this method, coupled with in vivo imaging tech-
niques, could provide an exciting and powerful new tool
and could be used to guide surgery and spare normal tis-
sues. There is some evidence that the ghrelin axis could

also be useful as a marker for breast cancer. A novel, high-
frequency methylation of the GHSR promoter region en-
abled researchers to distinguish between invasive breast
cancer and normal breast tissues with high specificity and
sensitivity (274). The functional significance of the down-
regulation of GHSR1a that is observed in some cancers is
unknown.

Although no GWAS have linked the ghrelin axis with
cancer, some SNP in the ghrelin or GHSR genes have been
associated with an increased risk of breast cancer (100)
and esophageal cancer (264, 265) and a decreased risk of
colorectal cancer (103) and non-Hodgkin’s lymphoma
(101). Some small studies have shown no associations in
a number of cancers (260, 262, 263). Due to the molecular
heterogeneity of diseases such as breast and prostate can-
cer, larger studies and more patient stratification accord-
ing to disease phenotype are likely to be required to de-
termine whether the ghrelin axis plays a role in these
cancers.

Serum ghrelin is unlikely to be a useful biomarker for
the diagnosis of cancer because ghrelin levels are closely
correlated with BMI. It may provide a useful early marker
for cancer cachexia, however, particularly in NSCLC
(281). Elevated ghrelin levels associated with a decrease in
BMI are associated with cancer cachexia (73, 159, 280,
281). Although plasma ghrelin levels have been shown to
be elevated in some cancers (240, 277, 278, 281, 289, 303,
304), many studies need to be interpreted with caution
because there are a number of limitations in the measure-
ment of acylated ghrelin. A number of studies have been
performed where the rapid deoctanoylation and degrada-
tion of ghrelin is not prevented, and these measurements
may be inaccurate (114, 193, 287). In addition, results
vary greatly between assays, and there are no international
standards (283). The introduction of two-site sandwich
ELISA has improved the sensitivity and specificity of acy-
lated ghrelin assays (283). High throughput and sensitive
quantitative mass spectrometry assays (293) are likely to
provide very accurate measurement of both acylated and
unacylated ghrelin and their degradation products, but
these assays also require careful sample preparation.

Ghrelin stimulates cell proliferation in the majority of
normal cell types and cell lines tested to date (33, 36, 44–
66), and therefore, it is not surprising that ghrelin also
stimulates cell proliferation in a range of cancer and tumor
cell types (41–43, 69–77, 79), although it has been re-
ported to inhibit proliferation in others (34, 80, 81) (Table
2). The response to ghrelin is likely to be cell type-specific,
however, and differences could reflect the differences in
the expression of GHSR1a and the hypothesized alterna-
tive ghrelin receptor. Findings by different research groups
that ghrelin can stimulate or inhibit proliferation in the
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same cell lines may result from differences in the cell lines
themselves, a difference in the methods used to perform
the assays, or the concentrations and purity of ghrelin
used. In vitro studies into the action of acylated ghrelin in
particular would require the frequent replenishment of
ghrelin because the peptide is rapidly degraded and the
octanoyl group rapidly removed (114, 193, 287). This
could alter the effects of treatment that are observed. The
physiological significance of the concentrations of ghrelin
used in these assays is difficult to determine because tumor
levels of ghrelin have not been measured.

Ghrelin may also influence cell number by regulating
apoptosis and cell survival (Table 2). Ghrelin has been
shown to protect against apoptosis induced by a number
of different insults in the nervous system, cardiovascular
system, pancreas, and a range of other normal and cancer
or tumor cell types (36, 54, 57, 60, 63–67, 69, 72, 74,
82–93), but it has been shown to increase the rate of basal
or induced apoptosis in some cell lines (79, 80, 328).

There have been few studies investigating the role of
ghrelin in cell invasion and migration, two processes that
are critical for cancer progression and metastasis. Ghrelin
treatment has been shown to increase cell migration and
invasion in colon cancer, astrocytoma, and pancreatic
cancer (73, 77, 235), and it increases migration in normal
microvascular endothelial cells (339, 365). Ghrelin has
been shown to have a role in regulating processes required
for angiogenesis. Ghrelin increases angiogenesis, stimu-
lating cell proliferation or migration and inhibiting apo-
ptosis in most endothelial cell types studied (36, 56, 85–
87, 182, 339, 365). It has also been shown to inhibit
processes required for angiogenesis in some studies, how-
ever, and it inhibits the angiogenic response to FGF-2
(337, 338, 379). The role of ghrelin in angiogenesis asso-
ciated with cancer has not been investigated, however,
although it has been hypothesized that ghrelin could pro-
mote wound healing and tumor growth by stimulating
angiogenesis (339).

In the few studies that have investigated the role of
ghrelin in cancer progression in rodent models of ca-
chexia, no increases in cell number have been observed in
short-term studies (325, 326), and ghrelin did not appear
to accelerate cancer progression in a small short-term
study of patients with gastrointestinal cancer (356). In
contrast, transgenic mice overexpressing ghrelin devel-
oped hypertrophy of the gut, ghrelin-producing tumors,
and elevated IGF-I levels (305). Elevated IGF-I levels are
associated with the development of cancer (306). Further,
longer term, and more targeted in vivo studies are required
to determine whether changes in cell proliferation are
pathophysiologically significant.

It is possible that the ghrelin axis could be a useful
target for adjunct therapies for some cancers, where
ghrelin promotes processes related to cancer progres-
sion, including the stimulation of cell proliferation, mi-
gration, and invasion and the inhibition of apoptosis. It
is also feasible that ghrelin antagonists may have similar
effects to GHRH antagonists. Interestingly, the classical
GHRH has been demonstrated to have autocrine/para-
crine actions in the prostate (380 –383), and GHRH
antagonists (synthetic GHRH analogs) are promising
treatments for BPH, castrate-resistant prostate cancer,
and other cancers including breast cancer and colorectal
cancer (381, 384). GHRH is a GHSR1a agonist, which
binds the receptor and stimulates calcium signaling, and
some GHRH receptor antagonists have also been dem-
onstrated to bind the GHSR1a (385).

Ghrelin has been shown to have largely antiinflamma-
tory effects, and it protects cells against a number of insults
(311), although proinflammatory effects have been de-
scribed in some studies (351, 352). Because chronic in-
flammation is a risk factor for the development of some
cancers, including gastric, esophageal, lung, prostate, and
colon cancer (343), we hypothesize that ghrelin may pro-
tect against the development of some cancers. Because in-
flammation can promote or inhibit cancer (344), it is dif-
ficult to predict the effect of ghrelin treatment on tumor
growth, and specific studies into the role of ghrelin in
cancer-related inflammation are required. The antiinflam-
matory effects of ghrelin, in addition to its influence on
feeding and energy balance, appear to be of benefit to
patients with cancer cachexia (104, 354). Ghrelin and its
analogs show promise as a treatment for cancer cachexia,
which is associated with inflammation, muscle wasting,
weight loss, anorexia, and decreased quality of life. Al-
though the role of ghrelin in cancer progression remains
unclear, the benefits of this treatment are likely to out-
weigh the potential risks in these patients.

Ghrelin is a multifunctional hormone with roles in reg-
ulating a number of processes related to cancer progres-
sion, including cell proliferation, apoptosis, cell invasion
and migration, and angiogenesis. In particular, the finding
that a fluorescently labeled ghrelin analog binds prostate
tissues and can be used to discriminate between benign
prostate disease and prostate cancer indicates that the
ghrelin axis may be important in prostate cancer and fur-
ther studies are warranted. It is currently unclear whether
the ghrelin axis has tumor-promoting effects, or indeed
whether it may inhibit tumorigenesis in vivo, and further
studies are therefore required to elucidate its role in cancer.
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noletti E, Ghè C, Volante M, Papotti M, Muccioli G, Ghigo
E 2008 Obestatin promotes survival of pancreatic �-cells
and human islets and induces expression of genes involved
in the regulation of �-cell mass and function. Diabetes 57:
967–979

95. Camiña JP, Campos JF, Caminos JE, Dieguez C, Casan-
ueva FF 2007 Obestatin-mediated proliferation of human
retinal pigment epithelial cells: regulatory mechanisms.
J Cell Physiol 211:1–9

96. Granata R, Volante M, Settanni F, Gauna C, Ghé C, An-
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376. Mészárosová M, Sirotkin AV, Grossmann R, Darlak K,
Valenzuela F 2008 The effect of obestatin on porcine ovar-
ian granulosa cells. Anim Reprod Sci 108:196–207

377. Ceranowicz P, Warzecha Z, Dembinski A, Cieszkowski J,
Dembinski M, Sendur R, Kusnierz-Cabala B, Tomasze-
wska R, Kuwahara A, Kato I 2009 Pretreatment with
obestatin inhibits the development of cerulein-induced
pancreatitis. J Physiol Pharmacol 60:95–101

378. Stevanoviæ D, Miloseviæ V, Starceviæ VP, Severs WB
2007 The effect of centrally administered ghrelin on pitu-
itary ACTH cells and circulating ACTH and corticoste-
rone in rats. Life Sci 80:867–872

379. Baiguera S, Conconi MT, Guidolin D, Mazzocchi G,
Malendowicz LK, Parnigotto PP, Spinazzi R, Nussdorfer
GG 2004 Ghrelin inhibits in vitro angiogenic activity of rat
brain microvascular endothelial cells. Int J Mol Med 14:
849–854

380. Chopin LK, Herington AC 2001 A potential autocrine/
paracrine pathway for GHRH and its receptor in human
prostate cancer cell lines. Prostate 49:116–121

381. SmithK2012Prostate cancer:GHRHantagonists couldbe
effective in CRPC treatment. Nat Rev Urol 9:120

382. Letsch M, Schally AV, Szepeshazi K, Halmos G, Nagy A
2004 Effective treatment of experimental androgen sensi-
tive and androgen independent intraosseous prostate can-
cer with targeted cytotoxic somatostatin analogue AN-
238. J Urol 171:911–915

383. Plonowski A, Schally AV, Letsch M, Krupa M, Hebert F,
Busto R, Groot K, Varga JL 2002 Inhibition of prolifera-
tion of PC-3 human prostate cancer by antagonists of

890 Chopin et al. The Ghrelin Axis and Cancer Endocrine Reviews, December 2012, 33(6):849–891

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/33/6/849/2354797 by U

.S. D
epartm

ent of Justice user on 16 August 2022



growth hormone-releasing hormone: lack of correlation
with the levels of serum IGF-I and expression of tumoral
IGF-II and vascular endothelial growth factor. Prostate 52:
173–182

384. Rick FG, Schally AV, Szalontay L, Block NL, Szepeshazi K,
Nadji M, Zarandi M, Hohla F, Buchholz S, Seitz S 2012
Antagonists of growth hormone-releasing hormone inhibit
growth of androgen-independent prostate cancer through
inactivation of ERK and Akt kinases. Proc Natl Acad Sci
USA 109:1655–1660

385. Casanueva FF, Camiña JP, Carreira MC, Pazos Y, Varga
JL, Schally AV 2008 Growth hormone-releasing hormone
as an agonist of the ghrelin receptor GHS-R1a. Proc Natl
Acad Sci USA 105:20452–20457

386. Mottershead M, Karteris E, Barclay JY, Suortamo S, New-
bold M, Randeva H, Nwokolo CU 2007 Immunohisto-
chemical and quantitative mRNA assessment of ghrelin
expression in gastric and oesophageal adenocarcinoma.
J Clin Pathol 60:405–409

387. Wang Z, Wang W, Qiu W, Fan Y, Zhao J, Wang Y, Zheng
Q 2007 Involvement of ghrelin-growth hormone secreta-
gogue receptor system in pathoclinical profiles of digestive
system cancer. Acta Biochim Biophys Sin (Shanghai) 39:
992–998

388. Tsolakis AV, Stridsberg M, Grimelius L, Portela-Gomes
GM, Falkmer SE, Waldum HL, Janson ET 2008 Ghrelin
immunoreactive cells in gastric endocrine tumors and their
relation to plasma ghrelin concentration. J Clin Gastroen-
terol 42:381–388

389. Tsolakis AV, Grimelius L, Stridsberg M, Falkmer SE, Wal-
dum HL, Saras J, Janson ET 2009 Obestatin/ghrelin cells
in normal mucosa and endocrine tumours of the stomach.
Eur J Endocrinol 160:941–949

390. Raffel A, Krausch M, Cupisti K, Gerharz CD, Eisenberger
CF, Knoefel WT 2005 Ghrelin expression in neuroendo-
crine tumours of the gastrointestinal tract with multiple
endocrine neoplasia type 1. Horm Metab Res 37:653–655

391. Srivastava A, Kamath A, Barry SA, Dayal Y 2004 Ghrelin
expression in hyperplastic and neoplastic proliferations of

the enterochromaffin-like (ECL) cells. Endocr Pathol 15:
47–54
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