1 Introduction

NGC 6543 and 6826 are members of a group of planetary nebulae (PNe) now known as multiple shell planetary nebulae, a phase through which more than half of PNe are observed to pass during their lifetime (Chu, Jacoby \& Arendt 1987). In particular these two objects are classified as Type I multiple shell PNe or 'faint halo PNe' due to their large outer shells which are on average about 10^{3} to 10^{4} times less bright than the main core of the nebula.
These outer haloes are of great interest as they are presumably the remains of the original stages of mass loss from the progenitor stars. In studying them we probe the state of the outer layers of the progenitor, perhaps before all of the mixing of elements from the core to the outer envelope has been completed. The mass of a halo forms part of the difference between the
 so as to calibrate the initial mass-final mass relation for stellar evolution. Theory predicts that AGB stars with initial masses of, for example, 1 and $2 M_{\odot}$ can evolve to central stars of 0.55 and $0.62 M_{\odot}$ respectively (e.g. Kwok 1983). The mass lost ($0.45-1.38 M_{\odot}$) should be present in the form of a PN or neutral shell around the central star.
Capriotti (1978) discussed the origins of PNe giant haloes, and showed that they could contain very large masses of gas. Assuming that the sharp edges of NGC 6543 and 6826 represented the Strömgren radii for the central stars, he gave halo masses of 24 and $8 M_{\odot}$, respectively for these systems, for adopted electron densities of 130 and $360 \mathrm{~cm}^{-3}$. If correct, these masses would be extremely important for comparison of PNe with stellar evolution theory.
The observations presented here were undertaken to measure the properties, including the
temperature, density and mass of the haloes, Hippelin, Baessgen \& Grewing (1985) observed the two multiple shell PNe studied here and NGC 7662: they used annular diaphragms which occulted the core of the PN but had to make large corrections for light scattered by the observing system from the core. We have used long slit spectroscopic observations offset from the core to study these objects more fully.

2 Observations

The data were obtained with the $2.5-\mathrm{m}$ Isaac Newton Telescope at La Palma on 1987 July 22-24 under seeing conditions of about 1.5 arcsec, and grey to dark Moon. We employed the Intermediate Dispersion Spectrograph with an IPCS detector (format 126×2048 pixels) on
the $235-\mathrm{mm}$ camera and a GEC CCD on the 500 -mm camera. With the IPCS setup we used different gratings to provide low-dispersion spectra in the range $3600-7600 \AA$ and highdispersion spectra in the range $3600-4600 \AA$. The resolutions of these are 4.0 and $1.0 \AA$, respectively. With the CCD, spectra from $5400-7600 \AA$ with a resolution of $2.7 \AA$ were taken. For exposures of the bright cores we made use of neutral density filters whose spectral trans-
mission responses were corrected for in the image processing. Slit widths were of the order of 0.8 arcsec for the PN cores and 1.6-3 arcsec for the haloes. All standard stars were observed with slit widths of 5.4 arcsec. Great care was taken with the IPCS images to ensure that emission lines with pixels of count rates higher than 0.5 Hz were not used, as these may have saturated due to the slowness of the event centering software with such a large format.
The 2 -dimensional images were processed using the figaro software, written by Keith
Shortridge (see Bridger 1987), on the UCL node of the SERC STARLINK network. The images for each night were corrected for atmospheric extinction using photometric measurements made by the Carlsberg Automatic Meridian Circle. Flux calibration was achieved with
We observed a number of positions in the nebular haloes in order to determine their 'average' properties. The slit positions are indicated in Plates 1 and 2. These are both based on

 әләм suo! 3 arcsec north-east, position angle 140° for NGC 6543 and 5 arcsec east, position angle 124° for NGC 6826. For each slit position there were usually two images exposed with integration times of about 1800 s each. After processing, the two images were added to increase the signal-to-noise ratio.
The images were examined for emission in lines such as $\mathrm{H} \alpha,[\mathrm{O} \quad \mathrm{III}] \lambda 5007$ and $\left[\mathrm{O}{ }_{\mathrm{I}}\right] \lambda 3727$ and a spectrum extracted in the regions where such emission was found. The locations of the edges of the halo in our images coincided well with those seen on Plates 1 and 2. The angular

Plate 1. Deep exposure of the planetary nebula NGC 6543 showing details of the giant halo, with the inner nebula highly overexposed. North is at the top with east to the left. The slit positions marked are those at which
we made observations. Note the filaments in the south-west outside the halo which are probably density we made observations. Note the filaments in the south-west outside the halo which are probably density

Giant haloes of NGC 6543 and 6826

 subtracted from the PN spectrum.

 in filaments and at the very edge of the NGC 6543 halo. The effects of differential atmospheric refraction are not significant for these diagrams. This spatial information is discussed further in Section 4.
For NGC 6543 we also used low-resolution large aperture IUE data. These were obtained from the World Data Center at the Rutherford Appleton Laboratory and the data were ІОл '806

Mix:-
n

 The average fluxes (corrected for interstellar extinction) are presented in Tables 1 and 2.
Values for the extinction constant, c, for each nebula were found from our measurements of
the Balmer Decrement, and are in agreement with values given by Kaler (1976). The [Ne III]
$3868 \AA$ line in the NGC 6543 core was either saturated or contaminated by noise in our
spectra and we used the measurement of Aller \& Czyzak (1979) for this line. The errors are
estimated at 10 per cent for strong lines and 30 per cent for weak lines, from photon noise and
uncertainty in placement of the continuum level.

 atmospheric dispersion effects. The nebular centre would be at -51 arcsec in this figure.

3 Results

We used the lines of oxygen to determine electron temperatures and densities, with T_{e} measured from $\left[\mathrm{O}_{11}\right] \lambda \lambda 4959+5007 / 4363$, and N_{e} from $\left[\mathrm{O}_{\mathrm{II}}\right] \lambda \lambda 3729 / 3726$. In Table 3 we these imply.
Unfortunately the diagnostic ratio for N_{e} is at, or for NGC 6826 is consistent with, the low density limit: the error bars on the $\lambda \lambda 3729 / 3726$ ratio always include the low density value of 1.50. We can only give an upper limit to the electron density with any certainty although we can explore the consequences of the nominal measured density for NGC 6826. Of great interest is

 not due to an incorrect sky subtraction, with some remaining $\mathrm{Hg}_{\mathrm{I}} \lambda 4360$ emission perhaps corrupting the $[\mathrm{O}$ III $]$ measurement. Fig. 1 (for NGC 6543) illustrates that these two lines were

resolved and a good sky subtraction obtained. The strength of $\lambda 4363$ relative to $\mathrm{H} \gamma$ can be
clearly seen in the figure.
Elemental abundances for the PN cores and the haloes have been derived using the same consistent methods where possible. Comparisons of the compositions of different shells of multiple shell PNe are of great interest, as the regions may represent ejection events occurring at different times $\left(\Delta t \sim 10^{5} \mathrm{yr}\right)$ during the evolution of the progenitor red giant star.
The adopted fluxes listed in Tables 1 and 2 have been used to obtain empirical abundances
for the adopted N_{e} and T_{e} values in Table 3. The atomic data used are from the compilation of

 halo is similar to that of the core; the halo icf is probably then uncertain to a factor 2 , but the

D. Middlemass, R. E. S. Clegg and J. R. Walsh					
Table 2. Average, dereddened ($c=0.04$) line fluxes for NGC 6826.					
$\lambda(\AA)$	Identity	$f(\lambda)$	Core $I(\lambda)$	Halo	$I(\lambda)$
3727	[O II]	0.256	20.9		81.7
3868	[Ne III]	0.230	48.3		69.2
3967	"	0.210	15.4		16.1
4101	H δ	0.182	28.5		28.7
4267	C II	0.144	0.9		-
4340	H γ	0.127	47.0		48.0
4363	[O III]	0.121	5.5		11.3
4471	He I	0.095	5.1		-
4712	[Ar IV]	0.037	1.2		-
4861	H 3	0.000	100.0		100.0
4922	He I	-0.015	1.5		-
4959	[O III]	-0.024	253.0		274.0
5007	"	-0.036	770.0		797.0
5876	He I	-0.215	14.9		7.3
6300	[OI I]	-0.282	-		2.6
6547	[NII]	-0.318	3.1		-
6583	"	-0.323	8.2		8.3

 noted that the N abundance values given may be only 80 per cent of the actual abundances.
Giant haloes of NGC 6543 and 6826
0

		Core	Halo	$\frac{\mathrm{N}(\mathrm{X})_{\text {halo }}}{\mathrm{N}(\mathrm{X})_{\text {core }}}$
0	O^{2+}	58.4_{-9}^{+12}	$17.9_{-1.5}^{+2.0}$	
	O^{+}	$5.11_{-1.5}^{+3.9}$	$9.05_{-2.8}^{+3.9}$	
	O°	$0.47_{-0.09}^{+0.09}$	$1.57_{-0.6}^{+0.6}$	
	icf	1.0	1.0	
	$\mathrm{N}(\mathrm{O}) / \mathrm{N}(\mathrm{H})$	$64.0{ }_{-10.6}^{+16}$	$28.5_{-5.0}^{+6.5}$	$0.45_{-0.11}^{+0.15}$
	$A C 1983$	56.0		
Ne	$\mathrm{Ne}{ }^{2+}$	$14.6{ }_{-3.2}^{+3.2}$	$3.31_{-0.6}^{+0.9}$	
	icf	$1.10_{-0.02}^{+0.04}$	$1.59_{-0.16}^{+0.17}$	
	$\mathrm{N}(\mathrm{Ne}) / \mathrm{N}(\mathrm{H})$	$16.0_{-3.7}^{+4.0}$	$5.27{ }_{-1.40}^{+2.14}$	$0.33_{-0.11}^{+0.16}$
	AC 1983	14.1		
N	N^{+}	$0.67_{-0.11}^{+0.13}$	$2.288_{-0.4}^{+0.5}$	
	icf	$12.5_{-3.6}^{+2.3}$	$3.15{ }_{-0.45}^{+0.61}$	
	$\mathrm{N}(\mathrm{N}) / \mathrm{N}(\mathrm{H})$	$8.38_{-1.26}^{+0.02}$	$7.18_{-0.11}^{+0.33}$	$0.85{ }_{-0.13}^{+0.04}$
	$A C 1983$	8.71		
C	C^{2+}	61.5_{-23}^{+29}	$22.8{ }_{-4}^{+6}$	
	C^{+}	$5.66_{-1.8}^{+2.1}$	-	
	icf	1.13	1.25	
	$N(C) / N(H)$	$75.7{ }_{-28}^{+35}$	$28.5_{-5}^{+7.5}$	$0.38{ }_{-0.16}^{+0.20}$
He	$\mathrm{N}(\mathrm{He}) / \mathrm{N}(\mathrm{H})$	$0.111_{-0.01}^{+0.01}$	$0.06_{-0.02}^{+0.02}$	$0.55_{-0.21}^{+0.21}$

The core abundances for NGC 6543 are only 10 per cent different, on average, from the
results of Aller \& Czyzak (1983, AC). The core abundances of NGC 6826 are, however,
significantly different from those of Barker (1988), the largest discrepancy being for neon.
Barker states that Aller \& Czyzak now quote 4×10^{-5} for the neon abundance, their 1983
published value being in error. Their new value agrees well with ours. The higher value of
Barker may be due partly to his lower adopted electron temperature, and partly to use of
different atomic data. For Ne ill we use the recent collision strengths of Butler \& Mendoza
(1984).
*Given as $10^{5}\left(X^{i} / \mathrm{H}^{+}\right)$except for helium.

3.3. HALO MASSES

We calculated the mass of ionized gas in the haloes from the absolute $\mathrm{H} \beta$ flux and the limits on
the electron density (see below). Our measurements of $\mathrm{H} \gamma$ and $\mathrm{H} \beta$ yielded average absolute
$\mathrm{H} \beta$ fluxes per arcsec ${ }^{2}$ for each halo, after careful inspection of the spectra and of Plates 1 and
2. Table 7 gives these mean values, together with our adopted values of the projected area of
the halo, absolute $\mathrm{H} \beta$ fluxes for the cores, nebular distances and resulting masses. The core $\mathrm{H} \beta$
fluxes are taken from Kaler $(1983,1978)$ for NGC 6543 and 6826 , respectively. The distances
used were those given by Cudworth (1974).
We found that the large, bright knot west of NGC 6543 is brighter than the rest of the halo
by a factor of about 6 , and we used measurements from positions 2 and 3 in this object to
represent the average $\mathrm{H} \beta$ surface brightness. Similarly, a small bright knot in the NGC 6826
halo was ignored for that halo.
Considering both haloes to be spheres of angular radius θ_{H} (with a core of radius θ_{C}), filled
with material of electron density N_{c} at temperature $t_{\mathrm{c}}=T_{\mathrm{c}} / 10^{4} \mathrm{~K}$ and a volume filling factor ε,
II

[^0]3.4 ANALYSIS WITH PHOTO-IONIZATION MODELS
we use the two formulae given by Clegg, Peimbert \& Torres-Peimbert (1987) - adapting
equation (1) to give the absolute dereddened $\mathrm{H} \beta$ flux of the halo - thus,
(1)
$M_{i}=8.07 \times 10^{11} F(\mathrm{H} \beta) d^{2} t_{\mathrm{e}}^{0.88}(1+4 y) / N_{\mathrm{e}}$ where d is the distance in kpc and $y=\mathrm{N}(\mathrm{He}) / \mathrm{N}(\mathbf{H}),\left(y^{+}\right.$and y^{2+} are the ionic abundances for singly and doubly ionized helium, respectively). By rearranging (1) and solving for $N_{\mathrm{c}}^{2} \varepsilon$ we can put $\varepsilon=1$ and obtain lower limits to the electron density (this is the so-called rms electron
density). The results are 9.85 ± 1.80 and $14.38 \pm 2.70 \mathrm{~cm}^{-3}$ for NGC 6543 and 6826 , respectively. Equation (2) was used with these lower limits to the electron density and the upper limits found from the $\left[\mathrm{O}_{n}\right] \lambda \lambda 3729 / 3726$ line ratio, to give limits of the halo ionized masses (Table 7). We find the halo ionized masses to be in the range $0.26-0.92 M_{\odot}$ for NGC 6543 and 0.03-0.94 M_{\odot} for NGC 6826. (A possible neutral component is discussed in
 M_{i} (halo) depend on adopted distance, the ratio of halo mass to core mass is independent of distance.

3.4.1 The PN cores

The core models were constructed with density structures obtained by measuring the $\mathrm{H} \alpha$ isophotes given by Phillips et al. (1977) for NGC 6543 and Phillips \& Reay (1983) for NGC 6826. We decided to use non-LTE model atmospheres (Clegg \& Middlemass 1987) as the best representation of a central star available to us. For NGC 6543 we tried using the ellar parameters given by Lucy \& Perinotto (1987) who obtained $T=56000 \mathrm{~K}$. However, we found that this provided too much heating. The Zanstra temperature for this star is 43000 K (Castor et al. 1981) and we obtained a good model match with a non-LTE model atmosphere with $T=40000 \mathrm{~K}$. Note that the existence of an ionized halo implies the core of the PN is not optically thick in all directions, but even if half of the photons escape, the effect on T_{Zan} is small. Our photo-ionization model matched the $\mathrm{H} \beta$ flux exactly, T_{e} and N_{e} diagnostic line ratios to within 8 per cent and other line fluxes to within 10 per cent - except $\left[\mathrm{O}_{\mathrm{I}}\right] \lambda 6300$ which
 NGC 6826. The stellar luminosity was $10000 L_{\odot}$. This model matched the $\mathrm{H} \beta$ flux exactly, and T_{e} and N_{e} diagnostic line ratios and other line fluxes to within 12 per cent. Results from these models are presented in Table 6 together with the adopted parameters.

In order to test whether the high halo electron temperatures observed could be produced by photoelectric heating, uniform haloes, with the densities given in Table 3, were added to the

 core, for both PNe. To increase the halo T_{e} the central star luminosity was decreased to make the model more optically thick and so 'harden' the radiation field illuminating the haloes. We
 continuum, reached about 30 when the halo temperature started to drop rapidly (as the hydrogen becomes neutral.)

Figure 5 shows diagrams of T_{e} versus radius for various models labelled with $\tau\left(\mathrm{H}_{\mathrm{I}}\right)$, the curve with the lowest value being the model with the original stellar luminosity. We have not
 respectively. However, as shown by Fig. 5, measurements of T - made at large offsets from the core of the nebula and averaged over a long slit - would yield much smaller differences than
 $2600_{-1800}^{+5655} \mathrm{~K}$ for NGC 6543 and 6826 , respectively.

core and the halo of the planetary nebula.

Some part of the temperature excess observed in these two haloes might be due to the lower abundances measured there (through a reduction in the rate of cooling by collisionally excited lines). We were unable to calculate photo-ionization models with different abundances in

 elements. We found that for an optically thick pair $[\tau(\mathrm{HI})=15.8]$ an increase in the temperature excess of about 300 K was obtained for a low-abundance halo around a higher-abundance
 an excess of 1400 K , as the original excess was -600 K , i.e. the core abundance model had the halo temperature lower than the core temperature).
We conclude that optically thick PN cores do not provide the required temperature excess, and that the combination of thick core plus low-abundance haloes could perhaps provide 40 per cent of the observed excess for NGC 6543. Another method for investigating the temperature is that of energy-balance (see e.g. Preite-Martinez \& Pottasch 1983). We find that the halo requires a central star effective temperature (for a blackbody) of 400000 K while the core only requires one of $37000 \mathrm{~K}\left(c f . T_{\text {Zan }}=43000 \mathrm{~K}\right)$. It seems that some other heating mechanism in the halo must be required. It is possible that the hot fast stellar wind may be leaking into the halo and producing shock excitation. Velocity information is needed to investigate this. We have not examined this further as the shock models available at present (e.g. Shull \& McKee 1979) do not include photo-ionization by a hot local star which would alter the excitation of the post-shock gas considerably.
It can be seen from Tables 1 and 2 that
It can be seen from Tables 1 and 2 that $\left[\mathrm{O}_{\mathrm{I}}\right] \lambda 6300$ emission is on average very much
stronger in the haloes than in the cores. Hence we consider whether a significant amount of stronger in the haloes than in the cores. Hence we consider whether a significant amount of
neutral gas resides in the haloes; this could affect the halo mass and abundances. (The larger

 atoms such as $\left[\mathrm{O}_{\mathrm{I}}\right] \lambda 6300$ were almost a factor 10 too large. The observed $\left[\mathrm{O}_{1}\right]$ emission may

 neutral helium in the haloes; the abundance we measure there is less than the primordial helium abundance (Shields 1986).

4 Discussion

Our results show that the haloes have different temperatures from the cores. Together with the variations in the $\mathrm{O}^{+} / \mathrm{O}^{2+}$ ratios across filaments, seen in Figs 3 and 4, this demonstrates that the halo emission is thermal and not reflection by dust. Moreover the ionized masses in the haloes, while not as large as those suggested by Capriotti (1978), are significant for stellar

Is there even more mass in these systems? According to the 2 -wind model of Kwok (1983),
NGC 6543 should have evolved from a $2 M_{\odot}$ progenitor. This would suggest that $0.4-1.0 M_{\odot}$

 described by Weidemann (1987), and thus we cannot state definitely that there is still 'missing mass' for NGC 6543.
Neutral gas might be present in (i) a cold molecular shell, (ii) small condensations or (iii) mixed with the (partially ionized) halo gas. We consider (i) unlikely because the haloes appear to be so filamentary and empty that ionizing photons must surely leak out of the observed structure. Indeed, in NGC 6543 filaments can be seen on Plate 1 which extend out to 240 arcsec from the central star. These are probably density enhancements in a larger shell outside the halo rather than independent bodies, and would then illustrate the point that ionizing photons are escaping from the system. Thus any outer shell is probably ionized, but unobserved because of its low surface brightness.
Possibility (ii) is of interest as some of the observed filaments could be optically thick in H I. This is seen especially at the halo edges (see Figs 3 and 4) where the $\mathrm{O}^{+} / \mathrm{O}^{2+}$ ratio can rise markedly. Strong [$\left.\mathrm{O}_{\mathrm{I}}\right] \lambda 6300$ emission in the NGC 6543 halo may also point to optically thick

 $\mathrm{N}\left(\mathrm{O}^{+}\right)>\mathrm{N}\left(\mathrm{O}^{2+}\right)$ due to the geometrical dilution of the ionizing radiation? Possibility (iii) was

We consider it quite likely that more mass does exist and that it is mainly in the form of an outer shell which is probably ionized.
The limits we have found for the halo mass, together with the fact that the 'edge' of the halo is not a simple Strömgren radius, suggest that the calculations of Capriotti (1978) giving super-
Our data show that the structures of the haloes are quite inhomogeneous. Fig. 2 illustrates the spatial variation we have found in the halo of NGC 6826, in the emission of [$\mathrm{O} m] \lambda 5007$ at both slit positions. The edge of the halo is quite sharp, suggesting that the mass loss of which the halo is a result increased dramatically from its previous rate. The profile in the slit offset of 46 arcsec is suggestive of the existence of subshells, or knots and filaments, within the halo.
Unlike NGC 6543 , the $[\mathrm{O} I] /[\mathrm{O}$ III $]$ ratio is almost constant in this halo - even at the sharp

 Purton \& Fitzgerald (1978) and Volk \& Kwok (1985).
A bright knot in the NGC 6826 halo can be seen in Plate 2, and also in the spectrum at position 2 (Fig. 2). We estimate its size to be 7.5×9 arcsec, considerably larger than a field star and it emits strongly in $\left[\begin{array}{ll}\mathrm{O} & \mathrm{II}] \text {. We consider it to be a part of the halo; it may have been formed }\end{array}\right.$ by some interaction with the local interstellar environment.

Acknowledgments
 electron temperatures higher than their respective centrally ionized nebulae. The abundances in the haloes appear to be lower, by factors of about 2, than the cores. We have put limits on the halo masses by finding lower and upper limits to the halo electron density. The combined mass

 filaments.

[^0]: 1. N_{c} calculated from equation (1) with $\varepsilon=1$.
 2. N_{c} calculated from $\left[\mathrm{O}_{\mathrm{I}}\right]$ doublet ratio.
