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The Gibbs-Appell equations of motion 

Edward A. Desloge 
Physics Department, Florida State University, Tallahassee, Florida 32306 

A particularly simple and direct derivation of the Gibbs-Appell equations of motion is given. In 

addition to the conventional results, a relatively unknown but elegant and useful form of the 

equations of motion is also obtained. The role of virtual displacements in generating generalized 

equations of motion is discussed. The relationship between the Gibbs-Appell equations of motion 

and Lagrange's equations of motion is discussed. Auxiliary results thal facilitate the application 

of the Gibbs-Appell equations of motion to rigid bodies are presented. The theory is 

demonstrated by generating equations of motion for a disk rolling on a horizontal plane. 

I. INTRODUCTION 

One of the most neglected, misunderstood, and mistreat
ed methods for determining the motion of mechanical sys
tems is the Gibbs-Appell method, which was first discov
ered by Gibbs1 in 1879 and independently discovered and 
developed by Appell2 in 1899, 

A limited number of textbooks contain discussions of the 
Gibbs-Appell equations of motion. 3 Most of these books 
present the Gibbs-Appell method as a secondary method 
that is useful but not necessary for the solution of certain 
problems. 

Recently, we have become convinced that the Gibbs
Appell equations of motion deserve a much more central 
place in the theoretical hierarchy of generalized equations 
of motion than they have hitherto received. 

At the same time, we have also become aware of conflict
ing positions on the basic principles and techniques in
volved in the derivation of generalized equations of motion. 
In particular, we are bothered by the disparate views con
cerning the use of the concept of a virtual displacement, 

and the associated concept of virtual work, which range 
from the position held by some that the concept of a virtual 
displacement is "ill-defined, nebulous, and hence objec
tionable,"4 to the position held by others that this concept 
is "an absolutely essential requirement for the entire struc
ture of analytical dypamics."4 Our own position on this 
subject is that the concept of a virtual displacement is a very 
simple and very useful concept, which has played a signifi
cant role in the historical development of generalized equa
tions of motion, but which, although extremely helpful, is 
not strictly necessary. 

In defense of these views, our objective in this article is 
( I ) to show that it is possible to derive the Gibbs-Appell 
equations of motion in a very simple, straightforward man
ner without making use of virtual quantities or variational 
principles; ( 2) to show that the Gibbs-Appell equations of 
motion are more versatile, more general, and easier to de
rive than Lagrange's equations of motion; ( 3) to present a 
little known but useful and elegant form of the Gibbs-Ap
pell equations of motion; ( 4) to show the role of virtual 
displacements as a convenient but not necessary adjunct in 
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the derivation and application of the Gibbs-Appell equa

tions of motion; ( 5) to show that Lagrange's equations of 

motion are a special case of the Gibbs-Appell equations of 

motion; ( 6) to present some auxiliary results that facilitate 

the application of the Gibbs-Appell equations of motion; 

( 7) to illustrate the power of the Gibbs-Appell method by 

deriving equations of motion for a disk rolling on a hori

zontal plane; and ( 8) to argue on the basis of the above 

results that the Gibbs-Appell equations of motion consti

tute a marvelous theoretical and pedagogical starting point 

for the unification, presentation, and generation of general

ized equations of motion. 

II. DERIVATION OF THE GIBBS-APPELL 

EQUATIONS OF MOTION 

Consider a system consisting of N particles, which is sub

ject to a set of known forces, M holonomic constraints, and 

L anholonomic constraints. 

If we represent the configuration of the system by a sin

gle point x=:x 1,x2, ••• ,x3N in a 3N-dimensional Cartesian 

configuration space, 5 and if, in this space, we let f be the 

3N-dimensional resultant of the given forces acting on the 

system and F be the 3N-dimensional resultant of all the 

constraint forces, then Newton's equations of motion for 

the system are 

m/x; =J: +F0 i= l,2, ... ,3N. (1) 

If we let q = q1,q2, ... ,q3N _ M be any 3N- M coordinates 

which together with the holonomic constraint conditions 

uniquely determine the configuration of the system, then 

the effect of the holonomic constraints on the possible con

figurations of the system can be described by the following 

relations: 

X;=X;(q,t), i=1,2, ... ,3N. (2) 

If we now let r=:ri,Yz, ... ,r3N-M-L be any 3N- M- L 
quantities linear in ih,iJz, ... ,q3N _ M which together with the 

anholonomic constraint conditions uniquely determine the 

values of q1,q2, ••• ,q3N _ M• then the effect of the anholono

mic constraints on the possible motions of the system can 

be described by the following relations: 

i[;=Iaij(q,t)rj+b;(q,t), i=1,2, ... ,3N-M. (3) 
j 

Equations ( 2) and ( 3) define the restrictions imposed 

by the constraints on the configuration and the motion of 

the system. In addition to these restrictions, we shall as

sume as an added requirement that the components F; of 

the constraint force satisfy the following relation: 

I F;sii = 0, j = 1,2, ... ,3N- M- L, 
i 

where 

a.xi (q,r,t) a.xi (q,r,r,t> ----=-:.__;; __ 
a;.j arj 

(4) 

(5) 

For convenience and for the purposes of this article only we 

will refer to Eq. ( 4) as Lagrange's principle. Its justifica

tion will be considered in Sec. III. 
Equations (1 )-( 4) provide us with 12N- 2M- L 

equations in the 12N ~2M- L unknowns X 1,X2, ••• ,X3N, 

ql,qz, ... ,q3N- M•rt,i'z, ... ,r3N- M- vFt,Fz, ... , and F3N· By ju
dicious combination of the above equations, the number of 

equations and unknowns we have to worry about can be 

dramatically decreased. 

If we multiply Eq. ( 1) by sii, sum over i, and make use of 

Eq. ( 4), we obtain 

I m;.X;sii = IJ:sii. (6) 
i i 

If we now define 

S - 1 I ··2 =- m.x. 
2 j I I 

(7) 

and 

Qj==IJ:sii, (8) 
i 

then Eq. ( 6) can be written in the following form: 

as(q,r,r,t) = Q.. (9) 
2• J 
urj 

The 3N- M- L equations ( 9) are the Gibbs-Appell 

equations of motion. These equations together with the 

3N- M equations ( 3) provide us with 6N- 2M- L 

equations in the 6N- 2M- L unknowns q1,q2, ... , 

q3N- M,i-l,rz,••••r3N- M- L· 

An even simpler and inore elegant form of the Gibbs

Appell equations can be obtained if we define 

U==IJ: X;' 
i 

R==S- U. 

It then follows that 

(10) 

( 11) 

Q
. = au(q,r,r,t) 02> 

J 2• 
urj 

and the Gibbs-Appell equations assume the form 

aR(q,r,r,t> =O. (B) 

arj 

This form of the equations of motion was introduced by 

Appell6 but is generally ignored in most treatments of the 

Gibbs-Appell method. We have found it quite useful. 

When we wish to make a distinction, we shall refer to Eq. 

( 9) as the first form of the Gibbs-Appell equations of mo

tion and to Eq. ( 13) as the second form. 

The Gibbs-Appell equations of motion are not affected 

by additive terms of the form tfo(q,r,t), which occur inR, S, 

or U; that is, terms that when expressed as a function of 

q,r,r, and t do not contain at least one of the accelerations 

r;. Hence, in what follows, we will assume that the equality 

of two different values of either R, S, or U means that they 

differ at most by additive terms of the above form, and we 

will freely drop from expressions for R, S, or U terms of this 

form. It is also interesting to note that we could multiply 
R ( q,r,r,t) by any function of the above form without alter

ing the equations of motion. 

III. LAGRANGE'S PRINCIPLE 

In this section we consider the validity ofEq. ( 4 ), which 

as indicated earlier we refer to as Lagrange's principle. 

If at time t the given system is in a configuration q, then 

from Eqs. ( 2) and ( 3) it can be shown that the possible 
subsequent displacements dx of the system are those that 

satisfy the equations 
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dx; = ~)ii dri + a; dt 
j 

(14) 

for some set of values of dr and dt, where s!i is defined by 

Eq. (5), and a; is a known function of q and t, the exact 

form of which we will not need. The actual displacement 
will of course depend on the applied fOrces and the initial 

conditions. 
If we examine individually the various constraint forces 

that are responsible for limiting the possible displacements 
to the above set of displacements, we find in general that 
they satisfy Lagrange's principle. For example, if our sys
tem consists of a single particle that is confined to a smooth 
surface, which may or may not be moving, then from Eq. 
( 14) it follows that the vector s(j), whose components are 

s1ihi• and s3i, will be tangent to the surface. Since the sur
face is smooth, the constraint force F must be perpendicu
lar to the surface, hence F•s ( j) = 0 and Lagrange's princi
ple is satisfied. As a second example, if our system consists 
of a disk or sphere rolling without slipping on either a sta
tionary or moving surface, then the constraint force re
sponsible for keeping the system from slipping is applied to 
the particle in the system that is in contact with the surface; 
hence the only non vanishing components of the 3N-dimen
sional constraint force Fare those associated with this par
ticle. But for those components of x associated with this 
particle sii = 0, it follows that Lagrange's principle is valid 

for this constraint force. In a similar fashion, it is possible 
to show that an action-reaction pair offorces that maintain 
a fixed distance between two particles, or the forces that 
smoothly hinge two bodies together, will satisfy Lagrange's 
principle. We can proceed in this fashion and confirm for 
each of the constraint forces acting on a given system the 
validity of Lagrange's principle. 

Though we can thus verify Lagrange's principle by con
sidering the constraint forces one by one, there is no general 
proof of the principle. 

IV. VIRTUAL DISPLACEMENTS 

The process of verifying Lagrange's principle can fre
quently be simplified if we introduce the concept of a vir
tual displacement. We define a virtual displacement to be 
one of the possible displacements, as given by Eq. ( 14 ), for 
which dt = 0; or equivalently a displacement 8x that satis
fies the equations 

8x; = Lsii 8ri 
j 

(15) 

for some value of 8r. Thus, given a system in a configura
tion q at time t, the set of all virtual displacements is a 
particular subset of the set of all possible displacements. 
Physically such displacements are the displacements that 
would occur if the system was frozen in its motion at timet, 
and the system was then moved without violating any of 
the constraints operating on the system. 

A definition of a virtual displacement is sometimes made 
which allows the displacement to violate one of the con
straints. Our definition excludes such displacements. It is 
also possible to consider finite as well as infinitesimal vir
tual displacements. We restrict our consideration to infini
tesimal virtual displacements. Hence, whenever the term 
"a virtual displacement" is used in this article, it is to be 

read by those who employ the term in the broader sense as 
"an infinitesimal virtual displacement that does not violate 
any of the constraints." 

From the above definition, Eq. ( 15), it follows that the 
work done by the constraint force F in a virtual displace

ment is given by 

8W = ~ F; tJx; = ~ F;(~ sii 8ri) = ~ (~ F;sii)tJrj. 
I I J J I 

(16) 

A necessary and sufficient condition that the above quanti
ty vanishes for arbitrary values of tJr is that Lagrange's 
principle is satisfied. Hence assuming Lagrange's principle 
to be true is equivalent to assuming that the work done by 
the constraint forces in an arbitrary virtual displacement is 
zero. If we are interested in determining whether or not 
Lagrange's principle is satisfied for a particular constraint, 
it is generally easier to simply confirm that the work done 
by the force in an arbitrary virtual displacement is zero 
rather than to try to prove Lagrange's principle directly. 

It also follows from Eqs. ( 5), ( 8), and (15) and the 
definition of work that the work done by the given force fin 
a virtual displacement is given by 

(17) 

It is often much easier to determine the values of the Q; by 

exploiting the above equation than by directly using the 
definition given by Eq. (8). 

It should be noted that the introduction of the concept of 
a virtual displacement is a convenience and not a necessity. 
We were very careful in our derivation of the Gibbs-Appell 
equations of motion not to use this concept nor to employ 
any variational principles. This has been done to counter
act the impression conveyed by many mechanics texts that 
any advanced technique used in mechanics requires the 
introduction of virtual quantities and the employment of 
variational principles. 

V. LAGRANGE'S EQUATIONS OF MOTION 

If there are no anholonomic constraints, and we let ;.. 

= (J;, then it is relatively easy to show that ' 

as(q,q,q,t) = !!_ ( ar(q,q,t>) _ aT(q,ci,t> 08> 
aqi dt aq_i aq; 

and 

Qj= Lh ax;(~q,t) = Lh ax;(q,t)' (19) 

j aqj j aqj 

where Tis the kinetic energy of the system and the defini
tion of Qj goes over to the usual definition of the general

ized component of the force associated with the generalized 
coordinate qj. If we use Eqs. (18) and (19) in the Gibbs

Appell equations, Eq. (9), we obtain Lagrange's equations 
of motion. It follows that Lagrange's equations of motion 
can be considered as a special case of the Gibbs-Appell 
equations of motion. 

It is possible starting from the Gibbs-Appell equations 
to obtain Lagrange's equations for quasicoordinates but 
these equations are usually harder to apply than the Gibbs
Appell equations and will not be considered here. 

VI. GIBB8-APPELL VERSUS LAGRANGE 

There are two features of the Gibbs-Appell method that 
in principle if not in practice make it superior to Lagrange's 
method: ( I) The Gibbs-Appell method handles anholono
mic constraints in a simple, direct fashion whereas La-
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grange's method requires additional machinery to handle 

such constraints; ( 2) the Gibbs-Appell method allows the 

introduction of motional coordinates that are not simply 

the time derivatives of the configurational coordinates, 

thus giving it a versatility not shared by Lagrange's method 

without substantial modification. These features allow cer

tain systems to be handled far more economically using the 

Gibbs-Appell method than using Lagrange's method. The 

problem of finding equations of motion for a disk rolling on 

a flat surface is a good illustrative example and will be con

sidered later. 

If we are dealing with holonomic systems and there is no 

immediate advantage to introducing motional coordinates 

that are other than the time derivatives of the configura

tional coordinates, then Lagrange's equations are usually 

simpler to use than the Gibbs-Appell equations. Frequent

ly, however, we are unnecessarily deterred from using the 

Gibbs-Appell method for such problems by the fact that 

thoughtless evaluation of the function S( q,q,q,t) frequent

ly leads to expressions containing a discouraging number 

of terms. Suppose, for instance, we wish to obtain the equa

tions of motion of an unconstrained particle in terms of the 

spherical coordinates r, (), and¢. A straightforward substi

tution of x = r sin () cos ¢, y = r sin () sin ¢, and 

z = r cos () into the expression S = !m (x2 + ji2 +.f) will 

result in 36 distinct terms in .X2
, 36 distinct terms inji2

, and 

6 distinct terms in .f. By contrast, Lagrange's method re

quires us to obtain the kinetic energy function T(q,q,t) 

and, in the case considered above, a straightforward substi

tution of x = r sin () cos ¢, y = r sin () sin ¢, and 

z = r cos() into the expression T = !m (x2 + _y2 + r) will 

result in 6 distinct terms in .X2
, 6 distinct terms iny2

, and 3 

distinct terms in z2. Hence it would appear that for this 

problem the Lagrange method is considerably easier than 

the Gibbs-Appell method. The operational disparity be

tween the two methods in problems such as this is not how

ever as great as the above comments imply, for the follow

ing reasons: (I) Terms in S that do not contain 

accelerations can be dropped. (2) There are a number of 

~nalytical relations, which are available or which frequent 

use of the Gibbs-Appell method would generate, that can 

be used to simplify the evaluation of S; for example, the 

following relation .. .. 
(a sin/3 )

2 + ( a cosf3 )2 

= a2 + a2{3 2 
- 2a aiP + 4a aif/3 

+ fcn(a,{3,a,i3) (20) 

greatly simplifies the evaluation of Sin the above example. 

( 3) Once we have obtained Sand T, it is easier to obtain the 

Gibbs-Appell equations from S than to obtain Lagrange's 

equations from T. ( 4) It is not always necessary or even 

advisable to complete the squares in Sin order to use it in 

the Gibbs-Appell equations of motion. In general, we will 

find that ifterms of the form (¢1 + ¢2 + ... )2 
occur inS, 

then, depending on the problem, determination of as I ori 
may in one case be best achieved by completing the squares, 

combining terms, and then taking the derivative; while in 

another case it may best be achieved by not completing the 

square but rather working with the derivative in the form 

2(¢1 + ifJ2 + ... )[a(¢1 + f/Jz + .. . )Iori]. 
Although certain classes of problems are generally better 

handled with one method rather than another, it is difficult 

to definitively determine that one method is clearly superi

or to another for all problems of a certain class. For exam-

ple, using the Gibbs-Appell method, it is possible with lim

ited analytical effort to obtain equations of motion for a 

multiple planar pendulum containing an arbitrary number 

of components, 7 apparently more readily than with La

grange's method, despite the fact that the system is a holon

omic system and the motional coordinates chosen are the 

time derivatives of the configurational coordinates. 

VII. SYSTEMS OF PARTICLES 

For a system of particles, it can be shown that the value 

of S with respect to an arbitrary point a is given by 

S(a)=!MA·A+S(c), (21) 

where M is the total mass of the system, A is the accelera

tion of the center of mass with respect to the point a, and 

S( c) is the value of S with respect to the center of mass. 

It can also be shown that for a rigid body the value of S 

with respect to a point fixed in the rigid body is given by 

S = _!_ L L Iijiu/vj + L L L L Eijklk1iui(J)/v1 
2 i j i j k I 

(22) 

where the (J)i and Iij are the components with respect to an 

arbitrary frame 0123 of the angular velocity and inertia 

tensor of the body, respectively; the nj are components 

with respect to the frame 0123 of the angular velocity of the 

frame 0123 with respect to either an inertial frame or a 

frame fixed in the body; and Eijk = + 1, - 1, or 0 depend

ing on whether ijk is an even permutation of 123, an odd 

permutation of 123, or neither. 

The last term on the right-hand side ofEq. (22) is erro

neously missing from the expression for S, which appears 

in the textbook by Desloge. 8 The error in Desloge's result 

occurs because he mistakenly assumes in his derivation of 

the theorem that the components of ro with respect to the 

arbitrary frame are given by iui rather than by the correct 

values, which are iui + l:j l:k Eijk{lj(J)k. If the iui in his final 

result are replaced by iui + l:j l:k Eijknj(J)k and terms not 

containing accelerations are dropped, where it is assumed 

that the ni are not functions of the acceleration, then the 

correct expression above is obtained. The theorem that is 

stated in the text by Desloge would only be true if the arbi

trary frame were the inertial frame or the body frame. This 

is the case in the examples he gives and in his corollary. 

If the frame 0123 is one with respect to which the inertia 

tensor is diagonal, then 

s = 2
1 
~ /j iu7 + ~ ~ Lk EijklkitJi(J)j(J)k 

{ { J 

(23) 

VIII. THE ROLLING DISK 

In order to illustrate the above results, we consider the 

problem of finding equations of motion for a homogeneous 

disk of mass m and radius a which is free to roll on a rough 

horizontal plane. This is a problem that can be more easily 

handled with the Gibbs-Appell equations than with La

grange's equations. 
A solution to this problem using the Gibbs-Appell 
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method can be found in the textbook by Pars. 9 We consider 

the problem with a few additional streamlining techniques: 

( 1) We use the second form of the Gibbs-Appell equation, 
Eq. (13), rather than the more conventional form, Eq. ( 9); 

and ( 2) we use the technique of suppression of constants. 10 

Let AXYZ be a Cartesian frame whose origin A and XY 
plane lie on the fixed surface; 0123, a Cartesian frame with 
its origin 0 at the center of the disk, its 3 axis perpendicular 
to the disk, and its 1 axis in the direction ez X e3 where ez is 

a unit vector in the AZ direction, and e3 is a unit vector in 
the 03 direction; X, Y, and Z are the coordinates of the 
center 0 of the disk with respect to the frame AXyz; 0 is the 

angle that the 3 axis makes with the Z axis; ¢J is the angle 
that the 1 axis makes with the X axis; Pis a point fixed on 

the periphery of the disk; t/J is the angle that the line OP 
makes with the 1 axis; w1, w2, and w3 are the components 
with respect to the 0123 frame of the angular velocity of the 

disk; nl, n2, and n3 are the components with respect to the 

0123 frame of the angular velocity of the 0123 frame with 
respect to the disk; and / 1, / 2, and / 3 are the moments of 

inertia of the disk with respect to the 1, 2, and 3 axes, re
spectively. 

In terms of the quantities introduced above, 

1 "z "z "2 1 ·z R=-m(X +Y +Z )+-~/.w. 
2 2"'7' I 

+I I I Eijkl;itJ;!liwk + mgZ. 
j j k 

(24) 

The moments of inertia are given by 

/ 1 = 12 = Ama2
, (25) 

/ 3 = !ma2
• (26) 

The components with respect to the 0123 frame of the an
gular velocity of the 0123 frame with respect to the disk are 

n,=fi2=0, (27) 

!!3 = - ip = w2 cot 0- w3. (28) 

We will suppress the constants m, g, and a by employing a 
system of units in which 

m=g=a=l. (29) 

Substituting Eqs. (25 )-(29) into Eq. (24) we obtain 

R =! (X 2 
+ Y2 

+ Z2
) +Ami +! m~ +! m~ 

I ' l · I • 2 (} + 2 W1W2W3 - 2 W1W2W3 - 'lwl W2 cot 

+! w1m2w2 cot 0 + Z. (30) 

The disk has five configurational degrees of freedom but 
only three motional degrees of freedom. Hence, to apply 
the Gibbs-Appell method, we need to express R as a func
tion of five configuration coordinates q; and three motion 

coordinates r;. We shall choose q1 =X, q2 = Y, q3 = 0, q4 

= t/J, q5 = t/J, ;.I = w,, ;.2 = (1)2, and ;.3 = (1)3. 

Using the holonomic constraint condition, 

Z =sin 0, (31) 

the two anholonomic constraint conditions 

X= - w3 cos t/J + w1 sin ¢J sin 0, (32) 

Y = - w3 sin t/J- w1 cos t/J sin B, ( 33) 

and the relations 

(1)1 = 0, 

w2 = ~ sin 0, 

(1)3 = ~ cos 0 + ip, 

(34) 

(35) 

(36) 

we can determine X, Y, and Z as functions of X, Y, 0, t/J, t/J, 
W1, w2, w3, and t. Thus 

x = m1 sino sin t/J- m3 cos t/J + wi coso sin t/J 

+ w 1 W2 cos t/J + w2w3 esc 0 sin t/J, ( 3 7) 

y = - ml sin(} cos tP- m3 sin tP + wf cos 0 cos¢ 

+ w1w2 sin ¢J + w2w3 esc fJ cos t/J, ( 38) 

z = ml cos 0- wi sin 0. (39) 

Using the above results in Eq. (30) and noting that 
"2 "2 "2 ·2 •2 . 
X + Y + Z = w1 + w3 + 2w1w2w3 

- 2w1w2m3 + fcn(O,¢J,wvw2,w3), 
(40) 

we obtain 

R = i mi + Am~ + ~ m~ + ~ m1wzw3 - !w1m2w3 - w,w2m3 

- !ml (!)~ cot 0 + !wlm2{1)2 cot()+ ml cos(), ( 41) 

The Gibbs-Appell equations of motion for the system are 
thus · 

aR s . 3 1 2 
0 0 0 --=- w1 + - w2w3 - - w2 cot + cos = , 

am1 4 2 4 
(42) 

aR 1 . 1 I 
-.- = --(1)2- --{1)1(1)3 + -(l),w2 cot 0 = 0, ( 43) 
aw2 4 2 4 

aR = .l. m3 - (!) (1)2 = 0. ( 44) 
am3 2 

IfwesubstituteEqs. (34) and (35) inEqs. (42)-(44) and 

restore the constants m, g, and a we obtain 

50 + 6w 3 ~ sin () - ~ 2 sin () cos () + ( 4g/ a) cos () = 0 
(45) 

'¢sin 0 + 2~0 cos()- 2w30 = 0, 

3m3 - 2~0 sin 0 = 0. 

(46) 

(47) 

We thus have three equations in the three unknowns t/J, 0, 
and w3. The results obtained by solving Eqs. ( 45 )-( 47) for 
t/J(t), fJ(t), and w3(t) can be used in Eqs. (32)-(36) to 
obtain X{t), Y{t), t/J(t), w1 {t), and w2{t). 

IX. CONCLUSION 

From the above it follows that not only are the Gibbs
Appell equations of motion formally more elegant and 
simpler to derive than Lagrange's equations of motion, but 
they are also more powerful and more versatile. Anholono

mic constraints can be handled in a more straightforward 
manner with the Gibbs-Appell equations than with La
grange's equations; and the Gibbs-Appell use of motional 
coordinates r, which are other than simple derivatives of 
the configurational coordinates q opens up possibilities not 
available in the Lagrangian approach. 

Despite the general superiority of the Gibbs-Appell 
equations of motion over Lagrange's equations of motion, 
the majority of routine problems can be handled more easi
ly with Lagrange's equations rather than with the Gibbs
Appell equations. 
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However, even if one ignores those problems for which 
the Gibbs-Appell method is clearly superior to Lagrange's 
method, it is still true, from a theoretical and pedagogical 
point of view, that the Gibbs-Appell equations of motion 
constitute a marvelous starting point for the unification, 
presentation, and generation of generalized equations of 
motion. They are easy to derive and once derived lead in a 
very natural fashion to Lagrange's equations of motion. 
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