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The Kelvin equation, the Gibbs equation and the Gibbs-Thomson equation are compared. It is
shown that the Kelvin equation (on equilibrium vapor pressure above nano-droplets) can be derived
if the inner pressure due to the curvature (from the Laplace equation) is substituted incorrectly into
the external pressure term of the Gibbs equation. Thus, the Kelvin equation is excluded in its present
form. The Gibbs-Thomson equation (on so-called equilibrium melting point of a nano-crystal) is an
analog of the Kelvin equation, and thus it is also excluded in its present form. The contradiction
between the critical nucleus size (from the Gibbs equation) and the so-called equilibrium melting
point of nano-crystals (from the Gibbs-Thomson equation) is explained. The contradiction is resolved
if the Gibbs equation is applied to study both nucleation and equilibrium of nano-crystals. Thus, the
difference in the behavior of nano-systems compared to macro-systems is due to their high specific
surface area (Gibbs) and not to the high curvature of their interface (Kelvin). Modified versions of the
Kelvin equation and the Gibbs-Thomson equation are derived from the Gibbs equation for phases
with a general shape and for a spherical phase.
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1. INTRODUCTION

This paper deals with contradictions between equations
published more than a century ago by Thomson (later Sir
Kelvin)1 and Gibbs.2 This story might seem to be suit-
able for a history of science. Nevertheless, it is published
in this journal, as these equations are more vital today
than ever (see Fig. 1). Moreover, they co-exist in the lit-
erature and so the hidden contradiction in understanding
equilibrium and nucleation in nano-materials is still with
us. On the other hand, nanoscience and nanotechnology
is becoming more and more accurate as more and more
precise measurements become available. This process will
inevitably lead to the experimental realization of the con-
tradiction in question. Thus, it is time to make a clear
distinction between the reliabilities of the Kelvin equation,
of the Gibbs equation, and of the Gibbs-Thomson equation
(with Thomson = Kelvin to make the picture even more
complex).
First, it was Thomson who derived an equation for

the equilibrium vapor pressure above nano-droplets.1

This equation is known today as the Kelvin equa-
tion and is one of the fundamental equations of sur-
face chemistry, including physical chemistry, chemical

engineering, colloid chemistry, catalysis, surfactants3–13

and even microelectronics.14 This equation was derived
using the Laplace equation,15 describing the pressure
increase within a phase due to the curvature of its outer
interface. Thus, the Kelvin equation is due to the cur-
vature effect. At a later date, the Kelvin equation was
transformed (nor by Thomson, neither by Gibbs) into
the so-called Gibbs-Thomson equation, by coupling the
Kelvin equation1 with the Gibbs equation on heteroge-
neous equilibrium2 to describe the equilibrium melting
point of a small solid crystal in its own liquid. The Gibbs-
Thomson equation is one of the fundamental equations
of materials science and engineering, including physi-
cal metallurgy, solidification, electrochemistry, capillarity
and nanoscience.16–22 The Kelvin and the Gibbs-Thomson
equations are analogous equations. The Kelvin equation
describes the size dependence of vapor pressure at a fixed
temperature, while the Gibbs-Thomson equation describes
the size dependence of the (melting) temperature at a fixed
pressure.
Gibbs published his 2-part paper on the foundation of

chemical (materials) equilibrium thermodynamics2 after
the paper of Thomson.1 Although he made a reference to
Thomson and shortly described his results, he did not say
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Fig. 1. A semi-logarithmic time evolution of the number of papers per half decades with key-words “Kelvin∗ equation”, “Gibbs-Thomson” and “Gibbs
energy” [Web of Science]. The time period when personal computers became a wide-spread tool for the solution of the Gibbs and related equations is
clearly visible. In the current steady increase the increasing role of nanoscience and nanotechnology is also involved.

anything particular about the Kelvin equation. The present
author presumes that it was due to the polite personality
of Gibbs. Gibbs walked along his own path and added to
his so-called Gibbs energy a new surface term, without
using the Laplace equation (he used the Laplace equa-
tion to derive the size dependence of the surface tension).2

From the Gibbs equation enhanced by the surface term,
anyone can easily derive an alternative of the Kelvin equa-
tion and that of the Gibbs-Thomson equation (see below).
However, this solution seemed to Gibbs so obvious that
he presumably did not see any need in a direct conflict
with an elder British colleague. Instead, Gibbs showed
something else for the first time: the thermodynamics of
nucleation.2�4�8–10�17�20–22

To make the situation even more confused, the orig-
inal Kelvin equation (and its later analogue, the Gibbs-
Thomson equation) formally can be derived if the internal
Laplace pressure is substituted (in a theoretically incor-
rect way) into the external pressure term of the Gibbs
equation. Although this result is different, for a spherical
particle it is quite similar to the surface term introduced
by Gibbs. Probably this is the reason, why the 3 equa-
tions (the Kelvin equation and the Gibbs-Thomson equa-
tion from the one hand and the Gibbs equation from the
other hand) coexist in the literature even today.
The situation varies from field to field and from sub-

ject to subject. The situation in the field of nucleation
is clear: all authors in chemistry, physics and materials
use the same Gibbs equation.2�4�8–10�17�20–22 On the other
hand, the situation with the equilibrium of nano-materials
is complex and contradictory. Chemists, and especially
colloid chemists (for whom the original Kelvin equation
was mostly valuable) keep with the Kelvin equation.3–13�23

Biology, medicine24–27 and materials science16–22�28–30 took
a lot from chemistry, including the Kelvin equation, often
in the revised form of the Gibbs-Thomson equation.
Computational materials science (including Calphad) is
born from materials science and chemistry, and that is
why it uses the same type of Kelvin (Gibbs-Thomson)
equation.31–38 In contrary, the physics community usually
applies the Gibbs equation to describe phase equilibria in
nano materials.39–46 There are also some papers suggesting
the combination of the Kelvin and Gibbs effects.47–48

The co-existence of the contradictory equations is most
obvious in monographs, where the contradicting equations
appear side by side and it should have been bothering for
many authors.4�8–10�17�20–22 Some of them are indeed “sur-
prised” to face such a situation, but to the best knowledge
of the present author the contradiction described here is
clearly presented for the first time. This paper is written to
show the contradiction in the literature and to explain the
reasons behind them. The present author suggests to “for-
get” the Kelvin equation and the Gibbs-Thomson equation
in their present forms, and use them in modified forms,
being in accordance with the Gibbs equation.

2. COMPARISON OF THE EXISTING
EQUATIONS

At the first sight, the Kelvin equation, the Gibbs equa-
tion and the Gibbs-Thomson equation do not seem to
be related, at all. Therefore, they should be brought into
the same ground to have a chance to compare them. For
this purpose let us divide the molar Gibbs energy of a

2 J. Nanosci. Nanotechnol. 12, 1–9, 2011
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condensed phase � (G�, J/mol) to the following two
terms:

G� =Gb
� +Gs

� (1)

where superscripts b and s denote the bulk and surface
terms of the Gibbs energy of a condensed phase �. The
bulk term includes all possible terms routinely used by
chemical (materials) thermodynamics, including the Cal-
phad community (standard, configurational, excess, mag-
netic, etc.,). It will not be detailed here, as it can be found
in many papers and also in monographs.49–51 The surface
term, being responsible for the presence of the surface
(interface) is the subject of this paper. The Kelvin, the
Gibbs-Thomson and the Gibbs equations will be brought
to the common ground of the surface term of Eq. (1).

2.1. On the Kelvin Equation

The Kelvin equation for the vapor pressure of a spherical
liquid droplet of radius r is written as followsa:1

p = p� · exp
(
2 ·�lg ·Vl�m

r ·R ·T
)

(2)

where R is the gas constant (J/molK), T is absolute tem-
perature (K), p and p� (bar) are equilibrium vapor pres-
sures above curved and flat surfaces, respectively, �lg

(J/m2� surface tension of the liquid/gas (l/g) interface, Vl�m

(m3/mol) molar volume of the liquid. Eq. (2) has a more
general form, when a sphere is replaced by a figure with
two principal radii to the given point of its curved surface
r1 and r2 (m), and the Laplace equation is applied, as:15

2
r
= 1

r1
+ 1

r2
(2.a)

Eq. (2) is valid for a droplet in a large vapor phase. For a
bubble in a large liquid phase a similar equation is valid
with a negative sign under “exp”.3–14 When a droplet (bub-
ble) is situated within a narrow place (capillary, for exam-
ple), the surface tension term is multiplied by the cosine
of the contact angle.3–14 All these variations of the Kelvin
equation will not be discussed in details here, as all are
consequences of the basic Eq. (2).
To obtain the surface term of the Gibbs equation

from Eq. (2), one should remember the general condition
of equilibrium between a one-component liquid and its
vapor:2

Gl =Gg (3)

Treating the vapor (gas phase) as perfect gas, and taking
into account Eq. (1), Eq. (3) can be re-written as:

G�
l +Gs

l =G�
g +R ·T · ln

(
p

p∗

)
(4)

aIt should be noted for historical correctness that in the original paper
of Thomson1 Eq. (2) is written in a simplified linear form. However, the
“Kelvin equation” today is known in the form of Eq. (2).3–13

where the G�
� terms are standard Gibbs energies of the

phases (� = l (liquid) or � = g (gas)), p∗ = 1 bar, the
standard pressure. For a large liquid phase with a negligi-
ble surface term, the equilibrium vapor pressure is called
the standard vapor pressure (denoted as p�� and can be
expressed from Eq. (4) as follows:

p� = p∗ · exp
[
G�

l −G�
g

R ·T
]

(5)

This equation is widely known and accepted in thermody-
namics of materials and physical chemistry.9 Expressing
from both Eqs. (4–5) the expression

(
G�

l −G�
g

)
and mak-

ing these two equations equal, the vapor pressure above
the curved surface (p) can be expressed as:

p = p� · exp
[

Gs
l

R ·T
]

(6)

Comparing Eqs. (2, 6) the surface term of the Gibbs energy
due to Kelvin follows:

Gs
l =

2 ·�lg ·Vl�m

r
(7)

Eq. (7) will be taken as the surface term of the Gibbs
energy, in accordance with the Kelvin equation. As the
Kelvin equation was derived from the Laplace equation,
Eq. (7) is also due to the curvature of the surface, and the
extra pressure caused by this curvature.
It is interesting to see how Eq. (7) can be derived if

the Gibbs treatment is developed further, without know-
ing anything about the results of Kelvin. The bulk Gibbs
energy terms for a liquid are written as:2

Gl = Ul+p ·Vl�m−T ·Sl (8)

where the new letters denote bulk inner molar energy (Ul,
J/mol) and bulk molar entropy (Sl, J/molK) of the liq-
uid. The pressure within a spherical phase of radius r is
the sum of the outside pressure p� and the inner Laplace
pressure:15

p = p� + 2 ·�lg

r
(9)

Substituting Eq. (9) into Eq. (8) and taking into
account that the bulk term by definition is the sum
of all terms except those, including surface properties
�Gb

l = Ul + p� · Vl�m−T ·Sl�, the following equation is
obtained:

Gl =Gb
l +

2 ·�lg ·Vl�m

r
(10)

From the comparison of Eqs. (1, 10) one can obtain the
surface term of the Gibbs energy in accordance with the
Kelvin equation, i.e., Eq. (7). Thus, Eq. (7) is reproduced.
Although all written above seems to be quite transparent,
there are three problems with Eq. (7):
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(i) as follows from Eq. (7), nano-phases with plane sur-
faces (such as thin films or crystals surrounded by flat
crystal planes) are expected to have no surface term of
their Gibbs energy, as they have no curvature. Thus, nano-
crystals and thin films are expected to have the same
thermodynamic properties as the bulk phase. This conse-
quence contradicts experimental observations,52–56 etc.b

(ii) Eq. (9) should not be substituted into the Gibbs equa-
tion (8), and that is why Eqs. (10, 7) are incorrect from the
thermodynamic point of view. The reason is that Eq. (8)
is written with external variables p and T , to be dictated
by us (scientists, engineers). Internal pressure, such as the
Laplace pressure (the second term of Eq. (8)) should not
be substituted into the expression for the external pressure.
(iii) the Laplace equation itself (together with all other
interfacial forces) can be derived from the Gibbs equation
(see Appendix). This is an additional reason why the sub-
stitution of the Laplace equation back into the same Gibbs
equation is meaningless.

2.2. On the Gibbs-Thomson Equation

The Gibbs-Thomson equation is an analogue of the Kelvin
equation, i.e., it can be derived from Eq. (7). Let us con-
sider a pure, spherical solid phase of radius r , situated
in a large liquid phase of the same component. Then, in
analogy with Eq. (3), the condition of its equilibrium is
written as:

Gl =Gs (11)

As the liquid phase is large, the Laplace pressure has an
insignificant effect on the pressure within the liquid, and so
its Gibbs energy is equal to its standard Gibbs energy. On
the other hand, the solid is a small phase with increased
pressure within, and so its Gibbs energy should be modi-
fied with the surface term of Eq. (7). Thus, Eq. (11) can
be re-written as:

H �
l −T ·S�

l =H �
s −T ·S�

s +
2 ·�sl ·Vs�m

r
(12)

where �sl (J/m2� is the solid/liquid interfacial energy,
and the standard Gibbs energy is re-written by Eq. (8),
after making its first two terms equal the molar standard
enthalpy (H� of the phase (J/mol). The molar enthalpy
and entropy changes of melting are defined as: �mH

� ≡
H �

l −H �
s and �mS

� ≡ S�
l − S�

s . Substituting these defini-
tions into Eq. (12):

�mH
� = T ·�mS

� + 2 ·�sl ·Vs�m

r
(12.a)

For a large value of r the surface term of Eq. (12.a) is
negligible, and at the equilibrium melting point of a flat

bThere is a secondary effect on the dependence of the Gibbs energy on
the thickness of a thin film, which makes the properties of a thin film
thickness-dependent. Here this effect is not discussed in details.

phase (T = T �
m) the following can be written: �mH

� =
T �
m ·�mS

�. This equation is commonly accepted in the ther-
modynamics of bulk materials. Substituting it back into
Eq. (12.a), the equilibrium temperature can be expressed,
what is denoted as Tm:

Tm = T �
m−

2 ·�sl ·Vs�m

r ·�mS
� (13.a)

Eq. (13.a) is the Gibbs-Thomson equation. As follows
from the above, it is an analogue of the Kelvin Eq. (2),
although they look quite different. According to litera-
ture, Eq. (13.a) describes the equilibrium melting point, at
which a solid spherical crystal of radius r has the same
Gibbs energy as that of the large liquid phase of the same
1-component material around it.4�8–9�17�20–22 Although it
is often called “the equilibrium melting point of a nano-
crystal”, in fact there is no global equilibrium in the
system: the crystal of this size at this temperature will
spontaneously transform the whole large liquid phase into
a large crystal, at least, if its initial radius r is larger
than the critical radius of nucleation (see below). This is
because Tm is lower than T �

m and thus a macroscopic solid
is more stable compared to the macroscopic liquid. Thus,
the temperature calculated by Eq. (13.a) will be called here
“the so-called equilibrium melting point of a nano-crystal”
and not “the equilibrium melting point of a nano-crystal”.
It will be called like this even after the Gibbs-Thomson
equation (13.a) will be corrected (see below).
Eq. (13.a) can be also written in the following analo-

gous form, expressing “the so-called equilibrium size of
the nano-crystal”, req (m) as function of temperature, T :

req =
2 ·�sl ·Vs�m

�T �
m−T � ·�mS

� (13.b)

Eq. (13.b) has the same limitation as Eq. (13.a). It
expresses the condition when the small crystal of equi-
librium size has the same Gibbs energy as that of the
macroscopic liquid phase at a given temperature below the
melting point. Due to this latter condition, Eq. (13.b) does
not correspond to the global equilibrium of the system
(what would be a macroscopic solid crystal instead of a
macroscopic liquid phase with a nano-crystal).

2.3. On the Gibbs Equation

Gibbs2 used a simple A� ·��s term as a surface term for
his general energy Eq. (1) (A� is the surface area of phase
�, m2, while ��s is the surface energy of phase � with its
surroundings, J/m2�. However, the unit of the A� ·��s term
is J. To convert it to J/mol as requested by Eq. (1), it should
be divided by the number of moles within the phase, n�.
One of the ways to express n� is through the ratio of the
volume and the molar volume of the phase: n� = V�/V��m.
Then, the following surface term is obtained in the unit of

4 J. Nanosci. Nanotechnol. 12, 1–9, 2011
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J/mol: A� ·��s ·V��m/V�. Let us introduce the specific sur-
face are of the phase: AS�� ≡A�/V� (m2/m3 =1/m). Then,
the requested surface term of the molar Gibbs energy in
accordance with the original ideas of Gibbs is found as:

Gs
� = AS�� ·��s ·V��m (14)

For a liquid spherical droplet of radius r the specific sur-
face area equals: AS� l = 3/r . Substituting this equation into
Eq. (14):

Gs
l =

3 ·�lg ·Vl�m

r
(15)

For the case of solid phases surrounded by flat crystal
planes, Eq. (14) can be written as:

Gs
� = V��m ·

∑
hkl

AS���hkl ·��s�hkl (16)

where the summation is performed along all hkl crys-
tal plane indexes, with the hkl-dependent surface energy,
and the specific surface area of each plane is defined
as: AS���hkl ≡ A��hkl/V�. Substituting this equation into
Eq. (16) the following final equation is obtained:

Gs
� = V��m

V�

·∑
hkl

A��hkl ·��s�hkl (17)

where the first term is the inverse of the number of moles
in the given phase (n� = V�/V��m).
As a particular case of Eq. (17), let us consider the

thin liquid film (l) covering the large flat solid surface of
surface area Al with the thickness of 	. The liquid film
has two sides: the solid/liquid and the liquid/gas sides,
with identical surface areas of Al, but different interfacial
energies �sl and �lg�. The volume of the thin film is: Vl =
Al ·	. Substituting all these values into general Eq. (17),
for thin liquid films the following equation is obtained:

Gs
l =

�sl+�lg

	
·Vl�m (18)

Thus, the Gibbs energy provides a surface Gibbs energy
term to thin films, being inversely proportional to the
thickness of the film. As a consequence, the melting
point of thin films will be also inversely proportional
to the film thickness, in accordance with experimental
observations.53–54 As was mentioned above, thin films are
wrongly expected to have zero surface Gibbs energy term
and thickness-independent melting point in accordance
with the Kelvin and Gibbs-Thomson equations.
From the comparison of Eqs. (7, 15) one can see that

although the two equations (the Kelvin equation and the
Gibbs equation) are similar, they are not identical. Thus,
both cannot be valid. The difference between Eqs. (2a, 7)
and Eqs. (14, 15) for some simple geometries are shown
in Table I. One can see that for a sphere and for a cylinder
the resulting equations are similar, but different. For a thin
film and a crystal the results are qualitatively different.
The difference between the Gibbs and Kelvin equations
are principal: the Kelvin equation is due to the curvature,
while the Gibbs equation is due to the specific surface
area.

Table I. The expressions for the surface term of the Gibbs equation
for some liquid and solid geometries, calculated by Eqs. (2a, 7) and by
Eqs. (14, 15).

Geometry Kelvin, Eqs. (7, 2a) Gibbs, Eqs. (14, 15)

Sphere of radius r
2 ·�lg ·Vl�m

r

3 ·�lg ·Vl�m

r

Long cylinder of
�lg ·Vl�m

r

2 ·�lg ·Vl�m

r
radius r

Large thin film of 0
�sl +�lg

	
·Vl�m

thickness 	

Crystal with planar 0
V�

V
·∑
hkl

planes Ahkl ·��s�hkl

2.4. The Contradiction Around the Nucleation Theory

Now, let us briefly show the treatment of Gibbs for homo-
geneous nucleation.2�4�8–10�17�20–22 For this, let us substitute
Eq. (14) into Eq. (1) for the spherical solid phase of radius
r within a large liquid phase:

Gs =Gb
s +

3 ·�sl ·Vs�m

r
(19.a)

First, let us derive the equation for the homogeneous
nucleation of the solid nucleus from the supercooled liq-
uid of the same pure phase. For this, let us suppose that
before the solid nucleus appeared, its space was occupied
by the liquid phase, without any phase boundary with the
outer liquid phase, and so:

Gl =Gb
l (19.b)

Let us denote the Gibbs energy change upon nucle-
ation the difference between Eqs. (19a–b) multiplied by
the amount of moles within the solid nucleus (and thus
having a unit of J): �nG= ns ·�Gs−Gl�. Substituting here
Eqs. (19a–b) and equations ns =Vs/Vs�m, Vs = �4/3� ·
 ·r3,
the following equation is obtained:

�nG= 4 ·
 · r3
3

· G
b
s −Gb

l

Vs�m

+4 ·
 · r2 ·�sl (20)

If the difference in heat capacities between the solid and
liquid phases is negligible, the following approximation
can be used: Gb

s −Gb
l � �T −T �

m� ·�mS
�. Substituting this

equation into Eq. (20):

�nG= 4 ·
 · r3
3

· �T −T �
m� ·�mS

�

Vs�m

+4 ·
 · r2 ·�sl (20.a)

Equation (20.a) is shown graphically in Figure 2. The
second term of Eq. (20.a) is always positive. Thus, nucle-
ation can be a favorable process only, if T < T �

m, i.e., in
the super-cooled state. In this case Eq. (20.a) predicts that
�nG starts at a zero value at r = 0 and goes through a
maximum point at a certain critical size rcr . At r > rcr

J. Nanosci. Nanotechnol. 12, 1–9, 2011 5



R
E
S
E
A
R
C
H

A
R
T
IC

L
E

The Gibbs Equation versus the Kelvin and the Gibbs-Thomson Equations to Describe Nucleation and Equilibrium Kaptay

–8E-17

–6E-17

–4E-17

–2E-17

0

2E-17

4E-17

6E-17

0 r, nm 2015105

Δ n
G

, J

the Gibbs equation
for equilibrium size

the Gibbs-Thomson equation
for equilibrium size

the Gibbs equation
for critical size

?

Fig. 2. The nucleation curve, calculated by Eq. (20.a) (parameters
for Al: T �

m = 933 K, �mS
� = 11�5 J/molK, Vs�m = 10�6 cm3/mol,

�sl = 0�16 J/m2, T = 900 K). The critical size is shown at rcr = 8�94 nm,
as calculated by Eq. (21). The “so called equilibrium size” is shown at
the same size of req = 8�94 nm, as calculated by the Gibbs-Thomson
Eq. (13.b) and is also shown at req = 13�4 nm, as calculated by the Gibbs
Eq. (21.a), or by the corrected Gibbs-Thomson Eq. (25.b).

nucleation becomes a favorable process, as from this size
on �nG gradually decreases with size. The critical size
(see Fig. 2) is found from substituting Eq. (20.a) into the
condition of the maximum point: d�nG/dr = 0:

rcr =
2 ·�sl ·Vs�m

�T �
m−T � ·�mS

� (21)

Eq. (21) is widely accepted in the literature. As one can
see, Eq. (21) is identical with Eq. (13.b), the Gibbs-
Thomson equation for the “so-called equilibrium size of
a nano-crystal” (see above and Fig. 2). Thus, two quanti-
ties, which must not be equal, appear to be equal. These
quantities should not be equal, as the so-called equilibrium
radius should appear at �nG= 0, while the critical radius
should appear at the maximum of the �nG curve, which is
not at �nG= 0 (see Fig. 2). That is why this coincidence
is called a “surprising fact”.10 For us this coincidence is
an obvious contradiction and it proves that something is
wrong around the Gibbs-Thomson (Kelvin) and the Gibbs
equations, i.e., at least one of them is wrong. Above it
was shown that the Gibbs-Thomson equation is the ana-
logue of the Kelvin equation, what is obtained by a the-
oretically inadequate substitution of the Laplace equation
into the Gibbs equation. On the other hand, the present
author cannot find anything wrong with the surface term
of Gibbs. This is the basis to declare in this paper that
both the Kelvin and the Gibbs-Thomson equations are
wrong in their present forms and the Gibbs equation is
right. Now, let us express “the so-called equilibrium size
of the nano-crystal”, substituting the condition �nG = 0
into Eq. (20.a):

req =
3 ·�sl ·Vs�m

�T �
m−T � ·�mS

� (21.a)

Eq. (21.a) is in accordance with the Gibbs equation and
Figure 2, and does not contradict Eq. (21). Thus, the above

contradiction (the surprising equality of Eqs. (21, 13b)) is
resolved.
Above, a particular case of nucleation of a solid crystal

from the supercooled, 1-component liquid was considered.
A similar derivation leads to the critical nucleus radius, if
nucleation takes place from an over-saturated vapor:

rcr =
2 ·�sl ·Vs�m

R ·T · ln �p/p��
(21.b)

One can see again the surprising co-incidence between
critical and equilibrium radii, i.e., Eqs. (2, 21.b), in anal-
ogy with Eqs. (21, 13.b) discussed above.

3. DERIVATION OF THE MODIFIED
EQUATIONS

As Eqs. (1, 14–15) were found to be correct, let us apply
them to find the corrected forms for the Kelvin equation
and for the Gibbs-Thomson equation.

3.1. The Modified Kelvin Equation

If Eqs. (14–15) are used to describe the surface term of the
Gibbs energy of a liquid instead of Eq. (7), then instead of
Eqs. (2–2.a) the following equations are obtained for the
equilibrium vapor pressure above a liquid phase:
The general equation:

p = p� · exp
(
AS ·�lg ·Vl�m

R ·T
)

(22.a)

For the case of a spherical droplet of radius r:

p = p� · exp
(
3 ·�lg ·Vl�m

r ·R ·T
)

(22.b)

One can see that the only difference between
Eqs. (2, 22.b) is that coefficient 2 is replaced by coefficient
3, i.e., the effect of curvature (more precisely: the effect of
specific surface area) has become more pronounced. There
has been a number of measurements which have proven an
approximate validity of the Kelvin equation (2).57–58 Based
on this, one can claim that Eq. (2) is proven to be cor-
rect. However, one should remember the size dependence
of surface tension. It is known since Gibbs that the sur-
face tension of droplets in a vapor phase decreases when
its size decreases.2�59–62 Thus, it is quite possible that the
size effect of surface tension partly compensates for the
3/2 increase between Eqs. (2, 22.b) and this explains why
the difference between Eqs. (2, 22.b) has not been noted
(let us also remind the uncertainty of measurements at
nano-scale).

6 J. Nanosci. Nanotechnol. 12, 1–9, 2011
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3.2. The Modified Gibbs-Thomson Equation

If Eqs. (14–15) are used to describe the surface term of
the Gibbs energy of a solid crystal instead of Eq. (7), then
instead of Eq. (13) the following equations are obtained for
the so called equilibrium melting point of a nano-crystal:
The general equation:

Tm = T �
m−

AS ·�sl ·Vs�m

�mS
� (25.a)

For the case of a spherical crystal of radius r :

Tm = T �
m−

3 ·�sl ·Vs�m

r ·�mS
� (25.b)

GibbsNewton

Interfacial forces
(Young, Laplace...)

Micro- and nano-equilibria
(modified Kelvin and Gibbs-Thomson)

nucleation

Laplace, 1806

Thomson (Kelvin), 1869

Gibbs, 1878

Gibbs-Thomson

Newton, 1687

Joule, 1841 von Mayer, 1842

Clausius, 1850

“The shoulders of giants…”

All of them co-exist today

GibbsLaplace Kelvin

(a)

(b)

(c)

Fig. 3. The historical (Fig. 3(a)), the illogical (Fig. 3(b)) and the logical
(Fig. 3(c)) hierarchies of scientific achievements in the field of this paper.

One can see that the only difference between
Eqs. (13, 25.b) is that coefficient 2 is replaced by coef-
ficient 3, i.e., the effect of curvature (more precisely:
the effect of specific surface area) has become more
pronounced. It is also obvious that Eqs. (21.a, 25.a) are
identical equations. This was expected, as both are derived
from the same Gibbs equation.

4. ON THE HISTORICAL AND LOGICAL
HIERARCHIES OF EQUATIONS

The history of science is not always a logical array of
events.63–66 The historical and logical sequences of events
in the field of this paper are shown in Figure 3. As fol-
lows from Figures 1, 3a, the three equations (those of
Kelvin, of Gibbs, and of Gibbs-Thomson) co-exist even
today. Figure 3b shows an illogical sequence (wide-spread
in today’s literature), with the Laplace equation being sub-
stituted into the Gibbs equation (see above and Appendix).
On the other hand, in Figure 3c we show that all the three
sub-branches of science i. interfacial forces, ii. micro- and
nano-equilibrium and iii. nucleation all follow from the
same Gibbs equation.

5. CONCLUSIONS

The Gibbs energy of a phase is divided into bulk and
surface terms. Two alternative equations are shown for
the surface term, originating from the works of Kelvin
and Gibbs. It is shown that the Kelvin (Gibbs-Thomson)
equation can be obtained if the Laplace equation is intro-
duced into the Gibbs equation in a theoretically wrong way
(confusing external and inner pressures). Thus, the Gibbs
equation should be used not only for nucleation (as it is
commonly done), but also to calculate nano-phase equilib-
ria. As a consequence, the often used phrase/explanation
“phenomena due to high curvature” should be replaced by
the phrase/explanation “phenomena due to high specific
surface area”.
The modified versions of the Kelvin and Gibbs-

Thomson equations are presented in this work, being in
accordance with the Gibbs equation. In this way the “sur-
prising” contradiction between the nucleation theory of
Gibbs and between the equilibrium Gibbs-Thomson equa-
tion is resolved. Once again it is shown that the histori-
cal sequence of events does not correspond to the logical
sequence to present scientific knowledge.

6. Appendix. The Derivation of the Laplace
Equation from the Gibbs Equation

As was shown above, the surface term of the Gibbs energy
is written as (in J):2

Gs = A ·� (A1)

J. Nanosci. Nanotechnol. 12, 1–9, 2011 7
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Using the Newton’s principle connecting force and energy,
the general equation of interfacial forces is written as:67

F s =−dGs

dx
(A2)

where x is path of the movement of a phase or interface,
the minus sign indicates that only processes accompanied
by the negative change of the Gibbs energy take place
spontaneously in nature.
Let us consider a spherical phase with a constant surface

energy � and with a gradually increasing radius x. Then,
its surface area is: A= 4 ·
 ·x2. Substituting this equation
into Eq. (A1) and substituting it into Eq. (A2), one can
obtain:

F s =−8 ·
 ·x ·� (A3)

The interfacial force described by Eq. (A3) acts at each
point perpendicular to the surface of the sphere. That is
why, the interfacial pressure can be defined as: ps =
F s/A. Substituting the equation A= 4 ·
 ·x2 and Eq. (A3)
into this equation ps = F s/A, the following expression is
obtained for the interfacial pressure:

ps =−2 ·�
x

(A4)

The minus sign in Eq. (A4) shows that the vector of
the interfacial pressure is pointed against the vector of
the growing radius, i.e., from outwards to inwards of the
sphere. Eq. (A4) is the simplest form of the Laplace equa-
tion. Thus, it is proven that the Laplace equation follows
from the surface term of the Gibbs energy introduced by
Gibbs. As shown in,67 all other interfacial forces follow
from the same Gibbs equation, as well (see also Fig. 3(c)).
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