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ABSTRACT

We present the Gigaparsec WiggleZ simulation suite and use this resource to characterize

galaxy bias and its scale dependence for a range of redshifts and halo masses in a standard �

cold dark matter cosmology. Under the ansatz that bias converges to a scale-independent form

at large scales, we develop an eight-parameter phenomenological model which fully expresses

the mass and redshift dependence of bias and its scale dependence in real- or redshift space.

This is then used to illustrate how scale-dependent bias can systematically skew measurements

of the growth rate of cosmic structure obtained from redshift-space distortion measurements.

When data is fit only to scales kmax ≤ 0.1 [h−1 Mpc]−1, we find that these effects are significant

only for large biases (b � 3) at large redshifts (z � 1). However, when smaller scales are

incorporated (kmax � 0.2 [h−1 Mpc]−1) to increase measurement precision, the combination

of reduced statistical uncertainties and increased scale-dependent bias can result in highly

significant systematics for most large haloes across all redshifts. We identify several new

interesting aspects of bias, including a significant large-scale bias boost for small haloes at low

redshifts due to substructure effects (∼20 per cent for Milky Way-like systems) and a nearly

redshift-independent halo mass (corresponding to a redshift-space bias of ∼1.5) for which

halo bias has little or no scale dependence on scales greater than 3 [h−1Mpc]. This suggests

an optimal strategy of targeting bias ∼1.5 systems for clustering studies which are dominated

more by systematic uncertainties in how observed halo (or galaxy) distributions map to their

underlying mass distribution than by observational statistical precision, such as cosmological

measurements of neutrino masses. Code for generating our fitting formula is publicly available

at http://gbpoole.github.io/Poole_2014a_code/.

Key words: surveys – cosmological parameters – cosmology: theory – large-scale structure of

Universe.

1 IN T RO D U C T I O N

Maps of the distribution of galaxies across enormous cosmic vol-

umes – as determined from galaxy redshift surveys – have become

extremely rich resources for a variety of powerful examinations of

cosmological models. These include (but are certainly not limited

to) precise standard ruler measurements of the cosmic expansion

⋆ E-mail: gpoole@unimelb.edu.au

history using harmonic features induced by ‘baryon acoustic os-

cillations’ (BAOs) in the Universe’s matter density field and mea-

surements of the growth rate of cosmic structure as probed by the

imprints of the cosmic peculiar velocity field on redshift-derived

(i.e. redshift-space) distributions of galaxies. Our ability to perform

these and other cosmological examinations using redshift surveys is

based upon our ability to connect observed galaxy distributions to

our highly developed and robust models of the distribution of matter

in the early Universe, its evolution with redshift and the dependence

of both on background cosmology. Of course, the success of this
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endeavour rests completely on our ability to relate observed galaxy

distributions to their underlying matter distributions; a relationship

generally referred to as ‘galaxy bias’. However, it has long been

understood observationally that galaxy bias has a complicated de-

pendency on galaxy luminosity, colour and morphology (Loveday

et al. 1995; Hermit et al. 1996) with modern studies still continuing

to refine this understanding (e.g. Norberg et al. 2001; Zehavi et al.

2005; Ross, Brunner & Myers 2007; Swanson et al. 2008; Cresswell

& Percival 2009, see Baugh 2013 for a review).

In this paper, we seek to characterize this relationship. We aim to

build a phenomenological parametrization of halo bias and its scale

dependence across a range of masses and redshifts which we can use

to ascertain when and to what degree scale-dependant bias becomes

important for observational measurements of the growth rate of

cosmological structure. Several ancillary outcomes will also result

including a correction to large-scale bias estimates for substructure

effects or for systems exhibiting strong scale-dependant bias, useful

for other studies intimately linked to the redshift evolution of bias.

As with most aspects of large-scale structure, a great deal of

theoretical insight can be obtained through excursion set analyses.

The earliest successful theory of this type was that of Kaiser (1984,

subsequently extended by Bardeen et al. 1986) who illustrated how

the two-point clustering statistics of collapsed cosmological objects

becomes enhanced if associated with early overdensities in the cos-

mological matter field. The first model to build explicitly upon the

popular framework of Press & Schechter (1974) and its extensions

(EPS) was that of Mo & White (1996, MW) which was subse-

quently confronted by the numerical investigation of Jing (1998)

who identified significant discrepancies in this model’s treatment

of lower mass systems. These discrepancies were traced to incor-

rect assumptions about the form of the halo mass function in MW

by Sheth & Tormen (1999) who were able to build a successful

analytic model constructed from mass functions calibrated by nu-

merical simulations, thus establishing an intimate link between the

mass-dependent clustering bias of a halo population and its associ-

ated mass function. This was soon followed by Sheth, Mo & Tormen

(2001, SMT) who added an account of the dynamics of ellipsoidal

collapse to the traditional EPS approach through the adoption of a

mass dependence for the spherical collapse overdensity, leading to

significant improvements in the excursion set results for both mass

functions and the mass dependence of large-scale bias (although,

see Borzyszkowski, Ludlow & Porciani 2014, for a recent challenge

to this interpretation).

Generally, two approaches to the analysis of halo bias exist:

Eulerian approaches (which dominate the literature) focus on the

contemporaneous relationship of halo and matter clustering and La-

grangian approaches which relate the evolving clustering of haloes

to their initial linear-regime matter field. Interesting challenges to

the conclusions of Eulerian studies have emerged from Lagrangian

studies. For example, Porciani, Catelan & Lacey (1999) utilized

simulations to show that the low-mass bias modifications of Jing

(1998, mentioned above) to the analytic model of MW reflects con-

ditions embedded in the initial state of the simulations, and not

exclusively subsequent non-linear processes. Such findings moti-

vate a careful examination of traditional excursion set descriptions

of halo formation; a conclusion echoed by Jing (1999) and subse-

quently built upon by several studies including Ludlow & Porciani

(2011) and Elia, Ludlow & Porciani (2012).

While analytic progress continues to be made (e.g. Ma et al. 2011,

who employ a non-Markovian extension and a stochastic collapse

barrier within the framework of traditional EPS approaches to ob-

tain improved mass function and bias models), the work of SMT

makes it clear that treatment of the detailed structure of collapsing

cosmological fields are important to obtaining accurate estimates

of volume-averaged clustering statistics. As a result, most signifi-

cant progress has been driven of late by improved calibrations of

analytic models using N-body simulations (e.g. Seljak & Warren

2004; Tinker et al. 2005). This effort has culminated in Tinker et al.

(2010, TRK) who examine a more generalized form of the SMT

model and perform a careful numerical calibration of its parameters.

Recent studies have validated the TRK model (Papageorgiou et al.

2012; see Basilakos & Plionis 2001; Basilakos, Plionis & Ragone-

Figueroa 2008) which we will use as our main comparison for the

large-scale bias calculations which anchor the scale-dependent bias

analysis in this work.

While large-scale galaxy bias has received a great deal of study,

relatively few inquiries have been made into its scale dependence.

Early examinations (e.g. Sheth & Lemson 1999; Casas-Miranda

et al. 2002; Zehavi et al. 2004; Seo & Eisenstein 2005) have dis-

cussed some general expectations and presented evidence of scale-

dependant bias in observed data sets but the work of Tinker et al.

(2005) is the first to present a general model. Subsequently, in

their clustering analysis of the 2dF Galaxy Redshift Survey, Cole

et al. (2005) introduced the ‘Q-model’: a phenomenological Fourier-

space model which has subsequently found applications in the anal-

ysis of Sloan luminous red galaxies (LRGs) (e.g. Padmanabhan

et al. 2007). Employing arguments based on the halo model, other

Fourier-space accounts of scale-dependent bias include the model of

Schulz & White (2006, subsequently extended by Huff et al. 2007)

and Smith, Scoccimarro & Sheth (2007) who clearly illustrate the

existence of scale-dependent bias and a dependence on halo mass

and galaxy type. Furthermore, Pollack, Smith & Porciani (2014)

have recently explored scale-dependent bias within standard per-

turbation theory finding that the non-linear processes giving rise to

such effects are not sufficiently described in popular second-order

local Eulerian schemes. Lastly, Paranjape et al. (2013) have shown

how to identify and remove scale-dependant bias effects using sim-

ulated halo catalogues resulting in large-scale biases which are in

good agreement to those of TRK.

Observationally, an important additional complication arises. Po-

sitions for very large ensembles of galaxies are generally not deter-

mined through direct distance measurements but are rather inferred

from redshifts. Distributions measured in this way are said to be

constructed in ‘redshift space’ and the presence of peculiar veloc-

ities imprinted upon the background Hubble-flow by accelerations

from local density gradients is known to induce significant bias

effects in this space. The classic treatment by Kaiser (1987, K87

henceforth) predicts that coherent bulk flows on large scales induce

a ‘Kaiser boost’: a significant increase in clustering bias over that

which would be inferred in real space due to halo assembly effects

alone. On large scales, this model has been validated by numerical

simulations (e.g. Montesano, Sánchez & Phleps 2010) but on small

scales – where incoherent motions such as those giving rise to the

‘Fingers of God’ effect can lead to a suppression of bias – significant

scale-dependence to these redshift-space effects has been identified

(e.g. Seljak 2001).

The primary consequence of scale-dependent bias is that it intro-

duces a source of systematic uncertainty to cosmology constraints

at a level which is now important for ongoing and future surveys.

While several investigations have found that the consequences for

constraints based on the scale of the BAO peak should not be sig-

nificant (e.g. Eisenstein, Seo & White 2007; Angulo et al. 2008;

Crocce & Scoccimarro 2008; Smith, Scoccimarro & Sheth 2008, a

conclusion supported by our investigations), there is concern that
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constraints sensitive to the full shape of scale-dependent cluster-

ing statistics (such as power spectra or correlation functions) will

be more susceptible, particularly when pushed to smaller scales.

Two notable such cases include measurements of neutrino masses

from the cosmological power spectrum (e.g. Riemer-Sørensen et al.

2012) and measurements of the growth rate of cosmic structure (e.g.

Blake et al. 2011a) which we focus on in this study.

Beyond the issue of systematic bias, several interesting physical

processes can lead to scale-dependent bias providing new opportu-

nities for the study of other physics. These include the induction of

scale-dependent bias from departures from non-Gaussianity in the

early universe (Dalal et al. 2008; Slosar et al. 2008; Taruya, Koyama

& Matsubara 2008) or from subtle environmental effects induced by

the physics of galaxy formation (Coles & Erdogdu 2007; Barkana

& Loeb 2011). Firmly establishing an accurate and robust theory

in the absence of these effects will be essential for their search in

observational data sets.

In this work, we take a distinctly different approach from past

studies, performing a straightforward phenomenological character-

ization of Eulerian bias in configuration space. Surprisingly little

theoretical investigation of scale-dependent bias within this frame-

work has been performed in the recent literature despite the fact

that it is the space in which most observational analysis is per-

formed. As noted by Huff et al. (2007, also see Guzik, Bernstein

& Smith 2007), configuration space offers an important advantage

over Fourier space: a lower amplitude of scale-dependent bias. In-

terpreted within the framework of the halo model, they note that

this is due to the fact that most scale-dependent bias is a product of

the different scales on which matter and galactic haloes transition

from the one-halo regime to the two-halo regime. This occurs on

relatively small scales as far as most cosmological studies are con-

cerned, thus isolating its effects in configuration space. In Fourier

space, such broad-spectrum features become spread across a wider

range of scales transferring signal from the small scales on which

the phenomena occurs, to larger scales where most of the clustering

signal resides.

We use the Gigaparsec WiggleZ (GiggleZ) simulation suite for

this study. GiggleZ was constructed to support the science pro-

gram of the WiggleZ Dark Energy Survey (Drinkwater et al. 2010)

– a large redshift survey of UV-selected galaxies conducted with

the multiobject AAOmega fibre spectrograph at the 3.9-m Aus-

tralian Astronomical Telescope – and has been used in several

WiggleZ-related publications to date (e.g. Blake et al. 2011b;

Riemer-Sørensen et al. 2012; Contreras et al. 2013; Marı́n et al.

2013; Blake, James & Poole 2014). We take this opportunity to

present details related to the construction of the GiggleZ simula-

tion program and subsequently present a simple and direct model

of the mass and redshift dependence of both large-scale and scale-

dependent bias of dark matter haloes. We examine for the first

time the effects of substructure on models of galaxy bias of this

form, finding significant (∼20 per cent) effects on low-bias systems

at low redshift. We then use this model to build upon previous

studies of systematic biases in growth of structure measurements

(Jennings, Baugh & Pascoli 2011; Okumura & Jing 2011; Contr-

eras et al. 2013), calculating the potential magnitude of systematic

errors induced in the absence of corrections for scale-dependent bias

effects.

In Section 2 we present the GiggleZ simulation suite; the simula-

tions involved, our approach to initializing, running and analysing

them, and the results of a convergence study run to determine the

optimal integration properties of our adopted simulation code. In

Section 3 we present our scale-dependent bias model, stepping

through the justifications for each of our chosen parametrizations.

In Section 4 we present the consequences of scale-dependent bias

for growth of structure measurements. Lastly, we summarize and

discuss our conclusions in Section 5.

Our choice of fiducial cosmology throughout will be a standard

spatially flat WMAP-5 � cold dark matter (�CDM) cosmology

(Komatsu et al. 2009): (��, �M, �b, h, σ 8, n) = (0.727, 0.273,

0.0456, 0.705, 0.812, 0.960).

2 SI M U L AT I O N S

The GiggleZ simulation suite consists of five simulations: a large

GiggleZ-main run consisting of 21603 particles distributed in a

periodic box 1 [h−1 Gpc] on-a-side, and four simulations of an

identical 125 [h−1 Mpc] on-a-side control volume spanning a fac-

tor of 512 in mass resolution with snapshot temporal resolutions

as fine as 15 Myr. The basic specifications for these five runs are

listed in Table 1. The large scale of the GiggleZ-main simulation

was motivated by the unprecedented combination of large volume

and low halo mass of the low-bias UV-selected galaxies targeted

by WiggleZ. Such observational programmes present a demanding

challenge for theoretical support of clustering studies, leading us to

create (at the time) one of the highest-resolution gigaparsec-scale

cosmological simulations available, comparable to modern simu-

lation programmes such as the Multidark BigBolshoi simulation

(Prada et al. 2012). The control-volume simulations were designed

to conduct systematic studies of the resolution requirements for

semi-analytic galaxy formation studies. In this paper, we focus on

the GiggleZ-main simulation only. A companion paper will present

the control-volume simulations in detail where they are used to

present our method of merger tree construction and their conver-

gence properties.

We have run our simulations with GADGET-2 (Springel 2005), a

Tree-Particle Mesh code well suited to large distributed memory

systems. We have modified the publicly available version to con-

serve RAM in dark matter only simulations by removing all sup-

port for hydrodynamics, ‘FLEXSTEP’ time stepping and variable

particle masses (along with all associated memory allocations).

Table 1. Box sizes (L), particle counts (Np), particle mass (mp), number of snapshots (nsnap),

approximate snapshot temporal resolution (�t) and gravitational softening length (ǫ) for the GiggleZ

simulations.

Simulation L [h−1 Mpc] Np mp [109 M⊙ h−1] nsnap �t [Myr] ǫ [h−1 kpc]

GiggleZ-main 1000 21603 7.52 100 115 9.3

GiggleZ-LR 125 1353 60.13 931 15 18.5

GiggleZ-NR 125 2703 7.52 931 15 9.3

GiggleZ-MR 125 5403 0.95 467 30 4.6

GiggleZ-HR 125 10803 0.12 235 60 2.3

MNRAS 449, 1454–1469 (2015)
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All simulations were run on the Green Machine at Swinburne

University, with the largest run consuming all the resources of

124 nodes, each housing dual quad core Intel Clovertown 64 bit

processors (for a total of 992) with 16 GB of RAM.

2.1 Initial Conditions

To initialize our simulations, we use the Parallel N-body Initial

Conditions (PaNICs) code developed at Swinburne for this project.

PaNICs follows the approach of Bertschinger (2001) to construct

a displacement field which, when applied to a uniform distribution

of particles, yields a distribution with our desired power spectrum.

This power spectrum was generated using CAMB (Lewis, Challinor

& Lasenby 2000) with our standard spatially flat WMAP-5 �CDM

cosmology given above. This power spectrum was normalized for a

starting redshift zinit = 49 for the GiggleZ-main run and zinit = 499

for the control-volume simulations. These starting redshifts ensure

that initial particle displacements are smaller than the grid cell size

of the displacement field for all simulations, a condition advocated

by Lukić et al. (2007). This high starting redshift may introduce

some numerical noise for the lower resolution control-volume runs

affecting detailed halo structure, but should have a negligible effect

on the mass accretion histories which will be the main focus of

their use. This was verified for the GiggleZ-NR mass resolution

during our convergence testing in which we performed a run with

zinit = 49 and found no significant effect on the simulation’s halo

power spectrum or mass function.

For the GiggleZ-main simulation, the displacement field was

computed on a 43203 grid while the control-volume simulations

used a common displacement field computed on a 21603 grid. Uni-

form distributions in all cases were computed from integral periodic

tilings of a 1353 glass configuration (see White 1994, for more de-

tails) generated using GADGET.

Particle velocities were computed from the PaNICs displacement

field using the Zeldovich approximation (Zel’Dovich 1970; Buchert

1992). Higher order corrections to this calculation (e.g. Scoccimarro

1998; Crocce, Pueblas & Scoccimarro 2006) could not be imple-

mented in a timely fashion for this project, but will certainly be

incorporated in future projects.

2.2 Halo finding

The majority of the analysis in this study will utilize the bound dark

matter haloes which emerge from our simulations. To extract these

structures we use the well tested code SUBFIND of Springel et al.

(2001). This code first starts by finding friends-of-friends (FoF)

structures for which we use the standard linking length criterion of

0.2d̄ (where d̄ = L/ 3
√

Np denotes the mean interparticle spacing

of the simulation). It subsequently identifies bound substructures

within these FoF groups as locally overdense collections of particles,

removing unbound particles through an unbinding procedure.

This procedure leads to two classes of halo: FoF groups and

substructure haloes. In the work which follows, we perform our

analyses on both classes of halo separately. Since FoF groups are

more closely related to the overdensity peaks forming the basis of

Extended Press–Schechter analyses, results derived from study of

these objects should form a better comparison to models developed

within that framework. However, observed galaxy populations are

more closely related to our substructure haloes and results derived

from analyses of this class of halo should be more straightforwardly

related to observed galaxy distributions. Later in Section 3.4 we will

find that there are interesting differences between the bias properties

of the two.

2.3 Convergence tests

Being principally responsible for the accuracy and run time of our

simulations, we carefully considered the settings of two GADGET

parameters in particular when setting up our calculations: the grav-

itational softening (ǫ; we will express this in units of d̄ hence-

forth) and the dimensionless parameter controlling the accuracy of

the time step criterion (η; referred to as ErrTolIntAccuracy in the

GADGET manual).

We ran a grid of (L, N) = (250 [h−1 Mpc], 5403) simulations

(i.e. the same mass resolution as the GiggleZ-main and GiggleZ-

NR run), varying combinations of these parameters over the ranges

ǫ = 0.005d̄–0.08d̄ and η = 0.005–0.04. Since our primary science

interests in WiggleZ involve studies of L∗ galaxy formation and

clustering on 100 [h−1 Mpc] scales, we seek convergence based on

the substructure halo mass function and substructure halo power

spectrum of haloes in the range M > 1012 [h−1 M⊙].

The results are presented in Fig. 1. Expected trends are realized:

larger softenings in particular have a strong impact on small scales

(i.e. low mass and high k). Furthermore, we find that the power

spectrum is a more stringent condition in these tests than the mass

function. When P(k) is converged, the mass function is converged.

Using the power spectrum at z = 0 as our metric of fitness, we

can immediately rule out softenings ǫ > 0.04d̄ by demanding that

deviations from our fiducial P(k) remain less than 5 per cent over

the range k = 0.1–1 [h−1 Mpc]−1.

There is a degeneracy in these tests between ǫ and η: moderate

increases in ǫ can be compensated for by decreasing η. Reducing η

has a significant impact on the run time of the simulation however,

placing practical constraints on how far it can be lowered. Taken

in combination, we use these constraints to settle upon the com-

bination (ǫ, η) = (0.02d̄ , 0.01) for all runs in this project. From

these experiments, we expect the mass function to be accurate to

∼2 per cent on M∗ scales. We expect the power spectrum to be

accurate to ∼2 per cent over the range k = [0.1, 1] [h−1 Mpc]−1.

2.4 Halo groupings

For this study, we are interested in the mass and redshift dependence

of halo clustering properties. To facilitate our analysis, we have

assembled a number of ‘groupings’ of both our FoF and substructure

haloes for a set of seven redshifts from z = 0 to ∼1.2 in steps

of dz ∼ 0.2. In each case we have rank-ordered the structures

by their maximum circular velocities (denoted Vmax) and selected

contiguous groupings of ni(zi, Vmax, i) systems (yielding grouping

number densities of ni per
[

h−1 Gpc
]3

) for each ‘i’th grouping.

This is done such that Vmax, i are median values for their respective

groupings, starting at 150 km s−1 for i = 0 and extending upwards

in steps of 10 km s−1 until we run out of massive haloes (at a value

of Vmax, i which declines with redshift). We use Vmax as our metric

of halo mass to render our results less sensitive to peculiarities of

our chosen halo finder and to increase reproducibility. Furthermore,

subhalo abundance matching has suggested that Vmax may more

directly parametrize the stellar mass of galaxies (Reddick et al.

2013), potentially improving the degree to which our Vmax-selected

subhalo groupings represent the clustering characteristics of stellar-

mass selected galaxy samples. See Fig. 2 for an illustration of the

relationship between Vmax and Mvir.

MNRAS 449, 1454–1469 (2015)
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Figure 1. A plot comparing the effects of variations in gravitational softening parameter (ǫ) and time step integration accuracy (η) on the mass function (	i;

left) and power spectrum of haloes more massive than 1012 M⊙ (Pi; right) of a (L, N) = (250 [h−1 Mpc], 5403) simulation (i.e. the same mass resolution as

the GiggleZ-main and GiggleZ-NR runs). In each case, we normalize the mass function and power spectrum to the case (ǫ, η) = (0.005d̄, 0.005). Based on

these results, we selected (ǫ, η) = (0.02d̄, 0.01) for all GiggleZ simulations (where d̄ is the mean interparticle spacing of the simulation). Runs with ǫ = 0.02d̄

are labelled in red with the η = 0.01 case additionally highlighted with a thick line (top panels). Grey shaded regions indicate the magnitude of the Poisson

statistical uncertainty of the (ǫ, η) = (0.005d̄, 0.005) case used as reference in all cases.

We set ni for each grouping to yield correlation functions of

roughly equivalent signal to noise despite the growth of structure

moderated by the linear growth factor (denoted by D and given by

D = δ(z)/δ(0), where δ(z) is the evolving matter density contrast)

and the mass-dependent bias which we estimate using the TRK

model1 (denoted by bTRK). This approach has the added benefit of

naturally reducing our bin size as mass and redshift increase, adapt-

ing to regimes where halo densities are low and clustering proper-

ties are rapidly evolving. More specifically, we choose groupings

for which bTRK(Vmax, i, zi) = 1 to have ni = 105 haloes at z = 0.6

and scale ni for other cases by 1/(bTRKD). The resulting values of

ni used for this study are illustrated in Fig. 2.

1 Throughout this paper, we will convert the overdensity parametrizing this

model to an effective Vmax assuming standard Navarro, Frenk & White

(1997) scaling properties and the mass-concentration relation of Muñoz-

Cuartas et al. (2011).

To add redshift-space distortion effects to our catalogues we as-

sume a flat-sky approximation, taking the positions of each halo

grouping and adding a 1D displacement in the x-direction (δx) given

by

δx =
vxh

a(z)H (z)
, (1)

where vx is the x-component of the physical centre-of-mass velocity

of the halo, a(z) is the cosmological expansion factor and H(z) is

the redshift-dependant Hubble parameter.

3 A NA LY SIS

For the analysis presented in this paper, we will use the two-point

correlation function as our measure of clustering strength and its

scale dependence. The method of Landy & Szalay (1993) is used

throughout and is applied to all of the halo groupings described

in Section 2.4 as well as to randomly sampled subsets of 106

MNRAS 449, 1454–1469 (2015)
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Figure 2. A plot presenting the number densities (ni) adopted for the halo

‘groupings’ and the relationship between Vmax and Mvir used for all anal-

ysis in this work. Three redshifts evenly spanning the range of this study

(z � 1.2) are depicted. Number densities are chosen such that they scale

inversely with large-scale bias (as estimated from the model of TRK) and

the linear growth factor (i.e. ni ∝ 1/(bTRKD)) normalized such that ni(zi =
0.6, bTRK = 1) = 105 [(h Gpc−1)3].

particles from each relevant snapshot of our simulations. This

method requires a large number of randomly distributed points and

we use 250 000 points for halo analysis and 5 × 106 for matter field

analysis, ensuring that there are at least five times more random

points than data points in all cases.

Examples of our computed correlation functions are presented

in Fig. 3 where we show results at three redshifts evenly spanning

the range of our study (z = 0, 0.593 and 1.224) for distributions

of matter and for FoF halo groupings of three masses (Vmax =
150, 300 and 450 [km s−1]) in the GiggleZ-main simulation. Ex-

pected trends of increasing clustering amplitude with halo mass and

increased redshift-space clustering (particularly on scales less than

∼2 [h−1 Mpc] where ‘halo exclusion’ effects become significant)

are apparent.

3.1 Computing scale-dependent bias and motivating

its general form

Throughout the analysis which follows, we will focus on three

correlation function ratios which capture separate contributions to

halo bias and its scale dependence. These ratios will be between

the redshift-space halo correlation function and the real-space halo

correlation function (Rz, said to express the redshift-space – or

Kaiser, after the model of K87 – ‘boost’ effects on total bias),

the ratio of the real-space halo correlation function to the real-

space dark matter correlation function (Rh, said to express the real-

space halo bias) and the ratio of the redshift-space halo correlation

function to the real-space dark matter correlation function (Rt, said

to express the total or redshift-space bias). Throughout this work we

will refer to these ratios in a general form as Rx where x = ‘z’,‘h’

or ‘t’ denoting the Kaiser boost, halo or redshift-space bias ratios,

respectively. Conceptually, Rt = Rh×Rz, although we fit to each

ratio individually and do not enforce this relation.

In all cases, Rx(s) profiles and uncertainties are computed from

the median and (potentially asymmetric) distribution of 216 jack-

knife subsamples evaluated using a regular 63 grid. This choice for

the number of jackknife regions was motivated by the work pre-

sented in Contreras et al. (2013) where we found that results are

insensitive to the number of regions used for the regimes studied

here. Furthermore, we concentrate only on scales larger than 3 [h−1

Mpc] for two reasons: we find that the behaviour of Rx(s) on scales

less than this is complicated (with a character similar to that pre-

sented in fig. 4 of Zehavi et al. 2004) and difficult to parametrize

and because it is on scales less than this where the morphology–

density relation of observed galaxy populations becomes significant

(Haines et al. 2009; Hansen et al. 2009; von der Linden et al. 2010;

Lu et al. 2012; Rasmussen et al. 2012; Wetzel, Tinker & Conroy

2012; Bahé et al. 2013), greatly complicating the use of these scales

for realistic galaxy populations.

Examples of each ratio for cases spanning the range of redshift

and halo mass addressed by this study are shown in Fig. 4 (for all

plots henceforth, the same colour scheme is used: green to represent

real-space halo bias, red to represent Kaiser boost effects and black

to represent total redshift-space bias). Several general trends are

immediately obvious from this plot. At large scales, the limited

volume of our simulation results in a rapid increase in the variance of

each Rx profile as scales begin to exceed 20–30 [h−1 Mpc]. Within

these admittedly large uncertainties, there is little evidence of scale-

dependent bias effects beyond these scales, as we expect from the

results of previous studies. At smaller scales where our simulation

is adequate for quantifying Rx(s), we see clear evidence of scale

dependence increasing in magnitude with halo mass and redshift

for Rh and Rt while trends are more mild and less discernible for

Rz. Furthermore, in some regimes we find that Rx can be enhanced

on small scales relative to large scales (generally the case for Rh

and Rt) or suppressed on small scales.

Therefore, taking as an ansatz that Rx converges to a constant

value at large scales (although, see Angulo et al. 2014, for evidence

of slight scale-dependent effects on scales >140 [h−1 Mpc], albeit

at a level insignificant to this study), this figure motivates us to

assume the following form for Rx :

Rx = b2
x(1 + S (s/sx)−η),

where S = ±1. (2)

This is a four-parameter model (applicable on scales

s > 3 [h−1 Mpc]) where bx quantifies the large-scale bias ampli-

tude, η sets the slope of Rx on small scales, sx is effectively a

measurement of the amplitude of scale-dependent effects (in the

same way that r0 parametrizes clustering amplitude when correla-

tion functions take the form ξ = ( r
r0

)γ , particularly for a fixed value

of η as we will ultimately adopt below) and S sets whether bias is

suppressed by scale-dependent effects on small scales (i.e. the case

S = −1) or enhanced on small scales (i.e. the case S = +1).

3.2 The mass dependence of scale-dependent bias

In Fig. 5 we show the results of fitting the model introduced in

equation (2) to each scale-dependence ratio, for all of our halo
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1460 G. B. Poole et al.

Figure 3. Two-point correlation functions (ξ (s); plotted as s2ξ (s) with an extra factor of s2 to increase figure clarity) for the total matter and for populations

of dark matter haloes at three halo masses and three redshifts. Green and blue lines denote ξ (s) in real- and redshift space for the dark matter particles at each

redshift, respectively. Black and red lines with error bars denote ξ (s) in real- and redshift space for the dark matter haloes, respectively. In all cases, the number

haloes involved in the represented FoF halo groupings (ni) are given. Uncertainties are computed from jackknife subsamples using a regular 63 grid. Values

across the top denote the redshift represented by each column while values along the right indicate the halo mass (expressed in terms of maximum halo circular

velocity, Vmax) represented by each row.

groupings at three redshifts spanning the range of our study. These

preliminary illustrative fits – which at this point are meant only to

motivate the parametrization which follows – are constructed using

a simple χ2-minimization approach.

When allowing η to vary freely between values of 0 and 3, we

find very little discernible trend for η with Vmax and very noisy

trends for sx with Vmax for all three bias types. This suggests that the

four-parameter model of equation (2) is underconstrained by these

data sets. However, when we fix η to a value of 1, clear trends in

sx(Vmax) emerge for all cases, as illustrated in Fig. 5. Fixing η in this

way results in a minimal reduction in the quality of fit, as shown in

the bottom panels of this figure where we compare the χ2 obtained

allowing η to vary (nDoF = 5) to those obtained when we fix η to a

value of 1 (nDoF = 6). This value of η was chosen as a compromise

in the range of best-fitting values. While the results of fits change in

detail when other fixed values of η are chosen, little change results

to the quality of fit or to the conclusions of our study.

For the large-scale bias parameters (bx, illustrated in the top

panels of Fig. 5), expected trends are apparent with real-space and

redshift-space halo bias increasing with both mass and redshift.

They follow each other with an offset which decreases with mass

but is relatively constant with redshift. This offset is due to Kaiser

boost contributions which we see decline with mass, converging

towards a value of 1 (i.e. no contribution to redshift-space bias from

peculiar velocities) as masses increase. This trend is remarkably

constant with redshift as well.

As mentioned above, when we fix η to a value of 1, sx effectively

quantifies the amplitude of scale-dependent bias effects. For this

choice of η, a value of sx = 1 [h−1 Mpc] results in a 15 per cent

difference in bias between scales s = 3 [h−1 Mpc] and ∞, a value

of sx = 2 [h−1 Mpc] a 29 per cent difference, etc.

There is a clear pattern illustrated in Fig. 5 of sx decreasing

and then increasing roughly linearly with mass about a pivot point

which varies with redshift and ratio type. This is a result of bias

effects being suppressed at small scales for small halo masses (i.e.

S = −1), passing a point at which there is no scale dependence

(sx = 0), and then increasing with enhanced small-scale bias at large

values of halo mass (i.e. S = +1). As such, the point of minimum

sx for each case indicates a halo mass at which scale dependence of

bias disappears. This behaviour is discernible in Fig. 4.

Motivated by these results, we choose the following parametriza-

tion for the halo mass dependence of scale-dependent bias:

log10 b2
x(z, Vmax) = b0

x(z) + bV
x (z)Vmax

sx(z, Vmax) = sV
x (z)|Vmax − VSF,x(z)|

S(z, Vmax) =
{

−1 if Vmax < VSF,x,

+1 if Vmax ≥ VSF,x
. (3)

This represents a four-parameter model describing the mass depen-

dence of bias and its scale dependence at a fixed redshift. Two pa-

rameters describe a linear Vmax dependence for the logarithmic bias

(b0
x and bV

x ), one sets the strength of the mass dependence of scale-

dependent bias (sV
x ) and one sets the mass at which bias becomes

scale free at the regime between the suppression (at Vmax < VSF, x)

and the enhancement of bias at small scales (at Vmax > VSF, x).

The results of fitting this model to the cases illustrated in Fig. 5 are

MNRAS 449, 1454–1469 (2015)
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Figure 4. The scale dependence of three ratios taken between total matter and halo correlation functions at the same three halo masses and three redshifts

depicted in Fig. 3. Red denotes the ratio of the redshift-space halo correlation function to the real-space halo correlation function (Rz, expressing the square of

redshift-space boost effects on the total redshift-space bias), green the ratio of the real-space halo correlation function to the real-space total matter correlation

function (Rh, expressing the square of the real-space halo bias) and grey the ratio of the redshift-space halo correlation function to the real-space total matter

correlation function (Rt, expressing the square of the total redshift-space bias). All ratios have been computed using their jackknife subsamples to minimize

cosmic variance, with shaded regions indicating 68 per cent confidence intervals. Thick solid lines indicate the best fit of equation (2) to each data set assuming

η = 1. In all cases, the square of the large-scale bias (b2
x ) has been normalized-out such that all curves converge to a value of 1 at large values of s. Values

across the top denote the redshift represented by each column while values along the right indicate the halo mass (expressed in terms of maximum halo circular

velocity, Vmax) represented by each row.

illustrated with solid lines. For this and all cases which follow, these

fits are applied directly to the Rx profiles and their (possibly asym-

metric) uncertainty distribution obtained in the manner described

in Section 3.1 (and not to the individual points depicted in Fig. 5

resulting from our χ2 fits to individual cases) using the Markov

chain Monte Carlo (MCMC) machinery introduced in Poole et al.

(2013).

3.3 The redshift dependence of scale-dependent bias

and the final full model

Finally, we now seek a parametrization of the full mass and redshift

dependence of scale-dependent bias. This is achieved by parametriz-

ing the redshift dependence of the four parameters in the model

given by equation (3) for each ratio type.

In Fig. 6 we present a series of fits (in coloured points)

of the model presented in equation (3) at several redshifts spanning

the range of our study for both our FoF (solid points) and substruc-

ture haloes (open points). Once again, these are preliminary illus-

trative fits constructed using a simple χ2-minimization approach

and are meant only to motivate the parametrization of our final

model. They are equivalent to the fits shown with solid lines in

Fig. 5 but applied to a larger number of redshifts (and to both halo

types). We find that the parameters of our mass-dependence model

vary smoothly with redshift, motivating the following form for the

redshift dependence of scale-dependent bias:

log10 VSF,x(z) = V 0
SF,x + V z

SF,xz

sV
x (z) = sV ,0

x + sV ,z
x z

b0
x(z) =

{

b0,0
x + b0,z

x z if x = ‘h’ or ‘t’,

b0,0
z + b0,zz

z (z − zb,z)2 if x = ‘z’

bV
x (z) = bV ,0

x + sV ,z
x z. (4)

This represents a linear redshift dependence for all of the parameters

in equation (3) with the exception of the parameters for the Kaiser

boost which we find requires a quadratic dependence for b0
x(z)

centred on redshift zb, z (hence introducing an extra parameter in

this case). Although very-nearly constant with redshift, we find this

refined form of redshift dependence is necessary due to the strong

dependence of sx on bx when Rx is only weakly scale-dependent

(which is always the case for Rz).

Also presented in Fig. 6 (with lines, solid for FoF haloes and

dotted for substructure) is the result of our final global MCMC fit

to our full data set. This fit is applied simultaneously to all of the

Rx profiles measured for every grouping at all redshifts employed

for this study (and not to the plotted points). We find that our

chosen parametrization closely follows the individual fits presented

with coloured points, validating our assumed form for the redshift

MNRAS 449, 1454–1469 (2015)
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1462 G. B. Poole et al.

Figure 5. The results of fitting the scale-dependent bias model of equation (2) to halo groupings of various masses (expressed in terms of maximum halo

circular velocity, Vmax) at three redshifts spanning the range utilized in this study. Coloured points indicate fits for redshift-space boost effects (Rz: red),

real-space halo bias (Rh: green) and total redshift-space bias (Rt: black). Solid lines indicate the fit of the halo mass dependence model expressed by

equation (3) to each of these three data sets (with matching colours). Dotted lines similarly indicate the results of our full mass- and redshift-dependent bias

model expressed by equations (2), (13) and (4) and Table 2. Residual differences of each fit from this model are plotted as �sx and �bx for the large-scale

bias and amplitude of scale-dependant bias, respectively. The bottom two panels in each column indicate the values of χ2/nDoF (where nDoF = 6 in all cases)

obtained from the fit assuming η = 1 (second from bottom) and the difference in χ2 obtained when allowing η to vary over the range 0–3 (bottom; nDoF = 5

in this case). Values across the top denote the redshift represented by each column.

dependences of each parameter. The resulting parameters describing

our full scale-dependent bias model, as described by equations (2)

(under the assumption that η = 1), (3) and (4), are presented in

Table 2 for both the FoF and substructure haloes of our simulation.2

The quality of fit across the whole range of redshifts and masses

used to constrain this model is presented in Fig. 7. It is here that the

efficacy of our chosen parametrization should be judged and over

the vast majority of the probed mass and redshift range, the quality

of fit is very good. At the highest masses, the quality of fit declines

presumably due to overly coarse mass binning demanded by the

limited volume available to us for this study.

3.4 Qualitative trends with mass, redshift and halo type

Several interesting general trends regarding the dependence of bias

(and its scale dependence) on mass, redshift and halo type emerge

at this point. Commenting first on the halo mass at which bias

becomes scale free (VSF), we see that for all bias ratios VSF declines

with redshift at a similar rate in all cases and in a nearly identical

way for both FoF groups and substructure. This mass scale is higher

for Kaiser boost effects however, leading to a significant increase

2 A PYTHON script with the full model and its coefficients has been made

available online at http://gbpoole.github.io/Poole_2014a_code/

in this mass scale for the total redshift-space results over that from

real-space halo bias effects alone. For the full redshift range of

our study (z � 1.2), VSF is restricted to the range 150–350[km s−1].

From equation (3) we can see that this trend in VSF(z) acts to drive an

increase in the amplitude of scale-dependent bias (sx) with redshift at

masses above this range (where scale-dependent bias always results

in enhanced bias at small scales) and a suppression of its amplitude

on mass scales below it (where scale-dependent bias always results

in suppressed bias at small scales).

Augmenting these trends in sx driven by the evolution of VSF(z),

the mass dependence of sx (given by sV
x ) also increases with

redshift. Interestingly, this is the only parameter for which redshift-

space contributions to total bias differ between FoF and sub-

structure haloes: being significantly higher for substructure, driv-

ing an enhanced mass dependence in the total redshift-space bias

as well.

We now focus on our results for large-scale bias (bx). In Fig. 8

we illustrate this quantity for all of our groupings at three redshifts

spanning the range of our study. In this case, we directly com-

pare results for FoF (solid points) and substructure haloes (open

points). In this figure we also compare our results to the successful

simulation-calibrated excursion set model of TRK (dashed green

lines), the redshift-space distortion model of K87 (dashed red) and

the redshift-space model that emerges from combining the two

(dashed black). The K87 model predicts a redshift-space boost given

MNRAS 449, 1454–1469 (2015)
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Figure 6. The results of fitting our final redshift-and-mass dependent model to the profiles of redshift-space boost effects, real-space halo bias and total z-space

bias computed for this study. Individual points denote fits of equation (3) toRx(s, Vmax) for each ratio type at several redshifts with solid points indicating fits

to FoF haloes and open points indicating fits to substructure haloes. Solid lines denote our full mass- and redshift-dependent model expressed by equation (4)

when fit to FoF haloes and dashed lines denote this fit to substructure haloes. Note that the solid lines are not fits to the data points, but rather a single joint

MCMC fit to allRx (s) profiles used in this study. The agreement validates our chosen parametrization of the redshift dependence of the parameters in our final

model.

Table 2. Parameters for our full scale-dependent bias model, as expressed by equations (2), (3) and (4). Values for

both halo types (FoF haloes and substructure) are given.

Parameter Real-space bias z-space boost Total z-space bias

FoF haloes Substructure FoF haloes Substructure FoF haloes Substructure

V 0
SF,x [220 km s−1] 0.028 19 0.053 26 0.310 02 0.317 31 0.204 17 0.212 87

V z
SF,x [220 km s−1] − 0.138 20 − 0.167 39 − 0.202 64 − 0.159 91 − 0.296 67 − 0.228 06

sV ,0
x [(220 km s−1)−1] 0.368 60 0.402 69 0.334 23 0.534 44 0.940 82 1.118 79

sV ,z
x [(220 km s−1)−1] 0.615 47 0.609 66 0.092 33 0.071 02 0.451 47 0.612 14

b0,0
x − 0.379 36 − 0.197 43 0.220 62 0.219 88 − 0.153 50 0.011 98

b0,z
x 0.307 43 0.213 82 n/a n/a 0.279 95 0.211 27

b0,zz
x n/a n/a − 0.044 19 − 0.037 49 n/a n/a

zb,z n/a n/a 0.785 27 0.929 20 n/a n/a

bV ,0
x [(220 km s−1)−1] 0.314 75 0.270 75 − 0.048 05 − 0.046 29 0.254 71 0.215 35

bV ,z
x [(220 km s−1)−1] 0.060 73 0.082 02 − 0.014 54 − 0.018 33 0.067 61 0.077 63

by (his equation 3.8, cast here in terms of our notation)

b2
z = 1 +

2

3
β +

1

5
β2, (5)

where β = f/bh with f being the logarithmic derivative of the linear

growth factor with respect to expansion factor given by

f =
d ln D

d ln a
. (6)

Lastly, we also combine the TRK and K87 models to produce a

reference total redshift-space bias model (dashed black lines).

Over most of the range of masses and redshifts probed by our

study, we find very good agreement between these reference mod-

els and our FoF large-scale bias results. Since the FoF catalogues

most straightforwardly relate to the density structures described by

excursion set models, this is as expected. At the highest masses and

redshifts, there is a tendency for the TRK model to predict higher

real-space biases than our model predicts. It is possible that the cali-

bration of the TRK model has been biased high from the very strong

scale-dependant bias of haloes in this regime, but this is difficult to

discern since their study is conducted in Fourier space and since it

is unclear from the presentation of their analysis what exact scale

they have fit to.

MNRAS 449, 1454–1469 (2015)
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Figure 7. Values of χ2/nDoF (where nDoF = 6 in all cases) obtained from fitting our scale-dependent bias model – bt(Vmax, z) on the left, bh(Vmax, z) in the

middle, bz(Vmax, z) on the right – to the FoF haloes of the GiggleZ-main simulation. These planes represent the full range in Vmax and z over which our model

has been constrained, with the white region in the top right being due to a lack of dark matter haloes of sufficient density at corresponding masses and redshifts.

Additionally, looking at substructure we find significant enhance-

ments in our large-scale real-space (and by extension, total redshift-

space) halo biases at low redshift. This difference is approximately

20 per cent for Milky Way-sized systems (∼220 km s−1) at redshift

zero and increases with declining mass.

Interestingly (but perhaps not unexpected), there is absolutely no

difference between the two halo populations in terms of their Kaiser

boosts. We interpret this similarity as a reflection of the fact that non-

linear pairwise velocities are unimportant on the largest scales of our

study. Furthermore, there is extremely little redshift dependence and

only a slight mass dependence for bz. We see excellent agreement

with the K87 model and interpret the lack of evolution in the Kaiser

boost as a remarkable cancelling of the effects on β from evolution

in the growth of structure (via evolution in f) and in real-space halo

bias (via evolution in bh). We note that this level of agreement with

the K87 model was also found by Montesano et al. (2010, see their

table 4) in their Fourier-space study of bias.

4 SYSTEMATIC BIASES IN G ROWTH

O F S T RU C T U R E M E A S U R E M E N T S

Having developed our full parametrization of scale-dependant bias,

we seek now to quantify the systematic bias that results in growth

of structure measurements when the scale dependence of bias is not

taken into account. This is done by applying an extension of the

Fisher matrix formalism to our bias model in Fourier space where

covariance is minimized and measurement uncertainties are more

straightforwardly modelled. We intend for this to be an illustration of

the effects of scale-dependant bias on measurements of this sort and

caution that our estimates here may be somewhat pessimistic. This is

because we will assume a specific and fixed redshift-space distortion

model for this calculation whereas fits to data usually marginalize

over a velocity-dispersion parameter (σ v) which can absorb some of

the systematic we present here. Nevertheless, we expect the general

trends and effects presented here to be an informative illustration

of the circumstances in which systematic bias should be taken into

account in growth of structure studies.

4.1 Estimation of systematic bias

To express our bias model in Fourier space, we first compute an

unbiased 2D power spectrum (P(k, μ), where μ = cos (θ ) with θ

being the angle between the Fourier mode and the line-of-sight) by

applying the K87 redshift-space distortion model to a 1D CAMB

power spectrum:

Pmodel(k, μ) = (bh + f μ2)2PCAMB(k). (7)

We then convert this 2D Fourier space model to configuration space

using equation (11) of Reid et al. (2012, see also Hamilton 1998)

which relates correlation function multipoles (indexed by ℓ) to those

of its associated power spectrum:

ξℓ(s) =
iℓ

2π
2

∫

Pℓ(k)jℓ(ks)k2 dk, (8)

and apply our bias model to the result. This is done for both our

scale-dependent bias model and a constant bias model, yielding

(once we convert back to Fourier space) the biased power spectra

Pmodel(k, μ) and Psys(k, μ), respectively.

For our estimation of systematic bias in f (which we denote by

�fb), we follow the method of Amara & Réfrégier (2008). This

method employs a straightforward extension of the Fisher matrix

formalism with the adjustment that uncertainties from systematic

biases in parameters are separated explicitly from statistical uncer-

tainties (rather than treated, for example, as an additive term to the

statistical contribution to be marginalized over). Defining the Fisher

matrix in the usual way for a 2D power spectrum dependant on a

set of parameters pi = {f, ...} with covariance Cij between each

(k, μ) power spectrum bin as

Fij =
∑

(k,μ)

C−2
ij

dPmodel(k, μ, p)

dpi

dPmodel(k, μ, p)

dpj

, (9)

the systematic uncertainty in each parameter (which we denote

generically as �pi) is obtained by projecting the inverse of this

Fisher matrix along a bias vector Bj as given by the expression

�pi = F
−1
ij Bj . (10)

For the parameter p0 = f, the relevant expression for B0 is found by

rewriting equation (8) of Amara & Réfrégier (2008) in the following

form:

B0 =
∑

(k,μ)

�Psys(k, μ, f )

σ 2
P (k, μ)

dPmodel

df
(k, μ, f ), (11)
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Figure 8. Plots comparing the large-scale bias (top) and amplitude of the scale dependence of bias (bottom) of FoF haloes (solid points) and substructure

haloes (open points) in the GiggleZ-main simulation. Solid lines show our final bias model and dashed lines show the simulation-calibrated excursion set model

of TRK (dashed green), the redshift-space boost model of K87 (dashed red) and the total z-space bias resulting from both (dashed black). Residual differences

of each fit from our final global model for the case of FoF haloes are plotted as �sx and �bx for the large-scale bias and amplitude of scale-dependant bias,

respectively. Horizontal dotted lines in the right-hand panel denote the values of sx which yield differences in bias between scales s =3 [h−1 Mpc] and ∞ of

15 per cent (sx = 1 [h−1 Mpc]) and 30 per cent (sx = 2 [h−1 Mpc]).
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Figure 9. The systematic bias induced in measurements of the growth rate of cosmic structure (�f) due to an incorrect assumption of constant galaxy bias

(�fb; solid lines) for several cut-off measurement scales (kmax; for values 0.1, 0.2, 0.3 [h−1 Mpc]−1 in red, blue and magenta, respectively) compared to the

statistical uncertainty in this measurement (�fs) for a fiducial survey with volume 1 [h−1 Gpc]3 and number density 3 × 105 [h−1 Gpc]−3 (shaded regions:

pink, blue and magenta for kmax =0.1, 0.2, 0.3 [h−1 Mpc]−1, respectively).

with σ P(k, μ) being the error in each 2D power spectrum bin given

by

σP (k, μ) =
P (k, μ) + 1/n

√
N

, (12)

with n being the number density of galaxies and N the number of

Fourier modes in each bin. The quantity �Psys = Pmodel − Psys

represents the residual systematic modelling error in the power

spectrum. Lastly, dPmodel/df gives the partial derivative of our model

power spectrum with respect to f. Throughout, we use bin widths

of �k = 0.01 [h−1 Mpc]−1 and �μ = 0.1 for sums over k and μ,

respectively.

4.2 Effects of systematic bias

To evaluate the magnitude of this systematic bias, we express it here

for a fiducial survey of volume 1 [h−1 Gpc]3 and number density

n = 3 × 105 [h−1 Gpc]−3. This number density is chosen to be sim-

ilar to that of both the WiggleZ and BOSS (The Baryon Oscillation

Spectroscopic Survey) surveys and the volume is representative of

current large spectroscopic surveys. In Fig. 9, we show the results

of this calculation at three redshifts spanning the range z � 1.2 for

three small-scale cut-offs (denoted kmax). These are compared in

each case to the statistical uncertainty expected for this measure-

ment (denoted �fs; shown with shaded regions) which we calculate

using a standard Fisher matrix forecast (see White, Song & Percival

2009; Abramo et al. 2012; Blake et al. 2013) using the same binning

and range as for the systematics forecast.

Noting first some generic trends in this figure, we see that �fb

is positive for low masses/biases and (more generally) negative for

larger masses/biases. This is due to the transition from S = −1

(suppression of bias on small scales) to S = +1 (enhancement

of bias on small scales) with suppressed small-scale bias leading

to a positive bias in f and enhanced small-scale bias (the more

common case) leading to a negative bias in f. Additionally, we

see that increasing kmax has two distinct effects: it increases the

precision of the measurement (particularly between kmax=0.1 and

0.2 [h−1 Mpc]−1) due to the additional data involved and it increases

�fb due to the use of scales where scale-dependent bias has an

increased effect on the shape of the power spectrum.

Commenting more specifically, we can see from this figure that

when kmax = 0.1 [h−1 Mpc]−1, �fb remains significantly smaller

than �fs for all cases with bt � 2. Indeed, only when bt � 3 at

z � 1 does the systematic bias become significant compared to the

precision of the measurement. However, this situation dramatically

changes for larger values of kmax. When it increases to 0.2, �fb

becomes significant compared to �fs for all cases except those

very narrowly similar in mass to VSF, where scale-dependent bias

disappears.

The presentation of these results is expanded in Fig. 10 where

we show �fb for the full range of cases to which our bias model

has been constrained. Across all redshifts and for all cases, we

see that scale-dependant bias effects are minimized when the halo

population has a bias similar to bt ∼ 1.5.

5 SU M M A RY A N D C O N C L U S I O N S

We have used the GiggleZ-main simulation to produce an eight-

parameter phenomenological model quantifying halo bias (in both

real and redshift spaces) and its scale dependence over the range of

masses 100[km s−1] < Vmax < 700[km s−1], redshifts z � 1.2 and

scales 3[Mpc h−1] < s < 100[Mpc h−1] under the ansatz that bias

converges to a scale-independent form at large scales. We find that

scale-dependent bias can either enhance or suppress bias at small

scales. For any given halo mass at any given redshift, large-scale

bias is given by a single constant and the scale dependence of bias is

given by two others: a binary parameter determining whether bias is

enhanced or supressed on small scales (S) and a parameter setting

its amplitude (s).

While a relatively small but growing body of literature has looked

at scale-dependent bias effects in the Fourier domain, few recent

studies have addressed it in configuration space. The results pre-

sented in this work should not only be more directly applicable to

observational studies conducted in configuration space, but should

also help provide a basis upon which to build some intuition re-

garding the scale-dependent bias effects observed in Fourier-space

studies.

We find several interesting trends (noted and discussed in Sec-

tion 3.4) which require further study to understand. Most prominent

among these is the fact that scale dependence of bias transitions from

MNRAS 449, 1454–1469 (2015)
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Figure 10. The systematic bias induced in measurements of the growth rate of cosmic structure (�fb) due to an incorrect assumption of constant galaxy

bias for several measurement scale cut-offs (kmax; values given in text above each panel) as a function of redshift and halo mass (quantified by maximum

circular velocity, Vmax; top) or total redshift-space bias (bt; bottom). Black contours express this in units of the statistical uncertainty in this measurement (�fs;

dashed contours for negative systematic biases, solid lines for positive systematic biases) for a fiducial survey with volume 1 [h−1 Gpc]3 and number density

3 × 105 [h−1 Gpc]−3. Thick solid contours indicate the cases where scale-dependent bias vanishes on scales larger than 3 [h−1Mpc] resulting in no systematic

bias in f.

the suppression of bias at small scales for small masses to enhance-

ment for large masses. It does so in a narrow bias range centred on

bt ∼ 1.5 across all redshifts z � 1.2. At the transition between, our

parametrization describes bias as scale free. It is important to note

however, that while a scale-free model is a good fit in these regimes,

the claim of a scale-free bias can only be made to a precision al-

lowed by our simulation. Additionally, we wish to emphasize that

the functional form of our parametrization as well as the specific

parameter values we have obtained may need to vary under reason-

able changes from our fiducial cosmology. Further study is needed

to determine how sensitively they do so.

It should also be noted that we restrict our study to configuration

space on scales larger than 3[Mpc h−1]. On scales lower than this, a

wide variety of non-monotonic variations inRx occur (of a character

similar to that presented in fig. 4 of Zehavi et al. 2004). In the Fourier

domain, these features are likely to have broad spectral content and

more detailed study is required to understand their influence in

Fourier space.

Lastly, we compute the systematic biases induced in growth of

structure measurements in the absence of corrections for scale-

dependent bias effects. We find that for a fiducial survey with volume

1 [h−1 Gpc]3 and number density n = 3 × 105 [h−1 Gpc]−3 that

systematic bias is modest when scales only as small as kmax = 0.1 are

used, except for highly biased haloes at high redshift. Once scales as

short as kmax � 0.2 are utilized, the situation dramatically changes

with significant systematic biases resulting at all redshifts for biases

even just slightly different from bt ∼ 1.5. In realistic analysis where

fits are generally marginalized over a pair-wise velocity dispersion

parameter, much of this effect is likely to be absorbed into this

parameter, reducing the problem at the expense of compromising

any meaning given to this quantity. Further study under realistic

conditions is clearly needed to precisely quantify these effects on

real survey results.

These results suggest that the optimal strategy at all redshifts

z � 1.2 for clustering studies which are dominated more by sys-

tematic effects than statistical precision (such as the case of cosmo-

logical neutrino mass measurements) is to target bt ∼ 1.5 systems.

Fortuitously, the UV-selected galaxies targeted by the WiggleZ sur-

vey have a large-scale bias similar to this (Blake et al. 2009), for

example.

These results reenforce the notion that scale-dependent bias is

particularly significant for studies involving measurements of the

shape of two-point clustering statistics. We have focused here

on growth of structure measurements only, but similar analysis

MNRAS 449, 1454–1469 (2015)
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(following-on from the work of Swanson, Percival & Lahav 2010,

for example) for neutrino mass measurements are clearly warranted

as well.

Of course, this study has focused on the bias properties of halo

tracers with complete selection properties and uniform masses. The

larger bias we find for substructure catalogues shows the impor-

tance of realistically considering the sites of galaxy formation. We

now need to carefully consider the effects that can be induced by

the sorts of colour selections employed during observational cam-

paigns. Due to phenomena like the morphology–density relation, a

large variety of differing results can occur if galaxies are selected by

more observationally motivated criteria (e.g. luminosity or colour)

which are more difficult to robustly model. A great deal more study

on these issues is required to make robust statements under such

circumstances.
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Yepes G., Gottlöber S., 2010, ApJ, 724, 878 (TRK)

von der Linden A., Wild V., Kauffmann G., White S. D. M., Weinmann S.,

2010, MNRAS, 404, 1231

Wetzel A. R., Tinker J. L., Conroy C., 2012, MNRAS, 424, 232

White S. D. M., 1994, preprint (arXiv:e-prints)

White M., Song Y.-S., Percival W. J., 2009, MNRAS, 397, 1348

Zehavi I. et al., 2004, ApJ, 608, 16

Zehavi I. et al., 2005, ApJ, 630, 1

Zel’Dovich Y. B., 1970, A&A, 5, 84

S U P P O RT I N G IN F O R M AT I O N

Additional Supporting Information may be found in the online ver-

sion of this article:

bias_Poole2014a.py (http://mnras.oxfordjournals.org/lookup/

suppl/doi:10.1093/mnras/stv314/-/DC1)

Please note: Oxford University Press is not responsible for the

content or functionality of any supporting materials supplied by

the authors. Any queries (other than missing material) should be

directed to the corresponding author for the article.

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 449, 1454–1469 (2015)

 at U
n
iv

ersity
 o

f W
estern

 A
u
stralia o

n
 M

ay
 4

, 2
0
1
6

h
ttp

://m
n
ras.o

x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 

http://arxiv.org/abs/e-prints
http://mnras.oxfordjournals.org/lookup/suppl/doi:10.1093/mnras/stv314/-/DC1
http://mnras.oxfordjournals.org/lookup/suppl/doi:10.1093/mnras/stv314/-/DC1
http://mnras.oxfordjournals.org/

