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The purpose of this work is to study superfluid properties of a neutral fermion system
with pairing in a non-zero angular momentum state, in particular, with 3P, pairing expected
in neutron stars. The gap equation and the- equation of the ‘Ginzburg-Landau--(G-L) type
are derived for general pairing. We then specialize to the case-of 8P, -pairing ‘and present
the G-L equation for the five component order parameter in the form of a non-linear field
equation for a spin 2 field. The expressions for the free energy, the: current density and the
angular momentum density are found in terms of the order parameter. With the help of
the G-L equation some features of vortex states are discussed.

§1. Iniroduction

Recently superconducting or superfluid states of a fermion system with non-
zero angular momentum pairing have received renewed attention in connection
with the possible occurrence of superfluidity in neutron stars. It is believed that
the interior of a typical neutron star beneath its solid crust is composed of three
degenerate quantum liquids of neutrons, protons and electrons, the number density
of protons being roughly several per cent of that of neutrons.? The neutron liquid,
and probably the proton liquid as well, are expected to be in a superfluid state,
the character of which depends on the density of nucleons. According to the
detailed analysis using nuclear interactions obtained from nucleon-nucleon scat-
tering data,® the superfluidity of neutrons most favourable at densities above
1.6 X 10%g/cm’ is due to *P; pairing rather than to S, pairing familiar in the BCS
theory of superconductivity.

In the past superfluid states with non-zero angular momentum pairing have
been studied with regard to the superconductivity of transition metals and especial-
ly to the possibility of superfluid He® with D, pairing.? Little is known, however,
about the hydrodynamical properties of such a superfluid. Would it behave in
much the same way as superconductors with 1S, pairing or as superfluid He*
inspite of the fact that it has anisotropic energy gap and its pairs possess internal
angular momentum? This is an important question since the superfluidity may

* Present address: Department of Physics, Faculty of Education, Wakayama University, Waka-
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The Ginzburg-Landau Equation for *P, Pairing 767

explain some interesting behaviour of pulsars, which most likely are rotating
neutron stars. For example, Baym, Pethick, Pines and Ruderman invoked the
superfluidity of neutrons to explain the slowing-down rate after spin-up of the
Vela pulsar. They supposed the neutron superfluid to be of the 'S, type and
hence to behave like the ordinary superfluid. The main purpose of the present
work is to study this question from a microscopic point of view.

In the next section we first set up the gap equation for a general pairing
state using the generalized Hartree-Fock approximation and then derive the cor-
responding Ginzburg-Landau equation. Although this equation is valid only in
the limited region of temperature close to the transition temperature 1., we
expect that it would describe at least qualitatively important characteristics of
the superfluid, as is the case for superconductors or for superfluid He!. In § 3, spe-
cializing to the case of ®P, pairing, we rewrite the G-L equation in a mere con-
venient form of a set of nonlinear equationsfor a spin 2 field. In the succeeding
section we obtain the expressions for the free energy, the current density and
the angular momentum density in terms of the field quantities. As an application
of the theory we discuss in §5 the solutions corresponding to states with a single
vortex line.

§ 2. Equations for the order parameter

In this section we shall derive in.the BCS-Gor’kov approximation the equa-
tion for the order parameter or the so-called gap equation for a system of neutral
fermions interacting through an attractive two-body potential V. Let us describe
our system by the following hamiltonian:

H =32 (k) akatthat} Y Lk, kI VIES, kiryak oahsar,ar,s , (1)

ka ko, ko8, gty B yd
where £(k) =Kk*/2m —u and 4 is the fermi energy of the system. Since the in-
teraction conserves the total momentum, its matrix element can be written in the
form S

2)

Cht, T\ VI, Ty =@ 0 Vs (212, B2 ),
where £ is the volume of the system. In what follows we shall use the technique
of thermal Green’s function. In the presence of the pair condensation it is con-

venient to introduce the anomalous Green’s functions
gg&ﬁ (kis k%; T1 _fa) = <Tr [:a}cla (Tl)a;ﬂzﬁ (72)'] >’ - ’ (3)

as well as the ordinary Green’s function G2,(ky, k;) defined as usual. The equa-
tions of motion for these functions in the generalized Hartree-Fock approximation
are the well.known Gor’kov equations. When the pairing is in an arbitrary state,
we have : i
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{ia) - $ (kl) } ggﬂ (kls kz) + ZT Aar (kl, q) gj’taﬂ) (q’kﬂ) —_’611, ﬁakl, k; >
q

€Y
{io+&(R) I3 (R, ko) + 22 4L,(q, k1) G145 (q, k) =0,
qr
where the order parameters are defined by
- ki —k; N K K
Aaﬂ (kl, kz) = “qu%" 2! aﬁ,r8< L 2 L ,q>6kl+kg,xgrs<q + E, —q+ —2“>,
t * (5)
Aaﬁ (kl, kz) =Aﬁa (kl, kz) .
As can easily be seen,
Aaﬁ (kl, kz) = '_Aﬁa (kz, kx) . (6)

Let us now consider the case where the center of mass of all the pairs are moving
with momentum K, that is, when there is a uniform flow of the superfluid. The
Green’s functions in this case take the following form:®

Gos(ri, r) = K-G0, L (ri—1y),
F Lo (r, ry) =e K CATOAGTe | (p — 1)

and in terms of their fourier components, e.g.,

¢

F5 (ki k) =0l 2~ 22 1),
we can write the Gor’kov equations (4) as

{o—6(p")} %% x(p) +; ey, x (P)F5 1(P) =0ays

8
{io+&(—p ) Fl% k() +ZT:ALr,K(P)g?8,K (P) =0, ®

where p*=p+ K/2 and
4is,x (k) = —TP%Q"IV,sa,ar(p, B S5 x(p). ®
Eliminating the anomalous functions, we obtain
{lo—§(H)H io+6(p7)} Gosx (p) — ; dar,x(p)
X &5, x (p) G35,k (p) = i+ ()} 0us - (10)

Unlike the case of 'S, pairing, the second term in the above equation related to
the energy gap in the excitation spectrum is in general not diagonal with respect
to the spin indices. For simplicity we write down the gap equation omnly for
the case where the order parameters satisfy the condition

; Aoy, x (p) A1,k (p) =00,0dx* (p) 11)

and G, is diagonal. This implies that the superfluid state under consideration
retains time reversal symmetry and does not have, for example, spin polarization.
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The Ginzburg-Landau Equation for *P, Pairing 769

In this case we can easily obtain from (9) the equations for the order parameters
as follows:

4s,x (k) = TNZWQ“‘VW,M (p, B) 4o, x (p) [{i0 +§ (P} v — £ (p")} — 4 (P) ]

=“Z~Q Vﬁa8r(P,k)AaﬁK(P)4 ( )

X {tanh 8K2+7(1P) +tanh %,ZEP)} s (12)

where
ex(p) =[{6(p) + K*/8m}"+ 4x*(p) 17,
ex*(p) =ex(p) = K-p/2m .

Since we are primarily interested in the study of superfluid properties of
our system and since Egs. (4) are too complicated when there is a spatial var-
iation of the order parameters, we next try to derive the approximate equations
for the order parameters which in the case of 'S, pairing is the well-known
Ginzburg-Landau equation. When temperature is close to T, the order parameters
are small and the expansion in powers of them becomes valid. From Egs. (4)
and (5) it is easy to obtain by iteration the following equation valid to third
order in 4’s:

4is,x (k) = Ay, (k) + By, x (B), (13)

where

Anx(®) = =T 2 &V aus(p, DI~ p+3)
pasd 2

L

“(p+3)dbax(p), 0

and

rs K(k) Tpg,g,gaﬁﬂmg lvﬂa,ar(P’ k)6Ql+Qg,Q;+K

«Tor(p+E) 2 (p+ @ E) 7+ -+ - E) 7+ (p+ )

% L0, (P~ESL) b (p+ L5 Y) Al (p+ESR). a5)

In the above expressions we have used the same notation as (9) and g p) is
the Green’s function in the normal state, G°( p)={io—&(p)}'. We note that
in contrast to A the second term B cannot be obtained by simply expanding the
right-hand side of (12) since it involves coupling between 4’s with different values
of the total momentum. Now we further assume that the order parameters vary
slowly in space so that K, Q, Q, and Q; in the above expression are negligibly
small compared to |p| which is of the order of the fermi momentum p,. Ex-
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770 T. Fujita and T. Tsuneto

panding the normal Green’s functions in (14) and (15) with respect to the center-
of-mass momenta and keeping only the second order terms for A and the ﬁrst
order for B, we obtain

A= =T 50 Voun (ph) | T (0T (p)+ TS
opafB 4

X {2(G=*(p)»G"(p) — (5—“@)?”<z>>>=}]ALﬂ,x<p>, (16)

B=T Y @ Weuu(p,k) (@ ()G ()

OPQ1Q.QsaBuyty
X AL/‘;;Q: (P) Al‘ll‘z:Qa(P) AI‘sﬂer (P) 6Q1+92’Q|+K > (17)

where v,=pp;/m (@ is a unit vector along a;a@=a/|lal). When summed over
o, they reduce to

A== @0 3 [@pVius (p, ) s x ()

X { 1 tanh §(p) (V- KY tanh 5(?)}’ o (18)
26(p) 2T 8¢*(p) 2T

B= (Zn)_saﬁlll'll%xQzQa jdpvﬁa,sr (P’ k) Alﬂl'Q¥-(P)-

1 £(p) o
h +K . - .
453(P) tan 2T 591“'92!98 K N (19) .

X Apipys0y (P) B0, (P)

When we make fourier transformation of these expressions from K to the center-
of-mass coordinate R, we shall finally arrive at the generalized G-L equation.

§3. °P, pairing

So far we have used the representation of the states of the condensed pair
in terms of its total momentum K, its relative momentum % and its spin quantum
numbers &, 8. Thus the order parameters 4,5 x (k) can be regarded ‘as the pro-
jection of the pair state on the ket |a):|f)s| K, k) where |a); and |8, are the
basis of the spin space of the particle 1 and 2, respectively. Instead of this
representation one can use the projection onto |a),|8):| K, kIm> where I and m
are the angular momentum quantum numbers of -the relative motion of the pair.
The relation between the two representations is simply given by

s x(B) =S 4GB Y G . (0)

Since the magnitude J of the internal angular momentum of the pair has in general
a definite value, it is more convenient to adopt.yet another representation obtained
by the projection of the angular momentum state onto |(11)S,7; JM), where .S
is the total spin quantum number and M the z component of the total angular
momentum. In other words we write the pair state as
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The Ginzburg-Landau Eguation for P, Pairing 771

2 Vs x (R)| (33) S, L; JM) . (21)
SiJM
Then the coefficients ¥’s are related to 4’s by
4375 (k) = 2o, Lo, x (B) <3701 SO Slom | TM . (22)

Combining (20) and (22) we can express 4,k (k) in terms of ¥’s.  For example,
in the case of the ®P, pairing we have

7, < Y (k) —Y&-(I%)Nz)
V3\ =Y (k) /2 —-YikY /)

where Py="10,x (k) and dx(k) denotes Aaﬁ,K(k). in a matrix form. Similarly
in the case of the ®P, pairing we have

%y

ZK.(.k) =

7.,

7,y + Dy Doy, _qﬁyll + i’ng;’ + ¥y
I «/ V6 /3 2 :

22y 4 20+ _IY SR S —1Y1 +¥.L,Y,!

2 V3 «/6 V2

where Uy="11u.x (k). CorreSpondmgly we can express the matrix element of
the interaction operator in the two representations as follows:

Vanrs (P2 1) = 33 <alflm |V, al81m YY" (B) Y * )

= 2] zzaBISG><SZGMIJM>YL (p)

mi’m’
SeTMS’ 0’ M

WIS’ XS Ve m! | T My Y * ()
X (SLTM| V1| ST M?S . (24)

We note that, because of the rotation invariance‘ of the interaction,
{SITM| V1| S’UJ’ M is diagonal in J and M and does not depend on M. We
also remark that in the absence of a magnetlc field or rotation of the system
the state of the pair itself may be invariant against time reversal, in which case
the ¥'s satisfy

Vorsuw= (=) T . T (@5)

Let us now specialize to the case of the °P, pairing. In other words we
assume that the effective interaction is most attractive for S=1, /=1 and J=2,
and that there is no tensor coupling or other interactions which give rise to off-
diagonal elements connecting the states with different S and /. When the con-
dition (25) of the time reversal invariance is satisfied, we can readily write down
the gap equation™ (12), retaining only the terms with J=2 in (24):

% — s it x(p)
Vi (k) = aﬂafn:mw I(Zn') de(P’ D Py K(P)
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ext(p) ex~ (p)
x {tanh *E +tanh%}<§ 1aBl1c>

X (11om|2My<E $aplloX1lom’|2M S Y, (p) Y (B),  (26)

where V(p, £)=<{112M|V, ./]112M>. In the limit of K—0 and T—0, this equation
agrees with the one derived by Tamagaki.® Since it is not our main concern
here to study possible solutions of this equation, we proceed to the discussion of
the G-L equation. Since it is obviously more convenient to use the representation
in terms of ¥’s, we try to write Egs. (13) in the form

Vix(R) =A% ®) + APk () + By x k), @27

where /% and A® come from A given in (18), A® corresponding to the zeroth
order term in K and A® to the second order, respectively, and @ from B of
(14). The fourier transform of this equation will give the G-.L equation in real
space. Let us briefly explain how to obtain these three terms of 27.

a) ASk. From the first term of (18) together with (24) it is easy to find

O (B = — L‘ZP_V & tanh(é(p)/ZT)%,,; 28
A x (k) % (2, B 22 (1) x(p) (28)

and its fourier transform

DR-M— _ | 2°dp tanh(6(2) /2T wr %/ mo.
A (R; B) I—_(Zn)” Vi HyEREDED g Rip). (29

b) APk. Substituting (22), (24) and the expression

~ a_Kz : 8% vrm mik ¢ o
(P Ky =2l 2 Sy &) v ()

into the second term of (18) and integrating with respect to the solid angle P
we get, with the help of the table of Clebsch-Gordan coefficient,

AR ®) = 2L (LB yp ) Wb CD/2D) w9, (K g, (1),

24m* J (2r)° £(p)
(30)
where
¢ Y 3
- Ygo N/%Ygl - Y22 O O
3 1 1 3 .
—N/?Yﬂ—l _2_Y20 ?Yzl _‘N/?Yf 0
1671 1 1
D(K) =K’I+%}%K’ -Y,"? —7Y2_1 Yy —‘Z*Yzl =Y
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3 1
0 —N/_g‘Yn—z _2‘Y2—1 _Yz —N/—Yz
0 0 - Yg—z ,\/%Yg-l - Yzo

with Y,¥=Y,(K) and I being the unit matrix. The fourier transform gives the
following result:

An®(R; p) =—L1_ 2y deP V(p, k) tanh(é(p)/2T) ZQ wie (R) U5 (R:p),

24m* J (2r)* £(p)
(31)
where Dy (R) is the differential operator
D(R) = —=—
3(0.°+20.0.) —30,0., ~—N/%0+’ 0 0
3 E) 3
—3626_ ?(4'652"1_ 36+a_) _,\/78;0.}. _‘504_2 0
3 3 3 3
X —~/—2—6_’ —/gaza_ 7(0,2+40,0.) N/?@th — ?c’h’
3 3 3
0 — 50_’ N/g@,@- 9 (49,*+ 39.,0.) 30,0,
3.,
| 0 0 —-/70_ 30,0- 30,2 +20.0.) ]
(32)
with
0,=0,+10,.

¢) DBux. This requires a straight-forward but tedious calculation involving
Clebsch-Gordan coefficients. Performing the integration with respect to p and
fourier transforming to the R space, we get

Burip=L 31 [Bdy, p shC)/2T)

4 abpummiment J (2m)° £
X K23Bal10)<110m|2M {44 mallo’ ) {116 m’|2M")
X <5 Bl 16751107 m” |2M” ) §§ B1a]16"><{116" m" | 2M" b}

X %f—"‘(ﬁ)l{(llm m”|Im’ + m" {11 mm” | Im + m” S(1100|105%

XUn (Rp) ¥ (R; p) V(R p). (33)
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Carrying out this complicated summation, we obtain as a result

Bu(R; p) =+ [ LDy (p, 1y BREDVET) w191, (R; 1) V5 (R 2)

@rn)* £ (p)
(34)
with the matrix
3
J(R; p) =——
(R; ) 207
( A+&; %”]1‘!‘?2 —El’:c 0 0
L * 1 kil 0 0
«/6771 + 7 A+ 251 6771+«/6772
lew 5wyl o, 51 1
X SC 6771 +¢6772 “ 6771 46772 3C s
5 1 1 1
0 0 R R LY N e
6771 -\/6772 251 «/6771 N2
1 1
0 0 _Loex g * gk 1=
| 3C 1/6771 a & )
(35)
where
A= U* ¥y,
g
§= Wl*yl'.— W.—*lw—l s
&= Wz*ya— w‘fzw—z s
(36)

h= W1*g£o+ Wo*?F_l ’
7]2 = WQ*WL—*‘ lew_g -
= wa*wo —"._Wo*w—‘z .

This form of the nonlinear matrix is not unique since it also contains ¥*'s,
We now make the simplifying assumption, as often done in the study of
superconductivity, that the matrix element of the interaction, which is to be: un-
derstood as the effective interaction or the relevant 7-matrix, is constant in the
neighbourhood of the fermi surface, that is, V(p, k) = —vg () ¢(k), with the cut-off
function ¢(p) defined by ¢(p) =1 for |£(p)|<& and =0 otherwise. Clearly
our order parameters have the form ¥ x (k) =%# x¢(k). Then the integration
with respect to p can be carried out as usual and we arrive at the final result
for the G-L equation: '
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e - O S g, e @®)

48 (Tm)
_7€(3) _
gt 3 T (ROF 3 (R) =0, 37)
where
T.= 207 exp[— 8z ] (38)
T mp v

(We note that a factor 47 is absorbed in the constant v as compared to the
coupling constant in the BCS theory.)

§4. Free energy, current density and angular momentum density

Since there exist many solutions, even without spatial variations, of the G-L
equation in the present case, it is necessary to select the most stable solution
as one that has the lowest value of the free energy. For this reason and also
for the purpose of deriving the expression for the current density we first find the
free energy of our system. The excess free energy, that is, the difference between
the free energy of the superfluid state F, and that of the normal state F,, F=F,
—F,, can be obtained, within the same approximation as we have used to derive
Eq. (3), from the well-known formula®

o~ o P e ()T (), (39)
where ¢ is a parameter multiplying the interaction energy. Since, however, we
are interested in the region of temperature where the G-L equation is valid, we
can determine F in the following manner. Noting that the G-L equation is nothing
but the minimization condition of F with respect to the field quantities P’s, we
can readily write down the corresponding form for F in terms of ¥’s as follows:

F=CJdR[—j'<ln%1”—>l+—21c—(:)))—< T+ $1+ 52

1607 (x Ty \ 2
P2 + 1 N T€B)p, ]
+ 2 + 4\/6771 + = 771 3 C > +W 11%' WM»DMM/WM/ (40)

We have only to determine the constant. Let us now consider a simple case that
there is no spatial variation and that ¥”s satisfy the time reversal symmetry.
Then it is easy to show that Eq. (39) reduces to

OF _ £2

2
-2 SN AT = — . 41
ag 29’11; Sl 20’7}1 (1)

The G-L equation in this special case is simply a single equation
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776 T. Fujita and T. Tsuneto
In(T./T) = {21£(3) /1607 (T Y} A
with
= (2 /m) exp[ — (2r)*/mp,9v].

Using this equation one can integrate (41) as

F_ Ml‘—dl: _mpy  21L(3) Iy
2 di  2v 167 32z (zT)

Comparing this result with the expression (40) for this case, we obtain C=mp,/
167°.
The minimum value of the free energy is thus given by

Fun=22% de[

U4
A+ =25 NT D VE 42)
> 48(77:Tm)’1§ s (
because of the G-L equation. When there is no spatial variation, the excess free
energy is proportional to A, and since A takes the maximum value when & =4¢,
=y, =7,={=0, the states satisfying this condition are most favourable with the
free energy

F_ _M<1n ﬂ\ * (43)
2 217°¢(3) T/

The solutions satisfying the condition of the time reversal invariance belong to
this class. It must be remarked here that there are many uniform solutions
satisfying this condition and that they are degenerate in the present approximation;
to decide which one among them is most favourable, one must keep higher order
terms in ¥’s in the free energy.

At this point we would like to make an important remark that our theory
is invariant against spatial rotations. Needless to say, while a particular state
of the superfluid may not be invariant, the theory itself must be invariant against
coordinate transformations. The invariance, for example, of the free energy as
given in the form (40) is not evident at all. Note that our order parameters
¥y form a spinor of rank 5 and may be regarded as a spin 2 field. Associated
with this field there are 25 independent tensor operators. It is shown in the
Appendix that we can indeed rewrite the free energy in a manifestly invariant
form in terms of the tensor operators. Here we only mention that the term in

the free energy involving spatial derivatives can be written in a compact form

7p,¢(3) ’
m”;ﬁ ()l ey =780, L 957 i

where S; is the angular momentum operator.
From the above expression we can readily find the density of mass current:
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Ji(R) = Re(—i)_2rEB)

v [ S:8;+ 8,8,
9607° (z T ) #3r; 2

—75,,,1] 0,75 . (44)
MM

It would seem rather strange that the pairs moving in one direction can produce
a current in other directions. We conjecture that the solutions of the G-L equa-
tions corresponding to the pairs moving with a constant momentum K gives rise
only to current in the direction of K. In general, however, it is impossible to
define the superfluid density as a scalar quantity because of the tensor appearing
in the expression (44).

To conclude this section we make a brief comment on the angular momentum
density of the system, which seems to be necessary in view of the fact that the
pairs have internal angular momentum J in the present case. The operator of
the angular momentum density at a point r with respect to the origin is given by

PP ag(r) +rXxjr). (45)

When we calculate the average of this operator, we simply get rxJ(r), that is,
the contribution from the orbital motion. That the contribution from the spin
and the relative motion of the pairs vanish can be understood if one realizes that
the pairing is actually that of the particles above the fermi surface and that of
the holes below. As a simple example, consider a uniform solution with only
one component, say, ¥, non-vanishing. From (23) the only non-vanishing element
of 4(k) is then 4;(k). Consequently, the spin down particles stay in the normal
state and the number of the spin up particles is clearly not changed by the pairing,
which one can see explicitly by solving Eq. (10) for this particular case.

§ 5. Vortex state

As an application of the G-L equations we consider a single vortex line in
the *P, superfluid and attempt to see if there exist solutions of the G-I equations
representing such a state.”” We can rewrite the G-L equations in cylindrical co-
ordinates with the z-axis coinciding with the quantization axis of the angular
momentum of the pairs simply by substituting

0.=e**(0,1+i0,/r)
in the matrix operator 9Dyy.. From the equations thus obtained it is apparent

that any solution with axial symmetry, except spatially constant solutions, must
have the form

Yu*(r, p, 2) =exp| —i(J—~M) ol ¥x*(r, 2). (46)

This means that the z-component of the total angular ‘momentum, that is, the sum
of the internal angular momentum and the orbital (vortex) angular momentum,
is a good quantum number and is equal to J for all the pairs. Hence a vortex
state is characterized by this quantum number.
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When the variations of the order parameters ¥ along the z direction vanish
as is the case for a rectilinear vortex, the differential operator 9., has non-
vanishing elements only between the even or the odd components. Therefore,
the states with only the even or the odd’ components non-vanishing are possible
because they are then not coupled by the non-linear terms either (p=7%,=0).
Since our main interest here is to study the existence of the vortex solutions,

we restrict our discussion to the even solutions, assuming #,=¥_,=0. Let us
introduce

¢=var,
Uu* (7, 9) =+ a/b exp[ —i(J— M) ¢]¢u(E), “n
where
a=240(aTmYIn(T./T)/75(3)p,,
b=9m*/2np .

In terms of these variables the G.L equations new take the following form:

b~ oo+ S9b— o) ve ot % -2,

52
—@{am 2J$_1 0+ J(é:Z)}¢0=0,

$o — {%Kb?zﬁbo + o’ + %sz—z% - —?S— ¢0¢2¢)—2} +4 {a; + % - J’} bo

?
E B Dl e 990,
R L R -,
—/g{aeh Zng + J(‘gz) }¢0=0. (48)

Close to the center of the vortex we can expand ¢’s in powers of ¢ and easily
find that each ¢ must have the form

b= C[SIA{)M|$|J—MI +C|S;H—)M|+251J—MI+2+ Tty (49)

where the coefficients in the second and the following terms can be expressed
by the first ones. Far from the axis-they must approach uniform values. Unlike
the case of the 'S, pairing there exist many solutions corresponding to uniform
states. Consequently we expect that there are many possible solutions for a
vortex state witha given quantum number J, at least in the present approxima-
tion. As an example the result of numerical calculation for a vortex state with
quantum number 1 is given in Fig. 1. The Runge-Kutta-Gill method is used

Zzoz 1snbny og uo 1senb Aq 2ez | L81/99.2/€/8/81o1e/d1d/woo dno-olwepeoe//:sdny woly papeojumoq



The Ginzburg-Landau Equation for °P, Pairing 779

with-a starting point at a finite value of
& and with the initial conditions given in
the form (49). We vary the coefficients

§:é: Y C’s so as to make ¢’s approach constant
0.4t values for large ¢, The solution given
83: ¥ in Fig. 1 still oscillates for large values
8_‘1 . 9 / 10, 1B N & of & but it suggests the existence of a
o 7 stable solution.

In order to be able to discuss, for
Fig. 1. One of the numerical solutions of example, the superfluidity in a rotating
Eq. (48) with vortex quantum number 1.  neutron star, one has to make more detail-

The integration is started with §=001with  ed analysis. Specifically it is necessary to
the initial condition given by (49) up to

. e see which solution minimizes the free
the third order in §.

energy in a rotating system, Fr,,=F—9-L,
where £ is the angular velocity and L is the total angular momentum of the
system. From the previous discussions, however, it seems that the essential nature
of the vortex states is not drastically different from that which we find in superfluid
helium or in superconductors. - ’

§6. Concluding remarks

We have studied within the generalized Hartree-Fock approximation the basic
properties of the *P, superfluid using the simple model of a neutral fermion system
interacting only with the attractive ®P, interaction. Even in this framework the
theory is rather complicated, and its consequences must be studied in more detail
before we can get a clear picture of such a superfluid. Concerning the super-
fluidity in a neutron star there are many interesting problems we have not dis-
cussed in this work. For example, it would be interesting to study the transition
between the 1S, and the *P, superfluid associated with change in nucleon density.
Also the existence of protons would present interesting problems such as their
effect on the *P, neutron superfluidity as strongly interacting impurities or the
co-existence of the two superfluids of different characters.

Appendix

Invariance under Spatial Rotation

Let the space spanned by S;, S, and S, be a representation space D of the
three-dimensional rotation group, and as the basis vectors we adopt

Sl = S.z- + ZSy )
So=—v2S,, | (A-1)
S_y=— (S, —1S,). |
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These belong to the tensor operator of the first order 7', (m=1,0, —1). Be-
cause we consider the case of J=2 only, the coefficients {HlT®| 7> in the usual
expression may be omitted, and our irreducible tensor operator of the Ist order
is given by £,V =S,(m=1,0, —1), where Sn» here and-after are matrices of J=2:

,

0 2 0 0 0
0 0 6 0 0
Si=/0 0 v6 0 |,
0 0 0 2
L0 0 © 0
(=242 0 0 0 0
0 —vZ2 0 0 0
S = 0 0 0 0 0 ,
0 0 0 V2 0
L 0 0 0 0 22
S =-—S" (suffix #: transposed matrix)

(A-2)

The irreducible matrix of higher order £,® can be constructed as the basis of

D®, which is the irreducible subspace of
k
DOX X DO =D® 4 ... 4 DO 4. Do,
a) 2nd order
t,¥=38,S,,

b =2 (L) =712-<SOSI + 850,
£, =%(I_zl<’>> =%<S_ISI +28,8,+ 8,50,

:93=%<S_ISO+SOS_1),

t(—2% = S—IS—ls

where I_ is the spin down operator.
b) 38rd order

ts(a) = Slslsl .

Successive operaions of I_ produce the remainders; for example,

£, = %(I_t{‘”) = % (SeSiS1+ 81.5,8, + S181Sy) .

(A-3)

(A-4)
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With the help of these operators we now show that the expression (40) for
the free energy is invariant under rotations. Let |¥) be the spinor of rank 5
which represents the state of pairs. The first term of the integrand in Eq. (40)
is proportional to (P|I|¥) =3 ¥*¥ =1 which is obviously invariant. The value

C® =31 (= (P8, V) (F)tn®|T) (A-5)

is a scalar which is invariant under any rotation of the coordinate axis. After
a simple calculation, we get the following:

co=p,
CO=8{|p+ 32"+ (&+6/2)%, (A-6)
00 =258 513, 56,8+ 51C11+ 21 Y3/ 27—l

The third term of the integrand is proportional to

1cw + Towy 1w
2 60 864

and is also rotationally invariant.
The differential operators

d1=a,+iay >
dy=— 20, , (A7)
d = — (0, —1id,)

belong to the tensor operator of the Ist order and, using the same procedure as
before, we can construct the tensor operator of the 2nd order d®. Then the

operator
D= zlo PHESWLT AL (A-8)

is invariant under rotations and its explicit form is the following:

, (20,}—0.0-) 30.0- N/gﬁ_’ 0 0 ]

30,0 —%(20,’—&6‘_) N/gaﬁ_ %6_’ 0
Y N NS c 1
0 %&“ —Jgagm - % (20}—0.0-) —30,0-
1 0 0 N/g@f —30.0. (20,—0.0-) )
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Equation (40) can be rewritten in a manifestly invariant form as

F=_’@Lfdk[—1n 77: @)

167°
USOTTIRPNE
BT e D -1} )
2183 1 o Ty m ) 1
W{z PP + 0 S @ T) (¥ 8| 7)

tapa D@D @] ] (A9
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