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The purpose of this work is to study superfluid properties of a neutral fermion system 
with pairing in a non-zero angular momentum state, in particular, with sp2 pairing expected 
in neutron stars. The gap equation and the equation of the Ginzburg-Landau (G-L) type 
are derived for general pairing. We then specialize to the case- of 8P 2 pairing ·and present 
the G-L equation for the five component order parameter in the form of a non-linear field 
equation for a spin 2 field. The expressions for the free energy, the current density and the 
angular momentum density are found in terms of the order parameter. With the help of 
the G-L equation some features of vortex states are discussed. 

§ I. Introduction 

Recently superconducting or superfluid states of a fermion system with non
zero angular momentum pairing have received renewed attention in connection 
with the possible occurrence of superfluidity in neutron stars. It is believed that 
the interior of a typical neutron star beneath its solid crust is composed of three 
degenerate quantum liquids of neutrons, protons and electrons, the number density 
of protons being roughly several per cent of that of neutrons.1> The neutron liquid, 
and probably the proton liquid as well, are expected to be in a superfluid state, 
the character of which depends on the density of nucleons. According to the 
detailed analysis using nuclear interactions obtained from nucleon-nucleon scat
tering data,2> the superfluidity of neutrons most favourable at densities above 
1.6 X l014g/ cm3 is due to 3P 2 pairing rather than to 1S0 pairing familiar in the BCS 
theory of superconductivity. 

In the past superfluid states with non-zero angular momentum pairing have 
been studied with regard to the superconductivity of transition metals and especial
ly to the possibility of superfluid He3 with 1D 2 pairing. 3> Little is known, however, 
about the hydrodynamical properties of such a superfluid. Would it behave in 
much the same way as superconductors with 1S0 pairing or as superfluid He4 

inspite of the fact that it has anisotropic energy gap and its pairs possess internal 
angular momentum? This is an important question since the superfluidity may 

*l Present address: Department of Physics, Faculty of Education, Wakayama University, Waka-
yam a. 
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The Ginzburg-Landau Equationfor 3P2 Pairing 767 

explain some interesting behaviour of pulsars, which most likely are rotating 

neutron stars.4l For example, Baym, Pethick, Pines and Ruderman invoked the 

superfluidity of neutrons to explain the slowing-down rate after spin-up of the 

Vela pulsar. Th~y supposed the neutron superfluid to be of the 1S0 type and 

hence to behave like the ordinary superfluid. The main purpose of the present 

work is to study this question from a microscopic point of view. 

In the next section we first set up the gap equation for a general pairing 

state using the generalized Hartree-Fock approximation and then derive the cor

reSJ?Onding Ginzburg-Landau equation. Although this equation is valid only in 

the limited region of temperature close to the transition temperature Tc, we 

expect that it would describe at least qualitatively important characteristics of 

the superfluid, as is the case for superconductors or for superfluid He4• In § 3, spe

cializing to the case of 3P 2 pairing, we rewrite the G-L equation in a more con

venient form of a set of nonlinear equations for a spin 2 field. In the succeeding 

section we obtain the expressions for the free energy, the current density and 

the angular momentum density in terms of the field quantities. As an application 

of the theory we discuss in § 5 the solutions corresponding to states with a single 

vortex line. 

§ 2. Equations for the order parameter 

In this section we shall derive in the BCS-Gor'kov approximation the equa

tion for the qrder parameter or the so-called gap equation for a system of neutral 

fermions interacting through an attractive two-body potential V. Let us describe 

our system by the following hamiltonian: 

where Hk) =k2/2m- fL and fL is the fermi· energy of the system. Since the in

teraction conserves the total momentum, its matrix element can be written in the 

form 

where SJ is the volume of the system. In what follows we shall use the technique 

of thermal Green's function. In the presence of the pair condensation it is con

venient to introduce the anomalous Green's functions 

9!~ 19 (kh k2; r1-r2) =(T.[a1.,,{rl)ak,19 (r2)]), (3) 

as well as the ordinary Green's function g~P (kh k 2) defined as usual. The equa

tions of motion for these functions in the generalized Hartree-Fock approximation 

are the well-kno'wn Gor'kov equations. When the pairing is in an arbitrary state, 

we have 
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768 T. Fujita and T. Tsuneto 

{iw-~(kl)}g~p(kh k2) + ~ .dar(kh q)C:Ft';(q,k2) =~a,tflkuk 2 ' 
qr 

{iw+Hk~)}S:~tp(kh k2) + ~ .J~ 7 (q, k1)g~p(q, k2) =0, 
qr 

where the order parameters are defined by 

.dap(kh k2) = -T.,"Jd/J- 1 Vap,ra( k 1 ;k?., q)~k 1 +k.,K9'~a( q + ~, -q+ ~), 

.J~p(kh k2) =.J!a(kh k2). 

As can easily be seen, 

(4) 

(5) 

(6) 

Let us now consider the case where the center of mass of all the pairs are moving 
with momentum K, that is, when there is a uniform flow of the superfluid. The 
Green's functions in this case take the following form :5l 

g~p(rh r2) =eiK·(r,-r,)f2g~P,H(rl-r2), 

9'~'P (rh r2) = e-iK·(r,+r,JI 2 9'~'P. H (rt- r2) 

and in terms of their fourier components, e.g., 

crt., (k k) -"' crt"' ( k1 -k2) ;;;;.:ap h 2 -Uk 1 +k 2,Kd:aP,1C - 2 ' 

we can write the Gor'kov equations (4) as 

{iw-~(p+)}g~fJ,J<:(p) + ~ .da7,x(p)9'//,K(p) =~a,f3, 
r 

where p± = p ± K/2 and 

.Jta,x(k) = -T ~ .Q-1Vpa,a7 (p, k)S:~'P.x(p). 
paP 

Eliminating the anomalous functions, we obtain 

(7) 

(8) 

(9) 

(10) 

Unlike the case of 18 0 pairing, the second term in the above equation related to 
the energy gap in the excitation spectrum is in general not diagonal with respect 
to the spin indices. For simplicity we write down the gap equation only for 
the case where the order parameters satisfy the condition 

(11) 

and gap is diagonal. This implies that the superfluid state under consideration 
retains time reversal symmetry and does not have, for example, spin polarization. 
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The Ginzburg-Landau Equation for 3P 2 Pairing 769 

In this case we can easily obtain from (9) the equations for the order parameters 

as follows: 

where 

eK(p) = [ {Hp) +K2/8m}2+JK2(p)]1!2, 

eK±(p) =eK(p) ±K·p/2m. 

(12) 

Since we are primarily interested in the study of superfluid properties of 

our system and since Eqs. ( 4) are too complicated when there is a spatial var

iation of the order parameters, we next try to derive the approximate equations 

for the order parameters which in the case of 18 0 pairing is the well-known 

Ginzburg-Landau equation. When temperature is close to Tc the order parameters 

are small and the expansion in powers of them becomes valid. From Eqs. ( 4) 

and (5) it is easy to obtain by iteration the following equation valid to third 

order in .d's: 

where 

and 

X g-m( -p+~)llm(p+Ql-~)g-m( -p+Q2-~)11m(p+~) 

x .dl",,q, (P _K ~Q1) .d"'"''q,(p+ Q1 ;Q2) .d1,p,q, (P + K ~Q2). 

(13) 

(15) 

In the above expressions we have used the same notation as (9) and gm(p) is 

the Green's function in the normal state, gm(p) = {iw-e=(p)}-1• We note that 

in contrast to A the second term B cannot be obtained by simply expanding the 

right-hand side of (12) since it involves coupling between .d's with different values 

of the total momentum. Now we further assume that the order parameters vary 

slowly in space so that K, Qh Q2 and Qs in the above expression are negligibly 

small compared to lpl which is of the order of the fermi momentum p1• Ex-
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770 T. Fujita and T. Tsuneto 

panding the normal Green's functions in (14) and (15) with respect to the center

of-mass momenta and keeping only the second order terms for A and the first 

order for B, we obtain 

A= -T 2: Q-lvfla,sr(p,k) [IJ-"'(p)Q"'(p) + (Vp~Kl 
(i)pa{! 

X {2(Q-"'(p)y"1J'"(p)- (1J-"'(p)Jl"'(p))'} ]LI~p,K(p), (16) 

B=T 2:; Q- 1Vfla,sr(P, k) (Il-"'(p)Il"'(p)l 
(i)pg,g,Q,a{!p,p, 

X LIL,.g, (p)Lip,p,,Q, (p) Ll1,f!,Q, (p)~g,+Q,,Q,+K' (17) 

where vp=pPJ/m (a is a unit vector along a;a=aiJaJ). When summed over 

w, they reduce to 

A=- (2n)-3 2:; fdp Vfla,si-(p, k)Lilp,K(p) 
a{J 

X { 1 tanh ~(p) (VP·K)3 tanh HP)} (18) 
2Hp) 2T seep) 2T ' 

B= (2n)-3 2:; fdp Vfla,8r (p, k)Lilllu!J 1 (p) 
a{!p,p,g,g,g, ..... 

X Llp 1 p,,g,(p)LI~,,f!,g,(p) 4 ~s~p) tanh ~ 2 ~) ~g,+Q,,Q,+K. (19) 

When we make fourier transformation of. these expressions from K to the center

of-mass coordinate R, we shall finally arrive at the generalized G-L equation. 

§ 3. 3P 2 pairing 

So far we have used the representation of the states of the condensed pair 

in terms of its total momentum K, its relative momentum k and its spin quantum 

numbers a, {3. Thus the order parameters Llafi,K(k) can be regarded as the pro

jection of the pair state on the ket Ja)tlf3)2JK, k) where Ja)1 and J[3)2 are the 

basis of the spin space of the particle 1 and 2, respectively. Instead of this 

representation one can use the projection onto Ja)1 j{3)2JK, klm) where l and m 
are the angular momentum quantum numbers of the relative motion of the pair. 

The relation between the two representations is simply given by 

' (20) 

Since the magnitude J of the internal angular momentum of the pair has in general 

a definite value, it is more convenient to adopt. yet another representation obtained 

by the projection of the angular momentum state onto I (H-)S,l; JM), where S 

is the total spin quantum number and M the z component of the total angular 

momentum. In other words we write the pair state as 
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The Ginzburg~Landau Equation for 3P2 Pairing 771 

I,; P"szJM,K(k)l CH)S, l; JM). (21) 
S!JM 

Then the coefficients P"'s are related to A's by 

Ait"k(k) = I.; P"szJM,K(k)<Hr&ISO")<SZO"miJM). (22) 
SaJM 

Combining {20) and (22) we can express Aap,K (k) in terms of P"'s. For example, 

in the case of the 3P0 pairing we have 

- Y1°(k)/ ../2) 
- Y/(k) ' 

where P"o=P"noo,K(k) and JK(k) denotes Aap,K(k) in a matrix form. Similarly 

in the case of the 3P 2 pairing we have 

(23) 

where P"M=P"mM,K(k). Correspondingly we can express the matrix element of 

the interaction operator in the two representations as follows: 

Vaf3,ro (p, k) = I.; <at1lml Vp,klr&l'm')Yzm(p) Y{;'* (k) 
lml'm' 

I.; <Ha/11SO")<SZO"m1JM)Y1m(p) 
lml'm/ .. 
S(JJMS'tF'J'M' 

x <Hr&IS'O"')<S'l'O"'m'IJ' M') Yt''* (k) 

X <SZJMI Vp,kiS'l' J' M'>. (24) 

We note that, because of the rotation invariance. of the interaction, 

<SZJMI VP,kl S'l' J' M') is diagonal in J and M and does not depend on M. We 

also remark thiit' in the absence of a magnetic field or rotation of the system 

the state of the pair itself may be invariant against time reversal, iii which case 

the P"'s satisfy 

(25) 

Let us now specialize to the case of the 3P 2 panmg. In other words we 

assume that the effective interaction is most attractive for S=1, l=1 and J=2, 

and that there is no tensor coupling or other interactions which give rise to off

diagonal elements connecting the states with different S and l. When the con

dition (25) of the time reversal invariance is satisfied, we can readily write down 

the gap equation (12), retaining only the terms with J = 2 in (24): 
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772 T. Fujita and T. Tsuneto 

where V(p, k) =(112Mj Vp,kll12M). In the limit of K----'»0 and T----'»0, this equation 
agrees with the one derived by Tamagaki.'l Since it is not our main concern 
here to study possible solutions of this equation, we proceed to the discussion of 
the G-L equation. Since it is obviously more convenient to use the representation 
in terms of 1Jf's, we try to write Eqs. (13) in the form 

(27) 

where Jl<IJ and Jl<2J come from A given in (18), Jl<IJ corresponding to the zeroth 
order term in K and Jl<2l to the second order, respectively, and 93 from B of 
(14). The fourier transform of this equation will give the G-L equation in real 
space. Let us briefly explain how to obtain these three terms of (27). 
a) Jl9/K. From the first term of (18) together with (24) it is easy to find 

JlC1l (k)= _ s P2dP V(p k) tanh(~(p)/2T)1Jf* (p) 
M,K (2nY ' 2~(p) M.K 

(28) 

and its fourier transform 

Jl <ll(R·k)=- fp2dpV(p k)tanh(~(p)/2T)1Jf *(R·p). (29) 
M ' (2irY ' 2~(p) M ' 

b) Jl'f(K. Substituting (22), (24) and the expression 

(p·K)'= K 2 {1+ I;~Y2m(K) Y2m*(p)} 
3 m 5 

into the second term of (18) and integrating with respect to the solid angle p, 
we get, with the help of the table of Clebsch-Gordan coefficient, 

Jl<2J (k) =_pi_ f p2dp V(p k) tanh(~(p)/2T) "'g) ,(K) 1Jf*, (p) 
M,K 24m' (2rr)3 ' ~8(p) j; MM M,K ' 

(30) 

where 

- y2o j ~ Y21 - Y22 0 0 

-J ~ y2-1 
1 1 -J ~ y 2

2 2y2o 2Y21 0 

f1J(K) =K'I+ ~ 1 J; K 2 
1 1 Y. -2 _2y2-1 y2o -2Y/ - Y22 - 2 
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The Ginzburg-Landau Equation for 8P2 Pairing 773 

l 
0 

0 0 y:.-2 
- 2 

with Y2M = Y,M (K) and I being the unit matrix. The fourier transform gives the 
following result: 

Jl <2l(R·p)=_i!Lfp2dpV(p k)tanh(HP)/2T) "'g) ,(R)1JI'*,(R·p) 
M ' 24m' (2n-)B ' ~B(p) ~ MM M ' ' 

(31) 

where g) MM' (R) is the differential operator 

1 
{j](R) = --

5 

3(8,2+28+iL) -38,8+ 

3 
-38,8_ 2(48/+38+8-) 

X -J; 8_2 -J; 8,8_ 

3 
0 -28_2 

0 0 

with 

-J; 8+2 

-J; 8,8+ 

7(8.'+48+8-) 

j; 8,8_ 

-J; 8_2 

0 

3 
-28+' 

j; 8,8+ 

3 
2 (48,2 + 38+8-) 

38,8_ 

0 

0 

3 (8.2 + 28+8_) 

(32) 

c) !13 M,K· This requires a straight-forward but tedious calculation involving 
Clebsch-Gordan coefficients. Performing the integration with respect to p and 
fourier transforming to the R space, we get 

!l3M(R;p)=1_ ~ s p 2dp V(p, k) tanh(~(p)/2T) 
4 af!t< 1P,mm'm'm• (27r)8 ~B(p) 

CTd't1 11 f! 111M'M11 M111l 

x {< tt/1aJ1o')<11lrm 12M)< tt .u~ai11T')<llo-'m'l2M') 

X< tt {3.u,Jllrn)<l11Tn mnJ2Mn)< tt /1/L2J11T"')<lliT"'m 111 J2M"')} 

x 90m'+m',m+m'{<llm'm"'Jlm' + m 111 )<11mmnJlm + mn)<ll00Jl0)2} 
4n-(2l+ 1) 

X 1JI';,(R;p) 1]1' M·(R; p) 1JI':.(R; p). (33) 
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774 T. Fujita and T. Tsuneto 

Carrying out this complicated summation, we obtain as a result 

g) (R·p)=_!_Jp2dpV(p k)tanh(Hp)/2T)"''J1 ,(R·p)'IJI"*,(R·p) 
M ' 4 (27!)8 ' ~3(p) 1£7 MM ' M' ' 

(34) 

with the matrix 

3 
'J1 (R; p) = 20n 

t\+~2 
1 1.., 0 0 -/61/1 + 1/2 

3 

1 * * 1 5 1 
0 0 -/61/1 + 1/2 l+z-~1 -1/1 +-1/2 

6 -/6 

_!_(* 5 * 1 * A 
5 1 1 

X -1/1 +-:::::.1/2 -1j1 +-:::::.1/2 --( 
3 6 -/6 6 -/6 3 

0 0 5 * 1 * 1 1 
-1j1 + -:::::.1/2 ,\--~1 -/61/1 + 1/2 6 -/6 2 

0 0 _ _!_(* 1 *+ * ,\-~2 
3 vr/1 1/2 

(35) 

where 

(36) 

This form of the nonlinear matrix is not unique since it also contains 'IJI"*'s. 
We now make the simplifying assumption, as often done in the study of 

superconductivity, that the matrix element of the interaction, which is to be un
derstood as the effective interaction or the relevant T~rriatrix, is constant in the 
neighbourhood of the fermi surface, that is, V(p, k) = -v¢(p)¢>(k), with the cut-off 
function ¢ (p) defined by ¢ (p) = 1 for I HP) I<@ and = 0 otherwise. Clearly 
our order parameters have the form 'IJI"J,E (k) = 'IJI"J.x¢ (k). Then the integration 
with respect to p can be carried out as usual and we arrive at the final result 
for the G-L equation: 
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where 

The Ginzburg-Landau Equation for 3P 2 Pairing 

7((3)p/ 2: .fDMM'(R)'lJI;,(R) 
48(7!TmY M' 

- 7((3) "'Jl ,(R) 'iJI*,(R) =0 
8(7!TY 1;7 MM M ' 

2wr [ 87!3 J Tc =-----;:;- exp - mp,v . 

775 

(37) 

(38) 

(We note that a factor 47! is absorbed in the constant v as compared to the 
coupling constant in the BCS theory.) 

§ 4. Free energy, current density and angular momentum density 

Since there exist many solutions, even without spatial variations, of the G-L 
equation in the present case, it is necessary to select the most stable solution 
as one that has the lowest value of the free energy. For this reason and also 
for the purpose of deriving the expression for the current density we first find the 
free energy of our system. The excess free energy, that is, the difference between 
the free energy of the superfluid state F, and that of the normal state Fn. F= F, 
-Fn, can be obtained, within the same approximation as we have used to derive 
Eq. (3), from the well-known formula6> 

8F T 
-= - 2- 2: AafJ,K(k)9!1"'a,K(k), 
()g g o>Jikafl 

(39) 

where g is a parameter multiplying the interaction energy. Since, however, we 
are interested in the region of temperature where the G-L equation is valid, we 
can determine Fin the following manner. Noting that the G-L equation is nothing 
but the minimization condition of F with respect to the field quantities 'iJI's, we 
can readily write down the corresponding form for Fin terms of 'iJI's as follows: 

(40) 

We have only to determine the constant. Let us now consider a simple case that 
there is no spatial variation and that 'iJI's satisfy the time reversal symmetry. 
Then it is easy to show that Eq. (39) reduces to 

(41) 

The G-L equation in this special case is simply a single equation 
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776 T. Fujita and T. Tsuneto 

ln(T./T) = {21C: (3) /160n (nTf}A 

with 

T.= (2wr/n)exp[- (2nY/mPJ9v]. 

Using this equation one can integrate (41) as 

F = f d(1jg) A. dA.= _mPt. 21((3) ). 2 • 

.Q d). 2v 16n3 32n (nTY 

Comparing this result with the expression ( 40) for this case, we obtain C = mp1/ 

16n3• 

The minimum value of the free energy is thus given by 

F. =mp1 JdR[-(1n T·)x+ 7C:C3)P/ " .. lfl iiJ ,lfl*,] (42) 
mm 321!"8 T 48(nTm)2 fit, M MM M 

because of the GL equation. When there is no spatial variation, the excess free 

energy is proportional to )., and since ). takes the maximum value when ~1 = ~ 2 

= 'l/1 = r;2 = ( = 0, the states satisfying this condition are most favourable with the 

free energy 

(43) 

The solutions satisfying the condition of the time reversal invariance belong to 

this class. It must be remarked here that there are many uniform solutions 

satisfying this condition and that they are degenerate in the present approximation; 

to decide which one among them is most favourable, one must keep higher order 

terms in lfl's in the free energy. 

At this point we would like to make an important remark that our theory 

is invariant against spatial rotations. Needless to say, while a particular state 

of the superfluid may not be invariant, the theory itself must be invariant against 

coordinate transformations. The invariance, for example, of the free energy as 

given in the form ( 40) is not evident at all. Note that our order parameters 

lJI M form a spin or of rank 5 and may be regarded as a spin 2 field. Associated 

with this field there are 25 independent tensor operators. It is shown in the 

Appendix that we can indeed rewrite the free energy in a manifestly invariant 

form in terms of the tensor operators. Here we only mention that the term in 

the free energy involving spatial derivatives can be written in a compact form 

where s~. is the angular momentum operator. 

From the above expression we can readily find the density of mass current: 
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The Ginzburg-Landau Equation for 3P2 Pairing 777 

7th1I] 8/Jf;,. 
MM' 

(44) 

It would seem rather strange that the pairs moving in one direction can produce 

a current in other directions. We conjecture that the solutions of the G-L equa

tions corresponding to the pairs moving with a constant momentum K gives rise 

only to current in the direction of K. In general, however, it is impossible to 

define the superfluid density as a scalar quantity because of the tensor appearing 

in the expression ( 44). 

To conclude this section we make a brief comment on the angular momentum 

density of the system, which seems to be necessary in view of the fact that the 

pairs have internal angular momentum J in the present case. The operator of 

the angular momentum density at a point r with respect to the origin is given by 

¢t(r)u¢(r) +rxj(r). (45) 

When we calculate the average of this operator, we simply get rxJ(r), that is, 

the contribution from the orbital motion. That the contribution from the spin 

and the relative motion of the pairs vanish can be understood if one realizes that 

the pairing is actually that of the particles above the fermi surface and that of 

the holes below. As a simple example, consider a uniform solution with only 

one component, say, '1Jf2 non-vanishing. From (23) the only non-vanishing element 

of J (k) is then J 11 (k). Consequently, the spin down particles stay in the normal 

state and the number of the spin up particles is clearly not changed by the pairing, 

which one can see explicitly by solving Eq. (10) for this particular case. 

§ 5. Vortex state 

As an application of the G-L equations we consider a single vortex line in 

the 3P 2 superfluid and attempt to see if there exist solutions of the G-L equations 

representing such a state.7l We can rewrite the G-L equations in cylindrical co

ordinates with the z-axis coinciding with the quantization axis of the angular 

momentum of the pairs simply by substituting 

8± =e±i"'(8r±i8"'/r) 

in the matrix operator g)MM'· From the equations thus obtained it is apparent 

that any solution with axial symmetry, except spatially constant solutions, must 

have the form 

'lJf M* (r, cp, z) =exp[ -i(J -M)cp] 'lJf M* (r, z). (46) 

This means that the z-component of the total angular momentum, that is, the sum 

of the internal angular momentum and the orbital (vortex) angular momentum, 

is a good quantum number and is equal to J for all the pairs. Hence a vortex 

state is characterized by this quantum number. 
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778 T. Fujita and T. Tsuneto 

When the variations of the order parameters 1J! along the z direction vanish 
as is the case for a rectilinear vortex, the differential operator g)MM' has non
vanishing elements only between the even or the odd components. Therefore, 
the states with only the even or the odd components non-vanishing are possible 
because they are then not coupled by the non-linear terms either (7J1 = 7J2 = 0). 
Since our main interest here is to study the existence of the vortex solutions, 
we restrict our discussion to the even solutions, assuming 1J!1 = 1J! _1 = 0. Let us 
introduce 

where 

~=-Jar, 

1J!M*(r, cp) = -J ajb exp[ -i(J-M)cp]¢M(~), 

a =240 (nTm) 2ln(Tc/T) /7t;, (3)p/, 

b=9m2/2np/. 

(47) 

In terms of these variables the G-L equations now take the following form: 

{ 4 2,f, ,,a 4 2 2 } 4{:::. 2 a~ J 2
}"· r/Jo- -¢2'f'O+'f'o +-r/J-21/Jo--r/Jo¢2¢-2 + uE +--2 'f'O 

3 3 3 ~ ~ 

j 3{ 2J+3 J(J+2)} j3{ 2J-3 J(J-2)} - 2 8/+ ~ fJE+ ~2 r/J-2- 2 Or/ ~ o.,+ ~2 ¢2=0, 

{2 a 4 ,, a,, 1 ,, 2 ·} 6 {:::. 2 a~ (J + 2y} ,,, r/J-2- r/J-2+-'f'O'f'-2--'f'0¢2 + UE +------ 'f'-2 
3 3 ~ ~ 

j 3 { 2 2J+1 J(J+2)} -
- 2 0 E - ~ + ~2 r/Jo- 0 . (48) 

Close to the center of the vortex we can expand ¢'s in powers of ~ and easily 
find that each ¢ must have the form 

(49) 

where the coefficients in the second and the following terms can be expressed 
by the first ones. Far from the axis they must approach uniform values. Unlike 
the case of the 1S0 pairing there exist many solutions corresponding to uniform 
states. Consequently we expect that there are many possible solutions for a 
vortex state with a given quantum number J, at least in the present approxima
tion. As an example the result of numerical calculation for a vortex state with 
quantum number 1 is given in Fig. 1. The Runge-Kutta-Gill method is used 
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The Ginzburg-Landau Equation for 3P2 Pairing 779 

with a starting point at a finite value of 

~ and with the initial conditions given in 

the form (49). We vary the coefficients 

C's so as to make cjJ's approach constant 

values for large ~- The solution given 

in Fig. 1 still oscillates for large values 

of ~. but it suggests the existence of a 

stable solution. 

In order to be able to discuss, for 

example, the superfluidity in a rotating 

neutron star, one has to make more detail

ed analysis. Specifically it is necessary to 

see which solution minimizes the free 

Fig. 1. One of the numerical solutions of 

Eq. (48) with vortex quantum number 1. 

The integration is started with ~=0.01 with 

the initial condition given by (49) up to 

the third order in t 
energy in a rotating system, F,ot=F-SJ·L, 

where SJ is the angular velocity and L is the total angular momentum of the 

system. From the previous discussions, however, it seems that the essential nature 

of the vortex states is not drastically different from that which we find in superfluid 

helium or in superconductors~ 

§ 6. Concluding remarks 

We have studied within the generalized Hartree-Fock approximation the basic 

properties of the 3P 2 superfluid using the simple model of a neutral fermion system 

interacting only with the attractive 8P 2 interaction. Even in this framework the 

theory is rather complicated, and its consequences must be studied in more detail 

before we can get a clear picture of such a superfluid. Concerning the super

fluidity in a neutron star there are many interesting problems we have not dis

cussed in this work. For example, it would be interesting to study the transition 

between the 1S0 and the 3P 2 superfluid associated with change in nucleon density. 

Also the existence of protons would present interesting problems such as their 

effect on the 3P 2 neutron superfluidity as strongly interacting impurities or the 

co-existence of the two superfluids of different characters. 

Appendix 

Invariance under Spatial Rotation 

Let the space spanned by Sx, Sy and S, be a representation space D<1> of the 

three-dimensional rotation group, and as the basis vectors we adopt 

S1=Sx+iSy, 

So=- ·l2S., 

S-1=- (Sx-iSy). 

(A·l) 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/4

8
/3

/7
6
6
/1

8
7
1
2
3
2
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



780 T. Fujita and T. Tsuneto 

These belong to the tensor operator of the first order Tm< 1> (m=1, 0, -1). Be
cause we consider the case of J=2 only, the coefficients (j1 1JT<"'> ilj2) in the usual 
expression may be omitted, and our irreducible tensor operator of the 1st order 
is given by tm<1>=Sm(m=1, 0, -1), where Sm here and-after are matrices of J=2: 

0 2 0 0 0 

0 0 ./"6 0 0 

S1= 0 0 0 ./"6 0 

0 0 0 0 2 

0 0 0 0 0 

-2./2 0 0 0 0 

0 -.;'2 0 0 0 

So= 0 0 0 0 0 (A·2) 

0 0 0 ./2 0 

0 0 0 0 2./2 

s-1= -s~t· (suffix t: transposed matrix) 

The irreducible matrix of higher order tm <k> can be constructed as the basis of 
D<,.>, which is the irreducible subspace of 

a) 2nd order 

.1: ;---....._______ 
D(l) X ... X D(l) = D<l<> + ... + D(l) + D<O>. 

t 1<2>= ~ (Lt,<2>) = ) 2CSoS1+S1So), 

t 0<2> =_!_(Lt1<2>) =_!_(S-lSl +2SoSo+SlS-l), v'o v'o .. 

t~~=S-IS-h 

where L is the spin down operator. 
b) 3rd order 

ta<'> =S1S1S1 . 

Successive operaions of L produce the remainders; for example, 

(A·3) 

(A·4) 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/4

8
/3

/7
6
6
/1

8
7
1
2
3
2
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



The Ginzburg-Landau Equation for 3P 2 Pairing 781 

With the help of these operators we now show that the expression ( 40) for 

the free energy is invariant under rotations. Let 11Jf') be the spinor of rank 5 

which represents the state of pairs. The first term of the integrand in Eq. ( 40) 

is proportional to (1Jf'III1Jf') = L:; 1Jf' M*1Jf' M=). which is obviously invariant. The value 

cck) = L:; C- )m(1J!'I t'-"~11Jf') C1Jf'l tm (k) 11Jf') (A·5) 
m 

is a scalar which is invariant under any rotation of the coordinate axis. After 

a simple calculation, we get the following: 

CC0)=).2, 

CCI)= 8 {I 1/2 + .J3/2r;ll 2 + (~2 + ~\/2) 2 }' 

cc•l = 288 {5lr;21 2 -5~1~2 + 511:'1 2 + 2i.J3;2r;2 -r;ll 2}. 
5 

The third term of the integrand is proportional to 

l.cco) + !_eel) + _!_cc•l 
2 60 864 

and is also rotationally invariant. 

The differential operators 

d1 =8:c+i8y, 

do=- .J28,, 

d_l=- (8:r:-i8y) 

(A·6) 

(A·7) 

belong to the tensor operator of the 1st order and, using the same procedure as 

before, we can construct the tensor operator of the 2nd order dC2l. Then the 

operator 

(A·8) 

is invariant under rotations and its explicit form is the following: 

(28,2-8+8-) 38,8_ j ~8_2 0 0 

1 
j ~ 8,8_ 38,8+ -z-(28.'-8+8-) 

3 2 
z-8- 0 

1 
j~8+2 j ~ 8,8+ - (28,2-8+8-) -J ~ 8,8_ j ~8-2 

5 

3 -J ~ 8,8+ 0 z-8+2 
1 2 

-z-(28, -8+8_) -38,8_ 

0 0 j ~ 8+2 -38,8+ (28,2 -8+8-) 
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782 T. Fujita and T. Tsuneto 

Equation (40) can be rewritten in a manifestly invariant form as 

F= mh sdR[-In Tc (Plll~) 
16n8 T 

+ 7t;, (S)p/ C~l {_!_ IX- )mt<:~dm <2J- P21} I~) 
48 (nT)2m2 20 m 

+ 21t;,(S) {_!_(~III ~)2 + 2_ :EC- )m(~lt~;,,l ~) C~ltm<I)I ~) 
160n (nTY 2 60 m 

+-~ :E( -)m(~lt~~~~) (~ltm( 3 )l~)}]. 
864 m 
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