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Abstract. The second-order polymorphic lambda calculus, F2, was in-
dependently discovered by Girard and Reynolds. Girard additionally
proved a representation theorem: every function on natural numbers that
can be proved total in second-order intuitionistic propositional logic, P2,
can be represented in F2. Reynolds additionally proved an abstraction
theorem: for a suitable notion of logical relation, every term in F2 takes
related arguments into related results. We observe that the essence of
Girard’s result is a projection from P2 into F2, and that the essence of
Reynolds’s result is an embedding of F2 into P2, and that the Reynolds
embedding followed by the Girard projection is the identity. The Girard
projection discards all first-order quantifiers, so it seems unreasonable
to expect that the Girard projection followed by the Reynolds embed-
ding should also be the identity. However, we show that in the presence of
Reynolds’s parametricity property that this is indeed the case, for propo-
sitions corresponding to inductive definitions of naturals, products, sums,
and fixpoint types.

1 Introduction

Double-barreled names in science may be special for two reasons: some belong to
ideas so subtle that they required two collaborators to develop; and some belong
to ideas so sublime that they possess two independent discoverers. The Curry-
Howard isomorphism is an idea of the first sort that guarantees the existence
of ideas of the second sort, such as the Hindley-Milner type system and the
Girard-Reynolds polymorphic lambda calculus.

The Curry-Howard isomorphism consists of a correspondence between a logi-
cal calculus and a computational calculus. Each logical formula corresponds to a
computational type, each logical proof corresponds to a computational term, and
reduction of proofs corresponds to reductions of terms. This last point means
that it is not just formulas and proofs that are preserved by the correspondence,
but the structure between them as well; hence we have no mere bijection but a
true isomorphism.

Curry formulated this principle for combinatory logic and combinator terms
[CF58]. Howard observed that it also applies to intuitionistic propositional logic
and simply-typed lambda terms [How80]. The same idea extends to a corre-
spondence between first-order intuitionistic logic with propositional variables
and simply-typed lambda calculus with type variables, which explains why
the logician Hindley and the computer scientist Milner independently discov-
ered the Hindley-Milner type system [Hin69,Mil78,DM82]. It also extends to a



correspondence between second-order intuitionistic logic with quantifiers over
proposition variables and second-order typed lambda calculus with quantifiers
over type variables, which explains why the logician Girard and the computer
scientist Reynolds independently discovered the polymorphic lambda calculus
[Gir72,Rey74].

Girard and Reynolds each made additional discoveries about the calculus that
bears their name, henceforth referred to as F2. Girard proved a representation
theorem: every function on natural numbers that can be proved total in second-
order predicate calculus P2 (with both first- and second-order quantifiers) can
be represented in F2 (using second-order quantifiers only). Reynolds proved an
abstraction theorem: for a suitable notion of logical relation, every term in F2
takes related arguments into related results [Rey83].

The calculus P2 is larger than the image under the Curry-Howard isomor-
phism of F2: the former has first-order terms (we will take these to be terms
of untyped lambda calculus) and both first- and second-order quantifiers, while
the latter has second-order quantifiers only. Nonetheless, the essence of Girard’s
result is a projection from P2 onto F2 that is similar to the Curry-Howard iso-
morphism, in that it takes formulas to types and proofs to terms, but differs in
that it erases all information about first-order terms and first-order quantifiers.
This mapping also preserves reductions, so it is no mere surjection but a true
homomorphism.

Reynolds’s result traditionally concerns binary relations, but it extends to
other notions of relation, including a degenerate unary case. In the unary version,
the essence of Reynolds’s result is an embedding from F2 into P2 that is similar
to the Curry-Howard isomorphism, in that it takes types to formulas and proofs
to terms, but differs in that it adds information about first-order quantifiers
and first-order terms. This mapping also preserves reductions, so it is no mere
injection but a true homomorphism. Furthermore, the result on binary relations
can be recovered from the result on unary relations by a doubling operation,
an embedding from P2 into P2 that takes formulas into formulas, proofs into
proofs, and preserves reductions.

Strachey distinguished two types of polymorphism, where the meaning of a
term depends upon a type [Str67]. In parametric polymorphism, the meaning of
the term varies uniformly with the type (an example is the length function), while
in ad hoc polymorphism, the meaning of the term at different types may not be
related (an example is plus, which may have quite different meanings on integers,
floats, and strings). Reynolds introduced a parametricity condition to capture
a semantic notion corresponding to Strachey’s parametric polymorphism. One
consequence of the parametricity condition is the Identity Extension Lemma,
which asserts that the relation corresponding to a type is the identity relation,
so long as the relation corresponding to any free type variable is also taken to
be the identity relation.

The Reynolds embedding followed by the Girard projection is the identity.
Remarkably, I can find no place in the literature where this is remarked! While



reading between the lines suggests that some researchers have intuitively grasped
this duality, its precise description seems to have been more elusive.

Going the other way, it seems unreasonable to expect that the Girard projec-
tion followed by the Reynolds embedding should also yield the identity, because
the projection discards all information about first-order terms. For instance, here
is the standard inductive definition of natural numbers in P2.

Nat ≡ {n | ∀Z. (∀m.m ∈ Z → succ m ∈ Z)→ zero ∈ Z → n ∈ Z }

Here succ and zero are the usual successor and zero operations on Church
numerals in untyped lambda calculus. Applying the Girard projection yields
Nat ≡ Nat◦, the type of the Church numerals in F2.

Nat ≡ ∀Z. (Z → Z)→ (Z → Z)

Then applying the Reynolds embedding in turn yields the following predicate,
back in P2.

Nat∗ ≡ {n | ∀Z.∀s. (∀m.m ∈ Z → s m ∈ Z)→ ∀z. z ∈ Z → n s z ∈ Z }

This predicate does not look much like Nat — it makes no mention of succ or zero.
However we will see that if we assume that the type Nat satisfies an analogue
of Reynolds’s parametricity condition, then Nat and Nat∗ are equivalent, in
that one can prove that any term satisfying the first predicate also satisfies the
second, and conversely.

Hence, in the presence of parametricity, not only does the Girard projection
take Nat to Nat, but also the Reynolds embedding takes Nat to Nat, and so in
this important case one has not merely an embedding-projection pair but a true
isomorphism.

We will show that similar results hold for all algebraic types, those types built
from products, sums, and fixpoints. An alternative characterization of algebraic
types is given by Böhm and Berarducci, where they are shown to be equivalent
to the types of rank two with all quantifiers on the outside [BB85].

This paper contains a version of Reynold’s Abstraction Theorem, but only
hints at Girard’s Representation Theorem. For a complete exposition of the
latter, consult the excellent tutorials by Girard, Taylor, and Lafont [GLT89] or
by Leivant [Lei90].

Both Girard’s and Reynold’s results have spawned large bodies of re-
lated work. The representation of algebraic data types in polymorphic lambda
calculus was proposed by Böhm and Berarducci [BB85]. Girard’s represen-
tation theorem is has been further explored by Leivant [Lei83,Lei90] and
by Krivine and Parigot [KP90], among others. Reynolds’s parametricity
has been further explored by Reynolds [Rey84,Rey90,MR91], Reynolds and
Plotkin [RP90], Bainbridge, Freyd, Scedrov and Scott [BFSS90], Hasegawa
[Has94], Pitts [Pit87,Pit89,Pit98], and Wadler [Wad89,Wad91], among oth-
ers. Formulations of the abstraction theorem in terms of logics have been
examined by Mairson [Mai91], in various combinations by Abadi, Cardelli,



Curien, and Plotkin [ACC93,PA93,PAC94], and by Takeuti [Tak98]. Many
of these works observe some connection between parametricity and algebraic
types [RP90,Has94,BFSS90,ACC93,PA93,PAC94,Tak98]. Breazu-Tannen and
Coquand [BC88], building on work of Moggi [Mog86], show how to turn any
model of untyped lambda calculus into a model of polymorphic lambda calculus
that satisfies a parametricity condition at all algebraic types.

The results here are not so much new proofs as old proofs clarified. In partic-
ular, we set Girard’s and Reynolds’s proofs in a common framework, highlighting
the relationship between them. Unlike some previous work, no complex semantic
formalism or specialized logic is required; all is formulated within the well-known
system of second-order predicate logic. And teasing apart the relation between
parametric and extensive types appears to be new.

Particularly strong influences on this work have been: the original work of Gi-
rard and Reynolds; Leivant [Lei90], who presents Girard’s result as a projection
from P2 to F2; Mairson [Mai91], who presents Reynolds’s result as an embedding
of F2 in P2; Plotkin and Abadi [PA93] and Takeuti [Tak98], who present typed
analogues of the untyped logic used here; Krivine and Parigot [KP90], who use
a logic over untyped lambda terms similar to P2.

Treating Girard’s representation theorem requires use of a logic with untyped
terms, since the whole point of the theorem is to demonstrate that functions
defined without reference to types may be represented in a typed calculus. How-
ever, use of an untyped calculus does severely restrict the available models. A
typed calculus, such as that considered by Plotkin and Abadi [PA93] or Takeuti
[Tak98], allows a fuller range of models.

Mairson [Mai91] appears to have grasped the inverse relation between the
Reynolds embedding and the Girard projection, though he does not quite manage
to state it. However, Mairson does seem to have missed the power of parametric-
ity. He mislabels as “parametricity” the analogue of Reynolds’s Abstraction The-
orem, and he never states an analogue of Reynolds’s parametricity condition or
the Identity Extension Lemma. Thus when he writes “proofs of these equiva-
lences still seem to require structural induction, as well as stronger assumptions
than parametricity” [Mai91], I believe this is misleading: the equivalences he
refers to cannot be proved using the Abstraction Theorem alone, but can indeed
be proved in the presence of parametricity.

The Curry-Howard isomorphism has informed the development of powerful
lambda calculi with dependent types, such as de Bruijn’s Automath [deB70],
Martin-Löf’s type theory [Mar82], Constable’s Nuprl [Con86], Coquand and
Huet’s calculus of constructions [CH88], and Barendregt’s lambda cube [Bar91].
Each of these calculi introduces dependent types (types that depend upon val-
ues) to map first-order quantifiers into the type system. In contrast, the Girard
projection discards all first-order information. To quote Leivant [Lei90],

we pursue a dual approach: rather than enriching the type systems to
match logic, we impoverish logic to match the type structure.



What is remarkable is that even after this impoverishment enough power remains
to capture much of what matters in computing: the algebraic types, such as
naturals, products, sums, and fixpoints.

The remainder of this paper is organized as follows. Section 2 introduces the
second-order lambda calculus F2 and the second-order logic P2. Section 3 de-
scribes the Reynolds embedding and the Girard projection, and observes that the
embedding followed by the projection is the identity. Section 4 explains doubling
and parametricity. Section 5 shows that the two definitions of the naturals are
equivalent under the parametricity postulate, and similarly for other algebraic
types, and hence that there is a sense in which the Girard projection followed
by the Reynolds embedding is also the identity.

2 Second-order lambda calculus and logic

The second-order lambda calculus F2 is summarized in Figure 1, and second-
order intuitionistic logic P2 is summarized in Figure 2. For each calculus we list
the syntactic categories, the proof rules, and the reductions that act upon proofs.
We deliberately use x, y, z to range over individual variables in both calculi, and
use X,Y, Z to range over type variables in F2 and predicate variables in P2. We
write ≡ for syntactic equivalence of terms, formulas, or proofs.

Judgements in F2 have the form Γ ` t : A, expressing that term t has type
A in context Γ , where a context consists of pairs x : A associating individual
variables with types. Types are formed from type variables X, functions A→ B,
and quantification over types ∀X.B. Terms are formed from individual variables
x, abstraction λx : A. u, application s t, type abstraction ΛX. u, and type appli-
cation s A. A proof δ uniquely determines its concluding judgement Γ ` t : A,
and conversely, δ is uniquely determined by Γ and t. A proof reduces when an
introducer is followed by the corresponding eliminator. We write δ[x := ε] for the
proof that results by substituting proof ε for each use of (Id) on x in the proof
δ.

Judgements in P2 have the form Θ ` φ, expressing that the formula list Θ has
the formula φ as a consequence. An atomic formula has the form M ∈ X, where
M is a term and X is a predicate variable. Fomulas are formed from atomic
formulas, implication φ→ ψ, quantification over individual variables ∀x. ψ, and
quantification over predicate variables ∀X.ψ.

A term is an untyped lambda term. We write M =β N if M and N can be
shown equivalent by β reduction.

Predicate variables X range over properties of terms. Notationally, we treat
these as sets. Thus we write M ∈ X to mean that term M satisfies predicate X.
The comprehension notation {x |φ } denotes the predicate of x that is satisfied
when the formula φ over x holds; so x is free in φ but bound in {x |φ }. We
write ψ[X := {x |φ }] for the formula that results by replacing each occurrence
of an atomic formula M ∈ X in ψ by the formula φ[x :=M ]. (Some formulations
write X(M) or XM instead of M ∈ X, and (x)φ or x.φ instead of {x |φ }.)



It will prove convenient to have a notation for arbitrary predicates. We let
P and Q range over comprehensions of the form {x |φ }, and write M ∈ P as
shorthand for φ[x :=M ], when P is {x |φ }.

A proof reduces when an introducer is followed by the corresponding elim-
inator. We write π[φ := ρ] for the proof that results by substituting ρ for each
use of (Id) on φ in the proof of π.

In addition to the listed reductions, we also have a number of commuting
conversions for (β). Here is the commuting conversion to pass (β) down through
(→-E), on the assumption that M = N is a substitution instance of an equation
in β.

Θ ` (φ→ ψ)[x :=M ]
β

Θ ` (φ→ ψ)[x :=N ] Θ ` φ[x :=N ]
→-E

Θ ` ψ[x :=N ]

⇒
Θ ` (φ→ ψ)[x :=M ]

Θ ` φ[x :=N ]
β

Θ ` φ[x :=M ]
→-E

Θ ` ψ[x :=M ]
β

Θ ` ψ[x :=N ]

There are similar conversions for each elimination rule. If an instance of β in-
tervenes between an introduction rule and the corresponding elimination rule,
preventing a reduction, then the commuting conversion can be used to push the
rule beneath the elimination rule, allowing the reduction.

True, false, conjunction, and disjunction can be defined in terms of the con-
nectives already given.

> ≡ ∀Z. () ∈ Z → () ∈ Z
⊥ ≡ ∀Z. () ∈ Z
φ ∧ ψ ≡ ∀Z. (φ→ ψ → () ∈ Z)→ () ∈ Z
φ ∨ ψ ≡ ∀Z. (φ→ () ∈ Z)→ (ψ → () ∈ Z)→ () ∈ Z

Here we assume Z does not appear free in φ or ψ, and write () as shorthand for
λx. x. (It doesn’t matter which term is chosen, any closed term works as well.)

As a further example of the power of P2, observe that it is powerful enough
to express equality between terms. Following Leibniz, two terms are equal if one
may be substituted for the other. Hence we define,

M = N ≡ ∀Z.M ∈ Z → N ∈ Z.

That is, terms M and N are equal if any property Z that holds of M also holds
of N . It is easy to see that equality is reflexive.

M = M
≡ (definition)
∀Z.M ∈ Z →M ∈ Z



It is more subtle to see that it is symmetric.

M = N
≡ (definition)
∀Z.M ∈ Z → N ∈ Z

⇒ (instantiate Z := {x |x = M })
M = M → N = M

⇒ (equality is reflexive)
N = M

One may similarly show transitivity, and that M =β N implies M = N .
A logic is extensional if whenever two terms are applied to equal arguments

they return equal results. We define

(∀x.M x = N x)→M = N (ext)

where x does not appear free in M and N . We write P2 + ext for P2 with (ext)
as an axiom. Extensionality for untyped terms is a stronger assumption than
extensionality for typed terms. Arguably, it is stronger than one might wish, but
several of our key proofs depend upon it.

3 The Reynolds embedding and the Girard projection

The Reynolds embedding takes a proof δ of a judgement

x1 : A1, . . . , xn : An ` u : B

in F2 into a proof δ∗ of a judgement

x1 ∈ A∗1, . . . , xn ∈ A∗n ` |u| ∈ B∗

in P2. Each type A maps into a predicate A∗, each typed lambda term t maps
via type erasure into an untyped lambda term |t|, and each typing t : A maps
into the formula |t| ∈ A∗. The Reynolds embedding is defined in Figure 3.

The Girard projection takes a proof π of a judgement

φ1, . . . , φn ` ψ

in P2 into a proof π◦ of a judgement

z1 : φ◦1, . . . , zn : φ◦n ` u : ψ◦

in F2. Here u is a typed term with free variables z1, . . . , zn, which is uniquely
determined by the proof π. The variables are assumed to be taken from a fixed
list z1, z2, . . . of variables. Each formula φ maps into a type φ◦. The Girard
projection is defined in Figure 4.

We extend the Girard projection to predicates in the obvious way, taking
({x |φ })◦ ≡ φ◦. Both the Reynolds embedding and the Girard projection



preserve substitution, so that (A[X :=B])∗ ≡ A∗[X :=B∗] and φ[X :={x |ψ }]◦ ≡
φ◦[X := ψ◦].

The Reynolds embedding and the Girard projection are homomorphisms, in
that each preserves the reduction structure of derivations.

Proposition 1. (Preservation of reductions) If δ0 ⇒ δ1 in F2 then δ∗0 ⇒ δ∗1 in
P2; and if π0 ⇒ π1 in P2, then π◦0 ⇒ π◦1 in F2.

Proof. It is easy to confirm that the Girard projection takes the → and ∀2 re-
ductions in P2 into the corresponding reductions of F2, and the ∀1 reduction
and commuting conversions of P2 into the identity. Similarly, the Reynolds em-
bedding takes the → and ∀2 reductions in F2 into the corresponding reductions
of P2. A more subtle point is that the Reynolds embedding may introduce (β)
rules that interfere with reductions, but these may always be pushed out of the
way using commuting conversions. (Leivant’s otherwise excellent tutorial [Lei90]
appears to ignore role of commuting conversions.) ut

We consider judgements and derivations in F2 as equivalent up to renaming
of variables. That is, the judgements x1 : A1, . . . , xn : An ` t : B and y1 :
A1, . . . , yn : An ` u : B are equivalent if t = u[y1 := x1, . . . , yn := xn].

The Reynolds embedding followed by the Girard projection is the identity.

Proposition 2. (Girard inverts Reynolds) If δ is a derivation in F2, then δ∗◦ ≡
δ, up to renaming.

Proof. Straightforward induction over the structure of derivations. ut

As an example, here is the type of the Church numerals in F2.

Nat ≡ ∀Z. (Z → Z)→ Z → Z

Applying the Reynolds embedding yields the following predicate in P2.

Nat∗ ≡ {n | ∀Z.∀s. (∀m.m ∈ Z → s m ∈ Z)→ ∀z. z ∈ Z → n s z ∈ Z }

It is easy to check that Nat = Nat∗◦.
Let two be the second Church numeral in F2, and let two be its erasure,

two ≡ |two|.
two ≡ ΛZ. λs : Z → Z. λz : Z. s (s z)
two ≡ λs. λz. s (s z)

If δt is the derivation of ` two : Nat in F2, then δ∗t is the proof of ` two ∈ Nat∗

in P2. It is easy to check that δt ≡ δ∗◦t .
Note that the Girard projection takes equality M = N into the unit type

∀X.X → X. In the term model, or in any parametric model, the only value of
this type is the identity function [Wad89]. Hence, the Girard projection erases
any information content in the proof of an equality judgement.

Also observe that the erasure of the extensionality axiom (ext) has the type
(∀X.X → X) → (∀X.X → X). One may extend the Girard projection so that
it maps axiom (ext) into the derivation of the term λi : ∀X.X → X. i.



4 Doubling and Parametricity

The Reynolds embedding corresponds to a unary version of Reynolds’s abstrac-
tion theorem. We can recover the binary version by means of a doubling mapping
from P2 to P2.

We represent binary relations as predicates over pairs. We use the usual
encoding of pairs in lambda calculus.

(M,N) ≡ λk. kMN
fst ≡ λz. z(λx. λy. x)
snd ≡ λz. z(λx. λy. y)
{ (x, y) |φ } ≡ { z |φ[x := fst z, y := snd z] }

Observe that (M,N) ∈ { (x, y) |φ } simplifies to φ[x :=M, y :=N ] as required.
Doubling is defined with the aid of operations that rename variables. For

each individual variable x there exists a renaming x′; and for each propositional
variable X there exists a renaming X‡. We write M ′ for the term that results
by renaming each free variable x in M to x′.

Doubling takes a proof δ of a judgement

Θ ` φ

in P2 into a proof δ‡ of a judgement

Θ‡ ` φ‡

in P2. Each formula φ maps into a formula φ‡. Doubling is defined in Figure 5.
We extend doubling to predicates in the obvious way, taking ({x |φ })‡ ≡

{ (M,M ′) |φ‡ }. Doubling preserves substitution, so that φ[Z := ψ]‡ ≡ φ‡[Z‡ :=
ψ‡].

Again, doubling is a homomorphism.

Proposition 3. (Doubling) If π0 ⇒ π1 in P2 then π‡0 ⇒ π‡1 in P2.

Proof. By examination of the reduction rules. ut

What Reynolds calls the Abstraction Theorem [Rey83] and what Plotkin and
Abadi call the Logical Relations Lemma [PA93] arises as the composition of the
Reynolds embedding with doubling.

Proposition 4. (Abstraction Theorem) If

x1 : A1, . . . , xn : An ` t : B

is derivable in F2, then

(x1, x
′
1) ∈ A∗‡1 , . . . , (xn, x′n) ∈ A∗‡n ` (|t|, |t|′) ∈ B∗‡

is derivable in P2.



Proof. Immediate, since the Reynolds embedding followed by doubling takes a
derivation of the antecedent into a derivation of the consequent. ut

As an example, here is the type of the Church numerals in F2.

Nat ≡ ∀Z. (Z → Z)→ Z → Z

Applying the Reynolds embedding followed by doubling yields the following
predicate in P2.

Nat∗‡ ≡
{ (n, n′) | ∀Z‡.
∀s.∀s′. (∀m.∀m′. (m,m′) ∈ Z‡ → (s m, s′ m′) ∈ Z‡)
→ ∀z.∀z′. (z, z′) ∈ Z‡ → (n s z, n′ s′ z′) ∈ Z‡ }

Similarly, starting with the derivation δt of the second Church numeral two
in F2 and applying the Reynolds embedding followed by doubling yields the
derivation δ∗‡t in P2 of the judgement

` (two, two) ∈ Nat∗‡

Here renaming has no effect on the two terms, which contain only bound vari-
ables.

The identity relation on a type is equality restricted to that type.

Definition 5. The identity relation on type A is written A=.

A= ≡ { (z, z′) | z = z′ ∧ z ∈ A∗ }

It is easy to verify that A= is reflexive, symmetric, and transitive, and that
(z, z′) ∈ A= implies z ∈ A∗ and z′ ∈ A∗.

The parametric closure of a type is the doubling of the Reynolds embedding
of that type, with the relation corresponding to each free type variable taken to
be the identity relation.

Definition 6. The parametric closure of type A is written A≈.

A≈ ≡ A∗‡[X‡1 :=X=
1 , . . . , X

‡
1 :=X=

1 ]

Here X1, . . . , Xn are the free type variables in A.

It is easy to verify that A≈ is symmetric and transitive, so it is a partial equiv-
alence relation, and that (z, z′) ∈ A≈ implies that z ∈ A∗ and z′ ∈ A∗.

It is interesting to consider those cases where the identity relation implies
the parametric closure, or conversely.

Definition 7. We say that type A is parametric when A= ⊆ A≈, and extensive
when A≈ ⊆ A=.



An assertion that every type is parametric corresponds to Reynolds’s parametric-
ity condition, and an assertion that every type is parametric and extensive might
correspond to Reynolds’s Identity Extension Lemma [Rey83].

In Section 5, we will see that all algebraic types are parametric and extensive,
in any model for which algebraic types have the usual inductive properties.

Is it consistent to assume that every type is parametric? This conjecture is
plausible, since for any closed term M and closed type A, if M ∈ A∗ is provable,
then by doubling (M,M) ∈ A≈ is also provable. But as of this writing neither a
proof nor a counterexample has been found. We do not pursue the point further
in this paper.

However, it would not be consistent to assume that every type is both para-
metric and extensive. Assume that types A and B are parametric and extensive
and that f, g ∈ (A→ B)∗. If A→ B is extensive, it follows that f x = g x for all
x ∈ A∗ implies f = g. But this is not appropriate, since in the untyped world
we may apply f and g to arguments that are not of type A.

It is easy to construct a counter-example demonstrating this problem. (Easy,
but not obvious; I’m grateful to an anonymous referee for the following.) As
usual, let zero ≡ λs. λz. z, I ≡ λx. x, K ≡ λx. λy. x, and take f ≡ λn. zero
and g ≡ λn. n I zero. We have f n = zero = g n for every n ∈ Nat∗. (The
second equality is easily proved by induction, which is justified by the results in
Section 5 on the assumption that Nat is parametric.) Clearly, f, g ∈ Nat→ Nat,
so if Nat → Nat is extensive we would conclude f = g. But this is false, since
f K = zero 6= I = g K.

These considerations suggest that A= is not, in general, an appropriate defi-
nition of equality at type A in this framework. Indeed, it may be appropriate to
simply take A≈ as the definition of equality at type A, in which case the Identity
Extension Lemma holds by definition.

5 Algebraic types and parametricity

The grammar of algebraic types is shown in Figure 6. An algebraic type is either
a type variable Z, the natural number type Nat, the empty type 0, the sum type
T +U , the unit type 1, the product type T ×U , or the fixpoint type µZ. T . The
natural number type is included only for illustration, since it is equivalent to the
type µZ.Z + 1. The subtypes of a type are defined as usual, so for instance the
subtypes of µZ.Z + 1 are Z, 1, Z + 1, and µZ.Z + 1 itself.

Each algebraic type has two interpretations, an inductive interpretation as a
predicate in P2, and a deductive interpretation as a type in F2.

The inductive interpretation defines each type by its corresponding induc-
tion principle. For instance, Nat = dNate is the induction principle for natural
numbers.

Nat ≡ {n | ∀Z. (∀m.m ∈ Z → succ m ∈ Z)→ zero ∈ Z → n ∈ Z }

To prove a property of natural numbers by induction, one must show that for
all m if m has the property then succ m has the property, and one must show



that zero has the property. The above definition states that a value is a natural
number if one can prove a property of it by induction. The idea of classifying
induction principles using second-order propositional variables, and of defining
a type via its induction principle, goes back to Frege [Fre79].

One immediate consequence of the definition is that succ and zero do indeed
construct natural numbers. Similar properties follow for all the algebraic types.

Proposition 8. (Constructor Lemma) The following are provable in P2.

n ∈ Nat → succ n ∈ Nat
zero ∈ Nat

x ∈ dT e → inl x ∈ dT + Ue
y ∈ dUe → inr y ∈ dT + Ue

unit ∈ d1e
x ∈ dT e ∧ y ∈ dUe → pair x y ∈ dT × Ue
x ∈ dT [Z := µZ. T ]e → in x ∈ dµZ. T e

Proof. Straightforward. ut

The inductive definitions, and the above proposition, do not depend on the
particular value of the terms chosen for the constructors succ and zero and so on.
They might, for example, be chosen to be uninterpreted constants. However it
turns out there is a good reason to choose them to be particular untyped lambda
terms, namely the erasures of the typed lambda terms that are the corresponding
constructors in the deductive interpretation.

The deductive interpretation maps each type to the usual definition in second
order lambda calculus. For example, the deductive interpretation Nat ≡ bNatc
is the usual Church type of the naturals. Corresponding to this definiton are
the usual constructors for the natural numbers in second order lambda calculus,
namely succ : Nat→ Nat and zero : Nat.

The other definitions for each type and each constructor are entirely stan-
dard. To define the constructor for fixpoints, one makes use of the fact that
if T is an algebraic type in which Z is free, then Z appears positively in the
deductive translation bT c, and that if A is a polymorphic type in which Z ap-
pears positively, then for each f : B → C there is a canonically defined function
A[f ] : A[Z :=B]→ A[Z :=C]. (For details of the construction, see, e.g., Reynolds
and Plotkin [RP90].)

Both interpretations preserve substitution, so that dT [Z := U ]e = dT e [Z :=
dUe] and bT [Z := U ]c = bT c [Z := bUc].

The deductive interpretation is so named because it can be deduced by ap-
plying the Girard projection to the inductive interpretation.

Proposition 9. (Girard projection takes inductive to deductive) For every al-
gebraic type T , we have bT c ≡ dT e◦.

Proof. Obvious by inspection. ut



Furthermore, the constructors in the deductive interpretation can be deduced
from the constructors of the inductive interpretation. For instance, if succ and
zero are uninterpreted constants, then there are canonical proofs in P2 of the
following propositions; call these πs and πz.

` n ∈ Nat→ succ n ∈ Nat and ` zero ∈ Nat.

Applying the Girard projection to these proofs yields derivations in F2 of the
following typings; call these δs ≡ π◦s and δz ≡ π◦z .

` succ : Nat→ Nat and ` zero : Nat

In what follows, we assume that each of the inductive constructors is the
erasure of the corresponding deductive constructor. That is, succ = |succ| and
zero = |zero|, and so on for the constructors of the other algebraic types. With
this assumption, we will be able to show not only that the Girard projection takes
the inductive interpretation into the deductive one, but also that, in the presence
of parametricity, the Reynolds embedding takes the deductive interpretation into
the inductive one.

Definition 10. We say that algebraic type T is deductive when dT e ⊆ bT c∗
and inductive when bT c∗ ⊆ dT e.

We will show that all algebraic types are deductive. Further, for algebraic
types, parametricity and inductiveness are equivalent: if all subtypes of a given
algebraic type are parametric then that type is inductive, and if all subtypes of
a given type are inductive then that type is parametric.

Thus, for algebraic types in the presence of parametricity, the inductive and
deductive definitions are equivalent. That is, one has not only bT c ≡ dT e◦ but
also dT e = bT c∗, and hence not only bT c ≡ bT c∗◦ but also dT e = dT e◦∗. In
particular, we have Nat ≡ Nat◦ and Nat = Nat∗. Thus, there is a sense in which
the Reynolds and Girard translations are not merely an embedding-projection
pair, but truly inverses.

5.1 Every algebraic type is extensive

As promised in Section 4, we show that every algebraic type is extensive, which
corresponds, in a rough sense, to one half of Reynolds’s Identity Extension
Lemma [Rey83]. We require extensionality.

Proposition 11. (Every algebraic type is extensive) If T is an algebraic type,
then P2 + ext proves bT c≈ ⊆ bT c=.

Proof. The case for a free type variable X is immediate, since X≈ = X= by
definition. Below is the proof for T × U . The other cases are similar.

(z, z′) ∈ bT × Uc≈
= (definition parametric closure)
∀Z‡.∀k, k′.

(∀x, x′. (x, x′) ∈ bT c≈ → ∀y, y′. (y, y′) ∈ bUc≈ → (k x y, k′ x′ y′) ∈ Z‡)
→ (z k, z′ k′) ∈ Z‡



⇒ (instantiate Z‡ := { (z, z′) | z = z′ })
∀k, k′.

(∀x, x′. (x, x′) ∈ bT c≈ → ∀y, y′. (y, y′) ∈ bUc≈ → k x y = k′ x′ y′)
→ z k = z′ k′

⇒ (induction hypothesis)
∀k, k′. (∀x, x′. x = x′ → ∀y, y′. y = y′ → k x y = k′ x′ y′)→ z k = z′ k′

⇒ (extensionality on k and k′)
∀k, k′. k = k′ → z k = z′ k′

⇒ (extensionality on z and z′)
z = z′

ut

5.2 Every algebraic type is deductive

We show that every algebraic type is deductive. We do not require extensionality.

Proposition 12. (Every algebraic type is deductive) If T is an algebraic type,
then P2 proves dT e ⊆ bT c∗.
Proof. Below is the proof for T × U . The other cases are similar.

z ∈ dT × Ue
≡ (definition inductive interpretation)
∀Z. (∀x. x ∈ dT e → ∀y. y ∈ dUe → pair x y ∈ Z)→ z ∈ Z

⇒ (take Z = bT × Uc∗)
(∀x. x ∈ dT e → ∀y. y ∈ dUe → pair x y ∈ bT × Uc∗)→ z ∈ bT × Uc∗

⇒ (induction hypothesis)
(∀x. x ∈ bT c∗ → ∀y. y ∈ bUc∗ → pair x y ∈ bT × Uc∗)→ z ∈ bT × Uc∗

⇒ (Reynolds embedding applied to pair)
z ∈ bT × Uc∗

ut

5.3 Inductive implies parametric

If all algebraic types are inductive then they are also parametric. Extensionality
is not required. Inductiveness is required not only of a type but also of all its
subtypes, so that the induction hypothesis will apply.

Proposition 13. (Inductive implies parametric) Let T be an algebraic type. If
P2 proves bSc∗ ⊆ dSe for every subtype S of T , then P2 proves bT c= ⊆ bT c≈.

Proof. Below is the proof for T × U . The other cases are similar.

z ∈ bT × Uc∗
⇒ (by assumption T × U is inductive)
z ∈ dT × Ue

≡ (definition inductive interpretation)
∀Z. (∀x. x ∈ dT e → ∀y. y ∈ dUe → pair x y ∈ Z)→ z ∈ Z

⇒ (instantiate Z := { z | (z, z) ∈ bT × Uc≈ })



(∀x. x ∈ dT e → ∀y. y ∈ dUe → (pair x y, pair x y) ∈ bT × Uc≈)
→ (z, z) ∈ bT × Uc≈

⇒ (Proposition 12 and induction hypothesis)
(∀x. (x, x) ∈ bT c≈ → ∀y. (y, y) ∈ bUc≈ → (pair x y, pair x y) ∈ bT × Uc≈)
→ (z, z) ∈ bT × Uc≈

⇒ (Abstraction Theorem applied to pair)
(z, z) ∈ bT × Uc≈

ut

Reynolds and Plotkin [RP90] were the first to suggest that parametricity
implies inductivity, and so far as I know, Hasegawa [Has94] was the first to sug-
gest the converse. (Hasegawa asserts that a type is inductive if it is parametric,
while here we assert that a type is inductive if all its subtypes are parametric.
Analysis of Hasegawa’s proof shows that he seems to have inadvertently omitted
the condition on subtypes, since he relies on the Identity Extension Lemma at
the subtypes and this depends on parametricity.)

5.4 Parametric implies inductive

Every algebraic type that is parametric is also inductive. We require extension-
ality. Parametricity is required not only of a type but also of all its subtypes, so
that the induction hypothesis will apply.

Proposition 14. (Parametric implies inductive) Let T be an algebraic type. If
P2 + ext proves bSc= ⊆ bSc≈ for every subtype S of T , then P2 + ext proves
bT c∗ ⊆ dT e.

The proof depends on the following lemma. Böhm and Berarducci [BB85,
Theorem 7.3] prove a similar result, though in a different framework and with a
different technique.

Proposition 15. (Böhm’s Lemma) The following are provable in P2 + ext.

(z, z) ∈ bNatc≈ → z succ zero = z
(z, z) ∈ b0c≈ → z = z
(z, z) ∈ bT + Uc≈ → z inl inr = z
(z, z) ∈ b1c≈ → z unit = z
(z, z) ∈ bT × Uc≈ → z pair = z
(z, z) ∈ bµZ. T c≈ → z in = z

Proof. Below is the proof for T × U . The other cases are similar.

z ∈ bT × Uc≈
⇒ (definition deductive interpretation, doubling)
∀Z‡.∀k, k′.

(∀x, x′. (x, x′) ∈ bT c≈ → ∀y, y′. (y, y′) ∈ bUc≈ → (k x y, k′ x′ y′) ∈ Z‡)
→ (z k, z k′) ∈ Z‡



⇒ (instantiate Z‡ := { (z, z′) | z k′′ = z′ } and k := pair)
∀k′, k′′.

(∀x, x′. (x, x′) ∈ bT c≈ → ∀y, y′. (y, y′) ∈ bUc≈ → pair x y k′′ = k′ x′ y′)
→ z pair k′′ = z k′)

⇒ (T and U are extensive, β reduction on pair)
∀k′, k′′.

(∀x, x′. x = x′ → ∀y, y′. y = y′ → k′′ x y = k′ x′ y′)
→ z pair k′′ = z k′)

⇒ (extensionality on k′′ and k′)
∀k′, k′′. k′′ = k′ → z pair k′′ = z k′)

⇒ (extensionality on z pair and z)
z pair = z

ut

We can now prove Proposition 14.

Proof. Below is the proof for T × U . The other cases are similar.

z ∈ bT × Uc∗
⇒ (definition deductive interpretation, Reynolds embedding)
∀Z.∀k. (∀x. x ∈ bT c∗ → ∀y. y ∈ bUc∗ → k x y ∈ Z)→ z k ∈ Z

⇒ (instantiate Z := dT × Ue and k := pair)
(∀x. x ∈ bT c∗ → ∀y. y ∈ bUc∗ → pair x y ∈ dT × Ue)→ z pair ∈ dT × Ue

⇒ (induction hypothesis)
(∀x. x ∈ dT e → ∀y. y ∈ dUe → pair x y ∈ dT × Ue)→ z pair ∈ dT × Ue

⇒ (Constructor Lemma)
z pair ∈ dT × Ue

= (parametricity (z ∈ bT × Uc∗ → (z, z) ∈ bT × Uc≈), Böhm’s Lemma)
z ∈ dT × Ue

ut

An immediate corollary is the following.

Proposition 16. (Girard-Reynolds isomorphism) If T is an algebraic type then
bT c ≡ bT c∗◦, and furthermore if T and its subtypes are parametric then P2 + ext
proves dT e = dT e◦∗.

Proof. Immediate from Propositions 9, 12 and 14. ut
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Syntax

Type variables X,Y, Z
Individual variables x, y, z
Types A,B ::= X | A→ B | ∀X.B
Typed terms s, t, u ::= x | λx:A. u | s t | ΛX. u | s A
Contexts Γ ::= x1 : A1, . . . , xn : An

Rules

Id
x1 : A1, . . . , xn : An ` xi : Ai

Γ, x : A ` u : B
→-I

Γ ` λx:A. u : A→ B

Γ ` s : A→ B Γ ` t : A
→-E

Γ ` s t : B

Γ ` u : B
∀2-I when X not free in Γ

Γ ` ΛX. u : ∀X.B

Γ ` s : ∀X.B
∀2-E

Γ ` s A : B[X :=A]

Reductions

··· δ
Γ, x : A ` u : B

→-I
Γ ` λx:A. u : A→ B

··· ε
Γ ` t : A

→-E
Γ ` (λx:A. u) t : B

⇒ ··· δ[x := ε]
Γ ` u[x := t] : B

··· δ
Γ ` u : B

∀2-I
Γ ` ΛX. u : ∀X.B

∀2-E
Γ ` (ΛX. u)A : B[X :=A]

⇒ ··· δ[X :=A]
Γ ` u[X :=A] : B[X :=A]

Fig. 1. Second-order lambda calculus (F2)



Syntax

Predicate variables X,Y, Z
Individual variables x, y, z
Terms L,M,N ::= x | λx.M |M N
Formulas φ, ψ ::= M ∈ X | φ→ ψ | ∀x. ψ | ∀X.ψ
Contexts Θ ::= φ1, . . . , φn

Rules

Id
φ1, . . . , φn ` φi

Θ, φ ` ψ
→-I

Θ ` φ→ ψ

Θ ` φ→ ψ Θ ` φ
→-E

Θ ` ψ

Θ ` ψ
∀1-I when x not free in Θ

Θ ` ∀x. ψ

Θ ` ∀x. ψ
∀1-E

Θ ` ψ[x :=M ]

Θ ` ψ
∀2-I when X not free in Θ

Θ ` ∀X.ψ

Θ ` ∀X.ψ
∀2-E

Θ ` ψ[X := {x |φ }]

(Θ ` ψ) [x :=M ]
β when M =β N

(Θ ` ψ) [x :=N ]

Reductions

··· π
Θ, φ ` ψ

→-I
Θ ` φ→ ψ

··· ρ
Θ ` φ

→-E
Θ ` ψ

⇒ ··· π[φ := ρ]
Θ ` ψ

··· π
Θ ` ψ

∀-I
Θ ` ∀x. ψ

∀-E
Θ ` ψ[x :=M ]

⇒ ··· π[x :=M ]
Θ ` ψ[x :=M ]

··· π
Θ ` ψ

∀2-I
Θ ` ∀X.ψ

∀2-E
Θ ` ψ[X := {x |φ }]

⇒ ··· π[X := {x |φ }]
Θ ` ψ[X := {x |φ }]

Fig. 2. Second-order propositional logic (P2)



Terms
|x| ≡ x
|λx:A. u| ≡ λx. |u|
|s t| ≡ |s| |t|
|ΛX. u| ≡ |u|
|s A| ≡ |s|

Types
X∗ ≡ { z | z ∈ X }
(A→ B)∗ ≡ { z | ∀x. x ∈ A∗ → z x ∈ B∗ }
(∀X.B)∗ ≡ { z | ∀X. z ∈ B∗ }

Contexts
(x1 : A1, . . . , xn : An)∗ ≡ x1 ∈ A∗1, . . . , xn ∈ A∗n

Judgements
(Γ ` t : A)∗ ≡ Γ ∗ ` |t| ∈ A∗

Proofs(
Id

x1 : A1, . . . , xn : An ` xi : Ai

)∗
≡ Id

x1 ∈ A∗1, . . . , xn ∈ A∗n ` xi ∈ A∗i

 ··· δ
Γ, x : A ` u : B

→-I
Γ ` λx. u : A→ B

∗ ≡

··· δ∗
Γ ∗, x ∈ A∗ ` |u| ∈ B∗

β
Γ ∗, x ∈ A∗ ` (λx. |u|) x ∈ B∗

→-I
Γ ∗ ` x ∈ A∗ → (λx. |u|) x ∈ B∗

∀1-I
Γ ∗ ` ∀x. x ∈ A∗ → (λx. |u|) x ∈ B∗ ··· δ

Γ ` s : A→ B
··· ε

Γ ` t : A
→-E

Γ ` s t : B

∗ ≡
··· δ∗

Γ ∗ ` ∀x. x ∈ A∗ → |s| x ∈ B∗
∀1-E

Γ ∗ ` |t| ∈ A∗ → |s| |t| ∈ B∗
··· ε∗

Γ ∗ ` |t| ∈ A∗
→-E

Γ ∗ ` |s| |t| ∈ B∗ ··· δ
Γ ` u : B

∀2-I
Γ ` ΛX. u : ∀X.B

∗ ≡
··· δ∗

Γ ∗ ` |u| ∈ B∗
∀2-I

Γ ∗ ` ∀X. |u| ∈ B∗ ··· δ
Γ ` s : ∀X.B

∀2-E
Γ ` s A : B[X :=A]

∗ ≡
··· δ∗

Γ ∗ ` ∀X. |s| ∈ B∗
∀2-E

Γ ∗ ` |s| ∈ B∗[X :=A∗]

Fig. 3. The Reynolds embedding



Formulas
(M ∈ X)◦ ≡ X
(φ→ ψ)◦ ≡ φ◦ → ψ◦

(∀x. ψ)◦ ≡ ψ◦

(∀X.ψ)◦ ≡ ∀X.ψ◦

Contexts
(φ1, . . . , φn)◦ ≡ z1 ∈ φ◦1, . . . , zn ∈ φ◦n

Judgements
(Θ ` φ)◦ ≡ Θ◦ ` t : φ◦

Proofs(
Id

φ1, . . . , φn ` φi

)◦
≡ Id

z1 : φ◦1, . . . , zn : φ◦n ` zi : φ◦i ··· π
Θ, φ ` ψ

→-I
Θ ` φ→ ψ

◦ ≡
··· π◦

Θ◦, z : φ◦ ` u : ψ◦

→-I
Θ◦ ` λz:φ◦. u : φ◦ → ψ◦ ··· π

Θ ` φ→ ψ
··· ρ

Θ ` φ
→-E

Θ ` ψ

◦ ≡ ··· π◦
Θ◦ ` s : φ◦ → ψ◦

··· ρ◦
Θ◦ ` t : φ◦

→-E
Θ◦ ` s t : ψ◦ ··· π

Θ ` ψ
∀1-I

Θ ` ∀x. ψ

◦ ≡ ··· π◦
Θ◦ ` u : ψ◦

 ··· π
Θ ` ∀x. ψ

∀1-E
Θ ` ψ[x :=M ]

◦ ≡ ··· π◦
Θ◦ ` s : ψ◦

 ··· π
Θ ` ψ

∀2-I
Θ ` ∀X.ψ

◦ ≡
··· π◦

Θ◦ ` u : ψ◦

∀2-I
Θ◦ ` ΛX. u : ∀X.ψ◦ ··· π

Θ ` ∀X.ψ
∀2-E

Θ ` ψ[X := {x |φ }]

◦ ≡
··· π◦

Θ◦ ` s : ∀X.ψ◦
∀2-E

Θ◦ ` s φ◦ : ψ◦[X := φ◦] ··· π
Θ ` ψ[x :=M ]

β
Θ ` ψ[x :=N ]

◦ ≡ ··· π◦
Θ◦ ` ψ◦

Fig. 4. The Girard projection



Formulas
(M ∈ X)‡ ≡ (M,M ′) ∈ X‡

(φ→ ψ)‡ ≡ φ‡ → ψ‡

(∀x. ψ)‡ ≡ ∀x.∀x′. ψ‡

(∀X.ψ)‡ ≡ ∀X‡. ψ‡

Contexts

(φ1, . . . , φn)‡ ≡ φ‡1, . . . , φ
‡
n

Judgements

(Θ ` φ)‡ ≡ Θ‡ ` φ‡

Proofs(
Id

φ1, . . . , φn ` φi

)‡
≡ Id

φ‡1, . . . , φ
‡
n ` φ‡i ··· π

Θ, φ ` ψ
→-I

Θ ` φ→ ψ

‡ ≡
··· π‡

Θ‡, φ‡ ` ψ‡
→-I

Θ‡ ` φ‡ → ψ‡ ··· π
Θ ` φ→ ψ

··· ρ
Θ ` φ

→-E
Θ ` ψ

‡ ≡ ··· π‡
Θ‡ ` φ‡ → ψ‡

··· ρ‡
Θ‡ ` φ‡

→-E
Θ‡ ` ψ‡ ··· π

Θ ` ψ
∀1-I

Θ ` ∀x. ψ

‡ ≡
··· π‡

Θ‡ ` ψ‡
∀1-I (twice)

Θ‡ ` ∀x.∀x′. ψ‡ ··· π
Θ ` ∀x. ψ

∀1-E
Θ ` ψ[x :=M ]

‡ ≡
··· π‡

Θ‡ ` ∀x.∀x′. ψ‡
∀1-E (twice)

Θ‡ ` ψ‡[x :=M,x′ :=M ′] ··· π
Θ ` ψ

∀2-I
Θ ` ∀X.ψ

‡ ≡
··· π‡

Θ‡ ` ψ‡
∀2-I

Θ‡ ` ∀X‡. ψ‡ ··· π
Θ ` ∀X.ψ

∀2-E
Θ ` ψ[X := {x |φ }]

‡ ≡
··· π‡

Θ‡ ` ∀X‡. ψ‡
∀2-E

Θ‡ ` ψ‡[X‡ := { (x, x′) |φ‡ }] ··· π
Θ ` ψ[x :=M ]

β
Θ ` ψ[x :=N ]

‡ ≡
··· π‡

Θ‡ ` ψ‡[x :=M, x′ :=M ′]
β (twice)

Θ‡ ` ψ‡[x :=N, x′ :=N ′]

Fig. 5. The doubling embedding



Syntax

Type variables X,Y, Z
Algebraic types T,U ::= Z | Nat | 0 | T + U | 1 | T × U | µZ. T

Inductive interpretation

dNate ≡ {n | ∀Z. (∀m.m ∈ Z → succm ∈ Z)→ zero ∈ Z → n ∈ Z }
d0e ≡ { z | ∀Z. z ∈ Z }
dT + Ue ≡ { z | ∀Z. (∀x. x ∈ dT e → inl x ∈ Z)→ (∀y. y ∈ dUe → inr y ∈ Z)→ z ∈ Z }
d1e ≡ { z | ∀Z. unit ∈ Z → z ∈ Z }
dT × Ue ≡ { z | ∀Z. (∀x. x ∈ dT e → ∀y. y ∈ dUe → pair x y ∈ Z)→ z ∈ Z }
dµZ. T e ≡ { z | ∀Z. (∀x. x ∈ dT [Z := µZ. T ]e → in x ∈ Z)→ z ∈ Z }

Deductive interpretation

bNatc ≡ ∀Z. (Z → Z)→ Z → Z
b0c ≡ ∀Z.Z
bT + Uc ≡ ∀Z. (T → Z)→ (U → Z)→ Z
b1c ≡ ∀Z.Z → Z
bT × Uc ≡ ∀Z. (T → U → Z)→ Z
bµZ. T c ≡ ∀Z. (T → Z)→ Z

Constructors

zero : bNatc
zero = ΛZ. λs : Z → Z. λz : Z. z

succ : bNatc → bNatc
succ = λn : bNatc . ΛZ. λs : Z → Z. λz : Z. s (n Z s z)

inl : bT c → bT + Uc
inl = λx : bT c . ΛZ. λk : bT c → Z. λl : bUc → Z. k x

inr : bUc → bT + Uc
inr = λy : bUc . ΛZ. λk : bT c → Z. λl : bUc → Z. l y

unit : b1c
unit = ΛZ. λz : Z. z

pair : bT c → bUc → bT × Uc
pair = λx : bT c . λy : bUc . ΛZ. λk : bT c → bUc → Z. k x y

in : bT [Z := µZ. T ]c → bµZ. T c
in = λx : bT [Z := µZ. T ]c . λZ. λk : bT c → Z. k (bT c [λx : bµZ. T c . x Z k] x)

Fig. 6. Algebraic types


