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Abstract. The Glasgow Subgraph Solver provides an implementation
of state of the art algorithms for subgraph isomorphism problems. It
combines constraint programming concepts with a variety of strong but
fast domain-specific search and inference techniques, and is suitable for
use on a wide range of graphs, including many that are found to be
computationally hard by other solvers. It can also be equipped with side
constraints, and can easily be adapted to solve other subgraph matching
problem variants. We outline its key features from the view of both users
and algorithm developers, and discuss future directions.

1 Introduction

The subgraph isomorphism family of problems involves finding a small “pat-
tern” graph inside a larger “target” graph, or establishing that the pattern does
not occur. When the pattern graph is part of the input, these problems are
NP-complete; despite this, subgraph isomorphism algorithms are widely used in
practice, including for model checking [23], for law enforcement [9], in biological
applications [1,6,20], for compiler implementation [5], in designing mechanical
locks [27], and inside graph databases [19]. This has encouraged the develop-
ment of practical subgraph isomorphism algorithms, which fall into two cate-
gories: those based upon backtracking and connectivity [6–8], and those based
upon constraint programming [3,4,15,18,25]. Presently, the constraint program-
ming approaches give spectacularly better performance on hard instances [19,26],
although simple backtrackers will often (but inconsistently) run faster on some
very easy instances due to lower overheads and faster startup costs.

This paper gives an overview of the Glasgow Subgraph Solver, which is the
current state of the art in subgraph solving for hard instances [26]. First, we
will discuss the range of subgraph isomorphism problems that people sometimes
wish to solve, and then describe the main techniques the solver uses to solve
these problems. We finish with a list of potential future directions.
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Fig. 1. The arrows show a non-induced subgraph isomorphism from the pattern graph
on the left to the target graph on the right. This subgraph isomorphism is not induced,
due to the extra edge between vertices 4 and 6 when c and d are not adjacent.

2 Subgraph Isomorphism Problems and Variants

Figure 1 illustrates a basic subgraph isomorphism problem: we have a small pat-
tern graph and a large target graph (both of which are inputs to the problem),
and we wish to decide whether the pattern graph occurs inside the target graph.
Usually this is expressed in terms of finding a mapping from the vertices of the
pattern graph to the vertices of the target graph, as shown using the dotted
arrows. Beyond this, different applications have different views of what exactly
the problem to be solved is—we therefore give a brief overview of the common
problem variants.

Adjacency, Loops, and Directed Edges. It is generally agreed that for a map-
ping to be a valid subgraph isomorphism, adjacent vertices must be mapped to
adjacent vertices. However, authors (particularly in application-oriented papers)
disagree over whether non-adjacent vertices must be mapped to non-adjacent
vertices. We use the term induced if non-adjacency must be preserved, and non-
induced otherwise; when we do not qualify our terms, we are talking about both
variants. A further question is on how to handle loops (that is, vertices which
are adjacent to themselves). We take the view that loops may only be mapped
to loops, and for induced problems, additionally that non-loops may only be
mapped to non-loops; some other solver authors disagree or have not considered
this question, and may handle this differently. Finally, in the case of graphs with
directed edges (which could potentially go in both directions), we treat non-
induced as meaning “the edges mapped to must be equal to or be a superset of
the pattern edges”, and induced as meaning “exactly equal to”.

Vertices and Injectivity. In the classical subgraph isomorphism problem, the
mapping is required to be injective—that is, each pattern vertex must be mapped
to a different target vertex. In some applications this restriction can be relaxed:
for example, we may prefer local injectivity (no two vertices that share a neigh-
bour are mapped to the same vertex) [12], or even to find a homomorphism,
where there are no injectivity requirements at all.

Labels. In some applications, either vertices, edges or both have labels, and
may only be mapped to vertices or edges with matching labels—for example, in
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chemistry problems, labels may represent different atoms in a molecule, and we
may not map a carbon atom to a hydrogen atom. Richer labelling rules may be
necessary in some applications, such as in temporal graphs when we care about
“before/after” labels rather than exact matches [21].

Deciding, Enumerating, and Counting. Instead of simply asking whether a sub-
graph isomorphism exists, some applications want to find all such mappings.
They may require that these be explicitly enumerated, but sometimes a count is
sufficient—and counting can be exponentially faster than enumerating in some
situations. A further complication is that the number of mappings and the num-
ber of images of mappings are not the same, and different applications assume
different definitions—sometimes, the number of mappings are called “labelled”
countings, whilst the number of images of mappings are called “unlabelled”.

Performance. Finally, we briefly discuss the common misconception that sub-
graph isomorphism being NP-complete somehow means that it is not viable to
solve the problem in practice, or that every instance will exhibit exponential
complexity. In fact, with good algorithms, instances that are actually hard to
solve in practice are rare. We caution that benchmarking algorithms for NP-
complete problems is challenging, that the size of the inputs is not an indicator
of difficulty, and that only comparing performance on a few easy instances can
lead to design flaws in applications built on top of these algorithms [19,26].

3 The Glasgow Subgraph Solver

The Glasgow Subgraph Solver provides a high quality implementation of algo-
rithms for many subgraph isomorphism problem variants. It is open source soft-
ware, released under the MIT licence (which allows for commercial and closed
source reuse). It may be downloaded from https://github.com/ciaranm/glasgow-
subgraph-solver. It is implemented in C++, using the Boost libraries. It supports
a variety of input file formats, but given the subtle and often undocumented dif-
ferences in meanings of inputs in supposedly common file formats (e.g. whether
edges are explicitly listed in both directions for undirected graphs), the solver
has been designed to make it easy to add new parsers. The solver is primarily
intended to be run from the command line or as a separate process, and its
output is easy to parse for use with other tools.

3.1 Algorithmic Details

The Glasgow Subgraph Solver is based upon ideas from constraint programming.
In a general constraint programming problem, we have a set of variables, each of
which has a domain of possible values. We also have a set of constraints, which
restrict valid combinations of values for subsets of the variables. The goal is to
give each variable a value from its domain, respecting all constraints; usually
this is done using a combination of inference and intelligent backtracking search.

https://github.com/ciaranm/glasgow-subgraph-solver
https://github.com/ciaranm/glasgow-subgraph-solver
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To model subgraph isomorphism using constraint programming, we have a
variable for each pattern vertex, and the domains are all of the target vertices.
The constraints depend upon the exact variant being modelled, but we will
usually have one constraint to deal with injectivity, and then a set of constraints
to deal with edge and adjacency rules. A key strength of constraint programming
is in the ability to add additional implied constraints, which we will now discuss—
these can vastly speed up the solving process.

Degree Filtering. In an injective mapping, it is easy to see that a pattern vertex
of degree d can never be mapped to a target vertex of degree less than d. This
often allows many values to be eliminated from domains before any search starts.
The solver uses even stronger filtering, based upon a result by Zampelli et al.
[28], which looks at the neighbourhood degree sequence of vertices.

Distances and Paths. Another source of additional constraints comes from rea-
soning about distances or paths, rather than just adjacency. Audemard et al. [4]
observed that the fact that subgraph isomorphisms preserve or reduce distances
can be used to provide additional filtering during search. An early precursor to
the Glasgow Subgraph Solver [18] strengthened this result, using instead the
fact that subgraph isomorphisms preserve paths: if there are exactly k paths of
length exactly � between two vertices in a pattern graph, then there must be at
least k paths of length exactly � between wherever these two vertices are mapped
in the target graph. This is exploited through the use of supplemental graphs,
as follows.

We define a supplemental graph to be a graph with two distinguished vertices,
that is subgraph isomorphic to itself under the interchange of these vertices. Let-
ting G be a graph, and S a supplemental graph, we define a new graph GS as
follows: the vertex set of GS is the same as the vertex set of G. Meanwhile, there
is an edge between vertices v and w in GS if there exists a non-induced subgraph
isomorphism i from S to G which maps the two distinguished vertices of S to v
and w respectively. It is reasonably straightforward to prove that any subgraph
isomorphism i : P → T also defines a subgraph isomorphism iS : PS → TS ,
where iS(v) = i(v). The Glasgow Subgraph Solver uses this result to generate
additional degree and adjacency-like constraints. This is sometimes extremely
powerful, as illustrated by the example in Fig. 2. Currently the choice of supple-
mental graphs is hard-coded, based upon performance on a range of standard
benchmark instances, but we believe it may be possible to automatically make
different choices for different families of problem instance.

All-Different Filtering. Suppose a pattern graph and a target graph both have
exactly five vertices of degree five or higher, then those five vertices in the tar-
get graph cannot be mapped to by any other pattern vertex in an injective
mapping. This is an example of all-different reasoning: more generally, if any
n undecided pattern vertices have less than n available target vertices between
them, we have found a contradiction, and if they have exactly n available target
vertices between them then those target vertices must all be used only for those
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Fig. 2. On top, a pair of graphs P and T . In the middle, the supplemental graph 1+2.
On the bottom, the modified graphs P 1+2 and T 1+2. These modified graphs make it
immediately clear that no subgraph isomorphism exists between P and T .

pattern vertices. Deciding exactly how to filter all-different constraints is one
of the big differences between constraint programming approaches for subgraph
isomorphism [4,22,25]. Currently, the Glasgow Subgraph Solver uses a special
bit-parallel propagator, which gives a good tradeoff between performance and
filtering power [18].

The other major contributing aspect to a constraint programming solver’s
performance is how it carries out backtracking search.

Search Order. When performing a backtracking search, the choices of which vari-
able to branch on, and which value to try first, can make a staggering difference
to performance in practice. The Glasgow Subgraph Solver uses carefully chosen
strategies to decide how to direct its search [19], including always branching on
whichever vertex has fewest possibilities available to it (tie-breaking on highest
degree). This has interesting implications, which are not yet fully understood.
For example, in the absence of other filtering, this will cause the solver to always
grow connected components, which is the optimal behaviour for certain kinds of
pattern graph—but it is not clear whether exploiting additional filtering could
theoretically lose us performance guarantees in some cases.

Restarts and Nogood Recording. Rather than using simple backtracking, the
solver employs restarts and nogood recording [16,17]: the solver runs for a small
amount of time, and then restarts from the beginning, remembering not to revisit
any part of the search space which has already been explored. Combined with a
small amount of heavily biased randomness in how branching is carried out, this
avoids a strong commitment to early branching choices, which are most difficult
for a heuristic to get right [3].

Parallelism. Modern hardware provides a range of opportunities for parallelism.
The Glasgow Subgraph Solver exploits this in two ways: by using bit-parallel
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data structures and algorithms to carry out inference as quickly as possible [18],
and by using threads to explore multiple parts of the search space in parallel [3].
These parallel search capabilities scale at least as far as thirty-six cores.

3.2 Future Directions

We finish with a discussion of possible future directions for the solver, and with
ideas for research and engineering challenges which may be of broader interest.

Problem Variants. There are other problems involving finding mappings between
subgraphs, such as a surjective variant [13]. Some problems also involve wild-
cards, not just on labels, but on pattern vertices; work on k-less subgraph iso-
morphism [14] may prove useful for continuing to allow powerful inference when
wildcards are present. More generally, we have experimental support for connect-
ing the solver to an external constraint programming solver, to handle arbitrary
side constraints (a bit like Satisfiability Modulo Theories). This could be useful,
for example, for temporal graphs [21]; we would be interested in exploring this
direction further to tackle suitable real-world applications. Another potential
application area is inside graph rewriting systems [10]. Here, the pattern graphs
are considered “fixed”, rather than being part of the input, which has implica-
tions for the theoretical complexity of the problem. However, when patterns are
numerous or large and complex, or when side constraints are involved [2], it may
be more practical to use a general purpose solver than a dedicated algorithm for
each special case.

Symmetries. Some applications involve heavily symmetric pattern and target
graphs [27]. Handling such symmetries in constraint programming is, in princi-
ple, a well-understood problem. However, a practical difficulty is that because
the symmetries vary on an instance by instance basis, symmetry-breaking con-
straints must be computed for each individual input rather than for a model as
a whole. An implementation of the Schreier-Sims algorithm [24] which has no
costly external dependencies would make this approach more practical.

Faster Counting. Currently, the solver handles the counting problem by explicit
enumeration, except that for non-induced isomorphisms, any isolated vertices
in the pattern graph are treated specially. Although counting and enumeration
are equally difficult in general, we believe there are further opportunities for
speeding up counting, for example by decomposing the pattern graph into nearly-
unconnected components, or by handling pattern vertices of degree one and two
specially. We would also be interested in implementing approximate counting as
an option, as well as seeing whether uniform sampling of solutions can be carried
out more efficiently in practice than by explicit enumeration.

Special Classes of Pattern. Certain special classes of pattern may be counted
efficiently—for example, if the pattern is a star graph. Some applications involve
counting occurrences of many different kinds of small graph [1,9,20], and so it
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would be useful if solvers could detect when they were in an “easy” case and
switch algorithms, rather than relying upon end users to do this. There are also
classes of pattern graph where decision and counting are still NP-hard, but where
more efficient solving techniques are available—the solver currently switches to
a different dedicated algorithm if the input graph is a clique, for example.

Proof Logging. Given the increasing complexity of both the theory and imple-
mentations of subgraph isomorphism algorithms, we should be concerned as to
whether the outputs produced are correct. In the Boolean satisfiability commu-
nity, proof logging is the standard solution to this problem: solvers that claim
unsatisfiability are expected to be able to output a machine-verifiable proof of
this fact. Recently, Elffers et al. [11] introduced a more flexible form of proof
logging, that we believe is better suited for algorithms that perform strong infer-
ence. The Glasgow Subgraph Solver includes experimental support for producing
proofs in this format, and we hope to see further research in this direction.

Automatic Configuration. The solver supports a wide range of filtering options.
Its default configuration is designed to reduce the chances of poor performance on
hard instances, rather than to do well on very easy instances—for example, it will
create supplemental graphs before attempting any search, which is a relatively
expensive one-time cost that is not necessary for solving many instances. We have
previously shown that it can be beneficial to employ a simple connectivity-based
algorithm as a presolver [15]. However, it may be possible to take automatic
algorithm configuration further, for example by selecting the set of supplemental
graphs to use on an instance by instance basis.

Benchmarking. Finally, given the importance of having good instances for bench-
marking and for informing algorithm design, we would be very interested in col-
lecting sets of instances from other applications. The instances by Solnon1 orig-
inally used for algorithm portfolios [15] give a good starting point, but having
more instances from a diverse range of applications would be very beneficial—
even if those instances are all either very easy for all solvers, or are too hard for
any current solver to solve at all. We would very much welcome contributions
from the community.
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